1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * PF_INET protocol family socket handler. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Florian La Roche, <flla@stud.uni-sb.de> 11 * Alan Cox, <A.Cox@swansea.ac.uk> 12 * 13 * Changes (see also sock.c) 14 * 15 * piggy, 16 * Karl Knutson : Socket protocol table 17 * A.N.Kuznetsov : Socket death error in accept(). 18 * John Richardson : Fix non blocking error in connect() 19 * so sockets that fail to connect 20 * don't return -EINPROGRESS. 21 * Alan Cox : Asynchronous I/O support 22 * Alan Cox : Keep correct socket pointer on sock 23 * structures 24 * when accept() ed 25 * Alan Cox : Semantics of SO_LINGER aren't state 26 * moved to close when you look carefully. 27 * With this fixed and the accept bug fixed 28 * some RPC stuff seems happier. 29 * Niibe Yutaka : 4.4BSD style write async I/O 30 * Alan Cox, 31 * Tony Gale : Fixed reuse semantics. 32 * Alan Cox : bind() shouldn't abort existing but dead 33 * sockets. Stops FTP netin:.. I hope. 34 * Alan Cox : bind() works correctly for RAW sockets. 35 * Note that FreeBSD at least was broken 36 * in this respect so be careful with 37 * compatibility tests... 38 * Alan Cox : routing cache support 39 * Alan Cox : memzero the socket structure for 40 * compactness. 41 * Matt Day : nonblock connect error handler 42 * Alan Cox : Allow large numbers of pending sockets 43 * (eg for big web sites), but only if 44 * specifically application requested. 45 * Alan Cox : New buffering throughout IP. Used 46 * dumbly. 47 * Alan Cox : New buffering now used smartly. 48 * Alan Cox : BSD rather than common sense 49 * interpretation of listen. 50 * Germano Caronni : Assorted small races. 51 * Alan Cox : sendmsg/recvmsg basic support. 52 * Alan Cox : Only sendmsg/recvmsg now supported. 53 * Alan Cox : Locked down bind (see security list). 54 * Alan Cox : Loosened bind a little. 55 * Mike McLagan : ADD/DEL DLCI Ioctls 56 * Willy Konynenberg : Transparent proxying support. 57 * David S. Miller : New socket lookup architecture. 58 * Some other random speedups. 59 * Cyrus Durgin : Cleaned up file for kmod hacks. 60 * Andi Kleen : Fix inet_stream_connect TCP race. 61 * 62 * This program is free software; you can redistribute it and/or 63 * modify it under the terms of the GNU General Public License 64 * as published by the Free Software Foundation; either version 65 * 2 of the License, or (at your option) any later version. 66 */ 67 68 #define pr_fmt(fmt) "IPv4: " fmt 69 70 #include <linux/err.h> 71 #include <linux/errno.h> 72 #include <linux/types.h> 73 #include <linux/socket.h> 74 #include <linux/in.h> 75 #include <linux/kernel.h> 76 #include <linux/kmod.h> 77 #include <linux/sched.h> 78 #include <linux/timer.h> 79 #include <linux/string.h> 80 #include <linux/sockios.h> 81 #include <linux/net.h> 82 #include <linux/capability.h> 83 #include <linux/fcntl.h> 84 #include <linux/mm.h> 85 #include <linux/interrupt.h> 86 #include <linux/stat.h> 87 #include <linux/init.h> 88 #include <linux/poll.h> 89 #include <linux/netfilter_ipv4.h> 90 #include <linux/random.h> 91 #include <linux/slab.h> 92 93 #include <linux/uaccess.h> 94 95 #include <linux/inet.h> 96 #include <linux/igmp.h> 97 #include <linux/inetdevice.h> 98 #include <linux/netdevice.h> 99 #include <net/checksum.h> 100 #include <net/ip.h> 101 #include <net/protocol.h> 102 #include <net/arp.h> 103 #include <net/route.h> 104 #include <net/ip_fib.h> 105 #include <net/inet_connection_sock.h> 106 #include <net/tcp.h> 107 #include <net/udp.h> 108 #include <net/udplite.h> 109 #include <net/ping.h> 110 #include <linux/skbuff.h> 111 #include <net/sock.h> 112 #include <net/raw.h> 113 #include <net/icmp.h> 114 #include <net/inet_common.h> 115 #include <net/ip_tunnels.h> 116 #include <net/xfrm.h> 117 #include <net/net_namespace.h> 118 #include <net/secure_seq.h> 119 #ifdef CONFIG_IP_MROUTE 120 #include <linux/mroute.h> 121 #endif 122 #include <net/l3mdev.h> 123 124 #include <trace/events/sock.h> 125 126 /* The inetsw table contains everything that inet_create needs to 127 * build a new socket. 128 */ 129 static struct list_head inetsw[SOCK_MAX]; 130 static DEFINE_SPINLOCK(inetsw_lock); 131 132 /* New destruction routine */ 133 134 void inet_sock_destruct(struct sock *sk) 135 { 136 struct inet_sock *inet = inet_sk(sk); 137 138 __skb_queue_purge(&sk->sk_receive_queue); 139 __skb_queue_purge(&sk->sk_error_queue); 140 141 sk_mem_reclaim(sk); 142 143 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { 144 pr_err("Attempt to release TCP socket in state %d %p\n", 145 sk->sk_state, sk); 146 return; 147 } 148 if (!sock_flag(sk, SOCK_DEAD)) { 149 pr_err("Attempt to release alive inet socket %p\n", sk); 150 return; 151 } 152 153 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 154 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 155 WARN_ON(sk->sk_wmem_queued); 156 WARN_ON(sk->sk_forward_alloc); 157 158 kfree(rcu_dereference_protected(inet->inet_opt, 1)); 159 dst_release(rcu_dereference_check(sk->sk_dst_cache, 1)); 160 dst_release(sk->sk_rx_dst); 161 sk_refcnt_debug_dec(sk); 162 } 163 EXPORT_SYMBOL(inet_sock_destruct); 164 165 /* 166 * The routines beyond this point handle the behaviour of an AF_INET 167 * socket object. Mostly it punts to the subprotocols of IP to do 168 * the work. 169 */ 170 171 /* 172 * Automatically bind an unbound socket. 173 */ 174 175 static int inet_autobind(struct sock *sk) 176 { 177 struct inet_sock *inet; 178 /* We may need to bind the socket. */ 179 lock_sock(sk); 180 inet = inet_sk(sk); 181 if (!inet->inet_num) { 182 if (sk->sk_prot->get_port(sk, 0)) { 183 release_sock(sk); 184 return -EAGAIN; 185 } 186 inet->inet_sport = htons(inet->inet_num); 187 } 188 release_sock(sk); 189 return 0; 190 } 191 192 /* 193 * Move a socket into listening state. 194 */ 195 int inet_listen(struct socket *sock, int backlog) 196 { 197 struct sock *sk = sock->sk; 198 unsigned char old_state; 199 int err, tcp_fastopen; 200 201 lock_sock(sk); 202 203 err = -EINVAL; 204 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 205 goto out; 206 207 old_state = sk->sk_state; 208 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) 209 goto out; 210 211 /* Really, if the socket is already in listen state 212 * we can only allow the backlog to be adjusted. 213 */ 214 if (old_state != TCP_LISTEN) { 215 /* Enable TFO w/o requiring TCP_FASTOPEN socket option. 216 * Note that only TCP sockets (SOCK_STREAM) will reach here. 217 * Also fastopen backlog may already been set via the option 218 * because the socket was in TCP_LISTEN state previously but 219 * was shutdown() rather than close(). 220 */ 221 tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen; 222 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && 223 (tcp_fastopen & TFO_SERVER_ENABLE) && 224 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { 225 fastopen_queue_tune(sk, backlog); 226 tcp_fastopen_init_key_once(sock_net(sk)); 227 } 228 229 err = inet_csk_listen_start(sk, backlog); 230 if (err) 231 goto out; 232 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); 233 } 234 sk->sk_max_ack_backlog = backlog; 235 err = 0; 236 237 out: 238 release_sock(sk); 239 return err; 240 } 241 EXPORT_SYMBOL(inet_listen); 242 243 /* 244 * Create an inet socket. 