1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PF_INET protocol family socket handler. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Florian La Roche, <flla@stud.uni-sb.de> 12 * Alan Cox, <A.Cox@swansea.ac.uk> 13 * 14 * Changes (see also sock.c) 15 * 16 * piggy, 17 * Karl Knutson : Socket protocol table 18 * A.N.Kuznetsov : Socket death error in accept(). 19 * John Richardson : Fix non blocking error in connect() 20 * so sockets that fail to connect 21 * don't return -EINPROGRESS. 22 * Alan Cox : Asynchronous I/O support 23 * Alan Cox : Keep correct socket pointer on sock 24 * structures 25 * when accept() ed 26 * Alan Cox : Semantics of SO_LINGER aren't state 27 * moved to close when you look carefully. 28 * With this fixed and the accept bug fixed 29 * some RPC stuff seems happier. 30 * Niibe Yutaka : 4.4BSD style write async I/O 31 * Alan Cox, 32 * Tony Gale : Fixed reuse semantics. 33 * Alan Cox : bind() shouldn't abort existing but dead 34 * sockets. Stops FTP netin:.. I hope. 35 * Alan Cox : bind() works correctly for RAW sockets. 36 * Note that FreeBSD at least was broken 37 * in this respect so be careful with 38 * compatibility tests... 39 * Alan Cox : routing cache support 40 * Alan Cox : memzero the socket structure for 41 * compactness. 42 * Matt Day : nonblock connect error handler 43 * Alan Cox : Allow large numbers of pending sockets 44 * (eg for big web sites), but only if 45 * specifically application requested. 46 * Alan Cox : New buffering throughout IP. Used 47 * dumbly. 48 * Alan Cox : New buffering now used smartly. 49 * Alan Cox : BSD rather than common sense 50 * interpretation of listen. 51 * Germano Caronni : Assorted small races. 52 * Alan Cox : sendmsg/recvmsg basic support. 53 * Alan Cox : Only sendmsg/recvmsg now supported. 54 * Alan Cox : Locked down bind (see security list). 55 * Alan Cox : Loosened bind a little. 56 * Mike McLagan : ADD/DEL DLCI Ioctls 57 * Willy Konynenberg : Transparent proxying support. 58 * David S. Miller : New socket lookup architecture. 59 * Some other random speedups. 60 * Cyrus Durgin : Cleaned up file for kmod hacks. 61 * Andi Kleen : Fix inet_stream_connect TCP race. 62 */ 63 64 #define pr_fmt(fmt) "IPv4: " fmt 65 66 #include <linux/err.h> 67 #include <linux/errno.h> 68 #include <linux/types.h> 69 #include <linux/socket.h> 70 #include <linux/in.h> 71 #include <linux/kernel.h> 72 #include <linux/kmod.h> 73 #include <linux/sched.h> 74 #include <linux/timer.h> 75 #include <linux/string.h> 76 #include <linux/sockios.h> 77 #include <linux/net.h> 78 #include <linux/capability.h> 79 #include <linux/fcntl.h> 80 #include <linux/mm.h> 81 #include <linux/interrupt.h> 82 #include <linux/stat.h> 83 #include <linux/init.h> 84 #include <linux/poll.h> 85 #include <linux/netfilter_ipv4.h> 86 #include <linux/random.h> 87 #include <linux/slab.h> 88 89 #include <linux/uaccess.h> 90 91 #include <linux/inet.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/netdevice.h> 95 #include <net/checksum.h> 96 #include <net/ip.h> 97 #include <net/protocol.h> 98 #include <net/arp.h> 99 #include <net/route.h> 100 #include <net/ip_fib.h> 101 #include <net/inet_connection_sock.h> 102 #include <net/tcp.h> 103 #include <net/udp.h> 104 #include <net/udplite.h> 105 #include <net/ping.h> 106 #include <linux/skbuff.h> 107 #include <net/sock.h> 108 #include <net/raw.h> 109 #include <net/icmp.h> 110 #include <net/inet_common.h> 111 #include <net/ip_tunnels.h> 112 #include <net/xfrm.h> 113 #include <net/net_namespace.h> 114 #include <net/secure_seq.h> 115 #ifdef CONFIG_IP_MROUTE 116 #include <linux/mroute.h> 117 #endif 118 #include <net/l3mdev.h> 119 #include <net/compat.h> 120 121 #include <trace/events/sock.h> 122 123 /* The inetsw table contains everything that inet_create needs to 124 * build a new socket. 125 */ 126 static struct list_head inetsw[SOCK_MAX]; 127 static DEFINE_SPINLOCK(inetsw_lock); 128 129 /* New destruction routine */ 130 131 void inet_sock_destruct(struct sock *sk) 132 { 133 struct inet_sock *inet = inet_sk(sk); 134 135 __skb_queue_purge(&sk->sk_receive_queue); 136 if (sk->sk_rx_skb_cache) { 137 __kfree_skb(sk->sk_rx_skb_cache); 138 sk->sk_rx_skb_cache = NULL; 139 } 140 __skb_queue_purge(&sk->sk_error_queue); 141 142 sk_mem_reclaim(sk); 143 144 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { 145 pr_err("Attempt to release TCP socket in state %d %p\n", 146 sk->sk_state, sk); 147 return; 148 } 149 if (!sock_flag(sk, SOCK_DEAD)) { 150 pr_err("Attempt to release alive inet socket %p\n", sk); 151 return; 152 } 153 154 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 155 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 156 WARN_ON(sk->sk_wmem_queued); 157 WARN_ON(sk->sk_forward_alloc); 158 159 kfree(rcu_dereference_protected(inet->inet_opt, 1)); 160 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1)); 161 dst_release(sk->sk_rx_dst); 162 sk_refcnt_debug_dec(sk); 163 } 164 EXPORT_SYMBOL(inet_sock_destruct); 165 166 /* 167 * The routines beyond this point handle the behaviour of an AF_INET 168 * socket object. Mostly it punts to the subprotocols of IP to do 169 * the work. 170 */ 171 172 /* 173 * Automatically bind an unbound socket. 174 */ 175 176 static int inet_autobind(struct sock *sk) 177 { 178 struct inet_sock *inet; 179 /* We may need to bind the socket. */ 180 lock_sock(sk); 181 inet = inet_sk(sk); 182 if (!inet->inet_num) { 183 if (sk->sk_prot->get_port(sk, 0)) { 184 release_sock(sk); 185 return -EAGAIN; 186 } 187 inet->inet_sport = htons(inet->inet_num); 188 } 189 release_sock(sk); 190 return 0; 191 } 192 193 /* 194 * Move a socket into listening state. 195 */ 196 int inet_listen(struct socket *sock, int backlog) 197 { 198 struct sock *sk = sock->sk; 199 unsigned char old_state; 200 int err, tcp_fastopen; 201 202 lock_sock(sk); 203 204 err = -EINVAL; 205 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 206 goto out; 207 208 old_state = sk->sk_state; 209 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) 210 goto out; 211 212 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 213 /* Really, if the socket is already in listen state 214 * we can only allow the backlog to be adjusted. 215 */ 216 if (old_state != TCP_LISTEN) { 217 /* Enable TFO w/o requiring TCP_FASTOPEN socket option. 218 * Note that only TCP sockets (SOCK_STREAM) will reach here. 219 * Also fastopen backlog may already been set via the option 220 * because the socket was in TCP_LISTEN state previously but 221 * was shutdown() rather than close(). 222 */ 223 tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen; 224 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && 225 (tcp_fastopen & TFO_SERVER_ENABLE) && 226 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { 227 fastopen_queue_tune(sk, backlog); 228 tcp_fastopen_init_key_once(sock_net(sk)); 229 } 230 231 err = inet_csk_listen_start(sk, backlog); 232 if (err) 233 goto out; 234 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); 235 } 236 err = 0; 237 238 out: 239 release_sock(sk); 240 return err; 241 } 242 EXPORT_SYMBOL(inet_listen); 243 244 /* 245 * Create an inet socket. 