1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PF_INET protocol family socket handler. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Florian La Roche, <flla@stud.uni-sb.de> 12 * Alan Cox, <A.Cox@swansea.ac.uk> 13 * 14 * Changes (see also sock.c) 15 * 16 * piggy, 17 * Karl Knutson : Socket protocol table 18 * A.N.Kuznetsov : Socket death error in accept(). 19 * John Richardson : Fix non blocking error in connect() 20 * so sockets that fail to connect 21 * don't return -EINPROGRESS. 22 * Alan Cox : Asynchronous I/O support 23 * Alan Cox : Keep correct socket pointer on sock 24 * structures 25 * when accept() ed 26 * Alan Cox : Semantics of SO_LINGER aren't state 27 * moved to close when you look carefully. 28 * With this fixed and the accept bug fixed 29 * some RPC stuff seems happier. 30 * Niibe Yutaka : 4.4BSD style write async I/O 31 * Alan Cox, 32 * Tony Gale : Fixed reuse semantics. 33 * Alan Cox : bind() shouldn't abort existing but dead 34 * sockets. Stops FTP netin:.. I hope. 35 * Alan Cox : bind() works correctly for RAW sockets. 36 * Note that FreeBSD at least was broken 37 * in this respect so be careful with 38 * compatibility tests... 39 * Alan Cox : routing cache support 40 * Alan Cox : memzero the socket structure for 41 * compactness. 42 * Matt Day : nonblock connect error handler 43 * Alan Cox : Allow large numbers of pending sockets 44 * (eg for big web sites), but only if 45 * specifically application requested. 46 * Alan Cox : New buffering throughout IP. Used 47 * dumbly. 48 * Alan Cox : New buffering now used smartly. 49 * Alan Cox : BSD rather than common sense 50 * interpretation of listen. 51 * Germano Caronni : Assorted small races. 52 * Alan Cox : sendmsg/recvmsg basic support. 53 * Alan Cox : Only sendmsg/recvmsg now supported. 54 * Alan Cox : Locked down bind (see security list). 55 * Alan Cox : Loosened bind a little. 56 * Mike McLagan : ADD/DEL DLCI Ioctls 57 * Willy Konynenberg : Transparent proxying support. 58 * David S. Miller : New socket lookup architecture. 59 * Some other random speedups. 60 * Cyrus Durgin : Cleaned up file for kmod hacks. 61 * Andi Kleen : Fix inet_stream_connect TCP race. 62 */ 63 64 #define pr_fmt(fmt) "IPv4: " fmt 65 66 #include <linux/err.h> 67 #include <linux/errno.h> 68 #include <linux/types.h> 69 #include <linux/socket.h> 70 #include <linux/in.h> 71 #include <linux/kernel.h> 72 #include <linux/kmod.h> 73 #include <linux/sched.h> 74 #include <linux/timer.h> 75 #include <linux/string.h> 76 #include <linux/sockios.h> 77 #include <linux/net.h> 78 #include <linux/capability.h> 79 #include <linux/fcntl.h> 80 #include <linux/mm.h> 81 #include <linux/interrupt.h> 82 #include <linux/stat.h> 83 #include <linux/init.h> 84 #include <linux/poll.h> 85 #include <linux/netfilter_ipv4.h> 86 #include <linux/random.h> 87 #include <linux/slab.h> 88 89 #include <linux/uaccess.h> 90 91 #include <linux/inet.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/netdevice.h> 95 #include <net/checksum.h> 96 #include <net/ip.h> 97 #include <net/protocol.h> 98 #include <net/arp.h> 99 #include <net/route.h> 100 #include <net/ip_fib.h> 101 #include <net/inet_connection_sock.h> 102 #include <net/gro.h> 103 #include <net/tcp.h> 104 #include <net/udp.h> 105 #include <net/udplite.h> 106 #include <net/ping.h> 107 #include <linux/skbuff.h> 108 #include <net/sock.h> 109 #include <net/raw.h> 110 #include <net/icmp.h> 111 #include <net/inet_common.h> 112 #include <net/ip_tunnels.h> 113 #include <net/xfrm.h> 114 #include <net/net_namespace.h> 115 #include <net/secure_seq.h> 116 #ifdef CONFIG_IP_MROUTE 117 #include <linux/mroute.h> 118 #endif 119 #include <net/l3mdev.h> 120 #include <net/compat.h> 121 122 #include <trace/events/sock.h> 123 124 /* The inetsw table contains everything that inet_create needs to 125 * build a new socket. 