245 */ 246 247 static int inet_create(struct net *net, struct socket *sock, int protocol, 248 int kern) 249 { 250 struct sock *sk; 251 struct inet_protosw *answer; 252 struct inet_sock *inet; 253 struct proto *answer_prot; 254 unsigned char answer_flags; 255 int try_loading_module = 0; 256 int err; 257 258 if (protocol < 0 || protocol >= IPPROTO_MAX) 259 return -EINVAL; 260 261 sock->state = SS_UNCONNECTED; 262 263 /* Look for the requested type/protocol pair. */ 264 lookup_protocol: 265 err = -ESOCKTNOSUPPORT; 266 rcu_read_lock(); 267 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { 268 269 err = 0; 270 /* Check the non-wild match. */ 271 if (protocol == answer->protocol) { 272 if (protocol != IPPROTO_IP) 273 break; 274 } else { 275 /* Check for the two wild cases. */ 276 if (IPPROTO_IP == protocol) { 277 protocol = answer->protocol; 278 break; 279 } 280 if (IPPROTO_IP == answer->protocol) 281 break; 282 } 283 err = -EPROTONOSUPPORT; 284 } 285 286 if (unlikely(err)) { 287 if (try_loading_module < 2) { 288 rcu_read_unlock(); 289 /* 290 * Be more specific, e.g. net-pf-2-proto-132-type-1 291 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) 292 */ 293 if (++try_loading_module == 1) 294 request_module("net-pf-%d-proto-%d-type-%d", 295 PF_INET, protocol, sock->type); 296 /* 297 * Fall back to generic, e.g. net-pf-2-proto-132 298 * (net-pf-PF_INET-proto-IPPROTO_SCTP) 299 */ 300 else 301 request_module("net-pf-%d-proto-%d", 302 PF_INET, protocol); 303 goto lookup_protocol; 304 } else 305 goto out_rcu_unlock; 306 } 307 308 err = -EPERM; 309 if (sock->type == SOCK_RAW && !kern && 310 !ns_capable(net->user_ns, CAP_NET_RAW)) 311 goto out_rcu_unlock; 312 313 sock->ops = answer->ops; 314 answer_prot = answer->prot; 315 answer_flags = answer->flags; 316 rcu_read_unlock(); 317 318 WARN_ON(!answer_prot->slab); 319 320 err = -ENOBUFS; 321 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); 322 if (!sk) 323 goto out; 324 325 err = 0; 326 if (INET_PROTOSW_REUSE & answer_flags) 327 sk->sk_reuse = SK_CAN_REUSE; 328 329 inet = inet_sk(sk); 330 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0; 331 332 inet->nodefrag = 0; 333 334 if (SOCK_RAW == sock->type) { 335 inet->inet_num = protocol; 336 if (IPPROTO_RAW == protocol) 337 inet->hdrincl = 1; 338 } 339 340 if (net->ipv4.sysctl_ip_no_pmtu_disc) 341 inet->pmtudisc = IP_PMTUDISC_DONT; 342 else 343 inet->pmtudisc = IP_PMTUDISC_WANT; 344 345 inet->inet_id = 0; 346 347 sock_init_data(sock, sk); 348 349 sk->sk_destruct = inet_sock_destruct; 350 sk->sk_protocol = protocol; 351 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 352 353 inet->uc_ttl = -1; 354 inet->mc_loop = 1; 355 inet->mc_ttl = 1; 356 inet->mc_all = 1; 357 inet->mc_index = 0; 358 inet->mc_list = NULL; 359 inet->rcv_tos = 0; 360 361 sk_refcnt_debug_inc(sk); 362 363 if (inet->inet_num) { 364 /* It assumes that any protocol which allows 365 * the user to assign a number at socket 366 * creation time automatically 367 * shares. 368 */ 369 inet->inet_sport = htons(inet->inet_num); 370 /* Add to protocol hash chains. */ 371 err = sk->sk_prot->hash(sk); 372 if (err) { 373 sk_common_release(sk); 374 goto out; 375 } 376 } 377 378 if (sk->sk_prot->init) { 379 err = sk->sk_prot->init(sk); 380 if (err) { 381 sk_common_release(sk); 382 goto out; 383 } 384 } 385 386 if (!kern) { 387 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); 388 if (err) { 389 sk_common_release(sk); 390 goto out; 391 } 392 } 393 out: 394 return err; 395 out_rcu_unlock: 396 rcu_read_unlock(); 397 goto out; 398 } 399 400 401 /* 402 * The peer socket should always be NULL (or else). When we call this 403 * function we are destroying the object and from then on nobody 404 * should refer to it. 405 */ 406 int inet_release(struct socket *sock) 407 { 408 struct sock *sk = sock->sk; 409 410 if (sk) { 411 long timeout; 412 413 /* Applications forget to leave groups before exiting */ 414 ip_mc_drop_socket(sk); 415 416 /* If linger is set, we don't return until the close 417 * is complete. Otherwise we return immediately. The 418 * actually closing is done the same either way. 419 * 420 * If the close is due to the process exiting, we never 421 * linger.. 422 */ 423 timeout = 0; 424 if (sock_flag(sk, SOCK_LINGER) && 425 !(current->flags & PF_EXITING)) 426 timeout = sk->sk_lingertime; 427 sock->sk = NULL; 428 sk->sk_prot->close(sk, timeout); 429 } 430 return 0; 431 } 432 EXPORT_SYMBOL(inet_release); 433 434 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 435 { 436 struct sock *sk = sock->sk; 437 int err; 438 439 /* If the socket has its own bind function then use it. (RAW) */ 440 if (sk->sk_prot->bind) { 441 return sk->sk_prot->bind(sk, uaddr, addr_len); 442 } 443 if (addr_len < sizeof(struct sockaddr_in)) 444 return -EINVAL; 445 446 /* BPF prog is run before any checks are done so that if the prog 447 * changes context in a wrong way it will be caught. 448 */ 449 err = BPF_CGROUP_RUN_PROG_INET4_BIND(sk, uaddr); 450 if (err) 451 return err; 452 453 return __inet_bind(sk, uaddr, addr_len, false, true); 454 } 455 EXPORT_SYMBOL(inet_bind); 456 457 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, 458 bool force_bind_address_no_port, bool with_lock) 459 { 460 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; 461 struct inet_sock *inet = inet_sk(sk); 462 struct net *net = sock_net(sk); 463 unsigned short snum; 464 int chk_addr_ret; 465 u32 tb_id = RT_TABLE_LOCAL; 466 int err; 467 468 if (addr->sin_family != AF_INET) { 469 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) 470 * only if s_addr is INADDR_ANY. 471 */ 472 err = -EAFNOSUPPORT; 473 if (addr->sin_family != AF_UNSPEC || 474 addr->sin_addr.s_addr != htonl(INADDR_ANY)) 475 goto out; 476 } 477 478 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; 479 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); 480 481 /* Not specified by any standard per-se, however it breaks too 482 * many applications when removed. It is unfortunate since 483 * allowing applications to make a non-local bind solves 484 * several problems with systems using dynamic addressing. 485 * (ie. your servers still start up even if your ISDN link 486 * is temporarily down) 487 */ 488 err = -EADDRNOTAVAIL; 489 if (!inet_can_nonlocal_bind(net, inet) && 490 addr->sin_addr.s_addr != htonl(INADDR_ANY) && 491 chk_addr_ret != RTN_LOCAL && 492 chk_addr_ret != RTN_MULTICAST && 493 chk_addr_ret != RTN_BROADCAST) 494 goto out; 495 496 snum = ntohs(addr->sin_port); 497 err = -EACCES; 498 if (snum && snum < inet_prot_sock(net) && 499 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 500 goto out; 501 502 /* We keep a pair of addresses. rcv_saddr is the one 503 * used by hash lookups, and saddr is used for transmit. 