1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PF_INET protocol family socket handler. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Florian La Roche, <flla@stud.uni-sb.de> 12 * Alan Cox, <A.Cox@swansea.ac.uk> 13 * 14 * Changes (see also sock.c) 15 * 16 * piggy, 17 * Karl Knutson : Socket protocol table 18 * A.N.Kuznetsov : Socket death error in accept(). 19 * John Richardson : Fix non blocking error in connect() 20 * so sockets that fail to connect 21 * don't return -EINPROGRESS. 22 * Alan Cox : Asynchronous I/O support 23 * Alan Cox : Keep correct socket pointer on sock 24 * structures 25 * when accept() ed 26 * Alan Cox : Semantics of SO_LINGER aren't state 27 * moved to close when you look carefully. 28 * With this fixed and the accept bug fixed 29 * some RPC stuff seems happier. 30 * Niibe Yutaka : 4.4BSD style write async I/O 31 * Alan Cox, 32 * Tony Gale : Fixed reuse semantics. 33 * Alan Cox : bind() shouldn't abort existing but dead 34 * sockets. Stops FTP netin:.. I hope. 35 * Alan Cox : bind() works correctly for RAW sockets. 36 * Note that FreeBSD at least was broken 37 * in this respect so be careful with 38 * compatibility tests... 39 * Alan Cox : routing cache support 40 * Alan Cox : memzero the socket structure for 41 * compactness. 42 * Matt Day : nonblock connect error handler 43 * Alan Cox : Allow large numbers of pending sockets 44 * (eg for big web sites), but only if 45 * specifically application requested. 46 * Alan Cox : New buffering throughout IP. Used 47 * dumbly. 48 * Alan Cox : New buffering now used smartly. 49 * Alan Cox : BSD rather than common sense 50 * interpretation of listen. 51 * Germano Caronni : Assorted small races. 52 * Alan Cox : sendmsg/recvmsg basic support. 53 * Alan Cox : Only sendmsg/recvmsg now supported. 54 * Alan Cox : Locked down bind (see security list). 55 * Alan Cox : Loosened bind a little. 56 * Mike McLagan : ADD/DEL DLCI Ioctls 57 * Willy Konynenberg : Transparent proxying support. 58 * David S. Miller : New socket lookup architecture. 59 * Some other random speedups. 60 * Cyrus Durgin : Cleaned up file for kmod hacks. 61 * Andi Kleen : Fix inet_stream_connect TCP race. 62 */ 63 64 #define pr_fmt(fmt) "IPv4: " fmt 65 66 #include <linux/err.h> 67 #include <linux/errno.h> 68 #include <linux/types.h> 69 #include <linux/socket.h> 70 #include <linux/in.h> 71 #include <linux/kernel.h> 72 #include <linux/kmod.h> 73 #include <linux/sched.h> 74 #include <linux/timer.h> 75 #include <linux/string.h> 76 #include <linux/sockios.h> 77 #include <linux/net.h> 78 #include <linux/capability.h> 79 #include <linux/fcntl.h> 80 #include <linux/mm.h> 81 #include <linux/interrupt.h> 82 #include <linux/stat.h> 83 #include <linux/init.h> 84 #include <linux/poll.h> 85 #include <linux/netfilter_ipv4.h> 86 #include <linux/random.h> 87 #include <linux/slab.h> 88 89 #include <linux/uaccess.h> 90 91 #include <linux/inet.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/netdevice.h> 95 #include <net/checksum.h> 96 #include <net/ip.h> 97 #include <net/protocol.h> 98 #include <net/arp.h> 99 #include <net/route.h> 100 #include <net/ip_fib.h> 101 #include <net/inet_connection_sock.h> 102 #include <net/gro.h> 103 #include <net/gso.h> 104 #include <net/tcp.h> 105 #include <net/udp.h> 106 #include <net/udplite.h> 107 #include <net/ping.h> 108 #include <linux/skbuff.h> 109 #include <net/sock.h> 110 #include <net/raw.h> 111 #include <net/icmp.h> 112 #include <net/inet_common.h> 113 #include <net/ip_tunnels.h> 114 #include <net/xfrm.h> 115 #include <net/net_namespace.h> 116 #include <net/secure_seq.h> 117 #ifdef CONFIG_IP_MROUTE 118 #include <linux/mroute.h> 119 #endif 120 #include <net/l3mdev.h> 121 #include <net/compat.h> 122 123 #include <trace/events/sock.h> 124 125 /* The inetsw table contains everything that inet_create needs to 126 * build a new socket. 127 */ 128 static struct list_head inetsw[SOCK_MAX]; 129 static DEFINE_SPINLOCK(inetsw_lock); 130 131 /* New destruction routine */ 132 133 void inet_sock_destruct(struct sock *sk) 134 { 135 struct inet_sock *inet = inet_sk(sk); 136 137 __skb_queue_purge(&sk->sk_receive_queue); 138 __skb_queue_purge(&sk->sk_error_queue); 139 140 sk_mem_reclaim_final(sk); 141 142 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { 143 pr_err("Attempt to release TCP socket in state %d %p\n", 144 sk->sk_state, sk); 145 return; 146 } 147 if (!sock_flag(sk, SOCK_DEAD)) { 148 pr_err("Attempt to release alive inet socket %p\n", sk); 149 return; 150 } 151 152 WARN_ON_ONCE(atomic_read(&sk->sk_rmem_alloc)); 153 WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); 154 WARN_ON_ONCE(sk->sk_wmem_queued); 155 WARN_ON_ONCE(sk_forward_alloc_get(sk)); 156 157 kfree(rcu_dereference_protected(inet->inet_opt, 1)); 158 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1)); 159 dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1)); 160 } 161 EXPORT_SYMBOL(inet_sock_destruct); 162 163 /* 164 * The routines beyond this point handle the behaviour of an AF_INET 165 * socket object. Mostly it punts to the subprotocols of IP to do 166 * the work. 167 */ 168 169 /* 170 * Automatically bind an unbound socket. 171 */ 172 173 static int inet_autobind(struct sock *sk) 174 { 175 struct inet_sock *inet; 176 /* We may need to bind the socket. */ 177 lock_sock(sk); 178 inet = inet_sk(sk); 179 if (!inet->inet_num) { 180 if (sk->sk_prot->get_port(sk, 0)) { 181 release_sock(sk); 182 return -EAGAIN; 183 } 184 inet->inet_sport = htons(inet->inet_num); 185 } 186 release_sock(sk); 187 return 0; 188 } 189 190 int __inet_listen_sk(struct sock *sk, int backlog) 191 { 192 unsigned char old_state = sk->sk_state; 193 int err, tcp_fastopen; 194 195 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) 196 return -EINVAL; 197 198 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 199 /* Really, if the socket is already in listen state 200 * we can only allow the backlog to be adjusted. 201 */ 202 if (old_state != TCP_LISTEN) { 203 /* Enable TFO w/o requiring TCP_FASTOPEN socket option. 204 * Note that only TCP sockets (SOCK_STREAM) will reach here. 205 * Also fastopen backlog may already been set via the option 206 * because the socket was in TCP_LISTEN state previously but 207 * was shutdown() rather than close(). 208 */ 209 tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen); 210 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && 211 (tcp_fastopen & TFO_SERVER_ENABLE) && 212 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { 213 fastopen_queue_tune(sk, backlog); 214 tcp_fastopen_init_key_once(sock_net(sk)); 215 } 216 217 err = inet_csk_listen_start(sk); 218 if (err) 219 return err; 220 221 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); 222 } 223 return 0; 224 } 225 226 /* 227 * Move a socket into listening state. 228 */ 229 int inet_listen(struct socket *sock, int backlog) 230 { 231 struct sock *sk = sock->sk; 232 int err = -EINVAL; 233 234 lock_sock(sk); 235 236 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 237 goto out; 238 239 err = __inet_listen_sk(sk, backlog); 240 241 out: 242 release_sock(sk); 243 return err; 244 } 245 EXPORT_SYMBOL(inet_listen); 246 247 /* 248 * Create an inet socket. 