126 */ 127 static struct list_head inetsw[SOCK_MAX]; 128 static DEFINE_SPINLOCK(inetsw_lock); 129 130 /* New destruction routine */ 131 132 void inet_sock_destruct(struct sock *sk) 133 { 134 struct inet_sock *inet = inet_sk(sk); 135 136 __skb_queue_purge(&sk->sk_receive_queue); 137 __skb_queue_purge(&sk->sk_error_queue); 138 139 sk_mem_reclaim_final(sk); 140 141 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { 142 pr_err("Attempt to release TCP socket in state %d %p\n", 143 sk->sk_state, sk); 144 return; 145 } 146 if (!sock_flag(sk, SOCK_DEAD)) { 147 pr_err("Attempt to release alive inet socket %p\n", sk); 148 return; 149 } 150 151 WARN_ON_ONCE(atomic_read(&sk->sk_rmem_alloc)); 152 WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); 153 WARN_ON_ONCE(sk->sk_wmem_queued); 154 WARN_ON_ONCE(sk_forward_alloc_get(sk)); 155 156 kfree(rcu_dereference_protected(inet->inet_opt, 1)); 157 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1)); 158 dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1)); 159 sk_refcnt_debug_dec(sk); 160 } 161 EXPORT_SYMBOL(inet_sock_destruct); 162 163 /* 164 * The routines beyond this point handle the behaviour of an AF_INET 165 * socket object. Mostly it punts to the subprotocols of IP to do 166 * the work. 167 */ 168 169 /* 170 * Automatically bind an unbound socket. 171 */ 172 173 static int inet_autobind(struct sock *sk) 174 { 175 struct inet_sock *inet; 176 /* We may need to bind the socket. */ 177 lock_sock(sk); 178 inet = inet_sk(sk); 179 if (!inet->inet_num) { 180 if (sk->sk_prot->get_port(sk, 0)) { 181 release_sock(sk); 182 return -EAGAIN; 183 } 184 inet->inet_sport = htons(inet->inet_num); 185 } 186 release_sock(sk); 187 return 0; 188 } 189 190 /* 191 * Move a socket into listening state. 192 */ 193 int inet_listen(struct socket *sock, int backlog) 194 { 195 struct sock *sk = sock->sk; 196 unsigned char old_state; 197 int err, tcp_fastopen; 198 199 lock_sock(sk); 200 201 err = -EINVAL; 202 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 203 goto out; 204 205 old_state = sk->sk_state; 206 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) 207 goto out; 208 209 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 210 /* Really, if the socket is already in listen state 211 * we can only allow the backlog to be adjusted. 212 */ 213 if (old_state != TCP_LISTEN) { 214 /* Enable TFO w/o requiring TCP_FASTOPEN socket option. 215 * Note that only TCP sockets (SOCK_STREAM) will reach here. 216 * Also fastopen backlog may already been set via the option 217 * because the socket was in TCP_LISTEN state previously but 218 * was shutdown() rather than close(). 219 */ 220 tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen); 221 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && 222 (tcp_fastopen & TFO_SERVER_ENABLE) && 223 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { 224 fastopen_queue_tune(sk, backlog); 225 tcp_fastopen_init_key_once(sock_net(sk)); 226 } 227 228 err = inet_csk_listen_start(sk); 229 if (err) 230 goto out; 231 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); 232 } 233 err = 0; 234 235 out: 236 release_sock(sk); 237 return err; 238 } 239 EXPORT_SYMBOL(inet_listen); 240 241 /* 242 * Create an inet socket. 