246 */ 247 248 static int inet_create(struct net *net, struct socket *sock, int protocol, 249 int kern) 250 { 251 struct sock *sk; 252 struct inet_protosw *answer; 253 struct inet_sock *inet; 254 struct proto *answer_prot; 255 unsigned char answer_flags; 256 int try_loading_module = 0; 257 int err; 258 259 if (protocol < 0 || protocol >= IPPROTO_MAX) 260 return -EINVAL; 261 262 sock->state = SS_UNCONNECTED; 263 264 /* Look for the requested type/protocol pair. */ 265 lookup_protocol: 266 err = -ESOCKTNOSUPPORT; 267 rcu_read_lock(); 268 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { 269 270 err = 0; 271 /* Check the non-wild match. */ 272 if (protocol == answer->protocol) { 273 if (protocol != IPPROTO_IP) 274 break; 275 } else { 276 /* Check for the two wild cases. */ 277 if (IPPROTO_IP == protocol) { 278 protocol = answer->protocol; 279 break; 280 } 281 if (IPPROTO_IP == answer->protocol) 282 break; 283 } 284 err = -EPROTONOSUPPORT; 285 } 286 287 if (unlikely(err)) { 288 if (try_loading_module < 2) { 289 rcu_read_unlock(); 290 /* 291 * Be more specific, e.g. net-pf-2-proto-132-type-1 292 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) 293 */ 294 if (++try_loading_module == 1) 295 request_module("net-pf-%d-proto-%d-type-%d", 296 PF_INET, protocol, sock->type); 297 /* 298 * Fall back to generic, e.g. net-pf-2-proto-132 299 * (net-pf-PF_INET-proto-IPPROTO_SCTP) 300 */ 301 else 302 request_module("net-pf-%d-proto-%d", 303 PF_INET, protocol); 304 goto lookup_protocol; 305 } else 306 goto out_rcu_unlock; 307 } 308 309 err = -EPERM; 310 if (sock->type == SOCK_RAW && !kern && 311 !ns_capable(net->user_ns, CAP_NET_RAW)) 312 goto out_rcu_unlock; 313 314 sock->ops = answer->ops; 315 answer_prot = answer->prot; 316 answer_flags = answer->flags; 317 rcu_read_unlock(); 318 319 WARN_ON(!answer_prot->slab); 320 321 err = -ENOBUFS; 322 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); 323 if (!sk) 324 goto out; 325 326 err = 0; 327 if (INET_PROTOSW_REUSE & answer_flags) 328 sk->sk_reuse = SK_CAN_REUSE; 329 330 inet = inet_sk(sk); 331 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0; 332 333 inet->nodefrag = 0; 334 335 if (SOCK_RAW == sock->type) { 336 inet->inet_num = protocol; 337 if (IPPROTO_RAW == protocol) 338 inet->hdrincl = 1; 339 } 340 341 if (net->ipv4.sysctl_ip_no_pmtu_disc) 342 inet->pmtudisc = IP_PMTUDISC_DONT; 343 else 344 inet->pmtudisc = IP_PMTUDISC_WANT; 345 346 inet->inet_id = 0; 347 348 sock_init_data(sock, sk); 349 350 sk->sk_destruct = inet_sock_destruct; 351 sk->sk_protocol = protocol; 352 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 353 354 inet->uc_ttl = -1; 355 inet->mc_loop = 1; 356 inet->mc_ttl = 1; 357 inet->mc_all = 1; 358 inet->mc_index = 0; 359 inet->mc_list = NULL; 360 inet->rcv_tos = 0; 361 362 sk_refcnt_debug_inc(sk); 363 364 if (inet->inet_num) { 365 /* It assumes that any protocol which allows 366 * the user to assign a number at socket 367 * creation time automatically 368 * shares. 369 */ 370 inet->inet_sport = htons(inet->inet_num); 371 /* Add to protocol hash chains. */ 372 err = sk->sk_prot->hash(sk); 373 if (err) { 374 sk_common_release(sk); 375 goto out; 376 } 377 } 378 379 if (sk->sk_prot->init) { 380 err = sk->sk_prot->init(sk); 381 if (err) { 382 sk_common_release(sk); 383 goto out; 384 } 385 } 386 387 if (!kern) { 388 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); 389 if (err) { 390 sk_common_release(sk); 391 goto out; 392 } 393 } 394 out: 395 return err; 396 out_rcu_unlock: 397 rcu_read_unlock(); 398 goto out; 399 } 400 401 402 /* 403 * The peer socket should always be NULL (or else). When we call this 404 * function we are destroying the object and from then on nobody 405 * should refer to it. 406 */ 407 int inet_release(struct socket *sock) 408 { 409 struct sock *sk = sock->sk; 410 411 if (sk) { 412 long timeout; 413 414 if (!sk->sk_kern_sock) 415 BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk); 416 417 /* Applications forget to leave groups before exiting */ 418 ip_mc_drop_socket(sk); 419 420 /* If linger is set, we don't return until the close 421 * is complete. Otherwise we return immediately. The 422 * actually closing is done the same either way. 423 * 424 * If the close is due to the process exiting, we never 425 * linger.. 426 */ 427 timeout = 0; 428 if (sock_flag(sk, SOCK_LINGER) && 429 !(current->flags & PF_EXITING)) 430 timeout = sk->sk_lingertime; 431 sk->sk_prot->close(sk, timeout); 432 sock->sk = NULL; 433 } 434 return 0; 435 } 436 EXPORT_SYMBOL(inet_release); 437 438 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 439 { 440 struct sock *sk = sock->sk; 441 u32 flags = BIND_WITH_LOCK; 442 int err; 443 444 /* If the socket has its own bind function then use it. (RAW) */ 445 if (sk->sk_prot->bind) { 446 return sk->sk_prot->bind(sk, uaddr, addr_len); 447 } 448 if (addr_len < sizeof(struct sockaddr_in)) 449 return -EINVAL; 450 451 /* BPF prog is run before any checks are done so that if the prog 452 * changes context in a wrong way it will be caught. 453 */ 454 err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr, 455 BPF_CGROUP_INET4_BIND, &flags); 456 if (err) 457 return err; 458 459 return __inet_bind(sk, uaddr, addr_len, flags); 460 } 461 EXPORT_SYMBOL(inet_bind); 462 463 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, 464 u32 flags) 465 { 466 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; 467 struct inet_sock *inet = inet_sk(sk); 468 struct net *net = sock_net(sk); 469 unsigned short snum; 470 int chk_addr_ret; 471 u32 tb_id = RT_TABLE_LOCAL; 472 int err; 473 474 if (addr->sin_family != AF_INET) { 475 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) 476 * only if s_addr is INADDR_ANY. 477 */ 478 err = -EAFNOSUPPORT; 479 if (addr->sin_family != AF_UNSPEC || 480 addr->sin_addr.s_addr != htonl(INADDR_ANY)) 481 goto out; 482 } 483 484 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; 485 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); 486 487 /* Not specified by any standard per-se, however it breaks too 488 * many applications when removed. It is unfortunate since 489 * allowing applications to make a non-local bind solves 490 * several problems with systems using dynamic addressing. 491 * (ie. your servers still start up even if your ISDN link 492 * is temporarily down) 493 */ 494 err = -EADDRNOTAVAIL; 495 if (!inet_can_nonlocal_bind(net, inet) && 496 addr->sin_addr.s_addr != htonl(INADDR_ANY) && 497 chk_addr_ret != RTN_LOCAL && 498 chk_addr_ret != RTN_MULTICAST && 499 chk_addr_ret != RTN_BROADCAST) 500 goto out; 501 502 snum = ntohs(addr->sin_port); 503 err = -EACCES; 504 if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) && 505 snum && inet_port_requires_bind_service(net, snum) && 506 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 507 goto out; 508 509 /* We keep a pair of addresses. rcv_saddr is the one 510 * used by hash lookups, and saddr is used for transmit. 511 * 512 * In the BSD API these are the same except where it 513 * would be illegal to use them (multicast/broadcast) in 514 * which case the sending device address is used. 515 */ 516 if (flags & BIND_WITH_LOCK) 517 lock_sock(sk); 518 519 /* Check these errors (active socket, double bind). */ 520 err = -EINVAL; 521 if (sk->sk_state != TCP_CLOSE || inet->inet_num) 522 goto out_release_sock; 523 524 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; 525 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) 526 inet->inet_saddr = 0; /* Use device */ 527 528 /* Make sure we are allowed to bind here. */ 529 if (snum || !