1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PF_INET protocol family socket handler. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Florian La Roche, <flla@stud.uni-sb.de> 12 * Alan Cox, <A.Cox@swansea.ac.uk> 13 * 14 * Changes (see also sock.c) 15 * 16 * piggy, 17 * Karl Knutson : Socket protocol table 18 * A.N.Kuznetsov : Socket death error in accept(). 19 * John Richardson : Fix non blocking error in connect() 20 * so sockets that fail to connect 21 * don't return -EINPROGRESS. 22 * Alan Cox : Asynchronous I/O support 23 * Alan Cox : Keep correct socket pointer on sock 24 * structures 25 * when accept() ed 26 * Alan Cox : Semantics of SO_LINGER aren't state 27 * moved to close when you look carefully. 28 * With this fixed and the accept bug fixed 29 * some RPC stuff seems happier. 30 * Niibe Yutaka : 4.4BSD style write async I/O 31 * Alan Cox, 32 * Tony Gale : Fixed reuse semantics. 33 * Alan Cox : bind() shouldn't abort existing but dead 34 * sockets. Stops FTP netin:.. I hope. 35 * Alan Cox : bind() works correctly for RAW sockets. 36 * Note that FreeBSD at least was broken 37 * in this respect so be careful with 38 * compatibility tests... 39 * Alan Cox : routing cache support 40 * Alan Cox : memzero the socket structure for 41 * compactness. 42 * Matt Day : nonblock connect error handler 43 * Alan Cox : Allow large numbers of pending sockets 44 * (eg for big web sites), but only if 45 * specifically application requested. 46 * Alan Cox : New buffering throughout IP. Used 47 * dumbly. 48 * Alan Cox : New buffering now used smartly. 49 * Alan Cox : BSD rather than common sense 50 * interpretation of listen. 51 * Germano Caronni : Assorted small races. 52 * Alan Cox : sendmsg/recvmsg basic support. 53 * Alan Cox : Only sendmsg/recvmsg now supported. 54 * Alan Cox : Locked down bind (see security list). 55 * Alan Cox : Loosened bind a little. 56 * Mike McLagan : ADD/DEL DLCI Ioctls 57 * Willy Konynenberg : Transparent proxying support. 58 * David S. Miller : New socket lookup architecture. 59 * Some other random speedups. 60 * Cyrus Durgin : Cleaned up file for kmod hacks. 61 * Andi Kleen : Fix inet_stream_connect TCP race. 62 */ 63 64 #define pr_fmt(fmt) "IPv4: " fmt 65 66 #include <linux/err.h> 67 #include <linux/errno.h> 68 #include <linux/types.h> 69 #include <linux/socket.h> 70 #include <linux/in.h> 71 #include <linux/kernel.h> 72 #include <linux/kmod.h> 73 #include <linux/sched.h> 74 #include <linux/timer.h> 75 #include <linux/string.h> 76 #include <linux/sockios.h> 77 #include <linux/net.h> 78 #include <linux/capability.h> 79 #include <linux/fcntl.h> 80 #include <linux/mm.h> 81 #include <linux/interrupt.h> 82 #include <linux/stat.h> 83 #include <linux/init.h> 84 #include <linux/poll.h> 85 #include <linux/netfilter_ipv4.h> 86 #include <linux/random.h> 87 #include <linux/slab.h> 88 89 #include <linux/uaccess.h> 90 91 #include <linux/inet.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/netdevice.h> 95 #include <net/checksum.h> 96 #include <net/ip.h> 97 #include <net/protocol.h> 98 #include <net/arp.h> 99 #include <net/route.h> 100 #include <net/ip_fib.h> 101 #include <net/inet_connection_sock.h> 102 #include <net/gro.h> 103 #include <net/tcp.h> 104 #include <net/udp.h> 105 #include <net/udplite.h> 106 #include <net/ping.h> 107 #include <linux/skbuff.h> 108 #include <net/sock.h> 109 #include <net/raw.h> 110 #include <net/icmp.h> 111 #include <net/inet_common.h> 112 #include <net/ip_tunnels.h> 113 #include <net/xfrm.h> 114 #include <net/net_namespace.h> 115 #include <net/secure_seq.h> 116 #ifdef CONFIG_IP_MROUTE 117 #include <linux/mroute.h> 118 #endif 119 #include <net/l3mdev.h> 120 #include <net/compat.h> 121 122 #include <trace/events/sock.h> 123 124 /* The inetsw table contains everything that inet_create needs to 125 * build a new socket. 126 */ 127 static struct list_head inetsw[SOCK_MAX]; 128 static DEFINE_SPINLOCK(inetsw_lock); 129 130 /* New destruction routine */ 131 132 void inet_sock_destruct(struct sock *sk) 133 { 134 struct inet_sock *inet = inet_sk(sk); 135 136 __skb_queue_purge(&sk->sk_receive_queue); 137 __skb_queue_purge(&sk->sk_error_queue); 138 139 sk_mem_reclaim_final(sk); 140 141 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { 142 pr_err("Attempt to release TCP socket in state %d %p\n", 143 sk->sk_state, sk); 144 return; 145 } 146 if (!sock_flag(sk, SOCK_DEAD)) { 147 pr_err("Attempt to release alive inet socket %p\n", sk); 148 return; 149 } 150 151 WARN_ON_ONCE(atomic_read(&sk->sk_rmem_alloc)); 152 WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); 153 WARN_ON_ONCE(sk->sk_wmem_queued); 154 WARN_ON_ONCE(sk_forward_alloc_get(sk)); 155 156 kfree(rcu_dereference_protected(inet->inet_opt, 1)); 157 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1)); 158 dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1)); 159 } 160 EXPORT_SYMBOL(inet_sock_destruct); 161 162 /* 163 * The routines beyond this point handle the behaviour of an AF_INET 164 * socket object. Mostly it punts to the subprotocols of IP to do 165 * the work. 166 */ 167 168 /* 169 * Automatically bind an unbound socket. 170 */ 171 172 static int inet_autobind(struct sock *sk) 173 { 174 struct inet_sock *inet; 175 /* We may need to bind the socket. */ 176 lock_sock(sk); 177 inet = inet_sk(sk); 178 if (!inet->inet_num) { 179 if (sk->sk_prot->get_port(sk, 0)) { 180 release_sock(sk); 181 return -EAGAIN; 182 } 183 inet->inet_sport = htons(inet->inet_num); 184 } 185 release_sock(sk); 186 return 0; 187 } 188 189 /* 190 * Move a socket into listening state. 191 */ 192 int inet_listen(struct socket *sock, int backlog) 193 { 194 struct sock *sk = sock->sk; 195 unsigned char old_state; 196 int err, tcp_fastopen; 197 198 lock_sock(sk); 199 200 err = -EINVAL; 201 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 202 goto out; 203 204 old_state = sk->sk_state; 205 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) 206 goto out; 207 208 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 209 /* Really, if the socket is already in listen state 210 * we can only allow the backlog to be adjusted. 211 */ 212 if (old_state != TCP_LISTEN) { 213 /* Enable TFO w/o requiring TCP_FASTOPEN socket option. 214 * Note that only TCP sockets (SOCK_STREAM) will reach here. 215 * Also fastopen backlog may already been set via the option 216 * because the socket was in TCP_LISTEN state previously but 217 * was shutdown() rather than close(). 218 */ 219 tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen); 220 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && 221 (tcp_fastopen & TFO_SERVER_ENABLE) && 222 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { 223 fastopen_queue_tune(sk, backlog); 224 tcp_fastopen_init_key_once(sock_net(sk)); 225 } 226 227 err = inet_csk_listen_start(sk); 228 if (err) 229 goto out; 230 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); 231 } 232 err = 0; 233 234 out: 235 release_sock(sk); 236 return err; 237 } 238 EXPORT_SYMBOL(inet_listen); 239 240 /* 241 * Create an inet socket. 