249 */ 250 251 static int inet_create(struct net *net, struct socket *sock, int protocol, 252 int kern) 253 { 254 struct sock *sk; 255 struct inet_protosw *answer; 256 struct inet_sock *inet; 257 struct proto *answer_prot; 258 unsigned char answer_flags; 259 int try_loading_module = 0; 260 int err; 261 262 if (protocol < 0 || protocol >= IPPROTO_MAX) 263 return -EINVAL; 264 265 sock->state = SS_UNCONNECTED; 266 267 /* Look for the requested type/protocol pair. */ 268 lookup_protocol: 269 err = -ESOCKTNOSUPPORT; 270 rcu_read_lock(); 271 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { 272 273 err = 0; 274 /* Check the non-wild match. */ 275 if (protocol == answer->protocol) { 276 if (protocol != IPPROTO_IP) 277 break; 278 } else { 279 /* Check for the two wild cases. */ 280 if (IPPROTO_IP == protocol) { 281 protocol = answer->protocol; 282 break; 283 } 284 if (IPPROTO_IP == answer->protocol) 285 break; 286 } 287 err = -EPROTONOSUPPORT; 288 } 289 290 if (unlikely(err)) { 291 if (try_loading_module < 2) { 292 rcu_read_unlock(); 293 /* 294 * Be more specific, e.g. net-pf-2-proto-132-type-1 295 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) 296 */ 297 if (++try_loading_module == 1) 298 request_module("net-pf-%d-proto-%d-type-%d", 299 PF_INET, protocol, sock->type); 300 /* 301 * Fall back to generic, e.g. net-pf-2-proto-132 302 * (net-pf-PF_INET-proto-IPPROTO_SCTP) 303 */ 304 else 305 request_module("net-pf-%d-proto-%d", 306 PF_INET, protocol); 307 goto lookup_protocol; 308 } else 309 goto out_rcu_unlock; 310 } 311 312 err = -EPERM; 313 if (sock->type == SOCK_RAW && !kern && 314 !ns_capable(net->user_ns, CAP_NET_RAW)) 315 goto out_rcu_unlock; 316 317 sock->ops = answer->ops; 318 answer_prot = answer->prot; 319 answer_flags = answer->flags; 320 rcu_read_unlock(); 321 322 WARN_ON(!answer_prot->slab); 323 324 err = -ENOMEM; 325 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); 326 if (!sk) 327 goto out; 328 329 err = 0; 330 if (INET_PROTOSW_REUSE & answer_flags) 331 sk->sk_reuse = SK_CAN_REUSE; 332 333 inet = inet_sk(sk); 334 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0; 335 336 inet->nodefrag = 0; 337 338 if (SOCK_RAW == sock->type) { 339 inet->inet_num = protocol; 340 if (IPPROTO_RAW == protocol) 341 inet->hdrincl = 1; 342 } 343 344 if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc)) 345 inet->pmtudisc = IP_PMTUDISC_DONT; 346 else 347 inet->pmtudisc = IP_PMTUDISC_WANT; 348 349 inet->inet_id = 0; 350 351 sock_init_data(sock, sk); 352 353 sk->sk_destruct = inet_sock_destruct; 354 sk->sk_protocol = protocol; 355 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 356 sk->sk_txrehash = READ_ONCE(net->core.sysctl_txrehash); 357 358 inet->uc_ttl = -1; 359 inet->mc_loop = 1; 360 inet->mc_ttl = 1; 361 inet->mc_all = 1; 362 inet->mc_index = 0; 363 inet->mc_list = NULL; 364 inet->rcv_tos = 0; 365 366 if (inet->inet_num) { 367 /* It assumes that any protocol which allows 368 * the user to assign a number at socket 369 * creation time automatically 370 * shares. 371 */ 372 inet->inet_sport = htons(inet->inet_num); 373 /* Add to protocol hash chains. */ 374 err = sk->sk_prot->hash(sk); 375 if (err) { 376 sk_common_release(sk); 377 goto out; 378 } 379 } 380 381 if (sk->sk_prot->init) { 382 err = sk->sk_prot->init(sk); 383 if (err) { 384 sk_common_release(sk); 385 goto out; 386 } 387 } 388 389 if (!kern) { 390 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); 391 if (err) { 392 sk_common_release(sk); 393 goto out; 394 } 395 } 396 out: 397 return err; 398 out_rcu_unlock: 399 rcu_read_unlock(); 400 goto out; 401 } 402 403 404 /* 405 * The peer socket should always be NULL (or else). When we call this 406 * function we are destroying the object and from then on nobody 407 * should refer to it. 408 */ 409 int inet_release(struct socket *sock) 410 { 411 struct sock *sk = sock->sk; 412 413 if (sk) { 414 long timeout; 415 416 if (!sk->sk_kern_sock) 417 BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk); 418 419 /* Applications forget to leave groups before exiting */ 420 ip_mc_drop_socket(sk); 421 422 /* If linger is set, we don't return until the close 423 * is complete. Otherwise we return immediately. The 424 * actually closing is done the same either way. 425 * 426 * If the close is due to the process exiting, we never 427 * linger.. 428 */ 429 timeout = 0; 430 if (sock_flag(sk, SOCK_LINGER) && 431 !(current->flags & PF_EXITING)) 432 timeout = sk->sk_lingertime; 433 sk->sk_prot->close(sk, timeout); 434 sock->sk = NULL; 435 } 436 return 0; 437 } 438 EXPORT_SYMBOL(inet_release); 439 440 int inet_bind_sk(struct sock *sk, struct sockaddr *uaddr, int addr_len) 441 { 442 u32 flags = BIND_WITH_LOCK; 443 int err; 444 445 /* If the socket has its own bind function then use it. (RAW) */ 446 if (sk->sk_prot->bind) { 447 return sk->sk_prot->bind(sk, uaddr, addr_len); 448 } 449 if (addr_len < sizeof(struct sockaddr_in)) 450 return -EINVAL; 451 452 /* BPF prog is run before any checks are done so that if the prog 453 * changes context in a wrong way it will be caught. 454 */ 455 err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr, 456 CGROUP_INET4_BIND, &flags); 457 if (err) 458 return err; 459 460 return __inet_bind(sk, uaddr, addr_len, flags); 461 } 462 463 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 464 { 465 return inet_bind_sk(sock->sk, uaddr, addr_len); 466 } 467 EXPORT_SYMBOL(inet_bind); 468 469 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, 470 u32 flags) 471 { 472 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; 473 struct inet_sock *inet = inet_sk(sk); 474 struct net *net = sock_net(sk); 475 unsigned short snum; 476 int chk_addr_ret; 477 u32 tb_id = RT_TABLE_LOCAL; 478 int err; 479 480 if (addr->sin_family != AF_INET) { 481 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) 482 * only if s_addr is INADDR_ANY. 483 */ 484 err = -EAFNOSUPPORT; 485 if (addr->sin_family != AF_UNSPEC || 486 addr->sin_addr.s_addr != htonl(INADDR_ANY)) 487 goto out; 488 } 489 490 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; 491 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); 492 493 /* Not specified by any standard per-se, however it breaks too 494 * many applications when removed. It is unfortunate since 495 * allowing applications to make a non-local bind solves 496 * several problems with systems using dynamic addressing. 497 * (ie. your servers still start up even if your ISDN link 498 * is temporarily down) 499 */ 500 err = -EADDRNOTAVAIL; 501 if (!inet_addr_valid_or_nonlocal(net, inet, addr->sin_addr.s_addr, 502 chk_addr_ret)) 503 goto out; 504 505 snum = ntohs(addr->sin_port); 506 err = -EACCES; 507 if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) && 508 snum && inet_port_requires_bind_service(net, snum) && 509 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 510 goto out; 511 512 /* We keep a pair of addresses. rcv_saddr is the one 513 * used by hash lookups, and saddr is used for transmit. 514 * 515 * In the BSD API these are the same except where it 516 * would be illegal to use them (multicast/broadcast) in 517 * which case the sending device address is used. 518 */ 519 if (flags & BIND_WITH_LOCK) 520 lock_sock(sk); 521 522 /* Check these errors (active socket, double bind). */ 523 err = -EINVAL; 524 if (sk->sk_state != TCP_CLOSE || inet->inet_num) 525 goto out_release_sock; 526 527 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; 528 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) 529 inet->inet_saddr = 0; /* Use device */ 530 531 /* Make sure we are allowed to bind here. */ 532 if (snum || !