(inet->bind_address_no_port || 530 (flags & BIND_FORCE_ADDRESS_NO_PORT))) { 531 if (sk->sk_prot->get_port(sk, snum)) { 532 inet->inet_saddr = inet->inet_rcv_saddr = 0; 533 err = -EADDRINUSE; 534 goto out_release_sock; 535 } 536 if (!(flags & BIND_FROM_BPF)) { 537 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); 538 if (err) { 539 inet->inet_saddr = inet->inet_rcv_saddr = 0; 540 goto out_release_sock; 541 } 542 } 543 } 544 545 if (inet->inet_rcv_saddr) 546 sk->sk_userlocks |= SOCK_BINDADDR_LOCK; 547 if (snum) 548 sk->sk_userlocks |= SOCK_BINDPORT_LOCK; 549 inet->inet_sport = htons(inet->inet_num); 550 inet->inet_daddr = 0; 551 inet->inet_dport = 0; 552 sk_dst_reset(sk); 553 err = 0; 554 out_release_sock: 555 if (flags & BIND_WITH_LOCK) 556 release_sock(sk); 557 out: 558 return err; 559 } 560 561 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, 562 int addr_len, int flags) 563 { 564 struct sock *sk = sock->sk; 565 int err; 566 567 if (addr_len < sizeof(uaddr->sa_family)) 568 return -EINVAL; 569 if (uaddr->sa_family == AF_UNSPEC) 570 return sk->sk_prot->disconnect(sk, flags); 571 572 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 573 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 574 if (err) 575 return err; 576 } 577 578 if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk)) 579 return -EAGAIN; 580 return sk->sk_prot->connect(sk, uaddr, addr_len); 581 } 582 EXPORT_SYMBOL(inet_dgram_connect); 583 584 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) 585 { 586 DEFINE_WAIT_FUNC(wait, woken_wake_function); 587 588 add_wait_queue(sk_sleep(sk), &wait); 589 sk->sk_write_pending += writebias; 590 591 /* Basic assumption: if someone sets sk->sk_err, he _must_ 592 * change state of the socket from TCP_SYN_*. 593 * Connect() does not allow to get error notifications 594 * without closing the socket. 595 */ 596 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 597 release_sock(sk); 598 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 599 lock_sock(sk); 600 if (signal_pending(current) || !timeo) 601 break; 602 } 603 remove_wait_queue(sk_sleep(sk), &wait); 604 sk->sk_write_pending -= writebias; 605 return timeo; 606 } 607 608 /* 609 * Connect to a remote host. There is regrettably still a little 610 * TCP 'magic' in here. 611 */ 612 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 613 int addr_len, int flags, int is_sendmsg) 614 { 615 struct sock *sk = sock->sk; 616 int err; 617 long timeo; 618 619 /* 620 * uaddr can be NULL and addr_len can be 0 if: 621 * sk is a TCP fastopen active socket and 622 * TCP_FASTOPEN_CONNECT sockopt is set and 623 * we already have a valid cookie for this socket. 624 * In this case, user can call write() after connect(). 625 * write() will invoke tcp_sendmsg_fastopen() which calls 626 * __inet_stream_connect(). 627 */ 628 if (uaddr) { 629 if (addr_len < sizeof(uaddr->sa_family)) 630 return -EINVAL; 631 632 if (uaddr->sa_family == AF_UNSPEC) { 633 err = sk->sk_prot->disconnect(sk, flags); 634 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 635 goto out; 636 } 637 } 638 639 switch (sock->state) { 640 default: 641 err = -EINVAL; 642 goto out; 643 case SS_CONNECTED: 644 err = -EISCONN; 645 goto out; 646 case SS_CONNECTING: 647 if (inet_sk(sk)->defer_connect) 648 err = is_sendmsg ? -EINPROGRESS : -EISCONN; 649 else 650 err = -EALREADY; 651 /* Fall out of switch with err, set for this state */ 652 break; 653 case SS_UNCONNECTED: 654 err = -EISCONN; 655 if (sk->sk_state != TCP_CLOSE) 656 goto out; 657 658 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 659 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 660 if (err) 661 goto out; 662 } 663 664 err = sk->sk_prot->connect(sk, uaddr, addr_len); 665 if (err < 0) 666 goto out; 667 668 sock->state = SS_CONNECTING; 669 670 if (!err && inet_sk(sk)->defer_connect) 671 goto out; 672 673 /* Just entered SS_CONNECTING state; the only 674 * difference is that return value in non-blocking 675 * case is EINPROGRESS, rather than EALREADY. 676 */ 677 err = -EINPROGRESS; 678 break; 679 } 680 681 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 682 683 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 684 int writebias = (sk->sk_protocol == IPPROTO_TCP) && 685 tcp_sk(sk)->fastopen_req && 686 tcp_sk(sk)->fastopen_req->data ? 1 : 0; 687 688 /* Error code is set above */ 689 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) 690 goto out; 691 692 err = sock_intr_errno(timeo); 693 if (signal_pending(current)) 694 goto out; 695 } 696 697 /* Connection was closed by RST, timeout, ICMP error 698 * or another process disconnected us. 699 */ 700 if (sk->sk_state == TCP_CLOSE) 701 goto sock_error; 702 703 /* sk->sk_err may be not zero now, if RECVERR was ordered by user 704 * and error was received after socket entered established state. 705 * Hence, it is handled normally after connect() return successfully. 706 */ 707 708 sock->state = SS_CONNECTED; 709 err = 0; 710 out: 711 return err; 712 713 sock_error: 714 err = sock_error(sk) ? : -ECONNABORTED; 715 sock->state = SS_UNCONNECTED; 716 if (sk->sk_prot->disconnect(sk, flags)) 717 sock->state = SS_DISCONNECTING; 718 goto out; 719 } 720 EXPORT_SYMBOL(__inet_stream_connect); 721 722 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 723 int addr_len, int flags) 724 { 725 int err; 726 727 lock_sock(sock->sk); 728 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 729 release_sock(sock->sk); 730 return err; 731 } 732 EXPORT_SYMBOL(inet_stream_connect); 733 734 /* 735 * Accept a pending connection. The TCP layer now gives BSD semantics. 736 */ 737 738 int inet_accept(struct socket *sock, struct socket *newsock, int flags, 739 bool kern) 740 { 741 struct sock *sk1 = sock->sk; 742 int err = -EINVAL; 743 struct sock *sk2 = sk1->sk_prot->accept(sk1, flags, &err, kern); 744 745 if (!sk2) 746 goto do_err; 747 748 lock_sock(sk2); 749 750 sock_rps_record_flow(sk2); 751 WARN_ON(!((1 << sk2->sk_state) & 752 (TCPF_ESTABLISHED | TCPF_SYN_RECV | 753 TCPF_CLOSE_WAIT | TCPF_CLOSE))); 754 755 sock_graft(sk2, newsock); 756 757 newsock->state = SS_CONNECTED; 758 err = 0; 759 release_sock(sk2); 760 do_err: 761 return err; 762 } 763 EXPORT_SYMBOL(inet_accept); 764 765 /* 766 * This does both peername and sockname. 