242 */ 243 244 static int inet_create(struct net *net, struct socket *sock, int protocol, 245 int kern) 246 { 247 struct sock *sk; 248 struct inet_protosw *answer; 249 struct inet_sock *inet; 250 struct proto *answer_prot; 251 unsigned char answer_flags; 252 int try_loading_module = 0; 253 int err; 254 255 if (protocol < 0 || protocol >= IPPROTO_MAX) 256 return -EINVAL; 257 258 sock->state = SS_UNCONNECTED; 259 260 /* Look for the requested type/protocol pair. */ 261 lookup_protocol: 262 err = -ESOCKTNOSUPPORT; 263 rcu_read_lock(); 264 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { 265 266 err = 0; 267 /* Check the non-wild match. */ 268 if (protocol == answer->protocol) { 269 if (protocol != IPPROTO_IP) 270 break; 271 } else { 272 /* Check for the two wild cases. */ 273 if (IPPROTO_IP == protocol) { 274 protocol = answer->protocol; 275 break; 276 } 277 if (IPPROTO_IP == answer->protocol) 278 break; 279 } 280 err = -EPROTONOSUPPORT; 281 } 282 283 if (unlikely(err)) { 284 if (try_loading_module < 2) { 285 rcu_read_unlock(); 286 /* 287 * Be more specific, e.g. net-pf-2-proto-132-type-1 288 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) 289 */ 290 if (++try_loading_module == 1) 291 request_module("net-pf-%d-proto-%d-type-%d", 292 PF_INET, protocol, sock->type); 293 /* 294 * Fall back to generic, e.g. net-pf-2-proto-132 295 * (net-pf-PF_INET-proto-IPPROTO_SCTP) 296 */ 297 else 298 request_module("net-pf-%d-proto-%d", 299 PF_INET, protocol); 300 goto lookup_protocol; 301 } else 302 goto out_rcu_unlock; 303 } 304 305 err = -EPERM; 306 if (sock->type == SOCK_RAW && !kern && 307 !ns_capable(net->user_ns, CAP_NET_RAW)) 308 goto out_rcu_unlock; 309 310 sock->ops = answer->ops; 311 answer_prot = answer->prot; 312 answer_flags = answer->flags; 313 rcu_read_unlock(); 314 315 WARN_ON(!answer_prot->slab); 316 317 err = -ENOMEM; 318 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); 319 if (!sk) 320 goto out; 321 322 err = 0; 323 if (INET_PROTOSW_REUSE & answer_flags) 324 sk->sk_reuse = SK_CAN_REUSE; 325 326 inet = inet_sk(sk); 327 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0; 328 329 inet->nodefrag = 0; 330 331 if (SOCK_RAW == sock->type) { 332 inet->inet_num = protocol; 333 if (IPPROTO_RAW == protocol) 334 inet->hdrincl = 1; 335 } 336 337 if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc)) 338 inet->pmtudisc = IP_PMTUDISC_DONT; 339 else 340 inet->pmtudisc = IP_PMTUDISC_WANT; 341 342 inet->inet_id = 0; 343 344 sock_init_data(sock, sk); 345 346 sk->sk_destruct = inet_sock_destruct; 347 sk->sk_protocol = protocol; 348 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 349 sk->sk_txrehash = READ_ONCE(net->core.sysctl_txrehash); 350 351 inet->uc_ttl = -1; 352 inet->mc_loop = 1; 353 inet->mc_ttl = 1; 354 inet->mc_all = 1; 355 inet->mc_index = 0; 356 inet->mc_list = NULL; 357 inet->rcv_tos = 0; 358 359 if (inet->inet_num) { 360 /* It assumes that any protocol which allows 361 * the user to assign a number at socket 362 * creation time automatically 363 * shares. 364 */ 365 inet->inet_sport = htons(inet->inet_num); 366 /* Add to protocol hash chains. */ 367 err = sk->sk_prot->hash(sk); 368 if (err) { 369 sk_common_release(sk); 370 goto out; 371 } 372 } 373 374 if (sk->sk_prot->init) { 375 err = sk->sk_prot->init(sk); 376 if (err) { 377 sk_common_release(sk); 378 goto out; 379 } 380 } 381 382 if (!kern) { 383 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); 384 if (err) { 385 sk_common_release(sk); 386 goto out; 387 } 388 } 389 out: 390 return err; 391 out_rcu_unlock: 392 rcu_read_unlock(); 393 goto out; 394 } 395 396 397 /* 398 * The peer socket should always be NULL (or else). When we call this 399 * function we are destroying the object and from then on nobody 400 * should refer to it. 401 */ 402 int inet_release(struct socket *sock) 403 { 404 struct sock *sk = sock->sk; 405 406 if (sk) { 407 long timeout; 408 409 if (!sk->sk_kern_sock) 410 BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk); 411 412 /* Applications forget to leave groups before exiting */ 413 ip_mc_drop_socket(sk); 414 415 /* If linger is set, we don't return until the close 416 * is complete. Otherwise we return immediately. The 417 * actually closing is done the same either way. 418 * 419 * If the close is due to the process exiting, we never 420 * linger.. 421 */ 422 timeout = 0; 423 if (sock_flag(sk, SOCK_LINGER) && 424 !(current->flags & PF_EXITING)) 425 timeout = sk->sk_lingertime; 426 sk->sk_prot->close(sk, timeout); 427 sock->sk = NULL; 428 } 429 return 0; 430 } 431 EXPORT_SYMBOL(inet_release); 432 433 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 434 { 435 struct sock *sk = sock->sk; 436 u32 flags = BIND_WITH_LOCK; 437 int err; 438 439 /* If the socket has its own bind function then use it. (RAW) */ 440 if (sk->sk_prot->bind) { 441 return sk->sk_prot->bind(sk, uaddr, addr_len); 442 } 443 if (addr_len < sizeof(struct sockaddr_in)) 444 return -EINVAL; 445 446 /* BPF prog is run before any checks are done so that if the prog 447 * changes context in a wrong way it will be caught. 448 */ 449 err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr, 450 CGROUP_INET4_BIND, &flags); 451 if (err) 452 return err; 453 454 return __inet_bind(sk, uaddr, addr_len, flags); 455 } 456 EXPORT_SYMBOL(inet_bind); 457 458 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, 459 u32 flags) 460 { 461 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; 462 struct inet_sock *inet = inet_sk(sk); 463 struct net *net = sock_net(sk); 464 unsigned short snum; 465 int chk_addr_ret; 466 u32 tb_id = RT_TABLE_LOCAL; 467 int err; 468 469 if (addr->sin_family != AF_INET) { 470 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) 471 * only if s_addr is INADDR_ANY. 472 */ 473 err = -EAFNOSUPPORT; 474 if (addr->sin_family != AF_UNSPEC || 475 addr->sin_addr.s_addr != htonl(INADDR_ANY)) 476 goto out; 477 } 478 479 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; 480 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); 481 482 /* Not specified by any standard per-se, however it breaks too 483 * many applications when removed. It is unfortunate since 484 * allowing applications to make a non-local bind solves 485 * several problems with systems using dynamic addressing. 486 * (ie. your servers still start up even if your ISDN link 487 * is temporarily down) 488 */ 489 err = -EADDRNOTAVAIL; 490 if (!inet_addr_valid_or_nonlocal(net, inet, addr->sin_addr.s_addr, 491 chk_addr_ret)) 492 goto out; 493 494 snum = ntohs(addr->sin_port); 495 err = -EACCES; 496 if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) && 497 snum && inet_port_requires_bind_service(net, snum) && 498 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 499 goto out; 500 501 /* We keep a pair of addresses. rcv_saddr is the one 502 * used by hash lookups, and saddr is used for transmit. 503 * 504 * In the BSD API these are the same except where it 505 * would be illegal to use them (multicast/broadcast) in 506 * which case the sending device address is used. 507 */ 508 if (flags & BIND_WITH_LOCK) 509 lock_sock(sk); 510 511 /* Check these errors (active socket, double bind). */ 512 err = -EINVAL; 513 if (sk->sk_state != TCP_CLOSE || inet->inet_num) 514 goto out_release_sock; 515 516 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; 517 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) 518 inet->inet_saddr = 0; /* Use device */ 519 520 /* Make sure we are allowed to bind here. */ 521 if (snum || !