(inet->bind_address_no_port || 533 (flags & BIND_FORCE_ADDRESS_NO_PORT))) { 534 err = sk->sk_prot->get_port(sk, snum); 535 if (err) { 536 inet->inet_saddr = inet->inet_rcv_saddr = 0; 537 goto out_release_sock; 538 } 539 if (!(flags & BIND_FROM_BPF)) { 540 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); 541 if (err) { 542 inet->inet_saddr = inet->inet_rcv_saddr = 0; 543 if (sk->sk_prot->put_port) 544 sk->sk_prot->put_port(sk); 545 goto out_release_sock; 546 } 547 } 548 } 549 550 if (inet->inet_rcv_saddr) 551 sk->sk_userlocks |= SOCK_BINDADDR_LOCK; 552 if (snum) 553 sk->sk_userlocks |= SOCK_BINDPORT_LOCK; 554 inet->inet_sport = htons(inet->inet_num); 555 inet->inet_daddr = 0; 556 inet->inet_dport = 0; 557 sk_dst_reset(sk); 558 err = 0; 559 out_release_sock: 560 if (flags & BIND_WITH_LOCK) 561 release_sock(sk); 562 out: 563 return err; 564 } 565 566 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, 567 int addr_len, int flags) 568 { 569 struct sock *sk = sock->sk; 570 const struct proto *prot; 571 int err; 572 573 if (addr_len < sizeof(uaddr->sa_family)) 574 return -EINVAL; 575 576 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 577 prot = READ_ONCE(sk->sk_prot); 578 579 if (uaddr->sa_family == AF_UNSPEC) 580 return prot->disconnect(sk, flags); 581 582 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 583 err = prot->pre_connect(sk, uaddr, addr_len); 584 if (err) 585 return err; 586 } 587 588 if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk)) 589 return -EAGAIN; 590 return prot->connect(sk, uaddr, addr_len); 591 } 592 EXPORT_SYMBOL(inet_dgram_connect); 593 594 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) 595 { 596 DEFINE_WAIT_FUNC(wait, woken_wake_function); 597 598 add_wait_queue(sk_sleep(sk), &wait); 599 sk->sk_write_pending += writebias; 600 sk->sk_wait_pending++; 601 602 /* Basic assumption: if someone sets sk->sk_err, he _must_ 603 * change state of the socket from TCP_SYN_*. 604 * Connect() does not allow to get error notifications 605 * without closing the socket. 606 */ 607 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 608 release_sock(sk); 609 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 610 lock_sock(sk); 611 if (signal_pending(current) || !timeo) 612 break; 613 } 614 remove_wait_queue(sk_sleep(sk), &wait); 615 sk->sk_write_pending -= writebias; 616 sk->sk_wait_pending--; 617 return timeo; 618 } 619 620 /* 621 * Connect to a remote host. There is regrettably still a little 622 * TCP 'magic' in here. 623 */ 624 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 625 int addr_len, int flags, int is_sendmsg) 626 { 627 struct sock *sk = sock->sk; 628 int err; 629 long timeo; 630 631 /* 632 * uaddr can be NULL and addr_len can be 0 if: 633 * sk is a TCP fastopen active socket and 634 * TCP_FASTOPEN_CONNECT sockopt is set and 635 * we already have a valid cookie for this socket. 636 * In this case, user can call write() after connect(). 637 * write() will invoke tcp_sendmsg_fastopen() which calls 638 * __inet_stream_connect(). 639 */ 640 if (uaddr) { 641 if (addr_len < sizeof(uaddr->sa_family)) 642 return -EINVAL; 643 644 if (uaddr->sa_family == AF_UNSPEC) { 645 err = sk->sk_prot->disconnect(sk, flags); 646 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 647 goto out; 648 } 649 } 650 651 switch (sock->state) { 652 default: 653 err = -EINVAL; 654 goto out; 655 case SS_CONNECTED: 656 err = -EISCONN; 657 goto out; 658 case SS_CONNECTING: 659 if (inet_sk(sk)->defer_connect) 660 err = is_sendmsg ? -EINPROGRESS : -EISCONN; 661 else 662 err = -EALREADY; 663 /* Fall out of switch with err, set for this state */ 664 break; 665 case SS_UNCONNECTED: 666 err = -EISCONN; 667 if (sk->sk_state != TCP_CLOSE) 668 goto out; 669 670 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 671 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 672 if (err) 673 goto out; 674 } 675 676 err = sk->sk_prot->connect(sk, uaddr, addr_len); 677 if (err < 0) 678 goto out; 679 680 sock->state = SS_CONNECTING; 681 682 if (!err && inet_sk(sk)->defer_connect) 683 goto out; 684 685 /* Just entered SS_CONNECTING state; the only 686 * difference is that return value in non-blocking 687 * case is EINPROGRESS, rather than EALREADY. 688 */ 689 err = -EINPROGRESS; 690 break; 691 } 692 693 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 694 695 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 696 int writebias = (sk->sk_protocol == IPPROTO_TCP) && 697 tcp_sk(sk)->fastopen_req && 698 tcp_sk(sk)->fastopen_req->data ? 1 : 0; 699 700 /* Error code is set above */ 701 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) 702 goto out; 703 704 err = sock_intr_errno(timeo); 705 if (signal_pending(current)) 706 goto out; 707 } 708 709 /* Connection was closed by RST, timeout, ICMP error 710 * or another process disconnected us. 711 */ 712 if (sk->sk_state == TCP_CLOSE) 713 goto sock_error; 714 715 /* sk->sk_err may be not zero now, if RECVERR was ordered by user 716 * and error was received after socket entered established state. 717 * Hence, it is handled normally after connect() return successfully. 718 */ 719 720 sock->state = SS_CONNECTED; 721 err = 0; 722 out: 723 return err; 724 725 sock_error: 726 err = sock_error(sk) ? : -ECONNABORTED; 727 sock->state = SS_UNCONNECTED; 728 if (sk->sk_prot->disconnect(sk, flags)) 729 sock->state = SS_DISCONNECTING; 730 goto out; 731 } 732 EXPORT_SYMBOL(__inet_stream_connect); 733 734 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 735 int addr_len, int flags) 736 { 737 int err; 738 739 lock_sock(sock->sk); 740 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 741 release_sock(sock->sk); 742 return err; 743 } 744 EXPORT_SYMBOL(inet_stream_connect); 745 746 void __inet_accept(struct socket *sock, struct socket *newsock, struct sock *newsk) 747 { 748 sock_rps_record_flow(newsk); 749 WARN_ON(!((1 << newsk->sk_state) & 750 (TCPF_ESTABLISHED | TCPF_SYN_RECV | 751 TCPF_CLOSE_WAIT | TCPF_CLOSE))); 752 753 if (test_bit(SOCK_SUPPORT_ZC, &sock->flags)) 754 set_bit(SOCK_SUPPORT_ZC, &newsock->flags); 755 sock_graft(newsk, newsock); 756 757 newsock->state = SS_CONNECTED; 758 } 759 760 /* 761 * Accept a pending connection. The TCP layer now gives BSD semantics. 762 */ 763 764 int inet_accept(struct socket *sock, struct socket *newsock, int flags, 765 bool kern) 766 { 767 struct sock *sk1 = sock->sk, *sk2; 768 int err = -EINVAL; 769 770 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 771 sk2 = READ_ONCE(sk1->sk_prot)->accept(sk1, flags, &err, kern); 772 if (!sk2) 773 return err; 774 775 lock_sock(sk2); 776 __inet_accept(sock, newsock, sk2); 777 release_sock(sk2); 778 return 0; 779 } 780 EXPORT_SYMBOL(inet_accept); 781 782 /* 783 * This does both peername and sockname. 