1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * PF_INET protocol family socket handler. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Florian La Roche, <flla@stud.uni-sb.de> 11 * Alan Cox, <A.Cox@swansea.ac.uk> 12 * 13 * Changes (see also sock.c) 14 * 15 * piggy, 16 * Karl Knutson : Socket protocol table 17 * A.N.Kuznetsov : Socket death error in accept(). 18 * John Richardson : Fix non blocking error in connect() 19 * so sockets that fail to connect 20 * don't return -EINPROGRESS. 21 * Alan Cox : Asynchronous I/O support 22 * Alan Cox : Keep correct socket pointer on sock 23 * structures 24 * when accept() ed 25 * Alan Cox : Semantics of SO_LINGER aren't state 26 * moved to close when you look carefully. 27 * With this fixed and the accept bug fixed 28 * some RPC stuff seems happier. 29 * Niibe Yutaka : 4.4BSD style write async I/O 30 * Alan Cox, 31 * Tony Gale : Fixed reuse semantics. 32 * Alan Cox : bind() shouldn't abort existing but dead 33 * sockets. Stops FTP netin:.. I hope. 34 * Alan Cox : bind() works correctly for RAW sockets. 35 * Note that FreeBSD at least was broken 36 * in this respect so be careful with 37 * compatibility tests... 38 * Alan Cox : routing cache support 39 * Alan Cox : memzero the socket structure for 40 * compactness. 41 * Matt Day : nonblock connect error handler 42 * Alan Cox : Allow large numbers of pending sockets 43 * (eg for big web sites), but only if 44 * specifically application requested. 45 * Alan Cox : New buffering throughout IP. Used 46 * dumbly. 47 * Alan Cox : New buffering now used smartly. 48 * Alan Cox : BSD rather than common sense 49 * interpretation of listen. 50 * Germano Caronni : Assorted small races. 51 * Alan Cox : sendmsg/recvmsg basic support. 52 * Alan Cox : Only sendmsg/recvmsg now supported. 53 * Alan Cox : Locked down bind (see security list). 54 * Alan Cox : Loosened bind a little. 55 * Mike McLagan : ADD/DEL DLCI Ioctls 56 * Willy Konynenberg : Transparent proxying support. 57 * David S. Miller : New socket lookup architecture. 58 * Some other random speedups. 59 * Cyrus Durgin : Cleaned up file for kmod hacks. 60 * Andi Kleen : Fix inet_stream_connect TCP race. 61 * 62 * This program is free software; you can redistribute it and/or 63 * modify it under the terms of the GNU General Public License 64 * as published by the Free Software Foundation; either version 65 * 2 of the License, or (at your option) any later version. 66 */ 67 68 #define pr_fmt(fmt) "IPv4: " fmt 69 70 #include <linux/err.h> 71 #include <linux/errno.h> 72 #include <linux/types.h> 73 #include <linux/socket.h> 74 #include <linux/in.h> 75 #include <linux/kernel.h> 76 #include <linux/kmod.h> 77 #include <linux/sched.h> 78 #include <linux/timer.h> 79 #include <linux/string.h> 80 #include <linux/sockios.h> 81 #include <linux/net.h> 82 #include <linux/capability.h> 83 #include <linux/fcntl.h> 84 #include <linux/mm.h> 85 #include <linux/interrupt.h> 86 #include <linux/stat.h> 87 #include <linux/init.h> 88 #include <linux/poll.h> 89 #include <linux/netfilter_ipv4.h> 90 #include <linux/random.h> 91 #include <linux/slab.h> 92 93 #include <asm/uaccess.h> 94 95 #include <linux/inet.h> 96 #include <linux/igmp.h> 97 #include <linux/inetdevice.h> 98 #include <linux/netdevice.h> 99 #include <net/checksum.h> 100 #include <net/ip.h> 101 #include <net/protocol.h> 102 #include <net/arp.h> 103 #include <net/route.h> 104 #include <net/ip_fib.h> 105 #include <net/inet_connection_sock.h> 106 #include <net/tcp.h> 107 #include <net/udp.h> 108 #include <net/udplite.h> 109 #include <net/ping.h> 110 #include <linux/skbuff.h> 111 #include <net/sock.h> 112 #include <net/raw.h> 113 #include <net/icmp.h> 114 #include <net/inet_common.h> 115 #include <net/ip_tunnels.h> 116 #include <net/xfrm.h> 117 #include <net/net_namespace.h> 118 #include <net/secure_seq.h> 119 #ifdef CONFIG_IP_MROUTE 120 #include <linux/mroute.h> 121 #endif 122 #include <net/l3mdev.h> 123 124 125 /* The inetsw table contains everything that inet_create needs to 126 * build a new socket. 127 */ 128 static struct list_head inetsw[SOCK_MAX]; 129 static DEFINE_SPINLOCK(inetsw_lock); 130 131 /* New destruction routine */ 132 133 void inet_sock_destruct(struct sock *sk) 134 { 135 struct inet_sock *inet = inet_sk(sk); 136 137 __skb_queue_purge(&sk->sk_receive_queue); 138 __skb_queue_purge(&sk->sk_error_queue); 139 140 sk_mem_reclaim(sk); 141 142 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { 143 pr_err("Attempt to release TCP socket in state %d %p\n", 144 sk->sk_state, sk); 145 return; 146 } 147 if (!sock_flag(sk, SOCK_DEAD)) { 148 pr_err("Attempt to release alive inet socket %p\n", sk); 149 return; 150 } 151 152 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 153 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 154 WARN_ON(sk->sk_wmem_queued); 155 WARN_ON(sk->sk_forward_alloc); 156 157 kfree(rcu_dereference_protected(inet->inet_opt, 1)); 158 dst_release(rcu_dereference_check(sk->sk_dst_cache, 1)); 159 dst_release(sk->sk_rx_dst); 160 sk_refcnt_debug_dec(sk); 161 } 162 EXPORT_SYMBOL(inet_sock_destruct); 163 164 /* 165 * The routines beyond this point handle the behaviour of an AF_INET 166 * socket object. Mostly it punts to the subprotocols of IP to do 167 * the work. 168 */ 169 170 /* 171 * Automatically bind an unbound socket. 172 */ 173 174 static int inet_autobind(struct sock *sk) 175 { 176 struct inet_sock *inet; 177 /* We may need to bind the socket. */ 178 lock_sock(sk); 179 inet = inet_sk(sk); 180 if (!inet->inet_num) { 181 if (sk->sk_prot->get_port(sk, 0)) { 182 release_sock(sk); 183 return -EAGAIN; 184 } 185 inet->inet_sport = htons(inet->inet_num); 186 } 187 release_sock(sk); 188 return 0; 189 } 190 191 /* 192 * Move a socket into listening state. 193 */ 194 int inet_listen(struct socket *sock, int backlog) 195 { 196 struct sock *sk = sock->sk; 197 unsigned char old_state; 198 int err; 199 200 lock_sock(sk); 201 202 err = -EINVAL; 203 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 204 goto out; 205 206 old_state = sk->sk_state; 207 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) 208 goto out; 209 210 /* Really, if the socket is already in listen state 211 * we can only allow the backlog to be adjusted. 212 */ 213 if (old_state != TCP_LISTEN) { 214 /* Enable TFO w/o requiring TCP_FASTOPEN socket option. 215 * Note that only TCP sockets (SOCK_STREAM) will reach here. 216 * Also fastopen backlog may already been set via the option 217 * because the socket was in TCP_LISTEN state previously but 218 * was shutdown() rather than close(). 