(inet->bind_address_no_port || 522 (flags & BIND_FORCE_ADDRESS_NO_PORT))) { 523 err = sk->sk_prot->get_port(sk, snum); 524 if (err) { 525 inet->inet_saddr = inet->inet_rcv_saddr = 0; 526 goto out_release_sock; 527 } 528 if (!(flags & BIND_FROM_BPF)) { 529 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); 530 if (err) { 531 inet->inet_saddr = inet->inet_rcv_saddr = 0; 532 if (sk->sk_prot->put_port) 533 sk->sk_prot->put_port(sk); 534 goto out_release_sock; 535 } 536 } 537 } 538 539 if (inet->inet_rcv_saddr) 540 sk->sk_userlocks |= SOCK_BINDADDR_LOCK; 541 if (snum) 542 sk->sk_userlocks |= SOCK_BINDPORT_LOCK; 543 inet->inet_sport = htons(inet->inet_num); 544 inet->inet_daddr = 0; 545 inet->inet_dport = 0; 546 sk_dst_reset(sk); 547 err = 0; 548 out_release_sock: 549 if (flags & BIND_WITH_LOCK) 550 release_sock(sk); 551 out: 552 return err; 553 } 554 555 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, 556 int addr_len, int flags) 557 { 558 struct sock *sk = sock->sk; 559 const struct proto *prot; 560 int err; 561 562 if (addr_len < sizeof(uaddr->sa_family)) 563 return -EINVAL; 564 565 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 566 prot = READ_ONCE(sk->sk_prot); 567 568 if (uaddr->sa_family == AF_UNSPEC) 569 return prot->disconnect(sk, flags); 570 571 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 572 err = prot->pre_connect(sk, uaddr, addr_len); 573 if (err) 574 return err; 575 } 576 577 if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk)) 578 return -EAGAIN; 579 return prot->connect(sk, uaddr, addr_len); 580 } 581 EXPORT_SYMBOL(inet_dgram_connect); 582 583 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) 584 { 585 DEFINE_WAIT_FUNC(wait, woken_wake_function); 586 587 add_wait_queue(sk_sleep(sk), &wait); 588 sk->sk_write_pending += writebias; 589 590 /* Basic assumption: if someone sets sk->sk_err, he _must_ 591 * change state of the socket from TCP_SYN_*. 592 * Connect() does not allow to get error notifications 593 * without closing the socket. 594 */ 595 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 596 release_sock(sk); 597 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 598 lock_sock(sk); 599 if (signal_pending(current) || !timeo) 600 break; 601 } 602 remove_wait_queue(sk_sleep(sk), &wait); 603 sk->sk_write_pending -= writebias; 604 return timeo; 605 } 606 607 /* 608 * Connect to a remote host. There is regrettably still a little 609 * TCP 'magic' in here. 610 */ 611 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 612 int addr_len, int flags, int is_sendmsg) 613 { 614 struct sock *sk = sock->sk; 615 int err; 616 long timeo; 617 618 /* 619 * uaddr can be NULL and addr_len can be 0 if: 620 * sk is a TCP fastopen active socket and 621 * TCP_FASTOPEN_CONNECT sockopt is set and 622 * we already have a valid cookie for this socket. 623 * In this case, user can call write() after connect(). 624 * write() will invoke tcp_sendmsg_fastopen() which calls 625 * __inet_stream_connect(). 626 */ 627 if (uaddr) { 628 if (addr_len < sizeof(uaddr->sa_family)) 629 return -EINVAL; 630 631 if (uaddr->sa_family == AF_UNSPEC) { 632 err = sk->sk_prot->disconnect(sk, flags); 633 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 634 goto out; 635 } 636 } 637 638 switch (sock->state) { 639 default: 640 err = -EINVAL; 641 goto out; 642 case SS_CONNECTED: 643 err = -EISCONN; 644 goto out; 645 case SS_CONNECTING: 646 if (inet_sk(sk)->defer_connect) 647 err = is_sendmsg ? -EINPROGRESS : -EISCONN; 648 else 649 err = -EALREADY; 650 /* Fall out of switch with err, set for this state */ 651 break; 652 case SS_UNCONNECTED: 653 err = -EISCONN; 654 if (sk->sk_state != TCP_CLOSE) 655 goto out; 656 657 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 658 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 659 if (err) 660 goto out; 661 } 662 663 err = sk->sk_prot->connect(sk, uaddr, addr_len); 664 if (err < 0) 665 goto out; 666 667 sock->state = SS_CONNECTING; 668 669 if (!err && inet_sk(sk)->defer_connect) 670 goto out; 671 672 /* Just entered SS_CONNECTING state; the only 673 * difference is that return value in non-blocking 674 * case is EINPROGRESS, rather than EALREADY. 675 */ 676 err = -EINPROGRESS; 677 break; 678 } 679 680 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 681 682 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 683 int writebias = (sk->sk_protocol == IPPROTO_TCP) && 684 tcp_sk(sk)->fastopen_req && 685 tcp_sk(sk)->fastopen_req->data ? 1 : 0; 686 687 /* Error code is set above */ 688 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) 689 goto out; 690 691 err = sock_intr_errno(timeo); 692 if (signal_pending(current)) 693 goto out; 694 } 695 696 /* Connection was closed by RST, timeout, ICMP error 697 * or another process disconnected us. 698 */ 699 if (sk->sk_state == TCP_CLOSE) 700 goto sock_error; 701 702 /* sk->sk_err may be not zero now, if RECVERR was ordered by user 703 * and error was received after socket entered established state. 704 * Hence, it is handled normally after connect() return successfully. 705 */ 706 707 sock->state = SS_CONNECTED; 708 err = 0; 709 out: 710 return err; 711 712 sock_error: 713 err = sock_error(sk) ? : -ECONNABORTED; 714 sock->state = SS_UNCONNECTED; 715 if (sk->sk_prot->disconnect(sk, flags)) 716 sock->state = SS_DISCONNECTING; 717 goto out; 718 } 719 EXPORT_SYMBOL(__inet_stream_connect); 720 721 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 722 int addr_len, int flags) 723 { 724 int err; 725 726 lock_sock(sock->sk); 727 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 728 release_sock(sock->sk); 729 return err; 730 } 731 EXPORT_SYMBOL(inet_stream_connect); 732 733 /* 734 * Accept a pending connection. The TCP layer now gives BSD semantics. 735 */ 736 737 int inet_accept(struct socket *sock, struct socket *newsock, int flags, 738 bool kern) 739 { 740 struct sock *sk1 = sock->sk, *sk2; 741 int err = -EINVAL; 742 743 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 744 sk2 = READ_ONCE(sk1->sk_prot)->accept(sk1, flags, &err, kern); 745 if (!sk2) 746 goto do_err; 747 748 lock_sock(sk2); 749 750 sock_rps_record_flow(sk2); 751 WARN_ON(!((1 << sk2->sk_state) & 752 (TCPF_ESTABLISHED | TCPF_SYN_RECV | 753 TCPF_CLOSE_WAIT | TCPF_CLOSE))); 754 755 if (test_bit(SOCK_SUPPORT_ZC, &sock->flags)) 756 set_bit(SOCK_SUPPORT_ZC, &newsock->flags); 757 sock_graft(sk2, newsock); 758 759 newsock->state = SS_CONNECTED; 760 err = 0; 761 release_sock(sk2); 762 do_err: 763 return err; 764 } 765 EXPORT_SYMBOL(inet_accept); 766 767 /* 768 * This does both peername and sockname. 