784 */ 785 int inet_getname(struct socket *sock, struct sockaddr *uaddr, 786 int peer) 787 { 788 struct sock *sk = sock->sk; 789 struct inet_sock *inet = inet_sk(sk); 790 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); 791 792 sin->sin_family = AF_INET; 793 lock_sock(sk); 794 if (peer) { 795 if (!inet->inet_dport || 796 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && 797 peer == 1)) { 798 release_sock(sk); 799 return -ENOTCONN; 800 } 801 sin->sin_port = inet->inet_dport; 802 sin->sin_addr.s_addr = inet->inet_daddr; 803 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, 804 CGROUP_INET4_GETPEERNAME); 805 } else { 806 __be32 addr = inet->inet_rcv_saddr; 807 if (!addr) 808 addr = inet->inet_saddr; 809 sin->sin_port = inet->inet_sport; 810 sin->sin_addr.s_addr = addr; 811 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, 812 CGROUP_INET4_GETSOCKNAME); 813 } 814 release_sock(sk); 815 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 816 return sizeof(*sin); 817 } 818 EXPORT_SYMBOL(inet_getname); 819 820 int inet_send_prepare(struct sock *sk) 821 { 822 sock_rps_record_flow(sk); 823 824 /* We may need to bind the socket. */ 825 if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind && 826 inet_autobind(sk)) 827 return -EAGAIN; 828 829 return 0; 830 } 831 EXPORT_SYMBOL_GPL(inet_send_prepare); 832 833 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 834 { 835 struct sock *sk = sock->sk; 836 837 if (unlikely(inet_send_prepare(sk))) 838 return -EAGAIN; 839 840 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg, 841 sk, msg, size); 842 } 843 EXPORT_SYMBOL(inet_sendmsg); 844 845 void inet_splice_eof(struct socket *sock) 846 { 847 const struct proto *prot; 848 struct sock *sk = sock->sk; 849 850 if (unlikely(inet_send_prepare(sk))) 851 return; 852 853 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 854 prot = READ_ONCE(sk->sk_prot); 855 if (prot->splice_eof) 856 prot->splice_eof(sock); 857 } 858 EXPORT_SYMBOL_GPL(inet_splice_eof); 859 860 INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *, 861 size_t, int, int *)); 862 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 863 int flags) 864 { 865 struct sock *sk = sock->sk; 866 int addr_len = 0; 867 int err; 868 869 if (likely(!(flags & MSG_ERRQUEUE))) 870 sock_rps_record_flow(sk); 871 872 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg, 873 sk, msg, size, flags, &addr_len); 874 if (err >= 0) 875 msg->msg_namelen = addr_len; 876 return err; 877 } 878 EXPORT_SYMBOL(inet_recvmsg); 879 880 int inet_shutdown(struct socket *sock, int how) 881 { 882 struct sock *sk = sock->sk; 883 int err = 0; 884 885 /* This should really check to make sure 886 * the socket is a TCP socket. (WHY AC...) 887 */ 888 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 889 1->2 bit 2 snds. 890 2->3 */ 891 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ 892 return -EINVAL; 893 894 lock_sock(sk); 895 if (sock->state == SS_CONNECTING) { 896 if ((1 << sk->sk_state) & 897 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 898 sock->state = SS_DISCONNECTING; 899 else 900 sock->state = SS_CONNECTED; 901 } 902 903 switch (sk->sk_state) { 904 case TCP_CLOSE: 905 err = -ENOTCONN; 906 /* Hack to wake up other listeners, who can poll for 907 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ 908 fallthrough; 909 default: 910 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | how); 911 if (sk->sk_prot->shutdown) 912 sk->sk_prot->shutdown(sk, how); 913 break; 914 915 /* Remaining two branches are temporary solution for missing 916 * close() in multithreaded environment. It is _not_ a good idea, 917 * but we have no choice until close() is repaired at VFS level. 918 */ 919 case TCP_LISTEN: 920 if (!(how & RCV_SHUTDOWN)) 921 break; 922 fallthrough; 923 case TCP_SYN_SENT: 924 err = sk->sk_prot->disconnect(sk, O_NONBLOCK); 925 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 926 break; 927 } 928 929 /* Wake up anyone sleeping in poll. */ 930 sk->sk_state_change(sk); 931 release_sock(sk); 932 return err; 933 } 934 EXPORT_SYMBOL(inet_shutdown); 935 936 /* 937 * ioctl() calls you can issue on an INET socket. Most of these are 938 * device configuration and stuff and very rarely used. Some ioctls 939 * pass on to the socket itself. 940 * 941 * NOTE: I like the idea of a module for the config stuff. ie ifconfig 942 * loads the devconfigure module does its configuring and unloads it. 943 * There's a good 20K of config code hanging around the kernel. 944 */ 945 946 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 947 { 948 struct sock *sk = sock->sk; 949 int err = 0; 950 struct net *net = sock_net(sk); 951 void __user *p = (void __user *)arg; 952 struct ifreq ifr; 953 struct rtentry rt; 954 955 switch (cmd) { 956 case SIOCADDRT: 957 case SIOCDELRT: 958 if (copy_from_user(&rt, p, sizeof(struct rtentry))) 959 return -EFAULT; 960 err = ip_rt_ioctl(net, cmd, &rt); 961 break; 962 case SIOCRTMSG: 963 err = -EINVAL; 964 break; 965 case SIOCDARP: 966 case SIOCGARP: 967 case SIOCSARP: 968 err = arp_ioctl(net, cmd, (void __user *)arg); 969 break; 970 case SIOCGIFADDR: 971 case SIOCGIFBRDADDR: 972 case SIOCGIFNETMASK: 973 case SIOCGIFDSTADDR: 974 case SIOCGIFPFLAGS: 975 if (get_user_ifreq(&ifr, NULL, p)) 976 return -EFAULT; 977 err = devinet_ioctl(net, cmd, &ifr); 978 if (!err && put_user_ifreq(&ifr, p)) 979 err = -EFAULT; 980 break; 981 982 case SIOCSIFADDR: 983 case SIOCSIFBRDADDR: 984 case SIOCSIFNETMASK: 985 case SIOCSIFDSTADDR: 986 case SIOCSIFPFLAGS: 987 case SIOCSIFFLAGS: 988 if (get_user_ifreq(&ifr, NULL, p)) 989 return -EFAULT; 990 err = devinet_ioctl(net, cmd, &ifr); 991 break; 992 default: 993 if (sk->sk_prot->ioctl) 994 err = sk_ioctl(sk, cmd, (void __user *)arg); 995 else 996 err = -ENOIOCTLCMD; 997 break; 998 } 999 return err; 1000 } 1001 EXPORT_SYMBOL(inet_ioctl); 1002 1003 #ifdef CONFIG_COMPAT 1004 static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd, 1005 struct compat_rtentry __user *ur) 1006 { 1007 compat_uptr_t rtdev; 1008 struct rtentry rt; 1009 1010 if (copy_from_user(&rt.rt_dst, &ur->rt_dst, 1011 3 * sizeof(struct sockaddr)) || 1012 get_user(rt.rt_flags, &ur->rt_flags) || 1013 get_user(rt.rt_metric, &ur->rt_metric) || 1014 get_user(rt.rt_mtu, &ur->rt_mtu) || 1015 get_user(rt.rt_window, &ur->rt_window) || 1016 get_user(rt.rt_irtt, &ur->rt_irtt) || 1017 get_user(rtdev, &ur->rt_dev)) 1018 return -EFAULT; 1019 1020 rt.rt_dev = compat_ptr(rtdev); 1021 return ip_rt_ioctl(sock_net(sk), cmd, &rt); 1022 } 1023 1024 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1025 { 1026 void __user *argp = compat_ptr(arg); 1027 struct sock *sk = sock->sk; 1028 1029 switch (cmd) { 1030 case SIOCADDRT: 1031 case SIOCDELRT: 1032 return inet_compat_routing_ioctl(sk, cmd, argp); 1033 default: 1034 if (!sk->sk_prot->compat_ioctl) 1035 return -ENOIOCTLCMD; 1036 return sk->sk_prot->compat_ioctl(sk, cmd, arg); 1037 } 1038 } 1039 #endif /* CONFIG_COMPAT */ 1040 1041 const struct proto_ops inet_stream_ops = { 1042 .family = PF_INET, 1043 .owner = THIS_MODULE, 1044 .release = inet_release, 1045 .bind = inet_bind, 1046 .connect = inet_stream_connect, 1047 .socketpair = sock_no_socketpair, 1048 .accept = inet_accept, 1049 .getname = inet_getname, 1050 .poll = tcp_poll, 1051 .ioctl = inet_ioctl, 1052 .gettstamp = sock_gettstamp, 1053 .listen = inet_listen, 1054 .shutdown = inet_shutdown, 1055 .setsockopt = sock_common_setsockopt, 1056 .getsockopt = sock_common_getsockopt, 1057 .sendmsg = inet_sendmsg, 1058 .recvmsg = inet_recvmsg, 1059 #ifdef CONFIG_MMU 1060 .mmap = tcp_mmap, 1061 #endif 1062 .splice_eof = inet_splice_eof, 1063 .splice_read = tcp_splice_read, 1064 .read_sock = tcp_read_sock, 1065 .read_skb = tcp_read_skb, 1066 .sendmsg_locked = tcp_sendmsg_locked, 1067 .peek_len = tcp_peek_len, 1068 #ifdef CONFIG_COMPAT 1069 .compat_ioctl = inet_compat_ioctl, 1070 #endif 1071 .set_rcvlowat = tcp_set_rcvlowat, 1072 }; 1073 EXPORT_SYMBOL(inet_stream_ops); 1074 1075 const struct proto_ops inet_dgram_ops = { 1076 .family = PF_INET, 1077 .owner = THIS_MODULE, 1078 .release = inet_release, 1079 .bind = inet_bind, 1080 .connect = inet_dgram_connect, 1081 .socketpair = sock_no_socketpair, 1082 .accept = sock_no_accept, 1083 .getname = inet_getname, 1084 .poll = udp_poll, 1085 .ioctl = inet_ioctl, 1086 .gettstamp = sock_gettstamp, 1087 .listen = sock_no_listen, 1088 .shutdown = inet_shutdown, 1089 .setsockopt = sock_common_setsockopt, 1090 .getsockopt = sock_common_getsockopt, 1091 .sendmsg = inet_sendmsg, 1092 .read_skb = udp_read_skb, 1093 .recvmsg = inet_recvmsg, 1094 .mmap = sock_no_mmap, 1095 .splice_eof = inet_splice_eof, 1096 .set_peek_off = sk_set_peek_off, 1097 #ifdef CONFIG_COMPAT 1098 .compat_ioctl = inet_compat_ioctl, 1099 #endif 1100 }; 1101 EXPORT_SYMBOL(inet_dgram_ops); 1102 1103 /* 1104 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without 1105 * udp_poll 1106 */ 1107 static const struct proto_ops inet_sockraw_ops = { 1108 .family = PF_INET, 1109 .owner = THIS_MODULE, 1110 .release = inet_release, 1111 .bind = inet_bind, 1112 .connect = inet_dgram_connect, 1113 .socketpair = sock_no_socketpair, 1114 .accept = sock_no_accept, 1115 .getname = inet_getname, 1116 .poll = datagram_poll, 1117 .ioctl = inet_ioctl, 1118 .gettstamp = sock_gettstamp, 1119 .listen = sock_no_listen, 1120 .shutdown = inet_shutdown, 1121 .setsockopt = sock_common_setsockopt, 1122 .getsockopt = sock_common_getsockopt, 1123 .sendmsg = inet_sendmsg, 1124 .recvmsg = inet_recvmsg, 1125 .mmap = sock_no_mmap, 1126 .splice_eof = inet_splice_eof, 1127 #ifdef CONFIG_COMPAT 1128 .compat_ioctl = inet_compat_ioctl, 1129 #endif 1130 }; 1131 1132 static const struct net_proto_family inet_family_ops = { 1133 .family = PF_INET, 1134 .create = inet_create, 1135 .owner = THIS_MODULE, 1136 }; 1137 1138 /* Upon startup we insert all the elements in inetsw_array[] into 1139 * the linked list inetsw. 1140 */ 1141 static struct inet_protosw inetsw_array[] = 1142 { 1143 { 1144 .type = SOCK_STREAM, 1145 .protocol = IPPROTO_TCP, 1146 .prot = &tcp_prot, 1147 .ops = &inet_stream_ops, 1148 .flags = INET_PROTOSW_PERMANENT | 1149 INET_PROTOSW_ICSK, 1150 }, 1151 1152 { 1153 .type = SOCK_DGRAM, 1154 .protocol = IPPROTO_UDP, 1155 .prot = &udp_prot, 1156 .ops = &inet_dgram_ops, 1157 .flags = INET_PROTOSW_PERMANENT, 1158 }, 1159 1160 { 1161 .type = SOCK_DGRAM, 1162 .protocol = IPPROTO_ICMP, 1163 .prot = &ping_prot, 1164 .ops = &inet_sockraw_ops, 1165 .flags = INET_PROTOSW_REUSE, 1166 }, 1167 1168 { 1169 .type = SOCK_RAW, 1170 .protocol = IPPROTO_IP, /* wild card */ 1171 .prot = &raw_prot, 1172 .ops = &inet_sockraw_ops, 1173 .flags = INET_PROTOSW_REUSE, 1174 } 1175 }; 1176 1177 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) 1178 1179 void inet_register_protosw(struct inet_protosw *p) 1180 { 1181 struct list_head *lh; 1182 struct inet_protosw *answer; 1183 int protocol = p->protocol; 1184 struct list_head *last_perm; 1185 1186 spin_lock_bh(&inetsw_lock); 1187 1188 if (p->type >= SOCK_MAX) 1189 goto out_illegal; 1190 1191 /* If we are trying to override a permanent protocol, bail. */ 1192 last_perm = &inetsw[p->type]; 1193 list_for_each(lh, &inetsw[p->type]) { 1194 answer = list_entry(lh, struct inet_protosw, list); 1195 /* Check only the non-wild match. */ 1196 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) 1197 break; 1198 if (protocol == answer->protocol) 1199 goto out_permanent; 1200 last_perm = lh; 1201 } 1202 1203 /* Add the new entry after the last permanent entry if any, so that 1204 * the new entry does not override a permanent entry when matched with 1205 * a wild-card protocol. But it is allowed to override any existing 1206 * non-permanent entry. This means that when we remove this entry, the 1207 * system automatically returns to the old behavior. 1208 */ 1209 list_add_rcu(&p->list, last_perm); 1210 out: 1211 spin_unlock_bh(&inetsw_lock); 1212 1213 return; 1214 1215 out_permanent: 1216 pr_err("Attempt to override permanent protocol %d\n", protocol); 1217 goto out; 1218 1219 out_illegal: 1220 pr_err("Ignoring attempt to register invalid socket type %d\n", 1221 p->type); 1222 goto out; 1223 } 1224 EXPORT_SYMBOL(inet_register_protosw); 1225 1226 void inet_unregister_protosw(struct inet_protosw *p) 1227 { 1228 if (INET_PROTOSW_PERMANENT & p->flags) { 1229 pr_err("Attempt to unregister permanent protocol %d\n", 1230 p->protocol); 1231 } else { 1232 spin_lock_bh(&inetsw_lock); 1233 list_del_rcu(&p->list); 1234 spin_unlock_bh(&inetsw_lock); 1235 1236 synchronize_net(); 1237 } 1238 } 1239 EXPORT_SYMBOL(inet_unregister_protosw); 1240 1241 static int inet_sk_reselect_saddr(struct sock *sk) 1242 { 1243 struct inet_sock *inet = inet_sk(sk); 1244 __be32 old_saddr = inet->inet_saddr; 1245 __be32 daddr = inet->inet_daddr; 1246 struct flowi4 *fl4; 1247 struct rtable *rt; 1248 __be32 new_saddr; 1249 struct ip_options_rcu *inet_opt; 1250 int err; 1251 1252 inet_opt = rcu_dereference_protected(inet->inet_opt, 1253 lockdep_sock_is_held(sk)); 1254 if (inet_opt && inet_opt->opt.srr) 1255 daddr = inet_opt->opt.faddr; 1256 1257 /* Query new route. */ 1258 fl4 = &inet->cork.fl.u.ip4; 1259 rt = ip_route_connect(fl4, daddr, 0, sk->sk_bound_dev_if, 1260 sk->sk_protocol, inet->inet_sport, 1261 inet->inet_dport, sk); 1262 if (IS_ERR(rt)) 1263 return PTR_ERR(rt); 1264 1265 new_saddr = fl4->saddr; 1266 1267 if (new_saddr == old_saddr) { 1268 sk_setup_caps(sk, &rt->dst); 1269 return 0; 1270 } 1271 1272 err = inet_bhash2_update_saddr(sk, &new_saddr, AF_INET); 1273 if (err) { 1274 ip_rt_put(rt); 1275 return err; 1276 } 1277 1278 sk_setup_caps(sk, &rt->dst); 1279 1280 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) > 1) { 1281 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", 1282 __func__, &old_saddr, &new_saddr); 1283 } 1284 1285 /* 1286 * XXX The only one ugly spot where we need to 1287 * XXX really change the sockets identity after 1288 * XXX it has entered the hashes. -DaveM 1289 * 1290 * Besides that, it does not check for connection 1291 * uniqueness. Wait for troubles. 