219 */ 220 if ((sysctl_tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && 221 (sysctl_tcp_fastopen & TFO_SERVER_ENABLE) && 222 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { 223 fastopen_queue_tune(sk, backlog); 224 tcp_fastopen_init_key_once(true); 225 } 226 227 err = inet_csk_listen_start(sk, backlog); 228 if (err) 229 goto out; 230 } 231 sk->sk_max_ack_backlog = backlog; 232 err = 0; 233 234 out: 235 release_sock(sk); 236 return err; 237 } 238 EXPORT_SYMBOL(inet_listen); 239 240 /* 241 * Create an inet socket. 242 */ 243 244 static int inet_create(struct net *net, struct socket *sock, int protocol, 245 int kern) 246 { 247 struct sock *sk; 248 struct inet_protosw *answer; 249 struct inet_sock *inet; 250 struct proto *answer_prot; 251 unsigned char answer_flags; 252 int try_loading_module = 0; 253 int err; 254 255 if (protocol < 0 || protocol >= IPPROTO_MAX) 256 return -EINVAL; 257 258 sock->state = SS_UNCONNECTED; 259 260 /* Look for the requested type/protocol pair. */ 261 lookup_protocol: 262 err = -ESOCKTNOSUPPORT; 263 rcu_read_lock(); 264 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { 265 266 err = 0; 267 /* Check the non-wild match. */ 268 if (protocol == answer->protocol) { 269 if (protocol != IPPROTO_IP) 270 break; 271 } else { 272 /* Check for the two wild cases. */ 273 if (IPPROTO_IP == protocol) { 274 protocol = answer->protocol; 275 break; 276 } 277 if (IPPROTO_IP == answer->protocol) 278 break; 279 } 280 err = -EPROTONOSUPPORT; 281 } 282 283 if (unlikely(err)) { 284 if (try_loading_module < 2) { 285 rcu_read_unlock(); 286 /* 287 * Be more specific, e.g. net-pf-2-proto-132-type-1 288 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) 289 */ 290 if (++try_loading_module == 1) 291 request_module("net-pf-%d-proto-%d-type-%d", 292 PF_INET, protocol, sock->type); 293 /* 294 * Fall back to generic, e.g. net-pf-2-proto-132 295 * (net-pf-PF_INET-proto-IPPROTO_SCTP) 296 */ 297 else 298 request_module("net-pf-%d-proto-%d", 299 PF_INET, protocol); 300 goto lookup_protocol; 301 } else 302 goto out_rcu_unlock; 303 } 304 305 err = -EPERM; 306 if (sock->type == SOCK_RAW && !kern && 307 !ns_capable(net->user_ns, CAP_NET_RAW)) 308 goto out_rcu_unlock; 309 310 sock->ops = answer->ops; 311 answer_prot = answer->prot; 312 answer_flags = answer->flags; 313 rcu_read_unlock(); 314 315 WARN_ON(!answer_prot->slab); 316 317 err = -ENOBUFS; 318 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); 319 if (!sk) 320 goto out; 321 322 err = 0; 323 if (INET_PROTOSW_REUSE & answer_flags) 324 sk->sk_reuse = SK_CAN_REUSE; 325 326 inet = inet_sk(sk); 327 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0; 328 329 inet->nodefrag = 0; 330 331 if (SOCK_RAW == sock->type) { 332 inet->inet_num = protocol; 333 if (IPPROTO_RAW == protocol) 334 inet->hdrincl = 1; 335 } 336 337 if (net->ipv4.sysctl_ip_no_pmtu_disc) 338 inet->pmtudisc = IP_PMTUDISC_DONT; 339 else 340 inet->pmtudisc = IP_PMTUDISC_WANT; 341 342 inet->inet_id = 0; 343 344 sock_init_data(sock, sk); 345 346 sk->sk_destruct = inet_sock_destruct; 347 sk->sk_protocol = protocol; 348 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 349 350 inet->uc_ttl = -1; 351 inet->mc_loop = 1; 352 inet->mc_ttl = 1; 353 inet->mc_all = 1; 354 inet->mc_index = 0; 355 inet->mc_list = NULL; 356 inet->rcv_tos = 0; 357 358 sk_refcnt_debug_inc(sk); 359 360 if (inet->inet_num) { 361 /* It assumes that any protocol which allows 362 * the user to assign a number at socket 363 * creation time automatically 364 * shares. 365 */ 366 inet->inet_sport = htons(inet->inet_num); 367 /* Add to protocol hash chains. */ 368 err = sk->sk_prot->hash(sk); 369 if (err) { 370 sk_common_release(sk); 371 goto out; 372 } 373 } 374 375 if (sk->sk_prot->init) { 376 err = sk->sk_prot->init(sk); 377 if (err) 378 sk_common_release(sk); 379 } 380 out: 381 return err; 382 out_rcu_unlock: 383 rcu_read_unlock(); 384 goto out; 385 } 386 387 388 /* 389 * The peer socket should always be NULL (or else). When we call this 390 * function we are destroying the object and from then on nobody 391 * should refer to it. 392 */ 393 int inet_release(struct socket *sock) 394 { 395 struct sock *sk = sock->sk; 396 397 if (sk) { 398 long timeout; 399 400 /* Applications forget to leave groups before exiting */ 401 ip_mc_drop_socket(sk); 402 403 /* If linger is set, we don't return until the close 404 * is complete. Otherwise we return immediately. The 405 * actually closing is done the same either way. 406 * 407 * If the close is due to the process exiting, we never 408 * linger.. 409 */ 410 timeout = 0; 411 if (sock_flag(sk, SOCK_LINGER) && 412 !(current->flags & PF_EXITING)) 413 timeout = sk->sk_lingertime; 414 sock->sk = NULL; 415 sk->sk_prot->close(sk, timeout); 416 } 417 return 0; 418 } 419 EXPORT_SYMBOL(inet_release); 420 421 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 422 { 423 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; 424 struct sock *sk = sock->sk; 425 struct inet_sock *inet = inet_sk(sk); 426 struct net *net = sock_net(sk); 427 unsigned short snum; 428 int chk_addr_ret; 429 u32 tb_id = RT_TABLE_LOCAL; 430 int err; 431 432 /* If the socket has its own bind function then use it. (RAW) */ 433 if (sk->sk_prot->bind) { 434 err = sk->sk_prot->bind(sk, uaddr, addr_len); 435 goto out; 436 } 437 err = -EINVAL; 438 if (addr_len < sizeof(struct sockaddr_in)) 439 goto out; 440 441 if (addr->sin_family != AF_INET) { 442 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) 443 * only if s_addr is INADDR_ANY. 444 */ 445 err = -EAFNOSUPPORT; 446 if (addr->sin_family != AF_UNSPEC || 447 addr->sin_addr.s_addr != htonl(INADDR_ANY)) 448 goto out; 449 } 450 451 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; 452 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); 453 454 /* Not specified by any standard per-se, however it breaks too 455 * many applications when removed. It is unfortunate since 456 * allowing applications to make a non-local bind solves 457 * several problems with systems using dynamic addressing. 458 * (ie. your servers still start up even if your ISDN link 459 * is temporarily down) 460 */ 461 err = -EADDRNOTAVAIL; 462 if (!net->ipv4.sysctl_ip_nonlocal_bind && 463 !(inet->freebind || inet->transparent) && 464 addr->sin_addr.s_addr != htonl(INADDR_ANY) && 465 chk_addr_ret != RTN_LOCAL && 466 chk_addr_ret != RTN_MULTICAST && 467 chk_addr_ret != RTN_BROADCAST) 468 goto out; 469 470 snum = ntohs(addr->sin_port); 471 err = -EACCES; 472 if (snum && snum < PROT_SOCK && 473 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 474 goto out; 475 476 /* We keep a pair of addresses. rcv_saddr is the one 477 * used by hash lookups, and saddr is used for transmit. 