243 */ 244 245 static int inet_create(struct net *net, struct socket *sock, int protocol, 246 int kern) 247 { 248 struct sock *sk; 249 struct inet_protosw *answer; 250 struct inet_sock *inet; 251 struct proto *answer_prot; 252 unsigned char answer_flags; 253 int try_loading_module = 0; 254 int err; 255 256 if (protocol < 0 || protocol >= IPPROTO_MAX) 257 return -EINVAL; 258 259 sock->state = SS_UNCONNECTED; 260 261 /* Look for the requested type/protocol pair. */ 262 lookup_protocol: 263 err = -ESOCKTNOSUPPORT; 264 rcu_read_lock(); 265 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { 266 267 err = 0; 268 /* Check the non-wild match. */ 269 if (protocol == answer->protocol) { 270 if (protocol != IPPROTO_IP) 271 break; 272 } else { 273 /* Check for the two wild cases. */ 274 if (IPPROTO_IP == protocol) { 275 protocol = answer->protocol; 276 break; 277 } 278 if (IPPROTO_IP == answer->protocol) 279 break; 280 } 281 err = -EPROTONOSUPPORT; 282 } 283 284 if (unlikely(err)) { 285 if (try_loading_module < 2) { 286 rcu_read_unlock(); 287 /* 288 * Be more specific, e.g. net-pf-2-proto-132-type-1 289 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) 290 */ 291 if (++try_loading_module == 1) 292 request_module("net-pf-%d-proto-%d-type-%d", 293 PF_INET, protocol, sock->type); 294 /* 295 * Fall back to generic, e.g. net-pf-2-proto-132 296 * (net-pf-PF_INET-proto-IPPROTO_SCTP) 297 */ 298 else 299 request_module("net-pf-%d-proto-%d", 300 PF_INET, protocol); 301 goto lookup_protocol; 302 } else 303 goto out_rcu_unlock; 304 } 305 306 err = -EPERM; 307 if (sock->type == SOCK_RAW && !kern && 308 !ns_capable(net->user_ns, CAP_NET_RAW)) 309 goto out_rcu_unlock; 310 311 sock->ops = answer->ops; 312 answer_prot = answer->prot; 313 answer_flags = answer->flags; 314 rcu_read_unlock(); 315 316 WARN_ON(!answer_prot->slab); 317 318 err = -ENOMEM; 319 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); 320 if (!sk) 321 goto out; 322 323 err = 0; 324 if (INET_PROTOSW_REUSE & answer_flags) 325 sk->sk_reuse = SK_CAN_REUSE; 326 327 inet = inet_sk(sk); 328 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0; 329 330 inet->nodefrag = 0; 331 332 if (SOCK_RAW == sock->type) { 333 inet->inet_num = protocol; 334 if (IPPROTO_RAW == protocol) 335 inet->hdrincl = 1; 336 } 337 338 if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc)) 339 inet->pmtudisc = IP_PMTUDISC_DONT; 340 else 341 inet->pmtudisc = IP_PMTUDISC_WANT; 342 343 inet->inet_id = 0; 344 345 sock_init_data(sock, sk); 346 347 sk->sk_destruct = inet_sock_destruct; 348 sk->sk_protocol = protocol; 349 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 350 351 inet->uc_ttl = -1; 352 inet->mc_loop = 1; 353 inet->mc_ttl = 1; 354 inet->mc_all = 1; 355 inet->mc_index = 0; 356 inet->mc_list = NULL; 357 inet->rcv_tos = 0; 358 359 sk_refcnt_debug_inc(sk); 360 361 if (inet->inet_num) { 362 /* It assumes that any protocol which allows 363 * the user to assign a number at socket 364 * creation time automatically 365 * shares. 366 */ 367 inet->inet_sport = htons(inet->inet_num); 368 /* Add to protocol hash chains. */ 369 err = sk->sk_prot->hash(sk); 370 if (err) { 371 sk_common_release(sk); 372 goto out; 373 } 374 } 375 376 if (sk->sk_prot->init) { 377 err = sk->sk_prot->init(sk); 378 if (err) { 379 sk_common_release(sk); 380 goto out; 381 } 382 } 383 384 if (!kern) { 385 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); 386 if (err) { 387 sk_common_release(sk); 388 goto out; 389 } 390 } 391 out: 392 return err; 393 out_rcu_unlock: 394 rcu_read_unlock(); 395 goto out; 396 } 397 398 399 /* 400 * The peer socket should always be NULL (or else). When we call this 401 * function we are destroying the object and from then on nobody 402 * should refer to it. 403 */ 404 int inet_release(struct socket *sock) 405 { 406 struct sock *sk = sock->sk; 407 408 if (sk) { 409 long timeout; 410 411 if (!sk->sk_kern_sock) 412 BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk); 413 414 /* Applications forget to leave groups before exiting */ 415 ip_mc_drop_socket(sk); 416 417 /* If linger is set, we don't return until the close 418 * is complete. Otherwise we return immediately. The 419 * actually closing is done the same either way. 420 * 421 * If the close is due to the process exiting, we never 422 * linger.. 