504 * 505 * In the BSD API these are the same except where it 506 * would be illegal to use them (multicast/broadcast) in 507 * which case the sending device address is used. 508 */ 509 if (with_lock) 510 lock_sock(sk); 511 512 /* Check these errors (active socket, double bind). */ 513 err = -EINVAL; 514 if (sk->sk_state != TCP_CLOSE || inet->inet_num) 515 goto out_release_sock; 516 517 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; 518 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) 519 inet->inet_saddr = 0; /* Use device */ 520 521 /* Make sure we are allowed to bind here. */ 522 if (snum || !(inet->bind_address_no_port || 523 force_bind_address_no_port)) { 524 if (sk->sk_prot->get_port(sk, snum)) { 525 inet->inet_saddr = inet->inet_rcv_saddr = 0; 526 err = -EADDRINUSE; 527 goto out_release_sock; 528 } 529 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); 530 if (err) { 531 inet->inet_saddr = inet->inet_rcv_saddr = 0; 532 goto out_release_sock; 533 } 534 } 535 536 if (inet->inet_rcv_saddr) 537 sk->sk_userlocks |= SOCK_BINDADDR_LOCK; 538 if (snum) 539 sk->sk_userlocks |= SOCK_BINDPORT_LOCK; 540 inet->inet_sport = htons(inet->inet_num); 541 inet->inet_daddr = 0; 542 inet->inet_dport = 0; 543 sk_dst_reset(sk); 544 err = 0; 545 out_release_sock: 546 if (with_lock) 547 release_sock(sk); 548 out: 549 return err; 550 } 551 552 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, 553 int addr_len, int flags) 554 { 555 struct sock *sk = sock->sk; 556 int err; 557 558 if (addr_len < sizeof(uaddr->sa_family)) 559 return -EINVAL; 560 if (uaddr->sa_family == AF_UNSPEC) 561 return sk->sk_prot->disconnect(sk, flags); 562 563 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 564 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 565 if (err) 566 return err; 567 } 568 569 if (!inet_sk(sk)->inet_num && inet_autobind(sk)) 570 return -EAGAIN; 571 return sk->sk_prot->connect(sk, uaddr, addr_len); 572 } 573 EXPORT_SYMBOL(inet_dgram_connect); 574 575 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) 576 { 577 DEFINE_WAIT_FUNC(wait, woken_wake_function); 578 579 add_wait_queue(sk_sleep(sk), &wait); 580 sk->sk_write_pending += writebias; 581 582 /* Basic assumption: if someone sets sk->sk_err, he _must_ 583 * change state of the socket from TCP_SYN_*. 584 * Connect() does not allow to get error notifications 585 * without closing the socket. 586 */ 587 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 588 release_sock(sk); 589 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 590 lock_sock(sk); 591 if (signal_pending(current) || !timeo) 592 break; 593 } 594 remove_wait_queue(sk_sleep(sk), &wait); 595 sk->sk_write_pending -= writebias; 596 return timeo; 597 } 598 599 /* 600 * Connect to a remote host. There is regrettably still a little 601 * TCP 'magic' in here. 602 */ 603 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 604 int addr_len, int flags, int is_sendmsg) 605 { 606 struct sock *sk = sock->sk; 607 int err; 608 long timeo; 609 610 /* 611 * uaddr can be NULL and addr_len can be 0 if: 612 * sk is a TCP fastopen active socket and 613 * TCP_FASTOPEN_CONNECT sockopt is set and 614 * we already have a valid cookie for this socket. 615 * In this case, user can call write() after connect(). 616 * write() will invoke tcp_sendmsg_fastopen() which calls 617 * __inet_stream_connect(). 618 */ 619 if (uaddr) { 620 if (addr_len < sizeof(uaddr->sa_family)) 621 return -EINVAL; 622 623 if (uaddr->sa_family == AF_UNSPEC) { 624 err = sk->sk_prot->disconnect(sk, flags); 625 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 626 goto out; 627 } 628 } 629 630 switch (sock->state) { 631 default: 632 err = -EINVAL; 633 goto out; 634 case SS_CONNECTED: 635 err = -EISCONN; 636 goto out; 637 case SS_CONNECTING: 638 if (inet_sk(sk)->defer_connect) 639 err = is_sendmsg ? -EINPROGRESS : -EISCONN; 640 else 641 err = -EALREADY; 642 /* Fall out of switch with err, set for this state */ 643 break; 644 case SS_UNCONNECTED: 645 err = -EISCONN; 646 if (sk->sk_state != TCP_CLOSE) 647 goto out; 648 649 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 650 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 651 if (err) 652 goto out; 653 } 654 655 err = sk->sk_prot->connect(sk, uaddr, addr_len); 656 if (err < 0) 657 goto out; 658 659 sock->state = SS_CONNECTING; 660 661 if (!err && inet_sk(sk)->defer_connect) 662 goto out; 663 664 /* Just entered SS_CONNECTING state; the only 665 * difference is that return value in non-blocking 666 * case is EINPROGRESS, rather than EALREADY. 667 */ 668 err = -EINPROGRESS; 669 break; 670 } 671 672 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 673 674 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 675 int writebias = (sk->sk_protocol == IPPROTO_TCP) && 676 tcp_sk(sk)->fastopen_req && 677 tcp_sk(sk)->fastopen_req->data ? 1 : 0; 678 679 /* Error code is set above */ 680 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) 681 goto out; 682 683 err = sock_intr_errno(timeo); 684 if (signal_pending(current)) 685 goto out; 686 } 687 688 /* Connection was closed by RST, timeout, ICMP error 689 * or another process disconnected us. 690 */ 691 if (sk->sk_state == TCP_CLOSE) 692 goto sock_error; 693 694 /* sk->sk_err may be not zero now, if RECVERR was ordered by user 695 * and error was received after socket entered established state. 696 * Hence, it is handled normally after connect() return successfully. 697 */ 698 699 sock->state = SS_CONNECTED; 700 err = 0; 701 out: 702 return err; 703 704 sock_error: 705 err = sock_error(sk) ? : -ECONNABORTED; 706 sock->state = SS_UNCONNECTED; 707 if (sk->sk_prot->disconnect(sk, flags)) 708 sock->state = SS_DISCONNECTING; 709 goto out; 710 } 711 EXPORT_SYMBOL(__inet_stream_connect); 712 713 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 714 int addr_len, int flags) 715 { 716 int err; 717 718 lock_sock(sock->sk); 719 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 720 release_sock(sock->sk); 721 return err; 722 } 723 EXPORT_SYMBOL(inet_stream_connect); 724 725 /* 726 * Accept a pending connection. The TCP layer now gives BSD semantics. 727 */ 728 729 int inet_accept(struct socket *sock, struct socket *newsock, int flags, 730 bool kern) 731 { 732 struct sock *sk1 = sock->sk; 733 int err = -EINVAL; 734 struct sock *sk2 = sk1->sk_prot->accept(sk1, flags, &err, kern); 735 736 if (!sk2) 737 goto do_err; 738 739 lock_sock(sk2); 740 741 sock_rps_record_flow(sk2); 742 WARN_ON(!((1 << sk2->sk_state) & 743 (TCPF_ESTABLISHED | TCPF_SYN_RECV | 744 TCPF_CLOSE_WAIT | TCPF_CLOSE))); 745 746 sock_graft(sk2, newsock); 747 748 newsock->state = SS_CONNECTED; 749 err = 0; 750 release_sock(sk2); 751 do_err: 752 return err; 753 } 754 EXPORT_SYMBOL(inet_accept); 755 756 757 /* 758 * This does both peername and sockname. 