478 * 479 * In the BSD API these are the same except where it 480 * would be illegal to use them (multicast/broadcast) in 481 * which case the sending device address is used. 482 */ 483 lock_sock(sk); 484 485 /* Check these errors (active socket, double bind). */ 486 err = -EINVAL; 487 if (sk->sk_state != TCP_CLOSE || inet->inet_num) 488 goto out_release_sock; 489 490 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; 491 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) 492 inet->inet_saddr = 0; /* Use device */ 493 494 /* Make sure we are allowed to bind here. */ 495 if ((snum || !inet->bind_address_no_port) && 496 sk->sk_prot->get_port(sk, snum)) { 497 inet->inet_saddr = inet->inet_rcv_saddr = 0; 498 err = -EADDRINUSE; 499 goto out_release_sock; 500 } 501 502 if (inet->inet_rcv_saddr) 503 sk->sk_userlocks |= SOCK_BINDADDR_LOCK; 504 if (snum) 505 sk->sk_userlocks |= SOCK_BINDPORT_LOCK; 506 inet->inet_sport = htons(inet->inet_num); 507 inet->inet_daddr = 0; 508 inet->inet_dport = 0; 509 sk_dst_reset(sk); 510 err = 0; 511 out_release_sock: 512 release_sock(sk); 513 out: 514 return err; 515 } 516 EXPORT_SYMBOL(inet_bind); 517 518 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, 519 int addr_len, int flags) 520 { 521 struct sock *sk = sock->sk; 522 523 if (addr_len < sizeof(uaddr->sa_family)) 524 return -EINVAL; 525 if (uaddr->sa_family == AF_UNSPEC) 526 return sk->sk_prot->disconnect(sk, flags); 527 528 if (!inet_sk(sk)->inet_num && inet_autobind(sk)) 529 return -EAGAIN; 530 return sk->sk_prot->connect(sk, uaddr, addr_len); 531 } 532 EXPORT_SYMBOL(inet_dgram_connect); 533 534 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) 535 { 536 DEFINE_WAIT(wait); 537 538 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 539 sk->sk_write_pending += writebias; 540 541 /* Basic assumption: if someone sets sk->sk_err, he _must_ 542 * change state of the socket from TCP_SYN_*. 543 * Connect() does not allow to get error notifications 544 * without closing the socket. 545 */ 546 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 547 release_sock(sk); 548 timeo = schedule_timeout(timeo); 549 lock_sock(sk); 550 if (signal_pending(current) || !timeo) 551 break; 552 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 553 } 554 finish_wait(sk_sleep(sk), &wait); 555 sk->sk_write_pending -= writebias; 556 return timeo; 557 } 558 559 /* 560 * Connect to a remote host. There is regrettably still a little 561 * TCP 'magic' in here. 562 */ 563 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 564 int addr_len, int flags) 565 { 566 struct sock *sk = sock->sk; 567 int err; 568 long timeo; 569 570 if (addr_len < sizeof(uaddr->sa_family)) 571 return -EINVAL; 572 573 if (uaddr->sa_family == AF_UNSPEC) { 574 err = sk->sk_prot->disconnect(sk, flags); 575 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 576 goto out; 577 } 578 579 switch (sock->state) { 580 default: 581 err = -EINVAL; 582 goto out; 583 case SS_CONNECTED: 584 err = -EISCONN; 585 goto out; 586 case SS_CONNECTING: 587 err = -EALREADY; 588 /* Fall out of switch with err, set for this state */ 589 break; 590 case SS_UNCONNECTED: 591 err = -EISCONN; 592 if (sk->sk_state != TCP_CLOSE) 593 goto out; 594 595 err = sk->sk_prot->connect(sk, uaddr, addr_len); 596 if (err < 0) 597 goto out; 598 599 sock->state = SS_CONNECTING; 600 601 /* Just entered SS_CONNECTING state; the only 602 * difference is that return value in non-blocking 603 * case is EINPROGRESS, rather than EALREADY. 604 */ 605 err = -EINPROGRESS; 606 break; 607 } 608 609 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 610 611 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 612 int writebias = (sk->sk_protocol == IPPROTO_TCP) && 613 tcp_sk(sk)->fastopen_req && 614 tcp_sk(sk)->fastopen_req->data ? 1 : 0; 615 616 /* Error code is set above */ 617 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) 618 goto out; 619 620 err = sock_intr_errno(timeo); 621 if (signal_pending(current)) 622 goto out; 623 } 624 625 /* Connection was closed by RST, timeout, ICMP error 626 * or another process disconnected us. 627 */ 628 if (sk->sk_state == TCP_CLOSE) 629 goto sock_error; 630 631 /* sk->sk_err may be not zero now, if RECVERR was ordered by user 632 * and error was received after socket entered established state. 633 * Hence, it is handled normally after connect() return successfully. 634 */ 635 636 sock->state = SS_CONNECTED; 637 err = 0; 638 out: 639 return err; 640 641 sock_error: 642 err = sock_error(sk) ? : -ECONNABORTED; 643 sock->state = SS_UNCONNECTED; 644 if (sk->sk_prot->disconnect(sk, flags)) 645 sock->state = SS_DISCONNECTING; 646 goto out; 647 } 648 EXPORT_SYMBOL(__inet_stream_connect); 649 650 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 651 int addr_len, int flags) 652 { 653 int err; 654 655 lock_sock(sock->sk); 656 err = __inet_stream_connect(sock, uaddr, addr_len, flags); 657 release_sock(sock->sk); 658 return err; 659 } 660 EXPORT_SYMBOL(inet_stream_connect); 661 662 /* 663 * Accept a pending connection. The TCP layer now gives BSD semantics. 664 */ 665 666 int inet_accept(struct socket *sock, struct socket *newsock, int flags) 667 { 668 struct sock *sk1 = sock->sk; 669 int err = -EINVAL; 670 struct sock *sk2 = sk1->sk_prot->accept(sk1, flags, &err); 671 672 if (!sk2) 673 goto do_err; 674 675 lock_sock(sk2); 676 677 sock_rps_record_flow(sk2); 678 WARN_ON(!((1 << sk2->sk_state) & 679 (TCPF_ESTABLISHED | TCPF_SYN_RECV | 680 TCPF_CLOSE_WAIT | TCPF_CLOSE))); 681 682 sock_graft(sk2, newsock); 683 684 newsock->state = SS_CONNECTED; 685 err = 0; 686 release_sock(sk2); 687 do_err: 688 return err; 689 } 690 EXPORT_SYMBOL(inet_accept); 691 692 693 /* 694 * This does both peername and sockname. 