1292 */ 1293 return __sk_prot_rehash(sk); 1294 } 1295 1296 int inet_sk_rebuild_header(struct sock *sk) 1297 { 1298 struct inet_sock *inet = inet_sk(sk); 1299 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); 1300 __be32 daddr; 1301 struct ip_options_rcu *inet_opt; 1302 struct flowi4 *fl4; 1303 int err; 1304 1305 /* Route is OK, nothing to do. */ 1306 if (rt) 1307 return 0; 1308 1309 /* Reroute. */ 1310 rcu_read_lock(); 1311 inet_opt = rcu_dereference(inet->inet_opt); 1312 daddr = inet->inet_daddr; 1313 if (inet_opt && inet_opt->opt.srr) 1314 daddr = inet_opt->opt.faddr; 1315 rcu_read_unlock(); 1316 fl4 = &inet->cork.fl.u.ip4; 1317 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, 1318 inet->inet_dport, inet->inet_sport, 1319 sk->sk_protocol, RT_CONN_FLAGS(sk), 1320 sk->sk_bound_dev_if); 1321 if (!IS_ERR(rt)) { 1322 err = 0; 1323 sk_setup_caps(sk, &rt->dst); 1324 } else { 1325 err = PTR_ERR(rt); 1326 1327 /* Routing failed... */ 1328 sk->sk_route_caps = 0; 1329 /* 1330 * Other protocols have to map its equivalent state to TCP_SYN_SENT. 1331 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme 1332 */ 1333 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) || 1334 sk->sk_state != TCP_SYN_SENT || 1335 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || 1336 (err = inet_sk_reselect_saddr(sk)) != 0) 1337 WRITE_ONCE(sk->sk_err_soft, -err); 1338 } 1339 1340 return err; 1341 } 1342 EXPORT_SYMBOL(inet_sk_rebuild_header); 1343 1344 void inet_sk_set_state(struct sock *sk, int state) 1345 { 1346 trace_inet_sock_set_state(sk, sk->sk_state, state); 1347 sk->sk_state = state; 1348 } 1349 EXPORT_SYMBOL(inet_sk_set_state); 1350 1351 void inet_sk_state_store(struct sock *sk, int newstate) 1352 { 1353 trace_inet_sock_set_state(sk, sk->sk_state, newstate); 1354 smp_store_release(&sk->sk_state, newstate); 1355 } 1356 1357 struct sk_buff *inet_gso_segment(struct sk_buff *skb, 1358 netdev_features_t features) 1359 { 1360 bool udpfrag = false, fixedid = false, gso_partial, encap; 1361 struct sk_buff *segs = ERR_PTR(-EINVAL); 1362 const struct net_offload *ops; 1363 unsigned int offset = 0; 1364 struct iphdr *iph; 1365 int proto, tot_len; 1366 int nhoff; 1367 int ihl; 1368 int id; 1369 1370 skb_reset_network_header(skb); 1371 nhoff = skb_network_header(skb) - skb_mac_header(skb); 1372 if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) 1373 goto out; 1374 1375 iph = ip_hdr(skb); 1376 ihl = iph->ihl * 4; 1377 if (ihl < sizeof(*iph)) 1378 goto out; 1379 1380 id = ntohs(iph->id); 1381 proto = iph->protocol; 1382 1383 /* Warning: after this point, iph might be no longer valid */ 1384 if (unlikely(!pskb_may_pull(skb, ihl))) 1385 goto out; 1386 __skb_pull(skb, ihl); 1387 1388 encap = SKB_GSO_CB(skb)->encap_level > 0; 1389 if (encap) 1390 features &= skb->dev->hw_enc_features; 1391 SKB_GSO_CB(skb)->encap_level += ihl; 1392 1393 skb_reset_transport_header(skb); 1394 1395 segs = ERR_PTR(-EPROTONOSUPPORT); 1396 1397 if (!skb->encapsulation || encap) { 1398 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); 1399 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); 1400 1401 /* fixed ID is invalid if DF bit is not set */ 1402 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) 1403 goto out; 1404 } 1405 1406 ops = rcu_dereference(inet_offloads[proto]); 1407 if (likely(ops && ops->callbacks.gso_segment)) { 1408 segs = ops->callbacks.gso_segment(skb, features); 1409 if (!segs) 1410 skb->network_header = skb_mac_header(skb) + nhoff - skb->head; 1411 } 1412 1413 if (IS_ERR_OR_NULL(segs)) 1414 goto out; 1415 1416 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); 1417 1418 skb = segs; 1419 do { 1420 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); 1421 if (udpfrag) { 1422 iph->frag_off = htons(offset >> 3); 1423 if (skb->next) 1424 iph->frag_off |= htons(IP_MF); 1425 offset += skb->len - nhoff - ihl; 1426 tot_len = skb->len - nhoff; 1427 } else if (skb_is_gso(skb)) { 1428 if (!fixedid) { 1429 iph->id = htons(id); 1430 id += skb_shinfo(skb)->gso_segs; 1431 } 1432 1433 if (gso_partial) 1434 tot_len = skb_shinfo(skb)->gso_size + 1435 SKB_GSO_CB(skb)->data_offset + 1436 skb->head - (unsigned char *)iph; 1437 else 1438 tot_len = skb->len - nhoff; 1439 } else { 1440 if (!fixedid) 1441 iph->id = htons(id++); 1442 tot_len = skb->len - nhoff; 1443 } 1444 iph->tot_len = htons(tot_len); 1445 ip_send_check(iph); 1446 if (encap) 1447 skb_reset_inner_headers(skb); 1448 skb->network_header = (u8 *)iph - skb->head; 1449 skb_reset_mac_len(skb); 1450 } while ((skb = skb->next)); 1451 1452 out: 1453 return segs; 1454 } 1455 1456 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb, 1457 netdev_features_t features) 1458 { 1459 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) 1460 return ERR_PTR(-EINVAL); 1461 1462 return inet_gso_segment(skb, features); 1463 } 1464 1465 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) 1466 { 1467 const struct net_offload *ops; 1468 struct sk_buff *pp = NULL; 1469 const struct iphdr *iph; 1470 struct sk_buff *p; 1471 unsigned int hlen; 1472 unsigned int off; 1473 unsigned int id; 1474 int flush = 1; 1475 int proto; 1476 1477 off = skb_gro_offset(skb); 1478 hlen = off + sizeof(*iph); 1479 iph = skb_gro_header(skb, hlen, off); 1480 if (unlikely(!iph)) 1481 goto out; 1482 1483 proto = iph->protocol; 1484 1485 ops = rcu_dereference(inet_offloads[proto]); 1486 if (!ops || !ops->callbacks.gro_receive) 1487 goto out; 1488 1489 if (*(u8 *)iph != 0x45) 1490 goto out; 1491 1492 if (ip_is_fragment(iph)) 1493 goto out; 1494 1495 if (unlikely(ip_fast_csum((u8 *)iph, 5))) 1496 goto out; 1497 1498 NAPI_GRO_CB(skb)->proto = proto; 1499 id = ntohl(*(__be32 *)&iph->id); 1500 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); 1501 id >>= 16; 1502 1503 list_for_each_entry(p, head, list) { 1504 struct iphdr *iph2; 1505 u16 flush_id; 1506 1507 if (!NAPI_GRO_CB(p)->same_flow) 1508 continue; 1509 1510 iph2 = (struct iphdr *)(p->data + off); 1511 /* The above works because, with the exception of the top 1512 * (inner most) layer, we only aggregate pkts with the same 1513 * hdr length so all the hdrs we'll need to verify will start 1514 * at the same offset. 1515 */ 1516 if ((iph->protocol ^ iph2->protocol) | 1517 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | 1518 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { 1519 NAPI_GRO_CB(p)->same_flow = 0; 1520 continue; 1521 } 1522 1523 /* All fields must match except length and checksum. */ 1524 NAPI_GRO_CB(p)->flush |= 1525 (iph->ttl ^ iph2->ttl) | 1526 (iph->tos ^ iph2->tos) | 1527 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); 1528 1529 NAPI_GRO_CB(p)->flush |= flush; 1530 1531 /* We need to store of the IP ID check to be included later 1532 * when we can verify that this packet does in fact belong 1533 * to a given flow. 1534 */ 1535 flush_id = (u16)(id - ntohs(iph2->id)); 1536 1537 /* This bit of code makes it much easier for us to identify 1538 * the cases where we are doing atomic vs non-atomic IP ID 1539 * checks. Specifically an atomic check can return IP ID 1540 * values 0 - 0xFFFF, while a non-atomic check can only 1541 * return 0 or 0xFFFF. 1542 */ 1543 if (!NAPI_GRO_CB(p)->is_atomic || 1544 !(iph->frag_off & htons(IP_DF))) { 1545 flush_id ^= NAPI_GRO_CB(p)->count; 1546 flush_id = flush_id ? 