423 */ 424 timeout = 0; 425 if (sock_flag(sk, SOCK_LINGER) && 426 !(current->flags & PF_EXITING)) 427 timeout = sk->sk_lingertime; 428 sk->sk_prot->close(sk, timeout); 429 sock->sk = NULL; 430 } 431 return 0; 432 } 433 EXPORT_SYMBOL(inet_release); 434 435 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 436 { 437 struct sock *sk = sock->sk; 438 u32 flags = BIND_WITH_LOCK; 439 int err; 440 441 /* If the socket has its own bind function then use it. (RAW) */ 442 if (sk->sk_prot->bind) { 443 return sk->sk_prot->bind(sk, uaddr, addr_len); 444 } 445 if (addr_len < sizeof(struct sockaddr_in)) 446 return -EINVAL; 447 448 /* BPF prog is run before any checks are done so that if the prog 449 * changes context in a wrong way it will be caught. 450 */ 451 err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr, 452 CGROUP_INET4_BIND, &flags); 453 if (err) 454 return err; 455 456 return __inet_bind(sk, uaddr, addr_len, flags); 457 } 458 EXPORT_SYMBOL(inet_bind); 459 460 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, 461 u32 flags) 462 { 463 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; 464 struct inet_sock *inet = inet_sk(sk); 465 struct net *net = sock_net(sk); 466 unsigned short snum; 467 int chk_addr_ret; 468 u32 tb_id = RT_TABLE_LOCAL; 469 int err; 470 471 if (addr->sin_family != AF_INET) { 472 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) 473 * only if s_addr is INADDR_ANY. 474 */ 475 err = -EAFNOSUPPORT; 476 if (addr->sin_family != AF_UNSPEC || 477 addr->sin_addr.s_addr != htonl(INADDR_ANY)) 478 goto out; 479 } 480 481 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; 482 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); 483 484 /* Not specified by any standard per-se, however it breaks too 485 * many applications when removed. It is unfortunate since 486 * allowing applications to make a non-local bind solves 487 * several problems with systems using dynamic addressing. 488 * (ie. your servers still start up even if your ISDN link 489 * is temporarily down) 490 */ 491 err = -EADDRNOTAVAIL; 492 if (!inet_addr_valid_or_nonlocal(net, inet, addr->sin_addr.s_addr, 493 chk_addr_ret)) 494 goto out; 495 496 snum = ntohs(addr->sin_port); 497 err = -EACCES; 498 if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) && 499 snum && inet_port_requires_bind_service(net, snum) && 500 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 501 goto out; 502 503 /* We keep a pair of addresses. rcv_saddr is the one 504 * used by hash lookups, and saddr is used for transmit. 505 * 506 * In the BSD API these are the same except where it 507 * would be illegal to use them (multicast/broadcast) in 508 * which case the sending device address is used. 509 */ 510 if (flags & BIND_WITH_LOCK) 511 lock_sock(sk); 512 513 /* Check these errors (active socket, double bind). */ 514 err = -EINVAL; 515 if (sk->sk_state != TCP_CLOSE || inet->inet_num) 516 goto out_release_sock; 517 518 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; 519 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) 520 inet->inet_saddr = 0; /* Use device */ 521 522 /* Make sure we are allowed to bind here. */ 523 if (snum || !