695 */ 696 int inet_getname(struct socket *sock, struct sockaddr *uaddr, 697 int *uaddr_len, int peer) 698 { 699 struct sock *sk = sock->sk; 700 struct inet_sock *inet = inet_sk(sk); 701 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); 702 703 sin->sin_family = AF_INET; 704 if (peer) { 705 if (!inet->inet_dport || 706 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && 707 peer == 1)) 708 return -ENOTCONN; 709 sin->sin_port = inet->inet_dport; 710 sin->sin_addr.s_addr = inet->inet_daddr; 711 } else { 712 __be32 addr = inet->inet_rcv_saddr; 713 if (!addr) 714 addr = inet->inet_saddr; 715 sin->sin_port = inet->inet_sport; 716 sin->sin_addr.s_addr = addr; 717 } 718 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 719 *uaddr_len = sizeof(*sin); 720 return 0; 721 } 722 EXPORT_SYMBOL(inet_getname); 723 724 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 725 { 726 struct sock *sk = sock->sk; 727 728 sock_rps_record_flow(sk); 729 730 /* We may need to bind the socket. */ 731 if (!inet_sk(sk)->inet_num && !sk->sk_prot->no_autobind && 732 inet_autobind(sk)) 733 return -EAGAIN; 734 735 return sk->sk_prot->sendmsg(sk, msg, size); 736 } 737 EXPORT_SYMBOL(inet_sendmsg); 738 739 ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset, 740 size_t size, int flags) 741 { 742 struct sock *sk = sock->sk; 743 744 sock_rps_record_flow(sk); 745 746 /* We may need to bind the socket. */ 747 if (!inet_sk(sk)->inet_num && !sk->sk_prot->no_autobind && 748 inet_autobind(sk)) 749 return -EAGAIN; 750 751 if (sk->sk_prot->sendpage) 752 return sk->sk_prot->sendpage(sk, page, offset, size, flags); 753 return sock_no_sendpage(sock, page, offset, size, flags); 754 } 755 EXPORT_SYMBOL(inet_sendpage); 756 757 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 758 int flags) 759 { 760 struct sock *sk = sock->sk; 761 int addr_len = 0; 762 int err; 763 764 sock_rps_record_flow(sk); 765 766 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 767 flags & ~MSG_DONTWAIT, &addr_len); 768 if (err >= 0) 769 msg->msg_namelen = addr_len; 770 return err; 771 } 772 EXPORT_SYMBOL(inet_recvmsg); 773 774 int inet_shutdown(struct socket *sock, int how) 775 { 776 struct sock *sk = sock->sk; 777 int err = 0; 778 779 /* This should really check to make sure 780 * the socket is a TCP socket. (WHY AC...) 781 */ 782 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 783 1->2 bit 2 snds. 784 2->3 */ 785 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ 786 return -EINVAL; 787 788 lock_sock(sk); 789 if (sock->state == SS_CONNECTING) { 790 if ((1 << sk->sk_state) & 791 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 792 sock->state = SS_DISCONNECTING; 793 else 794 sock->state = SS_CONNECTED; 795 } 796 797 switch (sk->sk_state) { 798 case TCP_CLOSE: 799 err = -ENOTCONN; 800 /* Hack to wake up other listeners, who can poll for 801 POLLHUP, even on eg. unconnected UDP sockets -- RR */ 802 default: 803 sk->sk_shutdown |= how; 804 if (sk->sk_prot->shutdown) 805 sk->sk_prot->shutdown(sk, how); 806 break; 807 808 /* Remaining two branches are temporary solution for missing 809 * close() in multithreaded environment. It is _not_ a good idea, 810 * but we have no choice until close() is repaired at VFS level. 811 */ 812 case TCP_LISTEN: 813 if (!(how & RCV_SHUTDOWN)) 814 break; 815 /* Fall through */ 816 case TCP_SYN_SENT: 817 err = sk->sk_prot->disconnect(sk, O_NONBLOCK); 818 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 819 break; 820 } 821 822 /* Wake up anyone sleeping in poll. */ 823 sk->sk_state_change(sk); 824 release_sock(sk); 825 return err; 826 } 827 EXPORT_SYMBOL(inet_shutdown); 828 829 /* 830 * ioctl() calls you can issue on an INET socket. Most of these are 831 * device configuration and stuff and very rarely used. Some ioctls 832 * pass on to the socket itself. 833 * 834 * NOTE: I like the idea of a module for the config stuff. ie ifconfig 835 * loads the devconfigure module does its configuring and unloads it. 836 * There's a good 20K of config code hanging around the kernel. 837 */ 838 839 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 840 { 841 struct sock *sk = sock->sk; 842 int err = 0; 843 struct net *net = sock_net(sk); 844 845 switch (cmd) { 846 case SIOCGSTAMP: 847 err = sock_get_timestamp(sk, (struct timeval __user *)arg); 848 break; 849 case SIOCGSTAMPNS: 850 err = sock_get_timestampns(sk, (struct timespec __user *)arg); 851 break; 852 case SIOCADDRT: 853 case SIOCDELRT: 854 case SIOCRTMSG: 855 err = ip_rt_ioctl(net, cmd, (void __user *)arg); 856 break; 857 case SIOCDARP: 858 case SIOCGARP: 859 case SIOCSARP: 860 err = arp_ioctl(net, cmd, (void __user *)arg); 861 break; 862 case SIOCGIFADDR: 863 case SIOCSIFADDR: 864 case SIOCGIFBRDADDR: 865 case SIOCSIFBRDADDR: 866 case SIOCGIFNETMASK: 867 case SIOCSIFNETMASK: 868 case SIOCGIFDSTADDR: 869 case SIOCSIFDSTADDR: 870 case SIOCSIFPFLAGS: 871 case SIOCGIFPFLAGS: 872 case SIOCSIFFLAGS: 873 err = devinet_ioctl(net, cmd, (void __user *)arg); 874 break; 875 default: 876 if (sk->sk_prot->ioctl) 877 err = sk->sk_prot->ioctl(sk, cmd, arg); 878 else 879 err = -ENOIOCTLCMD; 880 break; 881 } 882 return err; 883 } 884 EXPORT_SYMBOL(inet_ioctl); 885 886 #ifdef CONFIG_COMPAT 887 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 888 { 889 struct sock *sk = sock->sk; 890 int err = -ENOIOCTLCMD; 891 892 if (sk->sk_prot->compat_ioctl) 893 err = sk->sk_prot->compat_ioctl(sk, cmd, arg); 894 895 return err; 896 } 897 #endif 898 899 const struct proto_ops inet_stream_ops = { 900 .family = PF_INET, 901 .owner = THIS_MODULE, 902 .release = inet_release, 903 .bind = inet_bind, 904 .connect = inet_stream_connect, 905 .socketpair = sock_no_socketpair, 906 .accept = inet_accept, 907 .getname = inet_getname, 908 .poll = tcp_poll, 909 .ioctl = inet_ioctl, 910 .listen = inet_listen, 911 .shutdown = inet_shutdown, 912 .setsockopt = sock_common_setsockopt, 913 .getsockopt = sock_common_getsockopt, 914 .sendmsg = inet_sendmsg, 915 .recvmsg = inet_recvmsg, 916 .mmap = sock_no_mmap, 917 .sendpage = inet_sendpage, 918 .splice_read = tcp_splice_read, 919 .read_sock = tcp_read_sock, 920 .peek_len = tcp_peek_len, 921 #ifdef CONFIG_COMPAT 922 .compat_setsockopt = compat_sock_common_setsockopt, 923 .compat_getsockopt = compat_sock_common_getsockopt, 924 .compat_ioctl = inet_compat_ioctl, 925 #endif 926 }; 927 EXPORT_SYMBOL(inet_stream_ops); 928 929 const struct proto_ops inet_dgram_ops = { 930 .family = PF_INET, 931 .owner = THIS_MODULE, 932 .release = inet_release, 933 .bind = inet_bind, 934 .connect = inet_dgram_connect, 935 .socketpair = sock_no_socketpair, 936 .accept = sock_no_accept, 937 .getname = inet_getname, 938 .poll = udp_poll, 939 .ioctl = inet_ioctl, 940 .listen = sock_no_listen, 941 .shutdown = inet_shutdown, 942 .setsockopt = sock_common_setsockopt, 943 .getsockopt = sock_common_getsockopt, 944 .sendmsg = inet_sendmsg, 945 .recvmsg = inet_recvmsg, 946 .mmap = sock_no_mmap, 947 .sendpage = inet_sendpage, 948 .set_peek_off = sk_set_peek_off, 949 #ifdef CONFIG_COMPAT 950 .compat_setsockopt = compat_sock_common_setsockopt, 951 .compat_getsockopt = compat_sock_common_getsockopt, 952 .compat_ioctl = inet_compat_ioctl, 953 #endif 954 }; 955 EXPORT_SYMBOL(inet_dgram_ops); 956 957 /* 958 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without 