769 */ 770 int inet_getname(struct socket *sock, struct sockaddr *uaddr, 771 int peer) 772 { 773 struct sock *sk = sock->sk; 774 struct inet_sock *inet = inet_sk(sk); 775 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); 776 777 sin->sin_family = AF_INET; 778 lock_sock(sk); 779 if (peer) { 780 if (!inet->inet_dport || 781 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && 782 peer == 1)) { 783 release_sock(sk); 784 return -ENOTCONN; 785 } 786 sin->sin_port = inet->inet_dport; 787 sin->sin_addr.s_addr = inet->inet_daddr; 788 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, 789 CGROUP_INET4_GETPEERNAME); 790 } else { 791 __be32 addr = inet->inet_rcv_saddr; 792 if (!addr) 793 addr = inet->inet_saddr; 794 sin->sin_port = inet->inet_sport; 795 sin->sin_addr.s_addr = addr; 796 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, 797 CGROUP_INET4_GETSOCKNAME); 798 } 799 release_sock(sk); 800 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 801 return sizeof(*sin); 802 } 803 EXPORT_SYMBOL(inet_getname); 804 805 int inet_send_prepare(struct sock *sk) 806 { 807 sock_rps_record_flow(sk); 808 809 /* We may need to bind the socket. */ 810 if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind && 811 inet_autobind(sk)) 812 return -EAGAIN; 813 814 return 0; 815 } 816 EXPORT_SYMBOL_GPL(inet_send_prepare); 817 818 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 819 { 820 struct sock *sk = sock->sk; 821 822 if (unlikely(inet_send_prepare(sk))) 823 return -EAGAIN; 824 825 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg, 826 sk, msg, size); 827 } 828 EXPORT_SYMBOL(inet_sendmsg); 829 830 ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset, 831 size_t size, int flags) 832 { 833 struct sock *sk = sock->sk; 834 const struct proto *prot; 835 836 if (unlikely(inet_send_prepare(sk))) 837 return -EAGAIN; 838 839 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 840 prot = READ_ONCE(sk->sk_prot); 841 if (prot->sendpage) 842 return prot->sendpage(sk, page, offset, size, flags); 843 return sock_no_sendpage(sock, page, offset, size, flags); 844 } 845 EXPORT_SYMBOL(inet_sendpage); 846 847 INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *, 848 size_t, int, int *)); 849 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 850 int flags) 851 { 852 struct sock *sk = sock->sk; 853 int addr_len = 0; 854 int err; 855 856 if (likely(!(flags & MSG_ERRQUEUE))) 857 sock_rps_record_flow(sk); 858 859 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg, 860 sk, msg, size, flags, &addr_len); 861 if (err >= 0) 862 msg->msg_namelen = addr_len; 863 return err; 864 } 865 EXPORT_SYMBOL(inet_recvmsg); 866 867 int inet_shutdown(struct socket *sock, int how) 868 { 869 struct sock *sk = sock->sk; 870 int err = 0; 871 872 /* This should really check to make sure 873 * the socket is a TCP socket. (WHY AC...) 874 */ 875 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 876 1->2 bit 2 snds. 877 2->3 */ 878 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ 879 return -EINVAL; 880 881 lock_sock(sk); 882 if (sock->state == SS_CONNECTING) { 883 if ((1 << sk->sk_state) & 884 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 885 sock->state = SS_DISCONNECTING; 886 else 887 sock->state = SS_CONNECTED; 888 } 889 890 switch (sk->sk_state) { 891 case TCP_CLOSE: 892 err = -ENOTCONN; 893 /* Hack to wake up other listeners, who can poll for 894 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ 895 fallthrough; 896 default: 897 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | how); 898 if (sk->sk_prot->shutdown) 899 sk->sk_prot->shutdown(sk, how); 900 break; 901 902 /* Remaining two branches are temporary solution for missing 903 * close() in multithreaded environment. It is _not_ a good idea, 904 * but we have no choice until close() is repaired at VFS level. 905 */ 906 case TCP_LISTEN: 907 if (!(how & RCV_SHUTDOWN)) 908 break; 909 fallthrough; 910 case TCP_SYN_SENT: 911 err = sk->sk_prot->disconnect(sk, O_NONBLOCK); 912 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 913 break; 914 } 915 916 /* Wake up anyone sleeping in poll. */ 917 sk->sk_state_change(sk); 918 release_sock(sk); 919 return err; 920 } 921 EXPORT_SYMBOL(inet_shutdown); 922 923 /* 924 * ioctl() calls you can issue on an INET socket. Most of these are 925 * device configuration and stuff and very rarely used. Some ioctls 926 * pass on to the socket itself. 927 * 928 * NOTE: I like the idea of a module for the config stuff. ie ifconfig 929 * loads the devconfigure module does its configuring and unloads it. 930 * There's a good 20K of config code hanging around the kernel. 931 */ 932 933 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 934 { 935 struct sock *sk = sock->sk; 936 int err = 0; 937 struct net *net = sock_net(sk); 938 void __user *p = (void __user *)arg; 939 struct ifreq ifr; 940 struct rtentry rt; 941 942 switch (cmd) { 943 case SIOCADDRT: 944 case SIOCDELRT: 945 if (copy_from_user(&rt, p, sizeof(struct rtentry))) 946 return -EFAULT; 947 err = ip_rt_ioctl(net, cmd, &rt); 948 break; 949 case SIOCRTMSG: 950 err = -EINVAL; 951 break; 952 case SIOCDARP: 953 case SIOCGARP: 954 case SIOCSARP: 955 err = arp_ioctl(net, cmd, (void __user *)arg); 956 break; 957 case SIOCGIFADDR: 958 case SIOCGIFBRDADDR: 959 case SIOCGIFNETMASK: 960 case SIOCGIFDSTADDR: 961 case SIOCGIFPFLAGS: 962 if (get_user_ifreq(&ifr, NULL, p)) 963 return -EFAULT; 964 err = devinet_ioctl(net, cmd, &ifr); 965 if (!err && put_user_ifreq(&ifr, p)) 966 err = -EFAULT; 967 break; 968 969 case SIOCSIFADDR: 970 case SIOCSIFBRDADDR: 971 case SIOCSIFNETMASK: 972 case SIOCSIFDSTADDR: 973 case SIOCSIFPFLAGS: 974 case SIOCSIFFLAGS: 975 if (get_user_ifreq(&ifr, NULL, p)) 976 return -EFAULT; 977 err = devinet_ioctl(net, cmd, &ifr); 978 break; 979 default: 980 if (sk->sk_prot->ioctl) 981 err = sk->sk_prot->ioctl(sk, cmd, arg); 982 else 983 err = -ENOIOCTLCMD; 984 break; 985 } 986 return err; 987 } 988 EXPORT_SYMBOL(inet_ioctl); 989 990 #ifdef CONFIG_COMPAT 991 static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd, 992 struct compat_rtentry __user *ur) 993 { 994 compat_uptr_t rtdev; 995 struct rtentry rt; 996 997 if (copy_from_user(&rt.rt_dst, &ur->rt_dst, 998 3 * sizeof(struct sockaddr)) || 999 get_user(rt.rt_flags, &ur->rt_flags) || 1000 get_user(rt.rt_metric, &ur->rt_metric) || 1001 get_user(rt.rt_mtu, &ur->rt_mtu) || 1002 get_user(rt.rt_window, &ur->rt_window) || 1003 get_user(rt.rt_irtt, &ur->rt_irtt) || 1004 get_user(rtdev, &ur->rt_dev)) 1005 return -EFAULT; 1006 1007 rt.rt_dev = compat_ptr(rtdev); 1008 return ip_rt_ioctl(sock_net(sk), cmd, &rt); 1009 } 1010 1011 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1012 { 1013 void __user *argp = compat_ptr(arg); 1014 struct sock *sk = sock->sk; 1015 1016 switch (cmd) { 1017 case SIOCADDRT: 1018 case SIOCDELRT: 1019 return inet_compat_routing_ioctl(sk, cmd, argp); 1020 default: 1021 if (!sk->sk_prot->compat_ioctl) 1022 return -ENOIOCTLCMD; 1023 return sk->sk_prot->compat_ioctl(sk, cmd, arg); 1024 } 1025 } 1026 #endif /* CONFIG_COMPAT */ 1027 1028 const struct proto_ops inet_stream_ops = { 1029 .family = PF_INET, 1030 .owner = THIS_MODULE, 1031 .release = inet_release, 1032 .bind = inet_bind, 1033 .connect = inet_stream_connect, 1034 .socketpair = sock_no_socketpair, 1035 .accept = inet_accept, 1036 .getname = inet_getname, 1037 .poll = tcp_poll, 1038 .ioctl = inet_ioctl, 1039 .gettstamp = sock_gettstamp, 1040 .listen = inet_listen, 1041 .shutdown = inet_shutdown, 1042 .setsockopt = sock_common_setsockopt, 1043 .getsockopt = sock_common_getsockopt, 1044 .sendmsg = inet_sendmsg, 1045 .recvmsg = inet_recvmsg, 1046 #ifdef CONFIG_MMU 1047 .mmap = tcp_mmap, 1048 #endif 1049 .sendpage = inet_sendpage, 1050 .splice_read = tcp_splice_read, 1051 .read_sock = tcp_read_sock, 1052 .read_skb = tcp_read_skb, 1053 .sendmsg_locked = tcp_sendmsg_locked, 1054 .sendpage_locked = tcp_sendpage_locked, 1055 .peek_len = tcp_peek_len, 1056 #ifdef CONFIG_COMPAT 1057 .compat_ioctl = inet_compat_ioctl, 1058 #endif 1059 .set_rcvlowat = tcp_set_rcvlowat, 1060 }; 1061 EXPORT_SYMBOL(inet_stream_ops); 1062 1063 const struct proto_ops inet_dgram_ops = { 1064 .family = PF_INET, 1065 .owner = THIS_MODULE, 1066 .release = inet_release, 1067 .bind = inet_bind, 1068 .connect = inet_dgram_connect, 1069 .socketpair = sock_no_socketpair, 1070 .accept = sock_no_accept, 1071 .getname = inet_getname, 1072 .poll = udp_poll, 1073 .ioctl = inet_ioctl, 1074 .gettstamp = sock_gettstamp, 1075 .listen = sock_no_listen, 1076 .shutdown = inet_shutdown, 1077 .setsockopt = sock_common_setsockopt, 1078 .getsockopt = sock_common_getsockopt, 1079 .sendmsg = inet_sendmsg, 1080 .read_skb = udp_read_skb, 1081 .recvmsg = inet_recvmsg, 1082 .mmap = sock_no_mmap, 1083 .sendpage = inet_sendpage, 1084 .set_peek_off = sk_set_peek_off, 1085 #ifdef CONFIG_COMPAT 1086 .compat_ioctl = inet_compat_ioctl, 1087 #endif 1088 }; 1089 EXPORT_SYMBOL(inet_dgram_ops); 1090 1091 /* 1092 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without 1093 * udp_poll 1094 */ 1095 static const struct proto_ops inet_sockraw_ops = { 1096 .family = PF_INET, 1097 .owner = THIS_MODULE, 1098 .release = inet_release, 1099 .bind = inet_bind, 1100 .connect = inet_dgram_connect, 1101 .socketpair = sock_no_socketpair, 1102 .accept = sock_no_accept, 1103 .getname = inet_getname, 1104 .poll = datagram_poll, 1105 .ioctl = inet_ioctl, 1106 .gettstamp = sock_gettstamp, 1107 .listen = sock_no_listen, 1108 .shutdown = inet_shutdown, 1109 .setsockopt = sock_common_setsockopt, 1110 .getsockopt = sock_common_getsockopt, 1111 .sendmsg = inet_sendmsg, 1112 .recvmsg = inet_recvmsg, 1113 .mmap = sock_no_mmap, 1114 .sendpage = inet_sendpage, 1115 #ifdef CONFIG_COMPAT 1116 .compat_ioctl = inet_compat_ioctl, 1117 #endif 1118 }; 1119 1120 static const struct net_proto_family inet_family_ops = { 1121 .family = PF_INET, 1122 .create = inet_create, 1123 .owner = THIS_MODULE, 1124 }; 1125 1126 /* Upon startup we insert all the elements in inetsw_array[] into 1127 * the linked list inetsw. 1128 */ 1129 static struct inet_protosw inetsw_array[] = 1130 { 1131 { 1132 .type = SOCK_STREAM, 1133 .protocol = IPPROTO_TCP, 1134 .prot = &tcp_prot, 1135 .ops = &inet_stream_ops, 1136 .flags = INET_PROTOSW_PERMANENT | 1137 INET_PROTOSW_ICSK, 1138 }, 1139 1140 { 1141 .type = SOCK_DGRAM, 1142 .protocol = IPPROTO_UDP, 1143 .prot = &udp_prot, 1144 .ops = &inet_dgram_ops, 1145 .flags = INET_PROTOSW_PERMANENT, 1146 }, 1147 1148 { 1149 .type = SOCK_DGRAM, 1150 .protocol = IPPROTO_ICMP, 1151 .prot = &ping_prot, 1152 .ops = &inet_sockraw_ops, 1153 .flags = INET_PROTOSW_REUSE, 1154 }, 1155 1156 { 1157 .type = SOCK_RAW, 1158 .protocol = IPPROTO_IP, /* wild card */ 1159 .prot = &raw_prot, 1160 .ops = &inet_sockraw_ops, 1161 .flags = INET_PROTOSW_REUSE, 1162 } 1163 }; 1164 1165 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) 1166 1167 void inet_register_protosw(struct inet_protosw *p) 1168 { 1169 struct list_head *lh; 1170 struct inet_protosw *answer; 1171 int protocol = p->protocol; 1172 struct list_head *last_perm; 1173 1174 spin_lock_bh(&inetsw_lock); 1175 1176 if (p->type >= SOCK_MAX) 1177 goto out_illegal; 1178 1179 /* If we are trying to override a permanent protocol, bail. */ 1180 last_perm = &inetsw[p->type]; 1181 list_for_each(lh, &inetsw[p->type]) { 1182 answer = list_entry(lh, struct inet_protosw, list); 1183 /* Check only the non-wild match. */ 1184 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) 1185 break; 1186 if (protocol == answer->protocol) 1187 goto out_permanent; 1188 last_perm = lh; 1189 } 1190 1191 /* Add the new entry after the last permanent entry if any, so that 1192 * the new entry does not override a permanent entry when matched with 1193 * a wild-card protocol. But it is allowed to override any existing 1194 * non-permanent entry. This means that when we remove this entry, the 1195 * system automatically returns to the old behavior. 1196 */ 1197 list_add_rcu(&p->list, last_perm); 1198 out: 1199 spin_unlock_bh(&inetsw_lock); 1200 1201 return; 1202 1203 out_permanent: 1204 pr_err("Attempt to override permanent protocol %d\n", protocol); 1205 goto out; 1206 1207 out_illegal: 1208 pr_err("Ignoring attempt to register invalid socket type %d\n", 1209 p->type); 1210 goto out; 1211 } 1212 EXPORT_SYMBOL(inet_register_protosw); 1213 1214 void inet_unregister_protosw(struct inet_protosw *p) 1215 { 1216 if (INET_PROTOSW_PERMANENT & p->flags) { 1217 pr_err("Attempt to unregister permanent protocol %d\n", 1218 p->protocol); 1219 } else { 1220 spin_lock_bh(&inetsw_lock); 1221 list_del_rcu(&p->list); 1222 spin_unlock_bh(&inetsw_lock); 1223 1224 synchronize_net(); 1225 } 1226 } 1227 EXPORT_SYMBOL(inet_unregister_protosw); 1228 1229 static int inet_sk_reselect_saddr(struct sock *sk) 1230 { 1231 struct inet_sock *inet = inet_sk(sk); 1232 __be32 old_saddr = inet->inet_saddr; 1233 __be32 daddr = inet->inet_daddr; 1234 struct flowi4 *fl4; 1235 struct rtable *rt; 1236 __be32 new_saddr; 1237 struct ip_options_rcu *inet_opt; 1238 int err; 1239 1240 inet_opt = rcu_dereference_protected(inet->inet_opt, 1241 lockdep_sock_is_held(sk)); 1242 if (inet_opt && inet_opt->opt.srr) 1243 daddr = inet_opt->opt.faddr; 1244 1245 /* Query new route. */ 1246 fl4 = &inet->cork.fl.u.ip4; 1247 rt = ip_route_connect(fl4, daddr, 0, sk->sk_bound_dev_if, 1248 sk->sk_protocol, inet->inet_sport, 1249 inet->inet_dport, sk); 1250 if (IS_ERR(rt)) 1251 return PTR_ERR(rt); 1252 1253 new_saddr = fl4->saddr; 1254 1255 if (new_saddr == old_saddr) { 1256 sk_setup_caps(sk, &rt->dst); 1257 return 0; 1258 } 1259 1260 err = inet_bhash2_update_saddr(sk, &new_saddr, AF_INET); 1261 if (err) { 1262 ip_rt_put(rt); 1263 return err; 1264 } 1265 1266 sk_setup_caps(sk, &rt->dst); 1267 1268 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) > 1) { 1269 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", 1270 __func__, &old_saddr, &new_saddr); 1271 } 1272 1273 /* 1274 * XXX The only one ugly spot where we need to 1275 * XXX really change the sockets identity after 1276 * XXX it has entered the hashes. -DaveM 1277 * 1278 * Besides that, it does not check for connection 1279 * uniqueness. Wait for troubles. 