767 */ 768 int inet_getname(struct socket *sock, struct sockaddr *uaddr, 769 int peer) 770 { 771 struct sock *sk = sock->sk; 772 struct inet_sock *inet = inet_sk(sk); 773 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); 774 775 sin->sin_family = AF_INET; 776 if (peer) { 777 if (!inet->inet_dport || 778 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && 779 peer == 1)) 780 return -ENOTCONN; 781 sin->sin_port = inet->inet_dport; 782 sin->sin_addr.s_addr = inet->inet_daddr; 783 BPF_CGROUP_RUN_SA_PROG_LOCK(sk, (struct sockaddr *)sin, 784 BPF_CGROUP_INET4_GETPEERNAME, 785 NULL); 786 } else { 787 __be32 addr = inet->inet_rcv_saddr; 788 if (!addr) 789 addr = inet->inet_saddr; 790 sin->sin_port = inet->inet_sport; 791 sin->sin_addr.s_addr = addr; 792 BPF_CGROUP_RUN_SA_PROG_LOCK(sk, (struct sockaddr *)sin, 793 BPF_CGROUP_INET4_GETSOCKNAME, 794 NULL); 795 } 796 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 797 return sizeof(*sin); 798 } 799 EXPORT_SYMBOL(inet_getname); 800 801 int inet_send_prepare(struct sock *sk) 802 { 803 sock_rps_record_flow(sk); 804 805 /* We may need to bind the socket. */ 806 if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind && 807 inet_autobind(sk)) 808 return -EAGAIN; 809 810 return 0; 811 } 812 EXPORT_SYMBOL_GPL(inet_send_prepare); 813 814 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 815 { 816 struct sock *sk = sock->sk; 817 818 if (unlikely(inet_send_prepare(sk))) 819 return -EAGAIN; 820 821 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg, 822 sk, msg, size); 823 } 824 EXPORT_SYMBOL(inet_sendmsg); 825 826 ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset, 827 size_t size, int flags) 828 { 829 struct sock *sk = sock->sk; 830 831 if (unlikely(inet_send_prepare(sk))) 832 return -EAGAIN; 833 834 if (sk->sk_prot->sendpage) 835 return sk->sk_prot->sendpage(sk, page, offset, size, flags); 836 return sock_no_sendpage(sock, page, offset, size, flags); 837 } 838 EXPORT_SYMBOL(inet_sendpage); 839 840 INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *, 841 size_t, int, int, int *)); 842 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 843 int flags) 844 { 845 struct sock *sk = sock->sk; 846 int addr_len = 0; 847 int err; 848 849 if (likely(!(flags & MSG_ERRQUEUE))) 850 sock_rps_record_flow(sk); 851 852 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg, 853 sk, msg, size, flags & MSG_DONTWAIT, 854 flags & ~MSG_DONTWAIT, &addr_len); 855 if (err >= 0) 856 msg->msg_namelen = addr_len; 857 return err; 858 } 859 EXPORT_SYMBOL(inet_recvmsg); 860 861 int inet_shutdown(struct socket *sock, int how) 862 { 863 struct sock *sk = sock->sk; 864 int err = 0; 865 866 /* This should really check to make sure 867 * the socket is a TCP socket. (WHY AC...) 868 */ 869 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 870 1->2 bit 2 snds. 871 2->3 */ 872 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ 873 return -EINVAL; 874 875 lock_sock(sk); 876 if (sock->state == SS_CONNECTING) { 877 if ((1 << sk->sk_state) & 878 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 879 sock->state = SS_DISCONNECTING; 880 else 881 sock->state = SS_CONNECTED; 882 } 883 884 switch (sk->sk_state) { 885 case TCP_CLOSE: 886 err = -ENOTCONN; 887 /* Hack to wake up other listeners, who can poll for 888 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ 889 fallthrough; 890 default: 891 sk->sk_shutdown |= how; 892 if (sk->sk_prot->shutdown) 893 sk->sk_prot->shutdown(sk, how); 894 break; 895 896 /* Remaining two branches are temporary solution for missing 897 * close() in multithreaded environment. It is _not_ a good idea, 898 * but we have no choice until close() is repaired at VFS level. 899 */ 900 case TCP_LISTEN: 901 if (!(how & RCV_SHUTDOWN)) 902 break; 903 fallthrough; 904 case TCP_SYN_SENT: 905 err = sk->sk_prot->disconnect(sk, O_NONBLOCK); 906 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 907 break; 908 } 909 910 /* Wake up anyone sleeping in poll. */ 911 sk->sk_state_change(sk); 912 release_sock(sk); 913 return err; 914 } 915 EXPORT_SYMBOL(inet_shutdown); 916 917 /* 918 * ioctl() calls you can issue on an INET socket. Most of these are 919 * device configuration and stuff and very rarely used. Some ioctls 920 * pass on to the socket itself. 921 * 922 * NOTE: I like the idea of a module for the config stuff. ie ifconfig 923 * loads the devconfigure module does its configuring and unloads it. 924 * There's a good 20K of config code hanging around the kernel. 925 */ 926 927 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 928 { 929 struct sock *sk = sock->sk; 930 int err = 0; 931 struct net *net = sock_net(sk); 932 void __user *p = (void __user *)arg; 933 struct ifreq ifr; 934 struct rtentry rt; 935 936 switch (cmd) { 937 case SIOCADDRT: 938 case SIOCDELRT: 939 if (copy_from_user(&rt, p, sizeof(struct rtentry))) 940 return -EFAULT; 941 err = ip_rt_ioctl(net, cmd, &rt); 942 break; 943 case SIOCRTMSG: 944 err = -EINVAL; 945 break; 946 case SIOCDARP: 947 case SIOCGARP: 948 case SIOCSARP: 949 err = arp_ioctl(net, cmd, (void __user *)arg); 950 break; 951 case SIOCGIFADDR: 952 case SIOCGIFBRDADDR: 953 case SIOCGIFNETMASK: 954 case SIOCGIFDSTADDR: 955 case SIOCGIFPFLAGS: 956 if (copy_from_user(&ifr, p, sizeof(struct ifreq))) 957 return -EFAULT; 958 err = devinet_ioctl(net, cmd, &ifr); 959 if (!err && copy_to_user(p, &ifr, sizeof(struct ifreq))) 960 err = -EFAULT; 961 break; 962 963 case SIOCSIFADDR: 964 case SIOCSIFBRDADDR: 965 case SIOCSIFNETMASK: 966 case SIOCSIFDSTADDR: 967 case SIOCSIFPFLAGS: 968 case SIOCSIFFLAGS: 969 if (copy_from_user(&ifr, p, sizeof(struct ifreq))) 970 return -EFAULT; 971 err = devinet_ioctl(net, cmd, &ifr); 972 break; 973 default: 974 if (sk->sk_prot->ioctl) 975 err = sk->sk_prot->ioctl(sk, cmd, arg); 976 else 977 err = -ENOIOCTLCMD; 978 break; 979 } 980 return err; 981 } 982 EXPORT_SYMBOL(inet_ioctl); 983 984 #ifdef CONFIG_COMPAT 985 static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd, 986 struct compat_rtentry __user *ur) 987 { 988 compat_uptr_t rtdev; 989 struct rtentry rt; 990 991 if (copy_from_user(&rt.rt_dst, &ur->rt_dst, 992 3 * sizeof(struct sockaddr)) || 993 get_user(rt.rt_flags, &ur->rt_flags) || 994 get_user(rt.rt_metric, &ur->rt_metric) || 995 get_user(rt.rt_mtu, &ur->rt_mtu) || 996 get_user(rt.rt_window, &ur->rt_window) || 997 get_user(rt.rt_irtt, &ur->rt_irtt) || 998 get_user(rtdev, &ur->rt_dev)) 999 return -EFAULT; 1000 1001 rt.rt_dev = compat_ptr(rtdev); 1002 return ip_rt_ioctl(sock_net(sk), cmd, &rt); 1003 } 1004 1005 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1006 { 1007 void __user *argp = compat_ptr(arg); 1008 struct sock *sk = sock->sk; 1009 1010 switch (cmd) { 1011 case SIOCADDRT: 1012 case SIOCDELRT: 1013 return inet_compat_routing_ioctl(sk, cmd, argp); 1014 default: 1015 if (!sk->sk_prot->compat_ioctl) 1016 return -ENOIOCTLCMD; 1017 return sk->sk_prot->compat_ioctl(sk, cmd, arg); 1018 } 1019 } 1020 #endif /* CONFIG_COMPAT */ 1021 1022 const struct proto_ops inet_stream_ops = { 1023 .family = PF_INET, 1024 .owner = THIS_MODULE, 1025 .release = inet_release, 1026 .bind = inet_bind, 1027 .connect = inet_stream_connect, 1028 .socketpair = sock_no_socketpair, 1029 .accept = inet_accept, 1030 .getname = inet_getname, 1031 .poll = tcp_poll, 1032 .ioctl = inet_ioctl, 1033 .gettstamp = sock_gettstamp, 1034 .listen = inet_listen, 1035 .shutdown = inet_shutdown, 1036 .setsockopt = sock_common_setsockopt, 1037 .getsockopt = sock_common_getsockopt, 1038 .sendmsg = inet_sendmsg, 1039 .recvmsg = inet_recvmsg, 1040 #ifdef CONFIG_MMU 1041 .mmap = tcp_mmap, 1042 #endif 1043 .sendpage = inet_sendpage, 1044 .splice_read = tcp_splice_read, 1045 .read_sock = tcp_read_sock, 1046 .sendmsg_locked = tcp_sendmsg_locked, 1047 .sendpage_locked = tcp_sendpage_locked, 1048 .peek_len = tcp_peek_len, 1049 #ifdef CONFIG_COMPAT 1050 .compat_ioctl = inet_compat_ioctl, 1051 #endif 1052 .set_rcvlowat = tcp_set_rcvlowat, 1053 }; 1054 EXPORT_SYMBOL(inet_stream_ops); 1055 1056 const struct proto_ops inet_dgram_ops = { 1057 .family = PF_INET, 