959 * udp_poll 960 */ 961 static const struct proto_ops inet_sockraw_ops = { 962 .family = PF_INET, 963 .owner = THIS_MODULE, 964 .release = inet_release, 965 .bind = inet_bind, 966 .connect = inet_dgram_connect, 967 .socketpair = sock_no_socketpair, 968 .accept = sock_no_accept, 969 .getname = inet_getname, 970 .poll = datagram_poll, 971 .ioctl = inet_ioctl, 972 .listen = sock_no_listen, 973 .shutdown = inet_shutdown, 974 .setsockopt = sock_common_setsockopt, 975 .getsockopt = sock_common_getsockopt, 976 .sendmsg = inet_sendmsg, 977 .recvmsg = inet_recvmsg, 978 .mmap = sock_no_mmap, 979 .sendpage = inet_sendpage, 980 #ifdef CONFIG_COMPAT 981 .compat_setsockopt = compat_sock_common_setsockopt, 982 .compat_getsockopt = compat_sock_common_getsockopt, 983 .compat_ioctl = inet_compat_ioctl, 984 #endif 985 }; 986 987 static const struct net_proto_family inet_family_ops = { 988 .family = PF_INET, 989 .create = inet_create, 990 .owner = THIS_MODULE, 991 }; 992 993 /* Upon startup we insert all the elements in inetsw_array[] into 994 * the linked list inetsw. 995 */ 996 static struct inet_protosw inetsw_array[] = 997 { 998 { 999 .type = SOCK_STREAM, 1000 .protocol = IPPROTO_TCP, 1001 .prot = &tcp_prot, 1002 .ops = &inet_stream_ops, 1003 .flags = INET_PROTOSW_PERMANENT | 1004 INET_PROTOSW_ICSK, 1005 }, 1006 1007 { 1008 .type = SOCK_DGRAM, 1009 .protocol = IPPROTO_UDP, 1010 .prot = &udp_prot, 1011 .ops = &inet_dgram_ops, 1012 .flags = INET_PROTOSW_PERMANENT, 1013 }, 1014 1015 { 1016 .type = SOCK_DGRAM, 1017 .protocol = IPPROTO_ICMP, 1018 .prot = &ping_prot, 1019 .ops = &inet_dgram_ops, 1020 .flags = INET_PROTOSW_REUSE, 1021 }, 1022 1023 { 1024 .type = SOCK_RAW, 1025 .protocol = IPPROTO_IP, /* wild card */ 1026 .prot = &raw_prot, 1027 .ops = &inet_sockraw_ops, 1028 .flags = INET_PROTOSW_REUSE, 1029 } 1030 }; 1031 1032 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) 1033 1034 void inet_register_protosw(struct inet_protosw *p) 1035 { 1036 struct list_head *lh; 1037 struct inet_protosw *answer; 1038 int protocol = p->protocol; 1039 struct list_head *last_perm; 1040 1041 spin_lock_bh(&inetsw_lock); 1042 1043 if (p->type >= SOCK_MAX) 1044 goto out_illegal; 1045 1046 /* If we are trying to override a permanent protocol, bail. */ 1047 last_perm = &inetsw[p->type]; 1048 list_for_each(lh, &inetsw[p->type]) { 1049 answer = list_entry(lh, struct inet_protosw, list); 1050 /* Check only the non-wild match. */ 1051 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) 1052 break; 1053 if (protocol == answer->protocol) 1054 goto out_permanent; 1055 last_perm = lh; 1056 } 1057 1058 /* Add the new entry after the last permanent entry if any, so that 1059 * the new entry does not override a permanent entry when matched with 1060 * a wild-card protocol. But it is allowed to override any existing 1061 * non-permanent entry. This means that when we remove this entry, the 1062 * system automatically returns to the old behavior. 1063 */ 1064 list_add_rcu(&p->list, last_perm); 1065 out: 1066 spin_unlock_bh(&inetsw_lock); 1067 1068 return; 1069 1070 out_permanent: 1071 pr_err("Attempt to override permanent protocol %d\n", protocol); 1072 goto out; 1073 1074 out_illegal: 1075 pr_err("Ignoring attempt to register invalid socket type %d\n", 1076 p->type); 1077 goto out; 1078 } 1079 EXPORT_SYMBOL(inet_register_protosw); 1080 1081 void inet_unregister_protosw(struct inet_protosw *p) 1082 { 1083 if (INET_PROTOSW_PERMANENT & p->flags) { 1084 pr_err("Attempt to unregister permanent protocol %d\n", 1085 p->protocol); 1086 } else { 1087 spin_lock_bh(&inetsw_lock); 1088 list_del_rcu(&p->list); 1089 spin_unlock_bh(&inetsw_lock); 1090 1091 synchronize_net(); 1092 } 1093 } 1094 EXPORT_SYMBOL(inet_unregister_protosw); 1095 1096 static int inet_sk_reselect_saddr(struct sock *sk) 1097 { 1098 struct inet_sock *inet = inet_sk(sk); 1099 __be32 old_saddr = inet->inet_saddr; 1100 __be32 daddr = inet->inet_daddr; 1101 struct flowi4 *fl4; 1102 struct rtable *rt; 1103 __be32 new_saddr; 1104 struct ip_options_rcu *inet_opt; 1105 1106 inet_opt = rcu_dereference_protected(inet->inet_opt, 1107 lockdep_sock_is_held(sk)); 1108 if (inet_opt && inet_opt->opt.srr) 1109 daddr = inet_opt->opt.faddr; 1110 1111 /* Query new route. */ 1112 fl4 = &inet->cork.fl.u.ip4; 1113 rt = ip_route_connect(fl4, daddr, 0, RT_CONN_FLAGS(sk), 1114 sk->sk_bound_dev_if, sk->sk_protocol, 1115 inet->inet_sport, inet->inet_dport, sk); 1116 if (IS_ERR(rt)) 1117 return PTR_ERR(rt); 1118 1119 sk_setup_caps(sk, &rt->dst); 1120 1121 new_saddr = fl4->saddr; 1122 1123 if (new_saddr == old_saddr) 1124 return 0; 1125 1126 if (sock_net(sk)->ipv4.sysctl_ip_dynaddr > 1) { 1127 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", 1128 __func__, &old_saddr, &new_saddr); 1129 } 1130 1131 inet->inet_saddr = inet->inet_rcv_saddr = new_saddr; 1132 1133 /* 1134 * XXX The only one ugly spot where we need to 1135 * XXX really change the sockets identity after 1136 * XXX it has entered the hashes. -DaveM 1137 * 1138 * Besides that, it does not check for connection 1139 * uniqueness. Wait for troubles. 1140 */ 1141 return __sk_prot_rehash(sk); 1142 } 1143 1144 int inet_sk_rebuild_header(struct sock *sk) 1145 { 1146 struct inet_sock *inet = inet_sk(sk); 1147 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); 1148 __be32 daddr; 1149 struct ip_options_rcu *inet_opt; 1150 struct flowi4 *fl4; 1151 int err; 1152 1153 /* Route is OK, nothing to do. */ 1154 if (rt) 1155 return 0; 1156 1157 /* Reroute. */ 1158 rcu_read_lock(); 1159 inet_opt = rcu_dereference(inet->inet_opt); 1160 daddr = inet->inet_daddr; 1161 if (inet_opt && inet_opt->opt.srr) 1162 daddr = inet_opt->opt.faddr; 1163 rcu_read_unlock(); 1164 fl4 = &inet->cork.fl.u.ip4; 1165 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, 1166 inet->inet_dport, inet->inet_sport, 1167 sk->sk_protocol, RT_CONN_FLAGS(sk), 1168 sk->sk_bound_dev_if); 1169 if (!IS_ERR(rt)) { 1170 err = 0; 1171 sk_setup_caps(sk, &rt->dst); 1172 } else { 1173 err = PTR_ERR(rt); 1174 1175 /* Routing failed... */ 1176 sk->sk_route_caps = 0; 1177 /* 1178 * Other protocols have to map its equivalent state to TCP_SYN_SENT. 1179 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme 1180 */ 1181 if (!sock_net(sk)->ipv4.sysctl_ip_dynaddr || 1182 sk->sk_state != TCP_SYN_SENT || 1183 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || 1184 (err = inet_sk_reselect_saddr(sk)) != 0) 1185 sk->sk_err_soft = -err; 1186 } 1187 1188 return err; 1189 } 1190 EXPORT_SYMBOL(inet_sk_rebuild_header); 1191 1192 struct sk_buff *inet_gso_segment(struct sk_buff *skb, 1193 netdev_features_t features) 1194 { 1195 bool udpfrag = false, fixedid = false, gso_partial, encap; 1196 struct sk_buff *segs = ERR_PTR(-EINVAL); 1197 const struct net_offload *ops; 1198 unsigned int offset = 0; 1199 struct iphdr *iph; 1200 int proto, tot_len; 1201 int nhoff; 1202 int ihl; 1203 int id; 1204 1205 skb_reset_network_header(skb); 1206 nhoff = skb_network_header(skb) - skb_mac_header(skb); 1207 if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) 1208 goto out; 1209 1210 iph = ip_hdr(skb); 1211 ihl = iph->ihl * 4; 1212 if (ihl < sizeof(*iph)) 1213 goto out; 1214 1215 id = ntohs(iph->id); 1216 proto = iph->protocol; 1217 1218 /* Warning: after this point, iph might be no longer valid */ 1219 if (unlikely(!pskb_may_pull(skb, ihl))) 1220 goto out; 1221 __skb_pull(skb, ihl); 1222 1223 encap = SKB_GSO_CB(skb)->encap_level > 0; 1224 if (encap) 1225 features &= skb->dev->hw_enc_features; 1226 SKB_GSO_CB(skb)->encap_level += ihl; 1227 1228 skb_reset_transport_header(skb); 1229 1230 segs = ERR_PTR(-EPROTONOSUPPORT); 1231 1232 if (!skb->encapsulation || encap) { 1233 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); 1234 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); 1235 1236 /* fixed ID is invalid if DF bit is not set */ 1237 if (fixedid && !(iph->frag_off & htons(IP_DF))) 1238 goto out; 1239 } 1240 1241 ops = rcu_dereference(inet_offloads[proto]); 1242 if (likely(ops && ops->callbacks.gso_segment)) 1243 segs = ops->callbacks.gso_segment(skb, features); 1244 1245 if (IS_ERR_OR_NULL(segs)) 1246 goto out; 1247 1248 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); 1249 1250 skb = segs; 1251 do { 1252 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); 1253 if (udpfrag) { 1254 iph->frag_off = htons(offset >> 3); 1255 if (skb->next) 1256 iph->frag_off |= htons(IP_MF); 1257 offset += skb->len - nhoff - ihl; 1258 tot_len = skb->len - nhoff; 1259 } else if (skb_is_gso(skb)) { 1260 if (!fixedid) { 1261 iph->id = htons(id); 1262 id += skb_shinfo(skb)->gso_segs; 1263 } 1264 1265 if (gso_partial) 1266 tot_len = skb_shinfo(skb)->gso_size + 1267 SKB_GSO_CB(skb)->data_offset + 1268 skb->head - (unsigned char *)iph; 1269 else 1270 tot_len = skb->len - nhoff; 1271 } else { 1272 if (!fixedid) 1273 iph->id = htons(id++); 1274 tot_len = skb->len - nhoff; 1275 } 1276 iph->tot_len = htons(tot_len); 1277 ip_send_check(iph); 1278 if (encap) 1279 skb_reset_inner_headers(skb); 1280 skb->network_header = (u8 *)iph - skb->head; 1281 } while ((skb = skb->next)); 1282 1283 out: 1284 return segs; 1285 } 1286 EXPORT_SYMBOL(inet_gso_segment); 1287 1288 struct sk_buff **inet_gro_receive(struct sk_buff **head, struct sk_buff *skb) 1289 { 1290 const struct net_offload *ops; 1291 struct sk_buff **pp = NULL; 1292 struct sk_buff *p; 1293 const struct iphdr *iph; 1294 unsigned int hlen; 1295 unsigned int off; 1296 unsigned int id; 1297 int flush = 1; 1298 int proto; 1299 1300 off = skb_gro_offset(skb); 1301 hlen = off + sizeof(*iph); 1302 iph = skb_gro_header_fast(skb, off); 1303 if (skb_gro_header_hard(skb, hlen)) { 1304 iph = skb_gro_header_slow(skb, hlen, off); 1305 if (unlikely(!iph)) 1306 goto out; 1307 } 1308 1309 proto = iph->protocol; 1310 1311 rcu_read_lock(); 1312 ops = rcu_dereference(inet_offloads[proto]); 1313 if (!ops || !ops->callbacks.gro_receive) 1314 goto out_unlock; 1315 1316 if (*(u8 *)iph != 0x45) 1317 goto out_unlock; 1318 1319 if (unlikely(ip_fast_csum((u8 *)iph, 5))) 1320 goto out_unlock; 1321 1322 id = ntohl(*(__be32 *)&iph->id); 1323 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); 1324 id >>= 16; 1325 1326 for (p = *head; p; p = p->next) { 1327 struct iphdr *iph2; 1328 u16 flush_id; 1329 1330 if (!NAPI_GRO_CB(p)->same_flow) 1331 continue; 1332 1333 iph2 = (struct iphdr *)(p->data + off); 1334 /* The above works because, with the exception of the top 1335 * (inner most) layer, we only aggregate pkts with the same 1336 * hdr length so all the hdrs we'll need to verify will start 1337 * at the same offset. 1338 */ 1339 if ((iph->protocol ^ iph2->protocol) | 1340 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | 1341 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { 1342 NAPI_GRO_CB(p)->same_flow = 0; 1343 continue; 1344 } 1345 1346 /* All fields must match except length and checksum. */ 1347 NAPI_GRO_CB(p)->flush |= 1348 (iph->ttl ^ iph2->ttl) | 1349 (iph->tos ^ iph2->tos) | 1350 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); 1351 1352 NAPI_GRO_CB(p)->flush |= flush; 1353 1354 /* We need to store of the IP ID check to be included later 1355 * when we can verify that this packet does in fact belong 1356 * to a given flow. 1357 */ 1358 flush_id = (u16)(id - ntohs(iph2->id)); 1359 1360 /* This bit of code makes it much easier for us to identify 1361 * the cases where we are doing atomic vs non-atomic IP ID 1362 * checks. Specifically an atomic check can return IP ID 1363 * values 0 - 0xFFFF, while a non-atomic check can only 1364 * return 0 or 0xFFFF. 1365 */ 1366 if (!NAPI_GRO_CB(p)->is_atomic || 1367 !(iph->frag_off & htons(IP_DF))) { 1368 flush_id ^= NAPI_GRO_CB(p)->count; 1369 flush_id = flush_id ? 0xFFFF : 0; 1370 } 1371 1372 /* If the previous IP ID value was based on an atomic 1373 * datagram we can overwrite the value and ignore it. 1374 */ 1375 if (NAPI_GRO_CB(skb)->is_atomic) 1376 NAPI_GRO_CB(p)->flush_id = flush_id; 1377 else 1378 NAPI_GRO_CB(p)->flush_id |= flush_id; 1379 } 1380 1381 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); 1382 NAPI_GRO_CB(skb)->flush |= flush; 1383 skb_set_network_header(skb, off); 1384 /* The above will be needed by the transport layer if there is one 1385 * immediately following this IP hdr. 1386 */ 1387 1388 /* Note : No need to call skb_gro_postpull_rcsum() here, 1389 * as we already checked checksum over ipv4 header was 0 1390 */ 1391 skb_gro_pull(skb, sizeof(*iph)); 1392 skb_set_transport_header(skb, skb_gro_offset(skb)); 1393 1394 pp = ops->callbacks.gro_receive(head, skb); 1395 1396 out_unlock: 1397 rcu_read_unlock(); 1398 1399 out: 1400 NAPI_GRO_CB(skb)->flush |= flush; 1401 1402 return pp; 1403 } 1404 EXPORT_SYMBOL(inet_gro_receive); 1405 1406 static struct sk_buff **ipip_gro_receive(struct sk_buff **head, 1407 struct sk_buff *skb) 1408 { 1409 if (NAPI_GRO_CB(skb)->encap_mark) { 1410 NAPI_GRO_CB(skb)->flush = 1; 1411 return NULL; 1412 } 1413 1414 NAPI_GRO_CB(skb)->encap_mark = 1; 1415 1416 return inet_gro_receive(head, skb); 1417 } 1418 1419 #define SECONDS_PER_DAY 86400 1420 1421 /* inet_current_timestamp - Return IP network timestamp 1422 * 1423 * Return milliseconds since midnight in network byte order. 