1280 */ 1281 return __sk_prot_rehash(sk); 1282 } 1283 1284 int inet_sk_rebuild_header(struct sock *sk) 1285 { 1286 struct inet_sock *inet = inet_sk(sk); 1287 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); 1288 __be32 daddr; 1289 struct ip_options_rcu *inet_opt; 1290 struct flowi4 *fl4; 1291 int err; 1292 1293 /* Route is OK, nothing to do. */ 1294 if (rt) 1295 return 0; 1296 1297 /* Reroute. */ 1298 rcu_read_lock(); 1299 inet_opt = rcu_dereference(inet->inet_opt); 1300 daddr = inet->inet_daddr; 1301 if (inet_opt && inet_opt->opt.srr) 1302 daddr = inet_opt->opt.faddr; 1303 rcu_read_unlock(); 1304 fl4 = &inet->cork.fl.u.ip4; 1305 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, 1306 inet->inet_dport, inet->inet_sport, 1307 sk->sk_protocol, RT_CONN_FLAGS(sk), 1308 sk->sk_bound_dev_if); 1309 if (!IS_ERR(rt)) { 1310 err = 0; 1311 sk_setup_caps(sk, &rt->dst); 1312 } else { 1313 err = PTR_ERR(rt); 1314 1315 /* Routing failed... */ 1316 sk->sk_route_caps = 0; 1317 /* 1318 * Other protocols have to map its equivalent state to TCP_SYN_SENT. 1319 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme 1320 */ 1321 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) || 1322 sk->sk_state != TCP_SYN_SENT || 1323 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || 1324 (err = inet_sk_reselect_saddr(sk)) != 0) 1325 WRITE_ONCE(sk->sk_err_soft, -err); 1326 } 1327 1328 return err; 1329 } 1330 EXPORT_SYMBOL(inet_sk_rebuild_header); 1331 1332 void inet_sk_set_state(struct sock *sk, int state) 1333 { 1334 trace_inet_sock_set_state(sk, sk->sk_state, state); 1335 sk->sk_state = state; 1336 } 1337 EXPORT_SYMBOL(inet_sk_set_state); 1338 1339 void inet_sk_state_store(struct sock *sk, int newstate) 1340 { 1341 trace_inet_sock_set_state(sk, sk->sk_state, newstate); 1342 smp_store_release(&sk->sk_state, newstate); 1343 } 1344 1345 struct sk_buff *inet_gso_segment(struct sk_buff *skb, 1346 netdev_features_t features) 1347 { 1348 bool udpfrag = false, fixedid = false, gso_partial, encap; 1349 struct sk_buff *segs = ERR_PTR(-EINVAL); 1350 const struct net_offload *ops; 1351 unsigned int offset = 0; 1352 struct iphdr *iph; 1353 int proto, tot_len; 1354 int nhoff; 1355 int ihl; 1356 int id; 1357 1358 skb_reset_network_header(skb); 1359 nhoff = skb_network_header(skb) - skb_mac_header(skb); 1360 if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) 1361 goto out; 1362 1363 iph = ip_hdr(skb); 1364 ihl = iph->ihl * 4; 1365 if (ihl < sizeof(*iph)) 1366 goto out; 1367 1368 id = ntohs(iph->id); 1369 proto = iph->protocol; 1370 1371 /* Warning: after this point, iph might be no longer valid */ 1372 if (unlikely(!pskb_may_pull(skb, ihl))) 1373 goto out; 1374 __skb_pull(skb, ihl); 1375 1376 encap = SKB_GSO_CB(skb)->encap_level > 0; 1377 if (encap) 1378 features &= skb->dev->hw_enc_features; 1379 SKB_GSO_CB(skb)->encap_level += ihl; 1380 1381 skb_reset_transport_header(skb); 1382 1383 segs = ERR_PTR(-EPROTONOSUPPORT); 1384 1385 if (!skb->encapsulation || encap) { 1386 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); 1387 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); 1388 1389 /* fixed ID is invalid if DF bit is not set */ 1390 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) 1391 goto out; 1392 } 1393 1394 ops = rcu_dereference(inet_offloads[proto]); 1395 if (likely(ops && ops->callbacks.gso_segment)) { 1396 segs = ops->callbacks.gso_segment(skb, features); 1397 if (!segs) 1398 skb->network_header = skb_mac_header(skb) + nhoff - skb->head; 1399 } 1400 1401 if (IS_ERR_OR_NULL(segs)) 1402 goto out; 1403 1404 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); 1405 1406 skb = segs; 1407 do { 1408 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); 1409 if (udpfrag) { 1410 iph->frag_off = htons(offset >> 3); 1411 if (skb->next) 1412 iph->frag_off |= htons(IP_MF); 1413 offset += skb->len - nhoff - ihl; 1414 tot_len = skb->len - nhoff; 1415 } else if (skb_is_gso(skb)) { 1416 if (!fixedid) { 1417 iph->id = htons(id); 1418 id += skb_shinfo(skb)->gso_segs; 1419 } 1420 1421 if (gso_partial) 1422 tot_len = skb_shinfo(skb)->gso_size + 1423 SKB_GSO_CB(skb)->data_offset + 1424 skb->head - (unsigned char *)iph; 1425 else 1426 tot_len = skb->len - nhoff; 1427 } else { 1428 if (!fixedid) 1429 iph->id = htons(id++); 1430 tot_len = skb->len - nhoff; 1431 } 1432 iph->tot_len = htons(tot_len); 1433 ip_send_check(iph); 1434 if (encap) 1435 skb_reset_inner_headers(skb); 1436 skb->network_header = (u8 *)iph - skb->head; 1437 skb_reset_mac_len(skb); 1438 } while ((skb = skb->next)); 1439 1440 out: 1441 return segs; 1442 } 1443 1444 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb, 1445 netdev_features_t features) 1446 { 1447 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) 1448 return ERR_PTR(-EINVAL); 1449 1450 return inet_gso_segment(skb, features); 1451 } 1452 1453 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) 1454 { 1455 const struct net_offload *ops; 1456 struct sk_buff *pp = NULL; 1457 const struct iphdr *iph; 1458 struct sk_buff *p; 1459 unsigned int hlen; 1460 unsigned int off; 1461 unsigned int id; 1462 int flush = 1; 1463 int proto; 1464 1465 off = skb_gro_offset(skb); 1466 hlen = off + sizeof(*iph); 1467 iph = skb_gro_header(skb, hlen, off); 1468 if (unlikely(!iph)) 1469 goto out; 1470 1471 proto = iph->protocol; 1472 1473 ops = rcu_dereference(inet_offloads[proto]); 1474 if (!ops || !ops->callbacks.gro_receive) 1475 goto out; 1476 1477 if (*(u8 *)iph != 0x45) 1478 goto out; 1479 1480 if (ip_is_fragment(iph)) 1481 goto out; 1482 1483 if (unlikely(ip_fast_csum((u8 *)iph, 5))) 1484 goto out; 1485 1486 NAPI_GRO_CB(skb)->proto = proto; 1487 id = ntohl(*(__be32 *)&iph->id); 1488 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); 1489 id >>= 16; 1490 1491 list_for_each_entry(p, head, list) { 1492 struct iphdr *iph2; 1493 u16 flush_id; 1494 1495 if (!NAPI_GRO_CB(p)->same_flow) 1496 continue; 1497 1498 iph2 = (struct iphdr *)(p->data + off); 1499 /* The above works because, with the exception of the top 1500 * (inner most) layer, we only aggregate pkts with the same 1501 * hdr length so all the hdrs we'll need to verify will start 1502 * at the same offset. 1503 */ 1504 if ((iph->protocol ^ iph2->protocol) | 1505 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | 1506 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { 1507 NAPI_GRO_CB(p)->same_flow = 0; 1508 continue; 1509 } 1510 1511 /* All fields must match except length and checksum. */ 1512 NAPI_GRO_CB(p)->flush |= 1513 (iph->ttl ^ iph2->ttl) | 1514 (iph->tos ^ iph2->tos) | 1515 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); 1516 1517 NAPI_GRO_CB(p)->flush |= flush; 1518 1519 /* We need to store of the IP ID check to be included later 1520 * when we can verify that this packet does in fact belong 1521 * to a given flow. 1522 */ 1523 flush_id = (u16)(id - ntohs(iph2->id)); 1524 1525 /* This bit of code makes it much easier for us to identify 1526 * the cases where we are doing atomic vs non-atomic IP ID 1527 * checks. Specifically an atomic check can return IP ID 1528 * values 0 - 0xFFFF, while a non-atomic check can only 1529 * return 0 or 0xFFFF. 1530 */ 1531 if (!NAPI_GRO_CB(p)->is_atomic || 1532 !(iph->frag_off & htons(IP_DF))) { 1533 flush_id ^= NAPI_GRO_CB(p)->count; 1534 flush_id = flush_id ? 