(inet->bind_address_no_port || 524 (flags & BIND_FORCE_ADDRESS_NO_PORT))) { 525 if (sk->sk_prot->get_port(sk, snum)) { 526 inet->inet_saddr = inet->inet_rcv_saddr = 0; 527 err = -EADDRINUSE; 528 goto out_release_sock; 529 } 530 if (!(flags & BIND_FROM_BPF)) { 531 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); 532 if (err) { 533 inet->inet_saddr = inet->inet_rcv_saddr = 0; 534 if (sk->sk_prot->put_port) 535 sk->sk_prot->put_port(sk); 536 goto out_release_sock; 537 } 538 } 539 } 540 541 if (inet->inet_rcv_saddr) 542 sk->sk_userlocks |= SOCK_BINDADDR_LOCK; 543 if (snum) 544 sk->sk_userlocks |= SOCK_BINDPORT_LOCK; 545 inet->inet_sport = htons(inet->inet_num); 546 inet->inet_daddr = 0; 547 inet->inet_dport = 0; 548 sk_dst_reset(sk); 549 err = 0; 550 out_release_sock: 551 if (flags & BIND_WITH_LOCK) 552 release_sock(sk); 553 out: 554 return err; 555 } 556 557 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, 558 int addr_len, int flags) 559 { 560 struct sock *sk = sock->sk; 561 const struct proto *prot; 562 int err; 563 564 if (addr_len < sizeof(uaddr->sa_family)) 565 return -EINVAL; 566 567 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 568 prot = READ_ONCE(sk->sk_prot); 569 570 if (uaddr->sa_family == AF_UNSPEC) 571 return prot->disconnect(sk, flags); 572 573 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 574 err = prot->pre_connect(sk, uaddr, addr_len); 575 if (err) 576 return err; 577 } 578 579 if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk)) 580 return -EAGAIN; 581 return prot->connect(sk, uaddr, addr_len); 582 } 583 EXPORT_SYMBOL(inet_dgram_connect); 584 585 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) 586 { 587 DEFINE_WAIT_FUNC(wait, woken_wake_function); 588 589 add_wait_queue(sk_sleep(sk), &wait); 590 sk->sk_write_pending += writebias; 591 592 /* Basic assumption: if someone sets sk->sk_err, he _must_ 593 * change state of the socket from TCP_SYN_*. 594 * Connect() does not allow to get error notifications 595 * without closing the socket. 596 */ 597 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 598 release_sock(sk); 599 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 600 lock_sock(sk); 601 if (signal_pending(current) || !timeo) 602 break; 603 } 604 remove_wait_queue(sk_sleep(sk), &wait); 605 sk->sk_write_pending -= writebias; 606 return timeo; 607 } 608 609 /* 610 * Connect to a remote host. There is regrettably still a little 611 * TCP 'magic' in here. 612 */ 613 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 614 int addr_len, int flags, int is_sendmsg) 615 { 616 struct sock *sk = sock->sk; 617 int err; 618 long timeo; 619 620 /* 621 * uaddr can be NULL and addr_len can be 0 if: 622 * sk is a TCP fastopen active socket and 623 * TCP_FASTOPEN_CONNECT sockopt is set and 624 * we already have a valid cookie for this socket. 625 * In this case, user can call write() after connect(). 626 * write() will invoke tcp_sendmsg_fastopen() which calls 627 * __inet_stream_connect(). 628 */ 629 if (uaddr) { 630 if (addr_len < sizeof(uaddr->sa_family)) 631 return -EINVAL; 632 633 if (uaddr->sa_family == AF_UNSPEC) { 634 err = sk->sk_prot->disconnect(sk, flags); 635 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 636 goto out; 637 } 638 } 639 640 switch (sock->state) { 641 default: 642 err = -EINVAL; 643 goto out; 644 case SS_CONNECTED: 645 err = -EISCONN; 646 goto out; 647 case SS_CONNECTING: 648 if (inet_sk(sk)->defer_connect) 649 err = is_sendmsg ? -EINPROGRESS : -EISCONN; 650 else 651 err = -EALREADY; 652 /* Fall out of switch with err, set for this state */ 653 break; 654 case SS_UNCONNECTED: 