759 */ 760 int inet_getname(struct socket *sock, struct sockaddr *uaddr, 761 int peer) 762 { 763 struct sock *sk = sock->sk; 764 struct inet_sock *inet = inet_sk(sk); 765 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); 766 767 sin->sin_family = AF_INET; 768 if (peer) { 769 if (!inet->inet_dport || 770 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && 771 peer == 1)) 772 return -ENOTCONN; 773 sin->sin_port = inet->inet_dport; 774 sin->sin_addr.s_addr = inet->inet_daddr; 775 } else { 776 __be32 addr = inet->inet_rcv_saddr; 777 if (!addr) 778 addr = inet->inet_saddr; 779 sin->sin_port = inet->inet_sport; 780 sin->sin_addr.s_addr = addr; 781 } 782 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 783 return sizeof(*sin); 784 } 785 EXPORT_SYMBOL(inet_getname); 786 787 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 788 { 789 struct sock *sk = sock->sk; 790 791 sock_rps_record_flow(sk); 792 793 /* We may need to bind the socket. */ 794 if (!inet_sk(sk)->inet_num && !sk->sk_prot->no_autobind && 795 inet_autobind(sk)) 796 return -EAGAIN; 797 798 return sk->sk_prot->sendmsg(sk, msg, size); 799 } 800 EXPORT_SYMBOL(inet_sendmsg); 801 802 ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset, 803 size_t size, int flags) 804 { 805 struct sock *sk = sock->sk; 806 807 sock_rps_record_flow(sk); 808 809 /* We may need to bind the socket. */ 810 if (!inet_sk(sk)->inet_num && !sk->sk_prot->no_autobind && 811 inet_autobind(sk)) 812 return -EAGAIN; 813 814 if (sk->sk_prot->sendpage) 815 return sk->sk_prot->sendpage(sk, page, offset, size, flags); 816 return sock_no_sendpage(sock, page, offset, size, flags); 817 } 818 EXPORT_SYMBOL(inet_sendpage); 819 820 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 821 int flags) 822 { 823 struct sock *sk = sock->sk; 824 int addr_len = 0; 825 int err; 826 827 if (likely(!(flags & MSG_ERRQUEUE))) 828 sock_rps_record_flow(sk); 829 830 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 831 flags & ~MSG_DONTWAIT, &addr_len); 832 if (err >= 0) 833 msg->msg_namelen = addr_len; 834 return err; 835 } 836 EXPORT_SYMBOL(inet_recvmsg); 837 838 int inet_shutdown(struct socket *sock, int how) 839 { 840 struct sock *sk = sock->sk; 841 int err = 0; 842 843 /* This should really check to make sure 844 * the socket is a TCP socket. (WHY AC...) 845 */ 846 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 847 1->2 bit 2 snds. 848 2->3 */ 849 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ 850 return -EINVAL; 851 852 lock_sock(sk); 853 if (sock->state == SS_CONNECTING) { 854 if ((1 << sk->sk_state) & 855 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 856 sock->state = SS_DISCONNECTING; 857 else 858 sock->state = SS_CONNECTED; 859 } 860 861 switch (sk->sk_state) { 862 case TCP_CLOSE: 863 err = -ENOTCONN; 864 /* Hack to wake up other listeners, who can poll for 865 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ 866 /* fall through */ 867 default: 868 sk->sk_shutdown |= how; 869 if (sk->sk_prot->shutdown) 870 sk->sk_prot->shutdown(sk, how); 871 break; 872 873 /* Remaining two branches are temporary solution for missing 874 * close() in multithreaded environment. It is _not_ a good idea, 875 * but we have no choice until close() is repaired at VFS level. 876 */ 877 case TCP_LISTEN: 878 if (!(how & RCV_SHUTDOWN)) 879 break; 880 /* fall through */ 881 case TCP_SYN_SENT: 882 err = sk->sk_prot->disconnect(sk, O_NONBLOCK); 883 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 884 break; 885 } 886 887 /* Wake up anyone sleeping in poll. */ 888 sk->sk_state_change(sk); 889 release_sock(sk); 890 return err; 891 } 892 EXPORT_SYMBOL(inet_shutdown); 893 894 /* 895 * ioctl() calls you can issue on an INET socket. Most of these are 896 * device configuration and stuff and very rarely used. Some ioctls 897 * pass on to the socket itself. 898 * 899 * NOTE: I like the idea of a module for the config stuff. ie ifconfig 900 * loads the devconfigure module does its configuring and unloads it. 901 * There's a good 20K of config code hanging around the kernel. 902 */ 903 904 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 905 { 906 struct sock *sk = sock->sk; 907 int err = 0; 908 struct net *net = sock_net(sk); 909 void __user *p = (void __user *)arg; 910 struct ifreq ifr; 911 struct rtentry rt; 912 913 switch (cmd) { 914 case SIOCGSTAMP: 915 err = sock_get_timestamp(sk, (struct timeval __user *)arg); 916 break; 917 case SIOCGSTAMPNS: 918 err = sock_get_timestampns(sk, (struct timespec __user *)arg); 919 break; 920 case SIOCADDRT: 921 case SIOCDELRT: 922 if (copy_from_user(&rt, p, sizeof(struct rtentry))) 923 return -EFAULT; 924 err = ip_rt_ioctl(net, cmd, &rt); 925 break; 926 case SIOCRTMSG: 927 err = -EINVAL; 928 break; 929 case SIOCDARP: 930 case SIOCGARP: 931 case SIOCSARP: 932 err = arp_ioctl(net, cmd, (void __user *)arg); 933 break; 934 case SIOCGIFADDR: 935 case SIOCGIFBRDADDR: 936 case SIOCGIFNETMASK: 937 case SIOCGIFDSTADDR: 938 case SIOCGIFPFLAGS: 939 if (copy_from_user(&ifr, p, sizeof(struct ifreq))) 940 return -EFAULT; 941 err = devinet_ioctl(net, cmd, &ifr); 942 if (!err && copy_to_user(p, &ifr, sizeof(struct ifreq))) 943 err = -EFAULT; 944 break; 945 946 case SIOCSIFADDR: 947 case SIOCSIFBRDADDR: 948 case SIOCSIFNETMASK: 949 case SIOCSIFDSTADDR: 950 case SIOCSIFPFLAGS: 951 case SIOCSIFFLAGS: 952 if (copy_from_user(&ifr, p, sizeof(struct ifreq))) 953 return -EFAULT; 954 err = devinet_ioctl(net, cmd, &ifr); 955 break; 956 default: 957 if (sk->sk_prot->ioctl) 958 err = sk->sk_prot->ioctl(sk, cmd, arg); 959 else 960 err = -ENOIOCTLCMD; 961 break; 962 } 963 return err; 964 } 965 EXPORT_SYMBOL(inet_ioctl); 966 967 #ifdef CONFIG_COMPAT 968 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 969 { 970 struct sock *sk = sock->sk; 971 int err = -ENOIOCTLCMD; 972 973 if (sk->sk_prot->compat_ioctl) 974 err = sk->sk_prot->compat_ioctl(sk, cmd, arg); 975 976 return err; 977 } 978 #endif 979 980 const struct proto_ops inet_stream_ops = { 981 .family = PF_INET, 982 .owner = THIS_MODULE, 983 .release = inet_release, 984 .bind = inet_bind, 985 .connect = inet_stream_connect, 986 .socketpair = sock_no_socketpair, 987 .accept = inet_accept, 988 .getname = inet_getname, 989 .poll = tcp_poll, 990 .ioctl = inet_ioctl, 991 .listen = inet_listen, 992 .shutdown = inet_shutdown, 993 .setsockopt = sock_common_setsockopt, 994 .getsockopt = sock_common_getsockopt, 995 .sendmsg = inet_sendmsg, 996 .recvmsg = inet_recvmsg, 997 #ifdef CONFIG_MMU 998 .mmap = tcp_mmap, 999 #endif 1000 .sendpage = inet_sendpage, 1001 .splice_read = tcp_splice_read, 1002 .read_sock = tcp_read_sock, 1003 .sendmsg_locked = tcp_sendmsg_locked, 1004 .sendpage_locked = tcp_sendpage_locked, 1005 .peek_len = tcp_peek_len, 1006 #ifdef CONFIG_COMPAT 1007 .compat_setsockopt = compat_sock_common_setsockopt, 1008 .compat_getsockopt = compat_sock_common_getsockopt, 1009 .compat_ioctl = inet_compat_ioctl, 1010 #endif 1011 .set_rcvlowat = tcp_set_rcvlowat, 1012 }; 1013 EXPORT_SYMBOL(inet_stream_ops); 1014 1015 const struct proto_ops inet_dgram_ops = { 1016 .family = PF_INET, 1017 .owner = THIS_MODULE, 1018 .release = inet_release, 1019 .bind = inet_bind, 1020 .connect = inet_dgram_connect, 1021 .socketpair = sock_no_socketpair, 1022 .accept = sock_no_accept, 1023 .getname = inet_getname, 1024 .poll = udp_poll, 1025 .ioctl = inet_ioctl, 1026 .listen = sock_no_listen, 1027 .shutdown = inet_shutdown, 1028 .setsockopt = sock_common_setsockopt, 1029 .getsockopt = sock_common_getsockopt, 