1058 .owner = THIS_MODULE, 1059 .release = inet_release, 1060 .bind = inet_bind, 1061 .connect = inet_dgram_connect, 1062 .socketpair = sock_no_socketpair, 1063 .accept = sock_no_accept, 1064 .getname = inet_getname, 1065 .poll = udp_poll, 1066 .ioctl = inet_ioctl, 1067 .gettstamp = sock_gettstamp, 1068 .listen = sock_no_listen, 1069 .shutdown = inet_shutdown, 1070 .setsockopt = sock_common_setsockopt, 1071 .getsockopt = sock_common_getsockopt, 1072 .sendmsg = inet_sendmsg, 1073 .read_sock = udp_read_sock, 1074 .recvmsg = inet_recvmsg, 1075 .mmap = sock_no_mmap, 1076 .sendpage = inet_sendpage, 1077 .set_peek_off = sk_set_peek_off, 1078 #ifdef CONFIG_COMPAT 1079 .compat_ioctl = inet_compat_ioctl, 1080 #endif 1081 }; 1082 EXPORT_SYMBOL(inet_dgram_ops); 1083 1084 /* 1085 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without 1086 * udp_poll 1087 */ 1088 static const struct proto_ops inet_sockraw_ops = { 1089 .family = PF_INET, 1090 .owner = THIS_MODULE, 1091 .release = inet_release, 1092 .bind = inet_bind, 1093 .connect = inet_dgram_connect, 1094 .socketpair = sock_no_socketpair, 1095 .accept = sock_no_accept, 1096 .getname = inet_getname, 1097 .poll = datagram_poll, 1098 .ioctl = inet_ioctl, 1099 .gettstamp = sock_gettstamp, 1100 .listen = sock_no_listen, 1101 .shutdown = inet_shutdown, 1102 .setsockopt = sock_common_setsockopt, 1103 .getsockopt = sock_common_getsockopt, 1104 .sendmsg = inet_sendmsg, 1105 .recvmsg = inet_recvmsg, 1106 .mmap = sock_no_mmap, 1107 .sendpage = inet_sendpage, 1108 #ifdef CONFIG_COMPAT 1109 .compat_ioctl = inet_compat_ioctl, 1110 #endif 1111 }; 1112 1113 static const struct net_proto_family inet_family_ops = { 1114 .family = PF_INET, 1115 .create = inet_create, 1116 .owner = THIS_MODULE, 1117 }; 1118 1119 /* Upon startup we insert all the elements in inetsw_array[] into 1120 * the linked list inetsw. 1121 */ 1122 static struct inet_protosw inetsw_array[] = 1123 { 1124 { 1125 .type = SOCK_STREAM, 1126 .protocol = IPPROTO_TCP, 1127 .prot = &tcp_prot, 1128 .ops = &inet_stream_ops, 1129 .flags = INET_PROTOSW_PERMANENT | 1130 INET_PROTOSW_ICSK, 1131 }, 1132 1133 { 1134 .type = SOCK_DGRAM, 1135 .protocol = IPPROTO_UDP, 1136 .prot = &udp_prot, 1137 .ops = &inet_dgram_ops, 1138 .flags = INET_PROTOSW_PERMANENT, 1139 }, 1140 1141 { 1142 .type = SOCK_DGRAM, 1143 .protocol = IPPROTO_ICMP, 1144 .prot = &ping_prot, 1145 .ops = &inet_sockraw_ops, 1146 .flags = INET_PROTOSW_REUSE, 1147 }, 1148 1149 { 1150 .type = SOCK_RAW, 1151 .protocol = IPPROTO_IP, /* wild card */ 1152 .prot = &raw_prot, 1153 .ops = &inet_sockraw_ops, 1154 .flags = INET_PROTOSW_REUSE, 1155 } 1156 }; 1157 1158 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) 1159 1160 void inet_register_protosw(struct inet_protosw *p) 1161 { 1162 struct list_head *lh; 1163 struct inet_protosw *answer; 1164 int protocol = p->protocol; 1165 struct list_head *last_perm; 1166 1167 spin_lock_bh(&inetsw_lock); 1168 1169 if (p->type >= SOCK_MAX) 1170 goto out_illegal; 1171 1172 /* If we are trying to override a permanent protocol, bail. */ 1173 last_perm = &inetsw[p->type]; 1174 list_for_each(lh, &inetsw[p->type]) { 1175 answer = list_entry(lh, struct inet_protosw, list); 1176 /* Check only the non-wild match. */ 1177 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) 1178 break; 1179 if (protocol == answer->protocol) 1180 goto out_permanent; 1181 last_perm = lh; 1182 } 1183 1184 /* Add the new entry after the last permanent entry if any, so that 1185 * the new entry does not override a permanent entry when matched with 1186 * a wild-card protocol. But it is allowed to override any existing 1187 * non-permanent entry. This means that when we remove this entry, the 1188 * system automatically returns to the old behavior. 1189 */ 1190 list_add_rcu(&p->list, last_perm); 1191 out: 1192 spin_unlock_bh(&inetsw_lock); 1193 1194 return; 1195 1196 out_permanent: 1197 pr_err("Attempt to override permanent protocol %d\n", protocol); 1198 goto out; 1199 1200 out_illegal: 1201 pr_err("Ignoring attempt to register invalid socket type %d\n", 1202 p->type); 1203 goto out; 1204 } 1205 EXPORT_SYMBOL(inet_register_protosw); 1206 1207 void inet_unregister_protosw(struct inet_protosw *p) 1208 { 1209 if (INET_PROTOSW_PERMANENT & p->flags) { 1210 pr_err("Attempt to unregister permanent protocol %d\n", 1211 p->protocol); 1212 } else { 1213 spin_lock_bh(&inetsw_lock); 1214 list_del_rcu(&p->list); 1215 spin_unlock_bh(&inetsw_lock); 1216 1217 synchronize_net(); 1218 } 1219 } 1220 EXPORT_SYMBOL(inet_unregister_protosw); 1221 1222 static int inet_sk_reselect_saddr(struct sock *sk) 1223 { 1224 struct inet_sock *inet = inet_sk(sk); 1225 __be32 old_saddr = inet->inet_saddr; 1226 __be32 daddr = inet->inet_daddr; 1227 struct flowi4 *fl4; 1228 struct rtable *rt; 1229 __be32 new_saddr; 1230 struct ip_options_rcu *inet_opt; 1231 1232 inet_opt = rcu_dereference_protected(inet->inet_opt, 1233 lockdep_sock_is_held(sk)); 1234 if (inet_opt && inet_opt->opt.srr) 1235 daddr = inet_opt->opt.faddr; 1236 1237 /* Query new route. */ 1238 fl4 = &inet->cork.fl.u.ip4; 1239 rt = ip_route_connect(fl4, daddr, 0, RT_CONN_FLAGS(sk), 1240 sk->sk_bound_dev_if, sk->sk_protocol, 1241 inet->inet_sport, inet->inet_dport, sk); 1242 if (IS_ERR(rt)) 1243 return PTR_ERR(rt); 1244 1245 sk_setup_caps(sk, &rt->dst); 1246 1247 new_saddr = fl4->saddr; 1248 1249 if (new_saddr == old_saddr) 1250 return 0; 1251 1252 if (sock_net(sk)->ipv4.sysctl_ip_dynaddr > 1) { 1253 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", 1254 __func__, &old_saddr, &new_saddr); 1255 } 1256 1257 inet->inet_saddr = inet->inet_rcv_saddr = new_saddr; 1258 1259 /* 1260 * XXX The only one ugly spot where we need to 1261 * XXX really change the sockets identity after 1262 * XXX it has entered the hashes. -DaveM 1263 * 1264 * Besides that, it does not check for connection 1265 * uniqueness. Wait for troubles. 1266 */ 1267 return __sk_prot_rehash(sk); 1268 } 1269 1270 int inet_sk_rebuild_header(struct sock *sk) 1271 { 1272 struct inet_sock *inet = inet_sk(sk); 1273 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); 1274 __be32 daddr; 1275 struct ip_options_rcu *inet_opt; 1276 struct flowi4 *fl4; 1277 int err; 1278 1279 /* Route is OK, nothing to do. */ 1280 if (rt) 1281 return 0; 1282 1283 /* Reroute. */ 1284 rcu_read_lock(); 1285 inet_opt = rcu_dereference(inet->inet_opt); 1286 daddr = inet->inet_daddr; 1287 if (inet_opt && inet_opt->opt.srr) 1288 daddr = inet_opt->opt.faddr; 1289 rcu_read_unlock(); 1290 fl4 = &inet->cork.fl.u.ip4; 1291 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, 1292 inet->inet_dport, inet->inet_sport, 1293 sk->sk_protocol, RT_CONN_FLAGS(sk), 1294 sk->sk_bound_dev_if); 1295 if (!IS_ERR(rt)) { 1296 err = 0; 1297 sk_setup_caps(sk, &rt->dst); 1298 } else { 1299 err = PTR_ERR(rt); 1300 1301 /* Routing failed... */ 1302 sk->sk_route_caps = 0; 1303 /* 1304 * Other protocols have to map its equivalent state to TCP_SYN_SENT. 1305 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme 1306 */ 1307 if (!sock_net(sk)->ipv4.sysctl_ip_dynaddr || 1308 sk->sk_state != TCP_SYN_SENT || 1309 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || 1310 (err = inet_sk_reselect_saddr(sk)) != 0) 1311 sk->sk_err_soft = -err; 1312 } 1313 1314 