655 err = -EISCONN; 656 if (sk->sk_state != TCP_CLOSE) 657 goto out; 658 659 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 660 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 661 if (err) 662 goto out; 663 } 664 665 err = sk->sk_prot->connect(sk, uaddr, addr_len); 666 if (err < 0) 667 goto out; 668 669 sock->state = SS_CONNECTING; 670 671 if (!err && inet_sk(sk)->defer_connect) 672 goto out; 673 674 /* Just entered SS_CONNECTING state; the only 675 * difference is that return value in non-blocking 676 * case is EINPROGRESS, rather than EALREADY. 677 */ 678 err = -EINPROGRESS; 679 break; 680 } 681 682 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 683 684 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 685 int writebias = (sk->sk_protocol == IPPROTO_TCP) && 686 tcp_sk(sk)->fastopen_req && 687 tcp_sk(sk)->fastopen_req->data ? 1 : 0; 688 689 /* Error code is set above */ 690 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) 691 goto out; 692 693 err = sock_intr_errno(timeo); 694 if (signal_pending(current)) 695 goto out; 696 } 697 698 /* Connection was closed by RST, timeout, ICMP error 699 * or another process disconnected us. 700 */ 701 if (sk->sk_state == TCP_CLOSE) 702 goto sock_error; 703 704 /* sk->sk_err may be not zero now, if RECVERR was ordered by user 705 * and error was received after socket entered established state. 706 * Hence, it is handled normally after connect() return successfully. 707 */ 708 709 sock->state = SS_CONNECTED; 710 err = 0; 711 out: 712 return err; 713 714 sock_error: 715 err = sock_error(sk) ? : -ECONNABORTED; 716 sock->state = SS_UNCONNECTED; 717 if (sk->sk_prot->disconnect(sk, flags)) 718 sock->state = SS_DISCONNECTING; 719 goto out; 720 } 721 EXPORT_SYMBOL(__inet_stream_connect); 722 723 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 724 int addr_len, int flags) 725 { 726 int err; 727 728 lock_sock(sock->sk); 729 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 730 release_sock(sock->sk); 731 return err; 732 } 733 EXPORT_SYMBOL(inet_stream_connect); 734 735 /* 736 * Accept a pending connection. The TCP layer now gives BSD semantics. 737 */ 738 739 int inet_accept(struct socket *sock, struct socket *newsock, int flags, 740 bool kern) 741 { 742 struct sock *sk1 = sock->sk, *sk2; 743 int err = -EINVAL; 744 745 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 746 sk2 = READ_ONCE(sk1->sk_prot)->accept(sk1, flags, &err, kern); 747 if (!sk2) 748 goto do_err; 749 750 lock_sock(sk2); 751 752 sock_rps_record_flow(sk2); 753 WARN_ON(!((1 << sk2->sk_state) & 754 (TCPF_ESTABLISHED | TCPF_SYN_RECV | 755 TCPF_CLOSE_WAIT | TCPF_CLOSE))); 756 757 sock_graft(sk2, newsock); 758 759 newsock->state = SS_CONNECTED; 760 err = 0; 761 release_sock(sk2); 762 do_err: 763 return err; 764 } 765 EXPORT_SYMBOL(inet_accept); 766 767 /* 768 * This does both peername and sockname. 769 */ 770 int inet_getname(struct socket *sock, struct sockaddr *uaddr, 771 int peer) 772 { 773 struct sock *sk = sock->sk; 774 struct inet_sock *inet = inet_sk(sk); 775 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); 776 777 sin->sin_family = AF_INET; 778 lock_sock(sk); 779 if (peer) { 780 if (!inet->inet_dport || 781 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && 782 peer == 1)) { 783 release_sock(sk); 784 return -ENOTCONN; 785 } 786 sin->sin_port = inet->inet_dport; 787 sin->sin_addr.s_addr = inet->inet_daddr; 788 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, 789 CGROUP_INET4_GETPEERNAME); 790 } else { 791 __be32 addr = inet->inet_rcv_saddr; 792 if (!addr) 793 addr = inet->inet_saddr; 794 sin->sin_port = inet->inet_sport; 