1030 .sendmsg = inet_sendmsg, 1031 .recvmsg = inet_recvmsg, 1032 .mmap = sock_no_mmap, 1033 .sendpage = inet_sendpage, 1034 .set_peek_off = sk_set_peek_off, 1035 #ifdef CONFIG_COMPAT 1036 .compat_setsockopt = compat_sock_common_setsockopt, 1037 .compat_getsockopt = compat_sock_common_getsockopt, 1038 .compat_ioctl = inet_compat_ioctl, 1039 #endif 1040 }; 1041 EXPORT_SYMBOL(inet_dgram_ops); 1042 1043 /* 1044 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without 1045 * udp_poll 1046 */ 1047 static const struct proto_ops inet_sockraw_ops = { 1048 .family = PF_INET, 1049 .owner = THIS_MODULE, 1050 .release = inet_release, 1051 .bind = inet_bind, 1052 .connect = inet_dgram_connect, 1053 .socketpair = sock_no_socketpair, 1054 .accept = sock_no_accept, 1055 .getname = inet_getname, 1056 .poll = datagram_poll, 1057 .ioctl = inet_ioctl, 1058 .listen = sock_no_listen, 1059 .shutdown = inet_shutdown, 1060 .setsockopt = sock_common_setsockopt, 1061 .getsockopt = sock_common_getsockopt, 1062 .sendmsg = inet_sendmsg, 1063 .recvmsg = inet_recvmsg, 1064 .mmap = sock_no_mmap, 1065 .sendpage = inet_sendpage, 1066 #ifdef CONFIG_COMPAT 1067 .compat_setsockopt = compat_sock_common_setsockopt, 1068 .compat_getsockopt = compat_sock_common_getsockopt, 1069 .compat_ioctl = inet_compat_ioctl, 1070 #endif 1071 }; 1072 1073 static const struct net_proto_family inet_family_ops = { 1074 .family = PF_INET, 1075 .create = inet_create, 1076 .owner = THIS_MODULE, 1077 }; 1078 1079 /* Upon startup we insert all the elements in inetsw_array[] into 1080 * the linked list inetsw. 1081 */ 1082 static struct inet_protosw inetsw_array[] = 1083 { 1084 { 1085 .type = SOCK_STREAM, 1086 .protocol = IPPROTO_TCP, 1087 .prot = &tcp_prot, 1088 .ops = &inet_stream_ops, 1089 .flags = INET_PROTOSW_PERMANENT | 1090 INET_PROTOSW_ICSK, 1091 }, 1092 1093 { 1094 .type = SOCK_DGRAM, 1095 .protocol = IPPROTO_UDP, 1096 .prot = &udp_prot, 1097 .ops = &inet_dgram_ops, 1098 .flags = INET_PROTOSW_PERMANENT, 1099 }, 1100 1101 { 1102 .type = SOCK_DGRAM, 1103 .protocol = IPPROTO_ICMP, 1104 .prot = &ping_prot, 1105 .ops = &inet_sockraw_ops, 1106 .flags = INET_PROTOSW_REUSE, 1107 }, 1108 1109 { 1110 .type = SOCK_RAW, 1111 .protocol = IPPROTO_IP, /* wild card */ 1112 .prot = &raw_prot, 1113 .ops = &inet_sockraw_ops, 1114 .flags = INET_PROTOSW_REUSE, 1115 } 1116 }; 1117 1118 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) 1119 1120 void inet_register_protosw(struct inet_protosw *p) 1121 { 1122 struct list_head *lh; 1123 struct inet_protosw *answer; 1124 int protocol = p->protocol; 1125 struct list_head *last_perm; 1126 1127 spin_lock_bh(&inetsw_lock); 1128 1129 if (p->type >= SOCK_MAX) 1130 goto out_illegal; 1131 1132 /* If we are trying to override a permanent protocol, bail. */ 1133 last_perm = &inetsw[p->type]; 1134 list_for_each(lh, &inetsw[p->type]) { 1135 answer = list_entry(lh, struct inet_protosw, list); 1136 /* Check only the non-wild match. */ 1137 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) 1138 break; 1139 if (protocol == answer->protocol) 1140 goto out_permanent; 1141 last_perm = lh; 1142 } 1143 1144 /* Add the new entry after the last permanent entry if any, so that 1145 * the new entry does not override a permanent entry when matched with 1146 * a wild-card protocol. But it is allowed to override any existing 1147 * non-permanent entry. This means that when we remove this entry, the 1148 * system automatically returns to the old behavior. 1149 */ 1150 list_add_rcu(&p->list, last_perm); 1151 out: 1152 spin_unlock_bh(&inetsw_lock); 1153 1154 return; 1155 1156 out_permanent: 1157 pr_err("Attempt to override permanent protocol %d\n", protocol); 1158 goto out; 1159 1160 out_illegal: 1161 pr_err("Ignoring attempt to register invalid socket type %d\n", 1162 p->type); 1163 goto out; 1164 } 1165 EXPORT_SYMBOL(inet_register_protosw); 1166 1167 void inet_unregister_protosw(struct inet_protosw *p) 1168 { 1169 if (INET_PROTOSW_PERMANENT & p->flags) { 1170 pr_err("Attempt to unregister permanent protocol %d\n", 1171 p->protocol); 1172 } else { 1173 spin_lock_bh(&inetsw_lock); 1174 list_del_rcu(&p->list); 1175 spin_unlock_bh(&inetsw_lock); 1176 1177 synchronize_net(); 1178 } 1179 } 1180 EXPORT_SYMBOL(inet_unregister_protosw); 1181 1182 static int inet_sk_reselect_saddr(struct sock *sk) 1183 { 1184 struct inet_sock *inet = inet_sk(sk); 1185 __be32 old_saddr = inet->inet_saddr; 1186 __be32 daddr = inet->inet_daddr; 1187 struct flowi4 *fl4; 1188 struct rtable *rt; 1189 __be32 new_saddr; 1190 struct ip_options_rcu *inet_opt; 1191 1192 inet_opt = rcu_dereference_protected(inet->inet_opt, 1193 lockdep_sock_is_held(sk)); 1194 if (inet_opt && inet_opt->opt.srr) 1195 daddr = inet_opt->opt.faddr; 1196 1197 /* Query new route. */ 1198 fl4 = &inet->cork.fl.u.ip4; 1199 rt = ip_route_connect(fl4, daddr, 0, RT_CONN_FLAGS(sk), 1200 sk->sk_bound_dev_if, sk->sk_protocol, 1201 inet->inet_sport, inet->inet_dport, sk); 1202 if (IS_ERR(rt)) 1203 return PTR_ERR(rt); 1204 1205 sk_setup_caps(sk, &rt->dst); 1206 1207 new_saddr = fl4->saddr; 1208 1209 if (new_saddr == old_saddr) 1210 return 0; 1211 1212 if (sock_net(sk)->ipv4.sysctl_ip_dynaddr > 1) { 1213 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", 1214 __func__, &old_saddr, &new_saddr); 1215 } 1216 1217 inet->inet_saddr = inet->inet_rcv_saddr = new_saddr; 1218 1219 /* 1220 * XXX The only one ugly spot where we need to 1221 * XXX really change the sockets identity after 1222 * XXX it has entered the hashes. -DaveM 1223 * 1224 * Besides that, it does not check for connection 1225 * uniqueness. Wait for troubles. 1226 */ 1227 return __sk_prot_rehash(sk); 1228 } 1229 1230 int inet_sk_rebuild_header(struct sock *sk) 1231 { 1232 struct inet_sock *inet = inet_sk(sk); 1233 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); 1234 __be32 daddr; 1235 struct ip_options_rcu *inet_opt; 1236 struct flowi4 *fl4; 1237 int err; 1238 1239 /* Route is OK, nothing to do. */ 1240 if (rt) 1241 return 0; 1242 1243 /* Reroute. */ 1244 rcu_read_lock(); 1245 inet_opt = rcu_dereference(inet->inet_opt); 1246 daddr = inet->inet_daddr; 1247 if (inet_opt && inet_opt->opt.srr) 1248 daddr = inet_opt->opt.faddr; 1249 rcu_read_unlock(); 1250 fl4 = &inet->cork.fl.u.ip4; 1251 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, 1252 inet->inet_dport, inet->inet_sport, 1253 sk->sk_protocol, RT_CONN_FLAGS(sk), 1254 sk->sk_bound_dev_if); 1255 if (!IS_ERR(rt)) { 1256 err = 0; 1257 sk_setup_caps(sk, &rt->dst); 1258 } else { 1259 err = PTR_ERR(rt); 1260 1261 /* Routing failed... */ 1262 sk->sk_route_caps = 0; 1263 /* 1264 * Other protocols have to map its equivalent state to TCP_SYN_SENT. 1265 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme 1266 */ 1267 if (!sock_net(sk)->ipv4.sysctl_ip_dynaddr || 1268 sk->sk_state != TCP_SYN_SENT || 1269 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || 1270 (err = inet_sk_reselect_saddr(sk)) != 0) 1271 sk->sk_err_soft = -err; 1272 } 1273 1274 return err; 1275 } 1276 EXPORT_SYMBOL(inet_sk_rebuild_header); 1277 1278 void inet_sk_set_state(struct sock *sk, int state) 1279 { 1280 trace_inet_sock_set_state(sk, sk->sk_state, state); 1281 sk->sk_state = state; 1282 } 1283 EXPORT_SYMBOL(inet_sk_set_state); 1284 1285 void inet_sk_state_store(struct sock *sk, int newstate) 1286 { 1287 trace_inet_sock_set_state(sk, sk->sk_state, newstate); 1288 smp_store_release(&sk->sk_state, newstate); 1289 } 1290 1291 struct sk_buff *inet_gso_segment(struct sk_buff *skb, 1292 netdev_features_t features) 1293 { 1294 bool udpfrag = false, fixedid = false, gso_partial, encap; 1295 struct sk_buff *segs = ERR_PTR(-EINVAL); 1296 const struct net_offload *ops; 1297 unsigned int offset = 0; 1298 struct iphdr *iph; 1299 int proto, tot_len; 1300 int nhoff; 1301 int ihl; 1302 int id; 1303 1304 skb_reset_network_header(skb); 1305 nhoff = skb_network_header(skb) - skb_mac_header(skb); 1306 if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) 1307 goto out; 1308 1309 iph = ip_hdr(skb); 1310 ihl = iph->ihl * 4; 1311 if (ihl < sizeof(*iph)) 1312 goto out; 1313 1314 id = ntohs(iph->id); 1315 proto = iph->protocol; 1316 1317 /* Warning: after this point, iph might be no longer valid */ 1318 if (unlikely(!pskb_may_pull(skb, ihl))) 1319 goto out; 1320 __skb_pull(skb, ihl); 1321 1322 encap = SKB_GSO_CB(skb)->encap_level > 0; 1323 if (encap) 1324 features &= skb->dev->hw_enc_features; 1325 SKB_GSO_CB(skb)->encap_level += ihl; 1326 1327 skb_reset_transport_header(skb); 1328 1329 segs = ERR_PTR(-EPROTONOSUPPORT); 1330 1331 if (!skb->encapsulation || encap) { 1332 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); 1333 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); 1334 1335 /* fixed ID is invalid if DF bit is not set */ 1336 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) 1337 goto out; 1338 } 1339 1340 ops = rcu_dereference(inet_offloads[proto]); 1341 if (likely(ops && ops->callbacks.gso_segment)) 1342 segs = ops->callbacks.gso_segment(skb, features); 1343 1344 if (IS_ERR_OR_NULL(segs)) 1345 goto out; 1346 1347 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); 1348 1349 skb = segs; 1350 do { 1351 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); 1352 if (udpfrag) { 1353 iph->frag_off = htons(offset >> 3); 1354 if (skb->next) 1355 iph->frag_off |= htons(IP_MF); 1356 offset += skb->len - nhoff - ihl; 1357 tot_len = skb->len - nhoff; 1358 } else if (skb_is_gso(skb)) { 1359 if (!fixedid) { 1360 iph->id = htons(id); 1361 id += skb_shinfo(skb)->gso_segs; 1362 } 1363 1364 if (gso_partial) 1365 tot_len = skb_shinfo(skb)->gso_size + 1366 SKB_GSO_CB(skb)->data_offset + 1367 skb->head - (unsigned char *)iph; 1368 else 1369 tot_len = skb->len - nhoff; 1370 } else { 1371 if (!fixedid) 1372 iph->id = htons(id++); 1373 tot_len = skb->len - nhoff; 1374 } 1375 iph->tot_len = htons(tot_len); 1376 ip_send_check(iph); 1377 if (encap) 1378 skb_reset_inner_headers(skb); 1379 skb->network_header = (u8 *)iph - skb->head; 1380 } while ((skb = skb->next)); 1381 1382 out: 1383 return segs; 1384 } 1385 EXPORT_SYMBOL(inet_gso_segment); 1386 1387 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) 1388 { 1389 const struct net_offload *ops; 1390 struct sk_buff *pp = NULL; 1391 const struct iphdr *iph; 1392 struct sk_buff *p; 1393 unsigned int hlen; 1394 unsigned int off; 1395 unsigned int id; 1396 int flush = 1; 1397 int proto; 1398 1399 off = skb_gro_offset(skb); 1400 hlen = off + sizeof(*iph); 1401 iph = skb_gro_header_fast(skb, off); 1402 if (skb_gro_header_hard(skb, hlen)) { 1403 iph = skb_gro_header_slow(skb, hlen, off); 1404 if (unlikely(!iph)) 1405 goto out; 1406 } 1407 1408 proto = iph->protocol; 1409 1410 rcu_read_lock(); 1411 ops = rcu_dereference(inet_offloads[proto]); 1412 if (!ops || !ops->callbacks.gro_receive) 1413 goto out_unlock; 1414 1415 if (*(u8 *)iph != 0x45) 1416 goto out_unlock; 1417 1418 if (ip_is_fragment(iph)) 1419 goto out_unlock; 1420 1421 if (unlikely(ip_fast_csum((u8 *)iph, 5))) 1422 goto out_unlock; 1423 1424 id = ntohl(*(__be32 *)&iph->id); 1425 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); 1426 id >>= 16; 1427 1428 list_for_each_entry(p, head, list) { 1429 struct iphdr *iph2; 1430 u16 flush_id; 1431 1432 if (!NAPI_GRO_CB(p)->same_flow) 1433 continue; 1434 1435 iph2 = (struct iphdr *)(p->data + off); 1436 /* The above works because, with the exception of the top 1437 * (inner most) layer, we only aggregate pkts with the same 1438 * hdr length so all the hdrs we'll need to verify will start 1439 * at the same offset. 1440 */ 1441 if ((iph->protocol ^ iph2->protocol) | 1442 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | 1443 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { 1444 NAPI_GRO_CB(p)->same_flow = 0; 1445 continue; 1446 } 1447 1448 /* All fields must match except length and checksum. */ 1449 NAPI_GRO_CB(p)->flush |= 1450 (iph->ttl ^ iph2->ttl) | 1451 (iph->tos ^ iph2->tos) | 1452 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); 1453 1454 NAPI_GRO_CB(p)->flush |= flush; 1455 1456 /* We need to store of the IP ID check to be included later 1457 * when we can verify that this packet does in fact belong 1458 * to a given flow. 1459 */ 1460 flush_id = (u16)(id - ntohs(iph2->id)); 1461 1462 /* This bit of code makes it much easier for us to identify 1463 * the cases where we are doing atomic vs non-atomic IP ID 1464 * checks. Specifically an atomic check can return IP ID 1465 * values 0 - 0xFFFF, while a non-atomic check can only 1466 * return 0 or 0xFFFF. 1467 */ 1468 if (!NAPI_GRO_CB(p)->is_atomic || 1469 !(iph->frag_off & htons(IP_DF))) { 1470 flush_id ^= NAPI_GRO_CB(p)->count; 1471 flush_id = flush_id ? 0xFFFF : 0; 1472 } 1473 1474 /* If the previous IP ID value was based on an atomic 1475 * datagram we can overwrite the value and ignore it. 1476 */ 1477 if (NAPI_GRO_CB(skb)->is_atomic) 1478 NAPI_GRO_CB(p)->flush_id = flush_id; 1479 else 1480 NAPI_GRO_CB(p)->flush_id |= flush_id; 1481 } 1482 1483 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); 1484 NAPI_GRO_CB(skb)->flush |= flush; 1485 skb_set_network_header(skb, off); 1486 /* The above will be needed by the transport layer if there is one 1487 * immediately following this IP hdr. 1488 */ 1489 1490 /* Note : No need to call skb_gro_postpull_rcsum() here, 1491 * as we already checked checksum over ipv4 header was 0 1492 */ 1493 skb_gro_pull(skb, sizeof(*iph)); 1494 skb_set_transport_header(skb, skb_gro_offset(skb)); 1495 1496 pp = call_gro_receive(ops->callbacks.gro_receive, head, skb); 1497 1498 out_unlock: 1499 rcu_read_unlock(); 1500 1501 out: 1502 skb_gro_flush_final(skb, pp, flush); 1503 1504 return pp; 1505 } 1506 EXPORT_SYMBOL(inet_gro_receive); 1507 1508 static struct sk_buff *ipip_gro_receive(struct list_head *head, 1509 struct sk_buff *skb) 1510 { 1511 if (NAPI_GRO_CB(skb)->encap_mark) { 1512 NAPI_GRO_CB(skb)->flush = 1; 1513 return NULL; 1514 } 1515 1516 NAPI_GRO_CB(skb)->encap_mark = 1; 1517 1518 return inet_gro_receive(head, skb); 1519 } 1520 1521 #define SECONDS_PER_DAY 86400 1522 1523 /* inet_current_timestamp - Return IP network timestamp 1524 * 1525 * Return milliseconds since midnight in network byte order. 