0xFFFF : 0; 1535 } 1536 1537 /* If the previous IP ID value was based on an atomic 1538 * datagram we can overwrite the value and ignore it. 1539 */ 1540 if (NAPI_GRO_CB(skb)->is_atomic) 1541 NAPI_GRO_CB(p)->flush_id = flush_id; 1542 else 1543 NAPI_GRO_CB(p)->flush_id |= flush_id; 1544 } 1545 1546 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); 1547 NAPI_GRO_CB(skb)->flush |= flush; 1548 skb_set_network_header(skb, off); 1549 /* The above will be needed by the transport layer if there is one 1550 * immediately following this IP hdr. 1551 */ 1552 1553 /* Note : No need to call skb_gro_postpull_rcsum() here, 1554 * as we already checked checksum over ipv4 header was 0 1555 */ 1556 skb_gro_pull(skb, sizeof(*iph)); 1557 skb_set_transport_header(skb, skb_gro_offset(skb)); 1558 1559 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive, 1560 ops->callbacks.gro_receive, head, skb); 1561 1562 out: 1563 skb_gro_flush_final(skb, pp, flush); 1564 1565 return pp; 1566 } 1567 1568 static struct sk_buff *ipip_gro_receive(struct list_head *head, 1569 struct sk_buff *skb) 1570 { 1571 if (NAPI_GRO_CB(skb)->encap_mark) { 1572 NAPI_GRO_CB(skb)->flush = 1; 1573 return NULL; 1574 } 1575 1576 NAPI_GRO_CB(skb)->encap_mark = 1; 1577 1578 return inet_gro_receive(head, skb); 1579 } 1580 1581 #define SECONDS_PER_DAY 86400 1582 1583 /* inet_current_timestamp - Return IP network timestamp 1584 * 1585 * Return milliseconds since midnight in network byte order. 1586 */ 1587 __be32 inet_current_timestamp(void) 1588 { 1589 u32 secs; 1590 u32 msecs; 1591 struct timespec64 ts; 1592 1593 ktime_get_real_ts64(&ts); 1594 1595 /* Get secs since midnight. */ 1596 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); 1597 /* Convert to msecs. */ 1598 msecs = secs * MSEC_PER_SEC; 1599 /* Convert nsec to msec. */ 1600 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; 1601 1602 /* Convert to network byte order. */ 1603 return htonl(msecs); 1604 } 1605 EXPORT_SYMBOL(inet_current_timestamp); 1606 1607 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) 1608 { 1609 if (sk->sk_family == AF_INET) 1610 return ip_recv_error(sk, msg, len, addr_len); 1611 #if IS_ENABLED(CONFIG_IPV6) 1612 if (sk->sk_family == AF_INET6) 1613 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); 1614 #endif 1615 return -EINVAL; 1616 } 1617 1618 int inet_gro_complete(struct sk_buff *skb, int nhoff) 1619 { 1620 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); 1621 const struct net_offload *ops; 1622 __be16 totlen = iph->tot_len; 1623 int proto = iph->protocol; 1624 int err = -ENOSYS; 1625 1626 if (skb->encapsulation) { 1627 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); 1628 skb_set_inner_network_header(skb, nhoff); 1629 } 1630 1631 iph_set_totlen(iph, skb->len - nhoff); 1632 csum_replace2(&iph->check, totlen, iph->tot_len); 1633 1634 ops = rcu_dereference(inet_offloads[proto]); 1635 if (WARN_ON(!ops || !ops->callbacks.gro_complete)) 1636 goto out; 1637 1638 /* Only need to add sizeof(*iph) to get to the next hdr below 1639 * because any hdr with option will have been flushed in 1640 * inet_gro_receive(). 1641 */ 1642 err = INDIRECT_CALL_2(ops->callbacks.gro_complete, 1643 tcp4_gro_complete, udp4_gro_complete, 1644 skb, nhoff + sizeof(*iph)); 1645 1646 out: 1647 return err; 1648 } 1649 1650 static int ipip_gro_complete(struct sk_buff *skb, int nhoff) 1651 { 1652 skb->encapsulation = 1; 1653 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; 1654 return inet_gro_complete(skb, nhoff); 1655 } 1656 1657 int inet_ctl_sock_create(struct sock **sk, unsigned short family, 1658 unsigned short type, unsigned char protocol, 1659 struct net *net) 1660 { 1661 struct socket *sock; 1662 int rc = sock_create_kern(net, family, type, protocol, &sock); 1663 1664 if (rc == 0) { 1665 *sk = sock->sk; 1666 (*sk)->sk_allocation = GFP_ATOMIC; 1667 (*sk)->sk_use_task_frag = false; 1668 /* 1669 * Unhash it so that IP input processing does not even see it, 1670 * we do not wish this socket to see incoming packets. 1671 */ 1672 (*sk)->sk_prot->unhash(*sk); 1673 } 1674 return rc; 1675 } 1676 EXPORT_SYMBOL_GPL(inet_ctl_sock_create); 1677 1678 unsigned long snmp_fold_field(void __percpu *mib, int offt) 1679 { 1680 unsigned long res = 0; 1681 int i; 1682 1683 for_each_possible_cpu(i) 1684 res += snmp_get_cpu_field(mib, i, offt); 1685 return res; 1686 } 1687 EXPORT_SYMBOL_GPL(snmp_fold_field); 1688 1689 #if BITS_PER_LONG==32 1690 1691 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, 1692 size_t syncp_offset) 1693 { 1694 void *bhptr; 1695 struct u64_stats_sync *syncp; 1696 u64 v; 1697 unsigned int start; 1698 1699 bhptr = per_cpu_ptr(mib, cpu); 1700 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); 1701 do { 1702 start = u64_stats_fetch_begin(syncp); 1703 v = *(((u64 *)bhptr) + offt); 1704 } while (u64_stats_fetch_retry(syncp, start)); 1705 1706 return v; 1707 } 1708 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); 1709 1710 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) 1711 { 1712 u64 res = 0; 1713 int cpu; 1714 1715 for_each_possible_cpu(cpu) { 1716 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); 1717 } 1718 return res; 1719 } 1720 EXPORT_SYMBOL_GPL(snmp_fold_field64); 1721 #endif 1722 1723 #ifdef CONFIG_IP_MULTICAST 1724 static const struct net_protocol igmp_protocol = { 1725 .handler = igmp_rcv, 1726 }; 1727 #endif 1728 1729 static const struct net_protocol tcp_protocol = { 1730 .handler = tcp_v4_rcv, 1731 .err_handler = tcp_v4_err, 1732 .no_policy = 1, 1733 .icmp_strict_tag_validation = 1, 1734 }; 1735 1736 static const struct net_protocol udp_protocol = { 1737 .handler = udp_rcv, 1738 .err_handler = udp_err, 1739 .no_policy = 1, 1740 }; 1741 1742 static const struct net_protocol icmp_protocol = { 1743 .handler = icmp_rcv, 1744 .err_handler = icmp_err, 1745 .no_policy = 1, 1746 }; 1747 1748 static __net_init int ipv4_mib_init_net(struct net *net) 1749 { 1750 int i; 1751 1752 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); 1753 if (!net->mib.tcp_statistics) 1754 goto err_tcp_mib; 1755 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); 1756 if (!net->mib.ip_statistics) 1757 goto err_ip_mib; 1758 1759 for_each_possible_cpu(i) { 1760 struct ipstats_mib *af_inet_stats; 1761 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); 1762 u64_stats_init(&af_inet_stats->syncp); 1763 } 1764 1765 net->mib.net_statistics = alloc_percpu(struct linux_mib); 1766 if (!net->mib.net_statistics) 1767 goto err_net_mib; 1768 net->mib.udp_statistics = alloc_percpu(struct udp_mib); 1769 if (!net->mib.udp_statistics) 1770 goto err_udp_mib; 1771 net->mib.udplite_statistics = alloc_percpu(struct udp_mib); 1772 if (!net->mib.udplite_statistics) 1773 goto err_udplite_mib; 1774 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); 1775 if (!net->mib.icmp_statistics) 1776 goto err_icmp_mib; 1777 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), 1778 GFP_KERNEL); 1779 if (!net->mib.icmpmsg_statistics) 1780 goto err_icmpmsg_mib; 1781 1782 tcp_mib_init(net); 1783 return 0; 1784 1785 err_icmpmsg_mib: 1786 free_percpu(net->mib.icmp_statistics); 1787 err_icmp_mib: 1788 free_percpu(net->mib.udplite_statistics); 1789 err_udplite_mib: 1790 free_percpu(net->mib.udp_statistics); 1791 err_udp_mib: 1792 free_percpu(net->mib.net_statistics); 1793 err_net_mib: 1794 free_percpu(net->mib.ip_statistics); 1795 err_ip_mib: 1796 free_percpu(net->mib.tcp_statistics); 1797 err_tcp_mib: 1798 return -ENOMEM; 1799 } 1800 1801 static __net_exit void ipv4_mib_exit_net(struct net *net) 1802 { 1803 kfree(net->mib.icmpmsg_statistics); 1804 free_percpu(net->mib.icmp_statistics); 1805 free_percpu(net->mib.udplite_statistics); 1806 free_percpu(net->mib.udp_statistics); 1807 free_percpu(net->mib.net_statistics); 1808 free_percpu(net->mib.ip_statistics); 1809 free_percpu(net->mib.tcp_statistics); 1810 #ifdef CONFIG_MPTCP 1811 /* allocated on demand, see mptcp_init_sock() */ 1812 free_percpu(net->mib.mptcp_statistics); 1813 #endif 1814 } 1815 1816 static __net_initdata struct pernet_operations ipv4_mib_ops = { 1817 .init = ipv4_mib_init_net, 1818 .exit = ipv4_mib_exit_net, 1819 }; 1820 1821 static int __init init_ipv4_mibs(void) 1822 { 1823 return register_pernet_subsys(&ipv4_mib_ops); 1824 } 1825 1826 static __net_init int inet_init_net(struct net *net) 1827 { 1828 /* 1829 * Set defaults for local port range 1830 */ 1831 seqlock_init(&net->ipv4.ip_local_ports.lock); 1832 net->ipv4.ip_local_ports.range[0] = 32768; 1833 net->ipv4.ip_local_ports.range[1] = 60999; 1834 1835 seqlock_init(&net->ipv4.ping_group_range.lock); 1836 /* 1837 * Sane defaults - nobody may create ping sockets. 