0xFFFF : 0; 1547 } 1548 1549 /* If the previous IP ID value was based on an atomic 1550 * datagram we can overwrite the value and ignore it. 1551 */ 1552 if (NAPI_GRO_CB(skb)->is_atomic) 1553 NAPI_GRO_CB(p)->flush_id = flush_id; 1554 else 1555 NAPI_GRO_CB(p)->flush_id |= flush_id; 1556 } 1557 1558 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); 1559 NAPI_GRO_CB(skb)->flush |= flush; 1560 skb_set_network_header(skb, off); 1561 /* The above will be needed by the transport layer if there is one 1562 * immediately following this IP hdr. 1563 */ 1564 1565 /* Note : No need to call skb_gro_postpull_rcsum() here, 1566 * as we already checked checksum over ipv4 header was 0 1567 */ 1568 skb_gro_pull(skb, sizeof(*iph)); 1569 skb_set_transport_header(skb, skb_gro_offset(skb)); 1570 1571 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive, 1572 ops->callbacks.gro_receive, head, skb); 1573 1574 out: 1575 skb_gro_flush_final(skb, pp, flush); 1576 1577 return pp; 1578 } 1579 1580 static struct sk_buff *ipip_gro_receive(struct list_head *head, 1581 struct sk_buff *skb) 1582 { 1583 if (NAPI_GRO_CB(skb)->encap_mark) { 1584 NAPI_GRO_CB(skb)->flush = 1; 1585 return NULL; 1586 } 1587 1588 NAPI_GRO_CB(skb)->encap_mark = 1; 1589 1590 return inet_gro_receive(head, skb); 1591 } 1592 1593 #define SECONDS_PER_DAY 86400 1594 1595 /* inet_current_timestamp - Return IP network timestamp 1596 * 1597 * Return milliseconds since midnight in network byte order. 1598 */ 1599 __be32 inet_current_timestamp(void) 1600 { 1601 u32 secs; 1602 u32 msecs; 1603 struct timespec64 ts; 1604 1605 ktime_get_real_ts64(&ts); 1606 1607 /* Get secs since midnight. */ 1608 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); 1609 /* Convert to msecs. */ 1610 msecs = secs * MSEC_PER_SEC; 1611 /* Convert nsec to msec. */ 1612 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; 1613 1614 /* Convert to network byte order. */ 1615 return htonl(msecs); 1616 } 1617 EXPORT_SYMBOL(inet_current_timestamp); 1618 1619 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) 1620 { 1621 if (sk->sk_family == AF_INET) 1622 return ip_recv_error(sk, msg, len, addr_len); 1623 #if IS_ENABLED(CONFIG_IPV6) 1624 if (sk->sk_family == AF_INET6) 1625 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); 1626 #endif 1627 return -EINVAL; 1628 } 1629 1630 int inet_gro_complete(struct sk_buff *skb, int nhoff) 1631 { 1632 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); 1633 const struct net_offload *ops; 1634 __be16 totlen = iph->tot_len; 1635 int proto = iph->protocol; 1636 int err = -ENOSYS; 1637 1638 if (skb->encapsulation) { 1639 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); 1640 skb_set_inner_network_header(skb, nhoff); 1641 } 1642 1643 iph_set_totlen(iph, skb->len - nhoff); 1644 csum_replace2(&iph->check, totlen, iph->tot_len); 1645 1646 ops = rcu_dereference(inet_offloads[proto]); 1647 if (WARN_ON(!ops || !ops->callbacks.gro_complete)) 1648 goto out; 1649 1650 /* Only need to add sizeof(*iph) to get to the next hdr below 1651 * because any hdr with option will have been flushed in 1652 * inet_gro_receive(). 1653 */ 1654 err = INDIRECT_CALL_2(ops->callbacks.gro_complete, 1655 tcp4_gro_complete, udp4_gro_complete, 1656 skb, nhoff + sizeof(*iph)); 1657 1658 out: 1659 return err; 1660 } 1661 1662 static int ipip_gro_complete(struct sk_buff *skb, int nhoff) 1663 { 1664 skb->encapsulation = 1; 1665 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; 1666 return inet_gro_complete(skb, nhoff); 1667 } 1668 1669 int inet_ctl_sock_create(struct sock **sk, unsigned short family, 1670 unsigned short type, unsigned char protocol, 1671 struct net *net) 1672 { 1673 struct socket *sock; 1674 int rc = sock_create_kern(net, family, type, protocol, &sock); 1675 1676 if (rc == 0) { 1677 *sk = sock->sk; 1678 (*sk)->sk_allocation = GFP_ATOMIC; 1679 (*sk)->sk_use_task_frag = false; 1680 /* 1681 * Unhash it so that IP input processing does not even see it, 1682 * we do not wish this socket to see incoming packets. 1683 */ 1684 (*sk)->sk_prot->unhash(*sk); 1685 } 1686 return rc; 1687 } 1688 EXPORT_SYMBOL_GPL(inet_ctl_sock_create); 1689 1690 unsigned long snmp_fold_field(void __percpu *mib, int offt) 1691 { 1692 unsigned long res = 0; 1693 int i; 1694 1695 for_each_possible_cpu(i) 1696 res += snmp_get_cpu_field(mib, i, offt); 1697 return res; 1698 } 1699 EXPORT_SYMBOL_GPL(snmp_fold_field); 1700 1701 #if BITS_PER_LONG==32 1702 1703 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, 1704 size_t syncp_offset) 1705 { 1706 void *bhptr; 1707 struct u64_stats_sync *syncp; 1708 u64 v; 1709 unsigned int start; 1710 1711 bhptr = per_cpu_ptr(mib, cpu); 1712 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); 1713 do { 1714 start = u64_stats_fetch_begin(syncp); 1715 v = *(((u64 *)bhptr) + offt); 1716 } while (u64_stats_fetch_retry(syncp, start)); 1717 1718 return v; 1719 } 1720 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); 1721 1722 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) 1723 { 1724 u64 res = 0; 1725 int cpu; 1726 1727 for_each_possible_cpu(cpu) { 1728 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); 1729 } 1730 return res; 1731 } 1732 EXPORT_SYMBOL_GPL(snmp_fold_field64); 1733 #endif 1734 1735 #ifdef CONFIG_IP_MULTICAST 1736 static const struct net_protocol igmp_protocol = { 1737 .handler = igmp_rcv, 1738 }; 1739 #endif 1740 1741 static const struct net_protocol tcp_protocol = { 1742 .handler = tcp_v4_rcv, 1743 .err_handler = tcp_v4_err, 1744 .no_policy = 1, 1745 .icmp_strict_tag_validation = 1, 1746 }; 1747 1748 static const struct net_protocol udp_protocol = { 1749 .handler = udp_rcv, 1750 .err_handler = udp_err, 1751 .no_policy = 1, 1752 }; 1753 1754 static const struct net_protocol icmp_protocol = { 1755 .handler = icmp_rcv, 1756 .err_handler = icmp_err, 1757 .no_policy = 1, 1758 }; 1759 1760 static __net_init int ipv4_mib_init_net(struct net *net) 1761 { 1762 int i; 1763 1764 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); 1765 if (!net->mib.tcp_statistics) 1766 goto err_tcp_mib; 1767 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); 1768 if (!net->mib.ip_statistics) 1769 goto err_ip_mib; 1770 1771 for_each_possible_cpu(i) { 1772 struct ipstats_mib *af_inet_stats; 1773 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); 1774 u64_stats_init(&af_inet_stats->syncp); 1775 } 1776 1777 net->mib.net_statistics = alloc_percpu(struct linux_mib); 1778 if (!net->mib.net_statistics) 1779 goto err_net_mib; 1780 net->mib.udp_statistics = alloc_percpu(struct udp_mib); 1781 if (!net->mib.udp_statistics) 1782 goto err_udp_mib; 1783 net->mib.udplite_statistics = alloc_percpu(struct udp_mib); 1784 if (!net->mib.udplite_statistics) 1785 goto err_udplite_mib; 1786 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); 1787 if (!net->mib.icmp_statistics) 1788 goto err_icmp_mib; 1789 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), 1790 GFP_KERNEL); 1791 if (!net->mib.icmpmsg_statistics) 1792 goto err_icmpmsg_mib; 1793 1794 tcp_mib_init(net); 1795 return 0; 1796 1797 err_icmpmsg_mib: 1798 free_percpu(net->mib.icmp_statistics); 1799 err_icmp_mib: 1800 free_percpu(net->mib.udplite_statistics); 1801 err_udplite_mib: 1802 free_percpu(net->mib.udp_statistics); 1803 err_udp_mib: 1804 free_percpu(net->mib.net_statistics); 1805 err_net_mib: 1806 free_percpu(net->mib.ip_statistics); 1807 err_ip_mib: 1808 free_percpu(net->mib.tcp_statistics); 1809 err_tcp_mib: 1810 return -ENOMEM; 1811 } 1812 1813 static __net_exit void ipv4_mib_exit_net(struct net *net) 1814 { 1815 kfree(net->mib.icmpmsg_statistics); 1816 free_percpu(net->mib.icmp_statistics); 1817 free_percpu(net->mib.udplite_statistics); 1818 free_percpu(net->mib.udp_statistics); 1819 free_percpu(net->mib.net_statistics); 1820 free_percpu(net->mib.ip_statistics); 1821 free_percpu(net->mib.tcp_statistics); 1822 #ifdef CONFIG_MPTCP 1823 /* allocated on demand, see mptcp_init_sock() */ 1824 free_percpu(net->mib.mptcp_statistics); 1825 #endif 1826 } 1827 1828 static __net_initdata struct pernet_operations ipv4_mib_ops = { 1829 .init = ipv4_mib_init_net, 1830 .exit = ipv4_mib_exit_net, 1831 }; 1832 1833 static int __init init_ipv4_mibs(void) 1834 { 1835 return register_pernet_subsys(&ipv4_mib_ops); 1836 } 1837 1838 static __net_init int inet_init_net(struct net *net) 1839 { 1840 /* 1841 * Set defaults for local port range 1842 */ 1843 seqlock_init(&net->ipv4.ip_local_ports.lock); 1844 net->ipv4.ip_local_ports.range[0] = 32768; 1845 net->ipv4.ip_local_ports.range[1] = 60999; 1846 1847 seqlock_init(&net->ipv4.ping_group_range.lock); 1848 /* 1849 * Sane defaults - nobody may create ping sockets. 