1526 */ 1527 __be32 inet_current_timestamp(void) 1528 { 1529 u32 secs; 1530 u32 msecs; 1531 struct timespec64 ts; 1532 1533 ktime_get_real_ts64(&ts); 1534 1535 /* Get secs since midnight. */ 1536 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); 1537 /* Convert to msecs. */ 1538 msecs = secs * MSEC_PER_SEC; 1539 /* Convert nsec to msec. */ 1540 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; 1541 1542 /* Convert to network byte order. */ 1543 return htonl(msecs); 1544 } 1545 EXPORT_SYMBOL(inet_current_timestamp); 1546 1547 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) 1548 { 1549 if (sk->sk_family == AF_INET) 1550 return ip_recv_error(sk, msg, len, addr_len); 1551 #if IS_ENABLED(CONFIG_IPV6) 1552 if (sk->sk_family == AF_INET6) 1553 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); 1554 #endif 1555 return -EINVAL; 1556 } 1557 1558 int inet_gro_complete(struct sk_buff *skb, int nhoff) 1559 { 1560 __be16 newlen = htons(skb->len - nhoff); 1561 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); 1562 const struct net_offload *ops; 1563 int proto = iph->protocol; 1564 int err = -ENOSYS; 1565 1566 if (skb->encapsulation) { 1567 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); 1568 skb_set_inner_network_header(skb, nhoff); 1569 } 1570 1571 csum_replace2(&iph->check, iph->tot_len, newlen); 1572 iph->tot_len = newlen; 1573 1574 rcu_read_lock(); 1575 ops = rcu_dereference(inet_offloads[proto]); 1576 if (WARN_ON(!ops || !ops->callbacks.gro_complete)) 1577 goto out_unlock; 1578 1579 /* Only need to add sizeof(*iph) to get to the next hdr below 1580 * because any hdr with option will have been flushed in 1581 * inet_gro_receive(). 1582 */ 1583 err = ops->callbacks.gro_complete(skb, nhoff + sizeof(*iph)); 1584 1585 out_unlock: 1586 rcu_read_unlock(); 1587 1588 return err; 1589 } 1590 EXPORT_SYMBOL(inet_gro_complete); 1591 1592 static int ipip_gro_complete(struct sk_buff *skb, int nhoff) 1593 { 1594 skb->encapsulation = 1; 1595 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; 1596 return inet_gro_complete(skb, nhoff); 1597 } 1598 1599 int inet_ctl_sock_create(struct sock **sk, unsigned short family, 1600 unsigned short type, unsigned char protocol, 1601 struct net *net) 1602 { 1603 struct socket *sock; 1604 int rc = sock_create_kern(net, family, type, protocol, &sock); 1605 1606 if (rc == 0) { 1607 *sk = sock->sk; 1608 (*sk)->sk_allocation = GFP_ATOMIC; 1609 /* 1610 * Unhash it so that IP input processing does not even see it, 1611 * we do not wish this socket to see incoming packets. 1612 */ 1613 (*sk)->sk_prot->unhash(*sk); 1614 } 1615 return rc; 1616 } 1617 EXPORT_SYMBOL_GPL(inet_ctl_sock_create); 1618 1619 u64 snmp_get_cpu_field(void __percpu *mib, int cpu, int offt) 1620 { 1621 return *(((unsigned long *)per_cpu_ptr(mib, cpu)) + offt); 1622 } 1623 EXPORT_SYMBOL_GPL(snmp_get_cpu_field); 1624 1625 unsigned long snmp_fold_field(void __percpu *mib, int offt) 1626 { 1627 unsigned long res = 0; 1628 int i; 1629 1630 for_each_possible_cpu(i) 1631 res += snmp_get_cpu_field(mib, i, offt); 1632 return res; 1633 } 1634 EXPORT_SYMBOL_GPL(snmp_fold_field); 1635 1636 #if BITS_PER_LONG==32 1637 1638 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, 1639 size_t syncp_offset) 1640 { 1641 void *bhptr; 1642 struct u64_stats_sync *syncp; 1643 u64 v; 1644 unsigned int start; 1645 1646 bhptr = per_cpu_ptr(mib, cpu); 1647 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); 1648 do { 1649 start = u64_stats_fetch_begin_irq(syncp); 1650 v = *(((u64 *)bhptr) + offt); 1651 } while (u64_stats_fetch_retry_irq(syncp, start)); 1652 1653 return v; 1654 } 1655 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); 1656 1657 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) 1658 { 1659 u64 res = 0; 1660 int cpu; 1661 1662 for_each_possible_cpu(cpu) { 1663 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); 1664 } 1665 return res; 1666 } 1667 EXPORT_SYMBOL_GPL(snmp_fold_field64); 1668 #endif 1669 1670 #ifdef CONFIG_IP_MULTICAST 1671 static const struct net_protocol igmp_protocol = { 1672 .handler = igmp_rcv, 1673 .netns_ok = 1, 1674 }; 1675 #endif 1676 1677 /* thinking of making this const? Don't. 1678 * early_demux can change based on sysctl. 1679 */ 1680 static struct net_protocol tcp_protocol = { 1681 .early_demux = tcp_v4_early_demux, 1682 .early_demux_handler = tcp_v4_early_demux, 1683 .handler = tcp_v4_rcv, 1684 .err_handler = tcp_v4_err, 1685 .no_policy = 1, 1686 .netns_ok = 1, 1687 .icmp_strict_tag_validation = 1, 1688 }; 1689 1690 /* thinking of making this const? Don't. 1691 * early_demux can change based on sysctl. 1692 */ 1693 static struct net_protocol udp_protocol = { 1694 .early_demux = udp_v4_early_demux, 1695 .early_demux_handler = udp_v4_early_demux, 1696 .handler = udp_rcv, 1697 .err_handler = udp_err, 1698 .no_policy = 1, 1699 .netns_ok = 1, 1700 }; 1701 1702 static const struct net_protocol icmp_protocol = { 1703 .handler = icmp_rcv, 1704 .err_handler = icmp_err, 1705 .no_policy = 1, 1706 .netns_ok = 1, 1707 }; 1708 1709 static __net_init int ipv4_mib_init_net(struct net *net) 1710 { 1711 int i; 1712 1713 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); 1714 if (!net->mib.tcp_statistics) 1715 goto err_tcp_mib; 1716 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); 1717 if (!net->mib.ip_statistics) 1718 goto err_ip_mib; 1719 1720 for_each_possible_cpu(i) { 1721 struct ipstats_mib *af_inet_stats; 1722 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); 1723 u64_stats_init(&af_inet_stats->syncp); 1724 } 1725 1726 net->mib.net_statistics = alloc_percpu(struct linux_mib); 1727 if (!net->mib.net_statistics) 1728 goto err_net_mib; 1729 net->mib.udp_statistics = alloc_percpu(struct udp_mib); 1730 if (!net->mib.udp_statistics) 1731 goto err_udp_mib; 1732 net->mib.udplite_statistics = alloc_percpu(struct udp_mib); 1733 if (!net->mib.udplite_statistics) 1734 goto err_udplite_mib; 1735 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); 1736 if (!net->mib.icmp_statistics) 1737 goto err_icmp_mib; 1738 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), 1739 GFP_KERNEL); 1740 if (!net->mib.icmpmsg_statistics) 1741 goto err_icmpmsg_mib; 1742 1743 tcp_mib_init(net); 1744 return 0; 1745 1746 err_icmpmsg_mib: 1747 free_percpu(net->mib.icmp_statistics); 1748 err_icmp_mib: 1749 free_percpu(net->mib.udplite_statistics); 1750 err_udplite_mib: 1751 free_percpu(net->mib.udp_statistics); 1752 err_udp_mib: 1753 free_percpu(net->mib.net_statistics); 1754 err_net_mib: 1755 free_percpu(net->mib.ip_statistics); 1756 err_ip_mib: 1757 free_percpu(net->mib.tcp_statistics); 1758 err_tcp_mib: 1759 return -ENOMEM; 1760 } 1761 1762 static __net_exit void ipv4_mib_exit_net(struct net *net) 1763 { 1764 kfree(net->mib.icmpmsg_statistics); 1765 free_percpu(net->mib.icmp_statistics); 1766 free_percpu(net->mib.udplite_statistics); 1767 free_percpu(net->mib.udp_statistics); 1768 free_percpu(net->mib.net_statistics); 1769 free_percpu(net->mib.ip_statistics); 1770 free_percpu(net->mib.tcp_statistics); 1771 } 1772 1773 static __net_initdata struct pernet_operations ipv4_mib_ops = { 1774 .init = ipv4_mib_init_net, 1775 .exit = ipv4_mib_exit_net, 1776 }; 1777 1778 static int __init init_ipv4_mibs(void) 1779 { 1780 return register_pernet_subsys(&ipv4_mib_ops); 1781 } 1782 1783 static __net_init int inet_init_net(struct net *net) 1784 { 1785 /* 1786 * Set defaults for local port range 1787 */ 1788 seqlock_init(&net->ipv4.ip_local_ports.lock); 1789 net->ipv4.ip_local_ports.range[0] = 32768; 1790 net->ipv4.ip_local_ports.range[1] = 60999; 1791 1792 seqlock_init(&net->ipv4.ping_group_range.lock); 1793 /* 1794 * Sane defaults - nobody may create ping sockets. 