1424 */ 1425 __be32 inet_current_timestamp(void) 1426 { 1427 u32 secs; 1428 u32 msecs; 1429 struct timespec64 ts; 1430 1431 ktime_get_real_ts64(&ts); 1432 1433 /* Get secs since midnight. */ 1434 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); 1435 /* Convert to msecs. */ 1436 msecs = secs * MSEC_PER_SEC; 1437 /* Convert nsec to msec. */ 1438 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; 1439 1440 /* Convert to network byte order. */ 1441 return htonl(msecs); 1442 } 1443 EXPORT_SYMBOL(inet_current_timestamp); 1444 1445 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) 1446 { 1447 if (sk->sk_family == AF_INET) 1448 return ip_recv_error(sk, msg, len, addr_len); 1449 #if IS_ENABLED(CONFIG_IPV6) 1450 if (sk->sk_family == AF_INET6) 1451 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); 1452 #endif 1453 return -EINVAL; 1454 } 1455 1456 int inet_gro_complete(struct sk_buff *skb, int nhoff) 1457 { 1458 __be16 newlen = htons(skb->len - nhoff); 1459 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); 1460 const struct net_offload *ops; 1461 int proto = iph->protocol; 1462 int err = -ENOSYS; 1463 1464 if (skb->encapsulation) 1465 skb_set_inner_network_header(skb, nhoff); 1466 1467 csum_replace2(&iph->check, iph->tot_len, newlen); 1468 iph->tot_len = newlen; 1469 1470 rcu_read_lock(); 1471 ops = rcu_dereference(inet_offloads[proto]); 1472 if (WARN_ON(!ops || !ops->callbacks.gro_complete)) 1473 goto out_unlock; 1474 1475 /* Only need to add sizeof(*iph) to get to the next hdr below 1476 * because any hdr with option will have been flushed in 1477 * inet_gro_receive(). 1478 */ 1479 err = ops->callbacks.gro_complete(skb, nhoff + sizeof(*iph)); 1480 1481 out_unlock: 1482 rcu_read_unlock(); 1483 1484 return err; 1485 } 1486 EXPORT_SYMBOL(inet_gro_complete); 1487 1488 static int ipip_gro_complete(struct sk_buff *skb, int nhoff) 1489 { 1490 skb->encapsulation = 1; 1491 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; 1492 return inet_gro_complete(skb, nhoff); 1493 } 1494 1495 int inet_ctl_sock_create(struct sock **sk, unsigned short family, 1496 unsigned short type, unsigned char protocol, 1497 struct net *net) 1498 { 1499 struct socket *sock; 1500 int rc = sock_create_kern(net, family, type, protocol, &sock); 1501 1502 if (rc == 0) { 1503 *sk = sock->sk; 1504 (*sk)->sk_allocation = GFP_ATOMIC; 1505 /* 1506 * Unhash it so that IP input processing does not even see it, 1507 * we do not wish this socket to see incoming packets. 1508 */ 1509 (*sk)->sk_prot->unhash(*sk); 1510 } 1511 return rc; 1512 } 1513 EXPORT_SYMBOL_GPL(inet_ctl_sock_create); 1514 1515 u64 snmp_get_cpu_field(void __percpu *mib, int cpu, int offt) 1516 { 1517 return *(((unsigned long *)per_cpu_ptr(mib, cpu)) + offt); 1518 } 1519 EXPORT_SYMBOL_GPL(snmp_get_cpu_field); 1520 1521 unsigned long snmp_fold_field(void __percpu *mib, int offt) 1522 { 1523 unsigned long res = 0; 1524 int i; 1525 1526 for_each_possible_cpu(i) 1527 res += snmp_get_cpu_field(mib, i, offt); 1528 return res; 1529 } 1530 EXPORT_SYMBOL_GPL(snmp_fold_field); 1531 1532 #if BITS_PER_LONG==32 1533 1534 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, 1535 size_t syncp_offset) 1536 { 1537 void *bhptr; 1538 struct u64_stats_sync *syncp; 1539 u64 v; 1540 unsigned int start; 1541 1542 bhptr = per_cpu_ptr(mib, cpu); 1543 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); 1544 do { 1545 start = u64_stats_fetch_begin_irq(syncp); 1546 v = *(((u64 *)bhptr) + offt); 1547 } while (u64_stats_fetch_retry_irq(syncp, start)); 1548 1549 return v; 1550 } 1551 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); 1552 1553 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) 1554 { 1555 u64 res = 0; 1556 int cpu; 1557 1558 for_each_possible_cpu(cpu) { 1559 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); 1560 } 1561 return res; 1562 } 1563 EXPORT_SYMBOL_GPL(snmp_fold_field64); 1564 #endif 1565 1566 #ifdef CONFIG_IP_MULTICAST 1567 static const struct net_protocol igmp_protocol = { 1568 .handler = igmp_rcv, 1569 .netns_ok = 1, 1570 }; 1571 #endif 1572 1573 static const struct net_protocol tcp_protocol = { 1574 .early_demux = tcp_v4_early_demux, 1575 .handler = tcp_v4_rcv, 1576 .err_handler = tcp_v4_err, 1577 .no_policy = 1, 1578 .netns_ok = 1, 1579 .icmp_strict_tag_validation = 1, 1580 }; 1581 1582 static const struct net_protocol udp_protocol = { 1583 .early_demux = udp_v4_early_demux, 1584 .handler = udp_rcv, 1585 .err_handler = udp_err, 1586 .no_policy = 1, 1587 .netns_ok = 1, 1588 }; 1589 1590 static const struct net_protocol icmp_protocol = { 1591 .handler = icmp_rcv, 1592 .err_handler = icmp_err, 1593 .no_policy = 1, 1594 .netns_ok = 1, 1595 }; 1596 1597 static __net_init int ipv4_mib_init_net(struct net *net) 1598 { 1599 int i; 1600 1601 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); 1602 if (!net->mib.tcp_statistics) 1603 goto err_tcp_mib; 1604 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); 1605 if (!net->mib.ip_statistics) 1606 goto err_ip_mib; 1607 1608 for_each_possible_cpu(i) { 1609 struct ipstats_mib *af_inet_stats; 1610 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); 1611 u64_stats_init(&af_inet_stats->syncp); 1612 } 1613 1614 net->mib.net_statistics = alloc_percpu(struct linux_mib); 1615 if (!net->mib.net_statistics) 1616 goto err_net_mib; 1617 net->mib.udp_statistics = alloc_percpu(struct udp_mib); 1618 if (!net->mib.udp_statistics) 1619 goto err_udp_mib; 1620 net->mib.udplite_statistics = alloc_percpu(struct udp_mib); 1621 if (!net->mib.udplite_statistics) 1622 goto err_udplite_mib; 1623 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); 1624 if (!net->mib.icmp_statistics) 1625 goto err_icmp_mib; 1626 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), 1627 GFP_KERNEL); 1628 if (!net->mib.icmpmsg_statistics) 1629 goto err_icmpmsg_mib; 1630 1631 tcp_mib_init(net); 1632 return 0; 1633 1634 err_icmpmsg_mib: 1635 free_percpu(net->mib.icmp_statistics); 1636 err_icmp_mib: 1637 free_percpu(net->mib.udplite_statistics); 1638 err_udplite_mib: 1639 free_percpu(net->mib.udp_statistics); 1640 err_udp_mib: 1641 free_percpu(net->mib.net_statistics); 1642 err_net_mib: 1643 free_percpu(net->mib.ip_statistics); 1644 err_ip_mib: 1645 free_percpu(net->mib.tcp_statistics); 1646 err_tcp_mib: 1647 return -ENOMEM; 1648 } 1649 1650 static __net_exit void ipv4_mib_exit_net(struct net *net) 1651 { 1652 kfree(net->mib.icmpmsg_statistics); 1653 free_percpu(net->mib.icmp_statistics); 1654 free_percpu(net->mib.udplite_statistics); 1655 free_percpu(net->mib.udp_statistics); 1656 free_percpu(net->mib.net_statistics); 1657 free_percpu(net->mib.ip_statistics); 1658 free_percpu(net->mib.tcp_statistics); 1659 } 1660 1661 static __net_initdata struct pernet_operations ipv4_mib_ops = { 1662 .init = ipv4_mib_init_net, 1663 .exit = ipv4_mib_exit_net, 1664 }; 1665 1666 static int __init init_ipv4_mibs(void) 1667 { 1668 return register_pernet_subsys(&ipv4_mib_ops); 1669 } 1670 1671 static __net_init int inet_init_net(struct net *net) 1672 { 1673 /* 1674 * Set defaults for local port range 1675 */ 1676 seqlock_init(&net->ipv4.ip_local_ports.lock); 1677 net->ipv4.ip_local_ports.range[0] = 32768; 1678 net->ipv4.ip_local_ports.range[1] = 60999; 1679 1680 seqlock_init(&net->ipv4.ping_group_range.lock); 1681 /* 1682 * Sane defaults - nobody may create ping sockets. 