return err; 1315 } 1316 EXPORT_SYMBOL(inet_sk_rebuild_header); 1317 1318 void inet_sk_set_state(struct sock *sk, int state) 1319 { 1320 trace_inet_sock_set_state(sk, sk->sk_state, state); 1321 sk->sk_state = state; 1322 } 1323 EXPORT_SYMBOL(inet_sk_set_state); 1324 1325 void inet_sk_state_store(struct sock *sk, int newstate) 1326 { 1327 trace_inet_sock_set_state(sk, sk->sk_state, newstate); 1328 smp_store_release(&sk->sk_state, newstate); 1329 } 1330 1331 struct sk_buff *inet_gso_segment(struct sk_buff *skb, 1332 netdev_features_t features) 1333 { 1334 bool udpfrag = false, fixedid = false, gso_partial, encap; 1335 struct sk_buff *segs = ERR_PTR(-EINVAL); 1336 const struct net_offload *ops; 1337 unsigned int offset = 0; 1338 struct iphdr *iph; 1339 int proto, tot_len; 1340 int nhoff; 1341 int ihl; 1342 int id; 1343 1344 skb_reset_network_header(skb); 1345 nhoff = skb_network_header(skb) - skb_mac_header(skb); 1346 if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) 1347 goto out; 1348 1349 iph = ip_hdr(skb); 1350 ihl = iph->ihl * 4; 1351 if (ihl < sizeof(*iph)) 1352 goto out; 1353 1354 id = ntohs(iph->id); 1355 proto = iph->protocol; 1356 1357 /* Warning: after this point, iph might be no longer valid */ 1358 if (unlikely(!pskb_may_pull(skb, ihl))) 1359 goto out; 1360 __skb_pull(skb, ihl); 1361 1362 encap = SKB_GSO_CB(skb)->encap_level > 0; 1363 if (encap) 1364 features &= skb->dev->hw_enc_features; 1365 SKB_GSO_CB(skb)->encap_level += ihl; 1366 1367 skb_reset_transport_header(skb); 1368 1369 segs = ERR_PTR(-EPROTONOSUPPORT); 1370 1371 if (!skb->encapsulation || encap) { 1372 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); 1373 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); 1374 1375 /* fixed ID is invalid if DF bit is not set */ 1376 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) 1377 goto out; 1378 } 1379 1380 ops = rcu_dereference(inet_offloads[proto]); 1381 if (likely(ops && ops->callbacks.gso_segment)) 1382 segs = ops->callbacks.gso_segment(skb, features); 1383 1384 if (IS_ERR_OR_NULL(segs)) 1385 goto out; 1386 1387 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); 1388 1389 skb = segs; 1390 do { 1391 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); 1392 if (udpfrag) { 1393 iph->frag_off = htons(offset >> 3); 1394 if (skb->next) 1395 iph->frag_off |= htons(IP_MF); 1396 offset += skb->len - nhoff - ihl; 1397 tot_len = skb->len - nhoff; 1398 } else if (skb_is_gso(skb)) { 1399 if (!fixedid) { 1400 iph->id = htons(id); 1401 id += skb_shinfo(skb)->gso_segs; 1402 } 1403 1404 if (gso_partial) 1405 tot_len = skb_shinfo(skb)->gso_size + 1406 SKB_GSO_CB(skb)->data_offset + 1407 skb->head - (unsigned char *)iph; 1408 else 1409 tot_len = skb->len - nhoff; 1410 } else { 1411 if (!fixedid) 1412 iph->id = htons(id++); 1413 tot_len = skb->len - nhoff; 1414 } 1415 iph->tot_len = htons(tot_len); 1416 ip_send_check(iph); 1417 if (encap) 1418 skb_reset_inner_headers(skb); 1419 skb->network_header = (u8 *)iph - skb->head; 1420 skb_reset_mac_len(skb); 1421 } while ((skb = skb->next)); 1422 1423 out: 1424 return segs; 1425 } 1426 1427 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb, 1428 netdev_features_t features) 1429 { 1430 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) 1431 return ERR_PTR(-EINVAL); 1432 1433 return inet_gso_segment(skb, features); 1434 } 1435 1436 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) 1437 { 1438 const struct net_offload *ops; 1439 struct sk_buff *pp = NULL; 1440 const struct iphdr *iph; 1441 struct sk_buff *p; 1442 unsigned int hlen; 1443 unsigned int off; 1444 unsigned int id; 1445 int flush = 1; 1446 int proto; 1447 1448 off = skb_gro_offset(skb); 1449 hlen = off + sizeof(*iph); 1450 iph = skb_gro_header_fast(skb, off); 1451 if (skb_gro_header_hard(skb, hlen)) { 1452 iph = skb_gro_header_slow(skb, hlen, off); 1453 if (unlikely(!iph)) 1454 goto out; 1455 } 1456 1457 proto = iph->protocol; 1458 1459 rcu_read_lock(); 1460 ops = rcu_dereference(inet_offloads[proto]); 1461 if (!ops || !ops->callbacks.gro_receive) 1462 goto out_unlock; 1463 1464 if (*(u8 *)iph != 0x45) 1465 goto out_unlock; 1466 1467 if (ip_is_fragment(iph)) 1468 goto out_unlock; 1469 1470 if (unlikely(ip_fast_csum((u8 *)iph, 5))) 1471 goto out_unlock; 1472 1473 id = ntohl(*(__be32 *)&iph->id); 1474 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); 1475 id >>= 16; 1476 1477 list_for_each_entry(p, head, list) { 1478 struct iphdr *iph2; 1479 u16 flush_id; 1480 1481 if (!NAPI_GRO_CB(p)->same_flow) 1482 continue; 1483 1484 iph2 = (struct iphdr *)(p->data + off); 1485 /* The above works because, with the exception of the top 1486 * (inner most) layer, we only aggregate pkts with the same 1487 * hdr length so all the hdrs we'll need to verify will start 1488 * at the same offset. 1489 */ 1490 if ((iph->protocol ^ iph2->protocol) | 1491 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | 1492 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { 1493 NAPI_GRO_CB(p)->same_flow = 0; 1494 continue; 1495 } 1496 1497 /* All fields must match except length and checksum. */ 1498 NAPI_GRO_CB(p)->flush |= 1499 (iph->ttl ^ iph2->ttl) | 1500 (iph->tos ^ iph2->tos) | 1501 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); 1502 1503 NAPI_GRO_CB(p)->flush |= flush; 1504 1505 /* We need to store of the IP ID check to be included later 1506 * when we can verify that this packet does in fact belong 1507 * to a given flow. 1508 */ 1509 flush_id = (u16)(id - ntohs(iph2->id)); 1510 1511 /* This bit of code makes it much easier for us to identify 1512 * the cases where we are doing atomic vs non-atomic IP ID 1513 * checks. Specifically an atomic check can return IP ID 1514 * values 0 - 0xFFFF, while a non-atomic check can only 1515 * return 0 or 0xFFFF. 1516 */ 1517 if (!NAPI_GRO_CB(p)->is_atomic || 1518 !(iph->frag_off & htons(IP_DF))) { 1519 flush_id ^= NAPI_GRO_CB(p)->count; 1520 flush_id = flush_id ? 0xFFFF : 0; 1521 } 1522 1523 /* If the previous IP ID value was based on an atomic 1524 * datagram we can overwrite the value and ignore it. 1525 */ 1526 if (NAPI_GRO_CB(skb)->is_atomic) 1527 NAPI_GRO_CB(p)->flush_id = flush_id; 1528 else 1529 NAPI_GRO_CB(p)->flush_id |= flush_id; 1530 } 1531 1532 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); 1533 NAPI_GRO_CB(skb)->flush |= flush; 1534 skb_set_network_header(skb, off); 1535 /* The above will be needed by the transport layer if there is one 1536 * immediately following this IP hdr. 1537 */ 1538 1539 /* Note : No need to call skb_gro_postpull_rcsum() here, 1540 * as we already checked checksum over ipv4 header was 0 1541 */ 1542 skb_gro_pull(skb, sizeof(*iph)); 1543 skb_set_transport_header(skb, skb_gro_offset(skb)); 1544 1545 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive, 1546 ops->callbacks.gro_receive, head, skb); 1547 1548 out_unlock: 1549 rcu_read_unlock(); 1550 1551 out: 1552 skb_gro_flush_final(skb, pp, flush); 1553 1554 return pp; 1555 } 1556 1557 static struct sk_buff *ipip_gro_receive(struct list_head *head, 1558 struct sk_buff *skb) 1559 { 1560 if (NAPI_GRO_CB(skb)->encap_mark) { 1561 NAPI_GRO_CB(skb)->flush = 1; 1562 return NULL; 1563 } 1564 1565 NAPI_GRO_CB(skb)->encap_mark = 1; 1566 1567 return inet_gro_receive(head, skb); 1568 } 1569 1570 #define SECONDS_PER_DAY 86400 1571 1572 /* inet_current_timestamp - Return IP network timestamp 1573 * 1574 * Return milliseconds since midnight in network byte order. 