1850 * Boot scripts should set this to distro-specific group. 1851 */ 1852 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); 1853 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); 1854 1855 /* Default values for sysctl-controlled parameters. 1856 * We set them here, in case sysctl is not compiled. 1857 */ 1858 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; 1859 net->ipv4.sysctl_ip_fwd_update_priority = 1; 1860 net->ipv4.sysctl_ip_dynaddr = 0; 1861 net->ipv4.sysctl_ip_early_demux = 1; 1862 net->ipv4.sysctl_udp_early_demux = 1; 1863 net->ipv4.sysctl_tcp_early_demux = 1; 1864 net->ipv4.sysctl_nexthop_compat_mode = 1; 1865 #ifdef CONFIG_SYSCTL 1866 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; 1867 #endif 1868 1869 /* Some igmp sysctl, whose values are always used */ 1870 net->ipv4.sysctl_igmp_max_memberships = 20; 1871 net->ipv4.sysctl_igmp_max_msf = 10; 1872 /* IGMP reports for link-local multicast groups are enabled by default */ 1873 net->ipv4.sysctl_igmp_llm_reports = 1; 1874 net->ipv4.sysctl_igmp_qrv = 2; 1875 1876 net->ipv4.sysctl_fib_notify_on_flag_change = 0; 1877 1878 return 0; 1879 } 1880 1881 static __net_initdata struct pernet_operations af_inet_ops = { 1882 .init = inet_init_net, 1883 }; 1884 1885 static int __init init_inet_pernet_ops(void) 1886 { 1887 return register_pernet_subsys(&af_inet_ops); 1888 } 1889 1890 static int ipv4_proc_init(void); 1891 1892 /* 1893 * IP protocol layer initialiser 1894 */ 1895 1896 static struct packet_offload ip_packet_offload __read_mostly = { 1897 .type = cpu_to_be16(ETH_P_IP), 1898 .callbacks = { 1899 .gso_segment = inet_gso_segment, 1900 .gro_receive = inet_gro_receive, 1901 .gro_complete = inet_gro_complete, 1902 }, 1903 }; 1904 1905 static const struct net_offload ipip_offload = { 1906 .callbacks = { 1907 .gso_segment = ipip_gso_segment, 1908 .gro_receive = ipip_gro_receive, 1909 .gro_complete = ipip_gro_complete, 1910 }, 1911 }; 1912 1913 static int __init ipip_offload_init(void) 1914 { 1915 return inet_add_offload(&ipip_offload, IPPROTO_IPIP); 1916 } 1917 1918 static int __init ipv4_offload_init(void) 1919 { 1920 /* 1921 * Add offloads 1922 */ 1923 if (udpv4_offload_init() < 0) 1924 pr_crit("%s: Cannot add UDP protocol offload\n", __func__); 1925 if (tcpv4_offload_init() < 0) 1926 pr_crit("%s: Cannot add TCP protocol offload\n", __func__); 1927 if (ipip_offload_init() < 0) 1928 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); 1929 1930 dev_add_offload(&ip_packet_offload); 1931 return 0; 1932 } 1933 1934 fs_initcall(ipv4_offload_init); 1935 1936 static struct packet_type ip_packet_type __read_mostly = { 1937 .type = cpu_to_be16(ETH_P_IP), 1938 .func = ip_rcv, 1939 .list_func = ip_list_rcv, 1940 }; 1941 1942 static int __init inet_init(void) 1943 { 1944 struct inet_protosw *q; 1945 struct list_head *r; 1946 int rc; 1947 1948 sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); 1949 1950 raw_hashinfo_init(&raw_v4_hashinfo); 1951 1952 rc = proto_register(&tcp_prot, 1); 1953 if (rc) 1954 goto out; 1955 1956 rc = proto_register(&udp_prot, 1); 1957 if (rc) 1958 goto out_unregister_tcp_proto; 1959 1960 rc = proto_register(&raw_prot, 1); 1961 if (rc) 1962 goto out_unregister_udp_proto; 1963 1964 rc = proto_register(&ping_prot, 1); 1965 if (rc) 1966 goto out_unregister_raw_proto; 1967 1968 /* 1969 * Tell SOCKET that we are alive... 1970 */ 1971 1972 (void)sock_register(&inet_family_ops); 1973 1974 #ifdef CONFIG_SYSCTL 1975 ip_static_sysctl_init(); 1976 #endif 1977 1978 /* 1979 * Add all the base protocols. 1980 */ 1981 1982 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) 1983 pr_crit("%s: Cannot add ICMP protocol\n", __func__); 1984 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0) 1985 pr_crit("%s: Cannot add UDP protocol\n", __func__); 1986 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0) 1987 pr_crit("%s: Cannot add TCP protocol\n", __func__); 1988 #ifdef CONFIG_IP_MULTICAST 1989 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) 1990 pr_crit("%s: Cannot add IGMP protocol\n", __func__); 1991 #endif 1992 1993 /* Register the socket-side information for inet_create. */ 1994 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 1995 INIT_LIST_HEAD(r); 1996 1997 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 1998 inet_register_protosw(q); 1999 2000 /* 2001 * Set the ARP module up 2002 */ 2003 2004 arp_init(); 2005 2006 /* 2007 * Set the IP module up 2008 */ 2009 2010 ip_init(); 2011 2012 /* Initialise per-cpu ipv4 mibs */ 2013 if (init_ipv4_mibs()) 2014 panic("%s: Cannot init ipv4 mibs\n", __func__); 2015 2016 /* Setup TCP slab cache for open requests. */ 2017 tcp_init(); 2018 2019 /* Setup UDP memory threshold */ 2020 udp_init(); 2021 2022 /* Add UDP-Lite (RFC 3828) */ 2023 udplite4_register(); 2024 2025 raw_init(); 2026 2027 ping_init(); 2028 2029 /* 2030 * Set the ICMP layer up 2031 */ 2032 2033 if (icmp_init() < 0) 2034 panic("Failed to create the ICMP control socket.\n"); 2035 2036 /* 2037 * Initialise the multicast router 2038 */ 2039 #if defined(CONFIG_IP_MROUTE) 2040 if (ip_mr_init()) 2041 pr_crit("%s: Cannot init ipv4 mroute\n", __func__); 2042 #endif 2043 2044 if (init_inet_pernet_ops()) 2045 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); 2046 2047 ipv4_proc_init(); 2048 2049 ipfrag_init(); 2050 2051 dev_add_pack(&ip_packet_type); 2052 2053 ip_tunnel_core_init(); 2054 2055 rc = 0; 2056 out: 2057 return rc; 2058 out_unregister_raw_proto: 2059 proto_unregister(&raw_prot); 2060 out_unregister_udp_proto: 2061 proto_unregister(&udp_prot); 2062 out_unregister_tcp_proto: 2063 proto_unregister(&tcp_prot); 2064 goto out; 2065 } 2066 2067 fs_initcall(inet_init); 2068 2069 /* ------------------------------------------------------------------------ */ 2070 2071 #ifdef CONFIG_PROC_FS 2072 static int __init ipv4_proc_init(void) 2073 { 2074 int rc = 0; 2075 2076 if (raw_proc_init()) 2077 goto out_raw; 2078 if (tcp4_proc_init()) 2079 goto out_tcp; 2080 if (udp4_proc_init()) 2081 goto out_udp; 2082 if (ping_proc_init()) 2083 goto out_ping; 2084 if (ip_misc_proc_init()) 2085 goto out_misc; 2086 out: 2087 return rc; 2088 out_misc: 2089 ping_proc_exit(); 2090 out_ping: 2091 udp4_proc_exit(); 2092 out_udp: 2093 tcp4_proc_exit(); 2094 out_tcp: 2095 raw_proc_exit(); 2096 out_raw: 2097 rc = -ENOMEM; 2098 goto out; 2099 } 2100 2101 #else /* CONFIG_PROC_FS */ 2102 static int __init ipv4_proc_init(void) 2103 { 2104 return 0; 2105 } 2106 #endif /* CONFIG_PROC_FS */ 2107