1683 * Boot scripts should set this to distro-specific group. 1684 */ 1685 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); 1686 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); 1687 1688 /* Default values for sysctl-controlled parameters. 1689 * We set them here, in case sysctl is not compiled. 1690 */ 1691 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; 1692 net->ipv4.sysctl_ip_dynaddr = 0; 1693 net->ipv4.sysctl_ip_early_demux = 1; 1694 1695 return 0; 1696 } 1697 1698 static __net_exit void inet_exit_net(struct net *net) 1699 { 1700 } 1701 1702 static __net_initdata struct pernet_operations af_inet_ops = { 1703 .init = inet_init_net, 1704 .exit = inet_exit_net, 1705 }; 1706 1707 static int __init init_inet_pernet_ops(void) 1708 { 1709 return register_pernet_subsys(&af_inet_ops); 1710 } 1711 1712 static int ipv4_proc_init(void); 1713 1714 /* 1715 * IP protocol layer initialiser 1716 */ 1717 1718 static struct packet_offload ip_packet_offload __read_mostly = { 1719 .type = cpu_to_be16(ETH_P_IP), 1720 .callbacks = { 1721 .gso_segment = inet_gso_segment, 1722 .gro_receive = inet_gro_receive, 1723 .gro_complete = inet_gro_complete, 1724 }, 1725 }; 1726 1727 static const struct net_offload ipip_offload = { 1728 .callbacks = { 1729 .gso_segment = inet_gso_segment, 1730 .gro_receive = ipip_gro_receive, 1731 .gro_complete = ipip_gro_complete, 1732 }, 1733 }; 1734 1735 static int __init ipv4_offload_init(void) 1736 { 1737 /* 1738 * Add offloads 1739 */ 1740 if (udpv4_offload_init() < 0) 1741 pr_crit("%s: Cannot add UDP protocol offload\n", __func__); 1742 if (tcpv4_offload_init() < 0) 1743 pr_crit("%s: Cannot add TCP protocol offload\n", __func__); 1744 1745 dev_add_offload(&ip_packet_offload); 1746 inet_add_offload(&ipip_offload, IPPROTO_IPIP); 1747 return 0; 1748 } 1749 1750 fs_initcall(ipv4_offload_init); 1751 1752 static struct packet_type ip_packet_type __read_mostly = { 1753 .type = cpu_to_be16(ETH_P_IP), 1754 .func = ip_rcv, 1755 }; 1756 1757 static int __init inet_init(void) 1758 { 1759 struct inet_protosw *q; 1760 struct list_head *r; 1761 int rc = -EINVAL; 1762 1763 sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); 1764 1765 rc = proto_register(&tcp_prot, 1); 1766 if (rc) 1767 goto out; 1768 1769 rc = proto_register(&udp_prot, 1); 1770 if (rc) 1771 goto out_unregister_tcp_proto; 1772 1773 rc = proto_register(&raw_prot, 1); 1774 if (rc) 1775 goto out_unregister_udp_proto; 1776 1777 rc = proto_register(&ping_prot, 1); 1778 if (rc) 1779 goto out_unregister_raw_proto; 1780 1781 /* 1782 * Tell SOCKET that we are alive... 1783 */ 1784 1785 (void)sock_register(&inet_family_ops); 1786 1787 #ifdef CONFIG_SYSCTL 1788 ip_static_sysctl_init(); 1789 #endif 1790 1791 /* 1792 * Add all the base protocols. 1793 */ 1794 1795 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) 1796 pr_crit("%s: Cannot add ICMP protocol\n", __func__); 1797 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0) 1798 pr_crit("%s: Cannot add UDP protocol\n", __func__); 1799 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0) 1800 pr_crit("%s: Cannot add TCP protocol\n", __func__); 1801 #ifdef CONFIG_IP_MULTICAST 1802 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) 1803 pr_crit("%s: Cannot add IGMP protocol\n", __func__); 1804 #endif 1805 1806 /* Register the socket-side information for inet_create. */ 1807 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 1808 INIT_LIST_HEAD(r); 1809 1810 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 1811 inet_register_protosw(q); 1812 1813 /* 1814 * Set the ARP module up 1815 */ 1816 1817 arp_init(); 1818 1819 /* 1820 * Set the IP module up 1821 */ 1822 1823 ip_init(); 1824 1825 tcp_v4_init(); 1826 1827 /* Setup TCP slab cache for open requests. */ 1828 tcp_init(); 1829 1830 /* Setup UDP memory threshold */ 1831 udp_init(); 1832 1833 /* Add UDP-Lite (RFC 3828) */ 1834 udplite4_register(); 1835 1836 ping_init(); 1837 1838 /* 1839 * Set the ICMP layer up 1840 */ 1841 1842 if (icmp_init() < 0) 1843 panic("Failed to create the ICMP control socket.\n"); 1844 1845 /* 1846 * Initialise the multicast router 1847 */ 1848 #if defined(CONFIG_IP_MROUTE) 1849 if (ip_mr_init()) 1850 pr_crit("%s: Cannot init ipv4 mroute\n", __func__); 1851 #endif 1852 1853 if (init_inet_pernet_ops()) 1854 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); 1855 /* 1856 * Initialise per-cpu ipv4 mibs 1857 */ 1858 1859 if (init_ipv4_mibs()) 1860 pr_crit("%s: Cannot init ipv4 mibs\n", __func__); 1861 1862 ipv4_proc_init(); 1863 1864 ipfrag_init(); 1865 1866 dev_add_pack(&ip_packet_type); 1867 1868 ip_tunnel_core_init(); 1869 1870 rc = 0; 1871 out: 1872 return rc; 1873 out_unregister_raw_proto: 1874 proto_unregister(&raw_prot); 1875 out_unregister_udp_proto: 1876 proto_unregister(&udp_prot); 1877 out_unregister_tcp_proto: 1878 proto_unregister(&tcp_prot); 1879 goto out; 1880 } 1881 1882 fs_initcall(inet_init); 1883 1884 /* ------------------------------------------------------------------------ */ 1885 1886 #ifdef CONFIG_PROC_FS 1887 static int __init ipv4_proc_init(void) 1888 { 1889 int rc = 0; 1890 1891 if (raw_proc_init()) 1892 goto out_raw; 1893 if (tcp4_proc_init()) 1894 goto out_tcp; 1895 if (udp4_proc_init()) 1896 goto out_udp; 1897 if (ping_proc_init()) 1898 goto out_ping; 1899 if (ip_misc_proc_init()) 1900 goto out_misc; 1901 out: 1902 return rc; 1903 out_misc: 1904 ping_proc_exit(); 1905 out_ping: 1906 udp4_proc_exit(); 1907 out_udp: 1908 tcp4_proc_exit(); 1909 out_tcp: 1910 raw_proc_exit(); 1911 out_raw: 1912 rc = -ENOMEM; 1913 goto out; 1914 } 1915 1916 #else /* CONFIG_PROC_FS */ 1917 static int __init ipv4_proc_init(void) 1918 { 1919 return 0; 1920 } 1921 #endif /* CONFIG_PROC_FS */ 1922