1575 */ 1576 __be32 inet_current_timestamp(void) 1577 { 1578 u32 secs; 1579 u32 msecs; 1580 struct timespec64 ts; 1581 1582 ktime_get_real_ts64(&ts); 1583 1584 /* Get secs since midnight. */ 1585 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); 1586 /* Convert to msecs. */ 1587 msecs = secs * MSEC_PER_SEC; 1588 /* Convert nsec to msec. */ 1589 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; 1590 1591 /* Convert to network byte order. */ 1592 return htonl(msecs); 1593 } 1594 EXPORT_SYMBOL(inet_current_timestamp); 1595 1596 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) 1597 { 1598 if (sk->sk_family == AF_INET) 1599 return ip_recv_error(sk, msg, len, addr_len); 1600 #if IS_ENABLED(CONFIG_IPV6) 1601 if (sk->sk_family == AF_INET6) 1602 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); 1603 #endif 1604 return -EINVAL; 1605 } 1606 1607 int inet_gro_complete(struct sk_buff *skb, int nhoff) 1608 { 1609 __be16 newlen = htons(skb->len - nhoff); 1610 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); 1611 const struct net_offload *ops; 1612 int proto = iph->protocol; 1613 int err = -ENOSYS; 1614 1615 if (skb->encapsulation) { 1616 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); 1617 skb_set_inner_network_header(skb, nhoff); 1618 } 1619 1620 csum_replace2(&iph->check, iph->tot_len, newlen); 1621 iph->tot_len = newlen; 1622 1623 rcu_read_lock(); 1624 ops = rcu_dereference(inet_offloads[proto]); 1625 if (WARN_ON(!ops || !ops->callbacks.gro_complete)) 1626 goto out_unlock; 1627 1628 /* Only need to add sizeof(*iph) to get to the next hdr below 1629 * because any hdr with option will have been flushed in 1630 * inet_gro_receive(). 1631 */ 1632 err = INDIRECT_CALL_2(ops->callbacks.gro_complete, 1633 tcp4_gro_complete, udp4_gro_complete, 1634 skb, nhoff + sizeof(*iph)); 1635 1636 out_unlock: 1637 rcu_read_unlock(); 1638 1639 return err; 1640 } 1641 1642 static int ipip_gro_complete(struct sk_buff *skb, int nhoff) 1643 { 1644 skb->encapsulation = 1; 1645 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; 1646 return inet_gro_complete(skb, nhoff); 1647 } 1648 1649 int inet_ctl_sock_create(struct sock **sk, unsigned short family, 1650 unsigned short type, unsigned char protocol, 1651 struct net *net) 1652 { 1653 struct socket *sock; 1654 int rc = sock_create_kern(net, family, type, protocol, &sock); 1655 1656 if (rc == 0) { 1657 *sk = sock->sk; 1658 (*sk)->sk_allocation = GFP_ATOMIC; 1659 /* 1660 * Unhash it so that IP input processing does not even see it, 1661 * we do not wish this socket to see incoming packets. 1662 */ 1663 (*sk)->sk_prot->unhash(*sk); 1664 } 1665 return rc; 1666 } 1667 EXPORT_SYMBOL_GPL(inet_ctl_sock_create); 1668 1669 u64 snmp_get_cpu_field(void __percpu *mib, int cpu, int offt) 1670 { 1671 return *(((unsigned long *)per_cpu_ptr(mib, cpu)) + offt); 1672 } 1673 EXPORT_SYMBOL_GPL(snmp_get_cpu_field); 1674 1675 unsigned long snmp_fold_field(void __percpu *mib, int offt) 1676 { 1677 unsigned long res = 0; 1678 int i; 1679 1680 for_each_possible_cpu(i) 1681 res += snmp_get_cpu_field(mib, i, offt); 1682 return res; 1683 } 1684 EXPORT_SYMBOL_GPL(snmp_fold_field); 1685 1686 #if BITS_PER_LONG==32 1687 1688 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, 1689 size_t syncp_offset) 1690 { 1691 void *bhptr; 1692 struct u64_stats_sync *syncp; 1693 u64 v; 1694 unsigned int start; 1695 1696 bhptr = per_cpu_ptr(mib, cpu); 1697 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); 1698 do { 1699 start = u64_stats_fetch_begin_irq(syncp); 1700 v = *(((u64 *)bhptr) + offt); 1701 } while (u64_stats_fetch_retry_irq(syncp, start)); 1702 1703 return v; 1704 } 1705 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); 1706 1707 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) 1708 { 1709 u64 res = 0; 1710 int cpu; 1711 1712 for_each_possible_cpu(cpu) { 1713 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); 1714 } 1715 return res; 1716 } 1717 EXPORT_SYMBOL_GPL(snmp_fold_field64); 1718 #endif 1719 1720 #ifdef CONFIG_IP_MULTICAST 1721 static const struct net_protocol igmp_protocol = { 1722 .handler = igmp_rcv, 1723 .netns_ok = 1, 1724 }; 1725 #endif 1726 1727 /* thinking of making this const? Don't. 1728 * early_demux can change based on sysctl. 1729 */ 1730 static struct net_protocol tcp_protocol = { 1731 .early_demux = tcp_v4_early_demux, 1732 .early_demux_handler = tcp_v4_early_demux, 1733 .handler = tcp_v4_rcv, 1734 .err_handler = tcp_v4_err, 1735 .no_policy = 1, 1736 .netns_ok = 1, 1737 .icmp_strict_tag_validation = 1, 1738 }; 1739 1740 /* thinking of making this const? Don't. 1741 * early_demux can change based on sysctl. 1742 */ 1743 static struct net_protocol udp_protocol = { 1744 .early_demux = udp_v4_early_demux, 1745 .early_demux_handler = udp_v4_early_demux, 1746 .handler = udp_rcv, 1747 .err_handler = udp_err, 1748 .no_policy = 1, 1749 .netns_ok = 1, 1750 }; 1751 1752 static const struct net_protocol icmp_protocol = { 1753 .handler = icmp_rcv, 1754 .err_handler = icmp_err, 1755 .no_policy = 1, 1756 .netns_ok = 1, 1757 }; 1758 1759 static __net_init int ipv4_mib_init_net(struct net *net) 1760 { 1761 int i; 1762 1763 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); 1764 if (!net->mib.tcp_statistics) 1765 goto err_tcp_mib; 1766 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); 1767 if (!net->mib.ip_statistics) 1768 goto err_ip_mib; 1769 1770 for_each_possible_cpu(i) { 1771 struct ipstats_mib *af_inet_stats; 1772 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); 1773 u64_stats_init(&af_inet_stats->syncp); 1774 } 1775 1776 net->mib.net_statistics = alloc_percpu(struct linux_mib); 1777 if (!net->mib.net_statistics) 1778 goto err_net_mib; 1779 net->mib.udp_statistics = alloc_percpu(struct udp_mib); 1780 if (!net->mib.udp_statistics) 1781 goto err_udp_mib; 1782 net->mib.udplite_statistics = alloc_percpu(struct udp_mib); 1783 if (!net->mib.udplite_statistics) 1784 goto err_udplite_mib; 1785 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); 1786 if (!net->mib.icmp_statistics) 1787 goto err_icmp_mib; 1788 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), 1789 GFP_KERNEL); 1790 if (!net->mib.icmpmsg_statistics) 1791 goto err_icmpmsg_mib; 1792 1793 tcp_mib_init(net); 1794 return 0; 1795 1796 err_icmpmsg_mib: 1797 free_percpu(net->mib.icmp_statistics); 1798 err_icmp_mib: 1799 free_percpu(net->mib.udplite_statistics); 1800 err_udplite_mib: 1801 free_percpu(net->mib.udp_statistics); 1802 err_udp_mib: 1803 free_percpu(net->mib.net_statistics); 1804 err_net_mib: 1805 free_percpu(net->mib.ip_statistics); 1806 err_ip_mib: 1807 free_percpu(net->mib.tcp_statistics); 1808 err_tcp_mib: 1809 return -ENOMEM; 1810 } 1811 1812 static __net_exit void ipv4_mib_exit_net(struct net *net) 1813 { 1814 kfree(net->mib.icmpmsg_statistics); 1815 free_percpu(net->mib.icmp_statistics); 1816 free_percpu(net->mib.udplite_statistics); 1817 free_percpu(net->mib.udp_statistics); 1818 free_percpu(net->mib.net_statistics); 1819 free_percpu(net->mib.ip_statistics); 1820 free_percpu(net->mib.tcp_statistics); 1821 #ifdef CONFIG_MPTCP 1822 /* allocated on demand, see mptcp_init_sock() */ 1823 free_percpu(net->mib.mptcp_statistics); 1824 #endif 1825 } 1826 1827 static __net_initdata struct pernet_operations ipv4_mib_ops = { 1828 .init = ipv4_mib_init_net, 1829 .exit = ipv4_mib_exit_net, 1830 }; 1831 1832 static int __init init_ipv4_mibs(void) 1833 { 1834 return register_pernet_subsys(&ipv4_mib_ops); 1835 } 1836 1837 static __net_init int inet_init_net(struct net *net) 1838 { 1839 /* 1840 * Set defaults for local port range 1841 */ 1842 seqlock_init(&net->ipv4.ip_local_ports.lock); 1843 net->ipv4.ip_local_ports.range[0] = 32768; 1844 net->ipv4.ip_local_ports.range[1] = 60999; 1845 1846 seqlock_init(&net->ipv4.ping_group_range.lock); 1847 /* 1848 * Sane defaults - nobody may create ping sockets. 