1838 * Boot scripts should set this to distro-specific group. 1839 */ 1840 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); 1841 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); 1842 1843 /* Default values for sysctl-controlled parameters. 1844 * We set them here, in case sysctl is not compiled. 1845 */ 1846 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; 1847 net->ipv4.sysctl_ip_fwd_update_priority = 1; 1848 net->ipv4.sysctl_ip_dynaddr = 0; 1849 net->ipv4.sysctl_ip_early_demux = 1; 1850 net->ipv4.sysctl_udp_early_demux = 1; 1851 net->ipv4.sysctl_tcp_early_demux = 1; 1852 net->ipv4.sysctl_nexthop_compat_mode = 1; 1853 #ifdef CONFIG_SYSCTL 1854 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; 1855 #endif 1856 1857 /* Some igmp sysctl, whose values are always used */ 1858 net->ipv4.sysctl_igmp_max_memberships = 20; 1859 net->ipv4.sysctl_igmp_max_msf = 10; 1860 /* IGMP reports for link-local multicast groups are enabled by default */ 1861 net->ipv4.sysctl_igmp_llm_reports = 1; 1862 net->ipv4.sysctl_igmp_qrv = 2; 1863 1864 net->ipv4.sysctl_fib_notify_on_flag_change = 0; 1865 1866 return 0; 1867 } 1868 1869 static __net_initdata struct pernet_operations af_inet_ops = { 1870 .init = inet_init_net, 1871 }; 1872 1873 static int __init init_inet_pernet_ops(void) 1874 { 1875 return register_pernet_subsys(&af_inet_ops); 1876 } 1877 1878 static int ipv4_proc_init(void); 1879 1880 /* 1881 * IP protocol layer initialiser 1882 */ 1883 1884 static struct packet_offload ip_packet_offload __read_mostly = { 1885 .type = cpu_to_be16(ETH_P_IP), 1886 .callbacks = { 1887 .gso_segment = inet_gso_segment, 1888 .gro_receive = inet_gro_receive, 1889 .gro_complete = inet_gro_complete, 1890 }, 1891 }; 1892 1893 static const struct net_offload ipip_offload = { 1894 .callbacks = { 1895 .gso_segment = ipip_gso_segment, 1896 .gro_receive = ipip_gro_receive, 1897 .gro_complete = ipip_gro_complete, 1898 }, 1899 }; 1900 1901 static int __init ipip_offload_init(void) 1902 { 1903 return inet_add_offload(&ipip_offload, IPPROTO_IPIP); 1904 } 1905 1906 static int __init ipv4_offload_init(void) 1907 { 1908 /* 1909 * Add offloads 1910 */ 1911 if (udpv4_offload_init() < 0) 1912 pr_crit("%s: Cannot add UDP protocol offload\n", __func__); 1913 if (tcpv4_offload_init() < 0) 1914 pr_crit("%s: Cannot add TCP protocol offload\n", __func__); 1915 if (ipip_offload_init() < 0) 1916 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); 1917 1918 dev_add_offload(&ip_packet_offload); 1919 return 0; 1920 } 1921 1922 fs_initcall(ipv4_offload_init); 1923 1924 static struct packet_type ip_packet_type __read_mostly = { 1925 .type = cpu_to_be16(ETH_P_IP), 1926 .func = ip_rcv, 1927 .list_func = ip_list_rcv, 1928 }; 1929 1930 static int __init inet_init(void) 1931 { 1932 struct inet_protosw *q; 1933 struct list_head *r; 1934 int rc; 1935 1936 sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); 1937 1938 raw_hashinfo_init(&raw_v4_hashinfo); 1939 1940 rc = proto_register(&tcp_prot, 1); 1941 if (rc) 1942 goto out; 1943 1944 rc = proto_register(&udp_prot, 1); 1945 if (rc) 1946 goto out_unregister_tcp_proto; 1947 1948 rc = proto_register(&raw_prot, 1); 1949 if (rc) 1950 goto out_unregister_udp_proto; 1951 1952 rc = proto_register(&ping_prot, 1); 1953 if (rc) 1954 goto out_unregister_raw_proto; 1955 1956 /* 1957 * Tell SOCKET that we are alive... 1958 */ 1959 1960 (void)sock_register(&inet_family_ops); 1961 1962 #ifdef CONFIG_SYSCTL 1963 ip_static_sysctl_init(); 1964 #endif 1965 1966 /* 1967 * Add all the base protocols. 1968 */ 1969 1970 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) 1971 pr_crit("%s: Cannot add ICMP protocol\n", __func__); 1972 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0) 1973 pr_crit("%s: Cannot add UDP protocol\n", __func__); 1974 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0) 1975 pr_crit("%s: Cannot add TCP protocol\n", __func__); 1976 #ifdef CONFIG_IP_MULTICAST 1977 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) 1978 pr_crit("%s: Cannot add IGMP protocol\n", __func__); 1979 #endif 1980 1981 /* Register the socket-side information for inet_create. */ 1982 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 1983 INIT_LIST_HEAD(r); 1984 1985 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 1986 inet_register_protosw(q); 1987 1988 /* 1989 * Set the ARP module up 1990 */ 1991 1992 arp_init(); 1993 1994 /* 1995 * Set the IP module up 1996 */ 1997 1998 ip_init(); 1999 2000 /* Initialise per-cpu ipv4 mibs */ 2001 if (init_ipv4_mibs()) 2002 panic("%s: Cannot init ipv4 mibs\n", __func__); 2003 2004 /* Setup TCP slab cache for open requests. */ 2005 tcp_init(); 2006 2007 /* Setup UDP memory threshold */ 2008 udp_init(); 2009 2010 /* Add UDP-Lite (RFC 3828) */ 2011 udplite4_register(); 2012 2013 raw_init(); 2014 2015 ping_init(); 2016 2017 /* 2018 * Set the ICMP layer up 2019 */ 2020 2021 if (icmp_init() < 0) 2022 panic("Failed to create the ICMP control socket.\n"); 2023 2024 /* 2025 * Initialise the multicast router 2026 */ 2027 #if defined(CONFIG_IP_MROUTE) 2028 if (ip_mr_init()) 2029 pr_crit("%s: Cannot init ipv4 mroute\n", __func__); 2030 #endif 2031 2032 if (init_inet_pernet_ops()) 2033 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); 2034 2035 ipv4_proc_init(); 2036 2037 ipfrag_init(); 2038 2039 dev_add_pack(&ip_packet_type); 2040 2041 ip_tunnel_core_init(); 2042 2043 rc = 0; 2044 out: 2045 return rc; 2046 out_unregister_raw_proto: 2047 proto_unregister(&raw_prot); 2048 out_unregister_udp_proto: 2049 proto_unregister(&udp_prot); 2050 out_unregister_tcp_proto: 2051 proto_unregister(&tcp_prot); 2052 goto out; 2053 } 2054 2055 fs_initcall(inet_init); 2056 2057 /* ------------------------------------------------------------------------ */ 2058 2059 #ifdef CONFIG_PROC_FS 2060 static int __init ipv4_proc_init(void) 2061 { 2062 int rc = 0; 2063 2064 if (raw_proc_init()) 2065 goto out_raw; 2066 if (tcp4_proc_init()) 2067 goto out_tcp; 2068 if (udp4_proc_init()) 2069 goto out_udp; 2070 if (ping_proc_init()) 2071 goto out_ping; 2072 if (ip_misc_proc_init()) 2073 goto out_misc; 2074 out: 2075 return rc; 2076 out_misc: 2077 ping_proc_exit(); 2078 out_ping: 2079 udp4_proc_exit(); 2080 out_udp: 2081 tcp4_proc_exit(); 2082 out_tcp: 2083 raw_proc_exit(); 2084 out_raw: 2085 rc = -ENOMEM; 2086 goto out; 2087 } 2088 2089 #else /* CONFIG_PROC_FS */ 2090 static int __init ipv4_proc_init(void) 2091 { 2092 return 0; 2093 } 2094 #endif /* CONFIG_PROC_FS */ 2095