1795 * Boot scripts should set this to distro-specific group. 1796 */ 1797 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); 1798 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); 1799 1800 /* Default values for sysctl-controlled parameters. 1801 * We set them here, in case sysctl is not compiled. 1802 */ 1803 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; 1804 net->ipv4.sysctl_ip_fwd_update_priority = 1; 1805 net->ipv4.sysctl_ip_dynaddr = 0; 1806 net->ipv4.sysctl_ip_early_demux = 1; 1807 net->ipv4.sysctl_udp_early_demux = 1; 1808 net->ipv4.sysctl_tcp_early_demux = 1; 1809 #ifdef CONFIG_SYSCTL 1810 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; 1811 #endif 1812 1813 /* Some igmp sysctl, whose values are always used */ 1814 net->ipv4.sysctl_igmp_max_memberships = 20; 1815 net->ipv4.sysctl_igmp_max_msf = 10; 1816 /* IGMP reports for link-local multicast groups are enabled by default */ 1817 net->ipv4.sysctl_igmp_llm_reports = 1; 1818 net->ipv4.sysctl_igmp_qrv = 2; 1819 1820 return 0; 1821 } 1822 1823 static __net_exit void inet_exit_net(struct net *net) 1824 { 1825 } 1826 1827 static __net_initdata struct pernet_operations af_inet_ops = { 1828 .init = inet_init_net, 1829 .exit = inet_exit_net, 1830 }; 1831 1832 static int __init init_inet_pernet_ops(void) 1833 { 1834 return register_pernet_subsys(&af_inet_ops); 1835 } 1836 1837 static int ipv4_proc_init(void); 1838 1839 /* 1840 * IP protocol layer initialiser 1841 */ 1842 1843 static struct packet_offload ip_packet_offload __read_mostly = { 1844 .type = cpu_to_be16(ETH_P_IP), 1845 .callbacks = { 1846 .gso_segment = inet_gso_segment, 1847 .gro_receive = inet_gro_receive, 1848 .gro_complete = inet_gro_complete, 1849 }, 1850 }; 1851 1852 static const struct net_offload ipip_offload = { 1853 .callbacks = { 1854 .gso_segment = inet_gso_segment, 1855 .gro_receive = ipip_gro_receive, 1856 .gro_complete = ipip_gro_complete, 1857 }, 1858 }; 1859 1860 static int __init ipip_offload_init(void) 1861 { 1862 return inet_add_offload(&ipip_offload, IPPROTO_IPIP); 1863 } 1864 1865 static int __init ipv4_offload_init(void) 1866 { 1867 /* 1868 * Add offloads 1869 */ 1870 if (udpv4_offload_init() < 0) 1871 pr_crit("%s: Cannot add UDP protocol offload\n", __func__); 1872 if (tcpv4_offload_init() < 0) 1873 pr_crit("%s: Cannot add TCP protocol offload\n", __func__); 1874 if (ipip_offload_init() < 0) 1875 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); 1876 1877 dev_add_offload(&ip_packet_offload); 1878 return 0; 1879 } 1880 1881 fs_initcall(ipv4_offload_init); 1882 1883 static struct packet_type ip_packet_type __read_mostly = { 1884 .type = cpu_to_be16(ETH_P_IP), 1885 .func = ip_rcv, 1886 .list_func = ip_list_rcv, 1887 }; 1888 1889 static int __init inet_init(void) 1890 { 1891 struct inet_protosw *q; 1892 struct list_head *r; 1893 int rc = -EINVAL; 1894 1895 sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); 1896 1897 rc = proto_register(&tcp_prot, 1); 1898 if (rc) 1899 goto out; 1900 1901 rc = proto_register(&udp_prot, 1); 1902 if (rc) 1903 goto out_unregister_tcp_proto; 1904 1905 rc = proto_register(&raw_prot, 1); 1906 if (rc) 1907 goto out_unregister_udp_proto; 1908 1909 rc = proto_register(&ping_prot, 1); 1910 if (rc) 1911 goto out_unregister_raw_proto; 1912 1913 /* 1914 * Tell SOCKET that we are alive... 1915 */ 1916 1917 (void)sock_register(&inet_family_ops); 1918 1919 #ifdef CONFIG_SYSCTL 1920 ip_static_sysctl_init(); 1921 #endif 1922 1923 /* 1924 * Add all the base protocols. 1925 */ 1926 1927 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) 1928 pr_crit("%s: Cannot add ICMP protocol\n", __func__); 1929 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0) 1930 pr_crit("%s: Cannot add UDP protocol\n", __func__); 1931 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0) 1932 pr_crit("%s: Cannot add TCP protocol\n", __func__); 1933 #ifdef CONFIG_IP_MULTICAST 1934 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) 1935 pr_crit("%s: Cannot add IGMP protocol\n", __func__); 1936 #endif 1937 1938 /* Register the socket-side information for inet_create. */ 1939 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 1940 INIT_LIST_HEAD(r); 1941 1942 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 1943 inet_register_protosw(q); 1944 1945 /* 1946 * Set the ARP module up 1947 */ 1948 1949 arp_init(); 1950 1951 /* 1952 * Set the IP module up 1953 */ 1954 1955 ip_init(); 1956 1957 /* Setup TCP slab cache for open requests. */ 1958 tcp_init(); 1959 1960 /* Setup UDP memory threshold */ 1961 udp_init(); 1962 1963 /* Add UDP-Lite (RFC 3828) */ 1964 udplite4_register(); 1965 1966 ping_init(); 1967 1968 /* 1969 * Set the ICMP layer up 1970 */ 1971 1972 if (icmp_init() < 0) 1973 panic("Failed to create the ICMP control socket.\n"); 1974 1975 /* 1976 * Initialise the multicast router 1977 */ 1978 #if defined(CONFIG_IP_MROUTE) 1979 if (ip_mr_init()) 1980 pr_crit("%s: Cannot init ipv4 mroute\n", __func__); 1981 #endif 1982 1983 if (init_inet_pernet_ops()) 1984 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); 1985 /* 1986 * Initialise per-cpu ipv4 mibs 1987 */ 1988 1989 if (init_ipv4_mibs()) 1990 pr_crit("%s: Cannot init ipv4 mibs\n", __func__); 1991 1992 ipv4_proc_init(); 1993 1994 ipfrag_init(); 1995 1996 dev_add_pack(&ip_packet_type); 1997 1998 ip_tunnel_core_init(); 1999 2000 rc = 0; 2001 out: 2002 return rc; 2003 out_unregister_raw_proto: 2004 proto_unregister(&raw_prot); 2005 out_unregister_udp_proto: 2006 proto_unregister(&udp_prot); 2007 out_unregister_tcp_proto: 2008 proto_unregister(&tcp_prot); 2009 goto out; 2010 } 2011 2012 fs_initcall(inet_init); 2013 2014 /* ------------------------------------------------------------------------ */ 2015 2016 #ifdef CONFIG_PROC_FS 2017 static int __init ipv4_proc_init(void) 2018 { 2019 int rc = 0; 2020 2021 if (raw_proc_init()) 2022 goto out_raw; 2023 if (tcp4_proc_init()) 2024 goto out_tcp; 2025 if (udp4_proc_init()) 2026 goto out_udp; 2027 if (ping_proc_init()) 2028 goto out_ping; 2029 if (ip_misc_proc_init()) 2030 goto out_misc; 2031 out: 2032 return rc; 2033 out_misc: 2034 ping_proc_exit(); 2035 out_ping: 2036 udp4_proc_exit(); 2037 out_udp: 2038 tcp4_proc_exit(); 2039 out_tcp: 2040 raw_proc_exit(); 2041 out_raw: 2042 rc = -ENOMEM; 2043 goto out; 2044 } 2045 2046 #else /* CONFIG_PROC_FS */ 2047 static int __init ipv4_proc_init(void) 2048 { 2049 return 0; 2050 } 2051 #endif /* CONFIG_PROC_FS */ 2052