1849 * Boot scripts should set this to distro-specific group. 1850 */ 1851 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); 1852 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); 1853 1854 /* Default values for sysctl-controlled parameters. 1855 * We set them here, in case sysctl is not compiled. 1856 */ 1857 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; 1858 net->ipv4.sysctl_ip_fwd_update_priority = 1; 1859 net->ipv4.sysctl_ip_dynaddr = 0; 1860 net->ipv4.sysctl_ip_early_demux = 1; 1861 net->ipv4.sysctl_udp_early_demux = 1; 1862 net->ipv4.sysctl_tcp_early_demux = 1; 1863 net->ipv4.sysctl_nexthop_compat_mode = 1; 1864 #ifdef CONFIG_SYSCTL 1865 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; 1866 #endif 1867 1868 /* Some igmp sysctl, whose values are always used */ 1869 net->ipv4.sysctl_igmp_max_memberships = 20; 1870 net->ipv4.sysctl_igmp_max_msf = 10; 1871 /* IGMP reports for link-local multicast groups are enabled by default */ 1872 net->ipv4.sysctl_igmp_llm_reports = 1; 1873 net->ipv4.sysctl_igmp_qrv = 2; 1874 1875 net->ipv4.sysctl_fib_notify_on_flag_change = 0; 1876 1877 return 0; 1878 } 1879 1880 static __net_initdata struct pernet_operations af_inet_ops = { 1881 .init = inet_init_net, 1882 }; 1883 1884 static int __init init_inet_pernet_ops(void) 1885 { 1886 return register_pernet_subsys(&af_inet_ops); 1887 } 1888 1889 static int ipv4_proc_init(void); 1890 1891 /* 1892 * IP protocol layer initialiser 1893 */ 1894 1895 static struct packet_offload ip_packet_offload __read_mostly = { 1896 .type = cpu_to_be16(ETH_P_IP), 1897 .callbacks = { 1898 .gso_segment = inet_gso_segment, 1899 .gro_receive = inet_gro_receive, 1900 .gro_complete = inet_gro_complete, 1901 }, 1902 }; 1903 1904 static const struct net_offload ipip_offload = { 1905 .callbacks = { 1906 .gso_segment = ipip_gso_segment, 1907 .gro_receive = ipip_gro_receive, 1908 .gro_complete = ipip_gro_complete, 1909 }, 1910 }; 1911 1912 static int __init ipip_offload_init(void) 1913 { 1914 return inet_add_offload(&ipip_offload, IPPROTO_IPIP); 1915 } 1916 1917 static int __init ipv4_offload_init(void) 1918 { 1919 /* 1920 * Add offloads 1921 */ 1922 if (udpv4_offload_init() < 0) 1923 pr_crit("%s: Cannot add UDP protocol offload\n", __func__); 1924 if (tcpv4_offload_init() < 0) 1925 pr_crit("%s: Cannot add TCP protocol offload\n", __func__); 1926 if (ipip_offload_init() < 0) 1927 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); 1928 1929 dev_add_offload(&ip_packet_offload); 1930 return 0; 1931 } 1932 1933 fs_initcall(ipv4_offload_init); 1934 1935 static struct packet_type ip_packet_type __read_mostly = { 1936 .type = cpu_to_be16(ETH_P_IP), 1937 .func = ip_rcv, 1938 .list_func = ip_list_rcv, 1939 }; 1940 1941 static int __init inet_init(void) 1942 { 1943 struct inet_protosw *q; 1944 struct list_head *r; 1945 int rc; 1946 1947 sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); 1948 1949 rc = proto_register(&tcp_prot, 1); 1950 if (rc) 1951 goto out; 1952 1953 rc = proto_register(&udp_prot, 1); 1954 if (rc) 1955 goto out_unregister_tcp_proto; 1956 1957 rc = proto_register(&raw_prot, 1); 1958 if (rc) 1959 goto out_unregister_udp_proto; 1960 1961 rc = proto_register(&ping_prot, 1); 1962 if (rc) 1963 goto out_unregister_raw_proto; 1964 1965 /* 1966 * Tell SOCKET that we are alive... 1967 */ 1968 1969 (void)sock_register(&inet_family_ops); 1970 1971 #ifdef CONFIG_SYSCTL 1972 ip_static_sysctl_init(); 1973 #endif 1974 1975 /* 1976 * Add all the base protocols. 1977 */ 1978 1979 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) 1980 pr_crit("%s: Cannot add ICMP protocol\n", __func__); 1981 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0) 1982 pr_crit("%s: Cannot add UDP protocol\n", __func__); 1983 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0) 1984 pr_crit("%s: Cannot add TCP protocol\n", __func__); 1985 #ifdef CONFIG_IP_MULTICAST 1986 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) 1987 pr_crit("%s: Cannot add IGMP protocol\n", __func__); 1988 #endif 1989 1990 /* Register the socket-side information for inet_create. */ 1991 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 1992 INIT_LIST_HEAD(r); 1993 1994 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 1995 inet_register_protosw(q); 1996 1997 /* 1998 * Set the ARP module up 1999 */ 2000 2001 arp_init(); 2002 2003 /* 2004 * Set the IP module up 2005 */ 2006 2007 ip_init(); 2008 2009 /* Setup TCP slab cache for open requests. */ 2010 tcp_init(); 2011 2012 /* Setup UDP memory threshold */ 2013 udp_init(); 2014 2015 /* Add UDP-Lite (RFC 3828) */ 2016 udplite4_register(); 2017 2018 raw_init(); 2019 2020 ping_init(); 2021 2022 /* 2023 * Set the ICMP layer up 2024 */ 2025 2026 if (icmp_init() < 0) 2027 panic("Failed to create the ICMP control socket.\n"); 2028 2029 /* 2030 * Initialise the multicast router 2031 */ 2032 #if defined(CONFIG_IP_MROUTE) 2033 if (ip_mr_init()) 2034 pr_crit("%s: Cannot init ipv4 mroute\n", __func__); 2035 #endif 2036 2037 if (init_inet_pernet_ops()) 2038 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); 2039 /* 2040 * Initialise per-cpu ipv4 mibs 2041 */ 2042 2043 if (init_ipv4_mibs()) 2044 pr_crit("%s: Cannot init ipv4 mibs\n", __func__); 2045 2046 ipv4_proc_init(); 2047 2048 ipfrag_init(); 2049 2050 dev_add_pack(&ip_packet_type); 2051 2052 ip_tunnel_core_init(); 2053 2054 rc = 0; 2055 out: 2056 return rc; 2057 out_unregister_raw_proto: 2058 proto_unregister(&raw_prot); 2059 out_unregister_udp_proto: 2060 proto_unregister(&udp_prot); 2061 out_unregister_tcp_proto: 2062 proto_unregister(&tcp_prot); 2063 goto out; 2064 } 2065 2066 fs_initcall(inet_init); 2067 2068 /* ------------------------------------------------------------------------ */ 2069 2070 #ifdef CONFIG_PROC_FS 2071 static int __init ipv4_proc_init(void) 2072 { 2073 int rc = 0; 2074 2075 if (raw_proc_init()) 2076 goto out_raw; 2077 if (tcp4_proc_init()) 2078 goto out_tcp; 2079 if (udp4_proc_init()) 2080 goto out_udp; 2081 if (ping_proc_init()) 2082 goto out_ping; 2083 if (ip_misc_proc_init()) 2084 goto out_misc; 2085 out: 2086 return rc; 2087 out_misc: 2088 ping_proc_exit(); 2089 out_ping: 2090 udp4_proc_exit(); 2091 out_udp: 2092 tcp4_proc_exit(); 2093 out_tcp: 2094 raw_proc_exit(); 2095 out_raw: 2096 rc = -ENOMEM; 2097 goto out; 2098 } 2099 2100 #else /* CONFIG_PROC_FS */ 2101 static int __init ipv4_proc_init(void) 2102 { 2103 return 0; 2104 } 2105 #endif /* CONFIG_PROC_FS */ 2106