795 sin->sin_addr.s_addr = addr; 796 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, 797 CGROUP_INET4_GETSOCKNAME); 798 } 799 release_sock(sk); 800 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 801 return sizeof(*sin); 802 } 803 EXPORT_SYMBOL(inet_getname); 804 805 int inet_send_prepare(struct sock *sk) 806 { 807 sock_rps_record_flow(sk); 808 809 /* We may need to bind the socket. */ 810 if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind && 811 inet_autobind(sk)) 812 return -EAGAIN; 813 814 return 0; 815 } 816 EXPORT_SYMBOL_GPL(inet_send_prepare); 817 818 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 819 { 820 struct sock *sk = sock->sk; 821 822 if (unlikely(inet_send_prepare(sk))) 823 return -EAGAIN; 824 825 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg, 826 sk, msg, size); 827 } 828 EXPORT_SYMBOL(inet_sendmsg); 829 830 ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset, 831 size_t size, int flags) 832 { 833 struct sock *sk = sock->sk; 834 const struct proto *prot; 835 836 if (unlikely(inet_send_prepare(sk))) 837 return -EAGAIN; 838 839 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 840 prot = READ_ONCE(sk->sk_prot); 841 if (prot->sendpage) 842 return prot->sendpage(sk, page, offset, size, flags); 843 return sock_no_sendpage(sock, page, offset, size, flags); 844 } 845 EXPORT_SYMBOL(inet_sendpage); 846 847 INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *, 848 size_t, int, int *)); 849 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 850 int flags) 851 { 852 struct sock *sk = sock->sk; 853 int addr_len = 0; 854 int err; 855 856 if (likely(!(flags & MSG_ERRQUEUE))) 857 sock_rps_record_flow(sk); 858 859 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg, 860 sk, msg, size, flags, &addr_len); 861 if (err >= 0) 862 msg->msg_namelen = addr_len; 863 return err; 864 } 865 EXPORT_SYMBOL(inet_recvmsg); 866 867 int inet_shutdown(struct socket *sock, int how) 868 { 869 struct sock *sk = sock->sk; 870 int err = 0; 871 872 /* This should really check to make sure 873 * the socket is a TCP socket. (WHY AC...) 874 */ 875 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 876 1->2 bit 2 snds. 877 2->3 */ 878 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ 879 return -EINVAL; 880 881 lock_sock(sk); 882 if (sock->state == SS_CONNECTING) { 883 if ((1 << sk->sk_state) & 884 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 885 sock->state = SS_DISCONNECTING; 886 else 887 sock->state = SS_CONNECTED; 888 } 889 890 switch (sk->sk_state) { 891 case TCP_CLOSE: 892 err = -ENOTCONN; 893 /* Hack to wake up other listeners, who can poll for 894 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ 895 fallthrough; 896 default: 897 sk->sk_shutdown |= how; 898 if (sk->sk_prot->shutdown) 899 sk->sk_prot->shutdown(sk, how); 900 break; 901 902 /* Remaining two branches are temporary solution for missing 903 * close() in multithreaded environment. It is _not_ a good idea, 904 * but we have no choice until close() is repaired at VFS level. 905 */ 906 case TCP_LISTEN: 907 if (!(how & RCV_SHUTDOWN)) 908 break; 909 fallthrough; 910 case TCP_SYN_SENT: 911 err = sk->sk_prot->disconnect(sk, O_NONBLOCK); 912 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 913 break; 914 } 915 916 /* Wake up anyone sleeping in poll. */ 917 sk->sk_state_change(sk); 918 release_sock(sk); 919 return err; 920 } 921 EXPORT_SYMBOL(inet_shutdown); 922 923 /* 924 * ioctl() calls you can issue on an INET socket. Most of these are 925 * device configuration and stuff and very rarely used. Some ioctls 926 * pass on to the socket itself. 927 * 928 * NOTE: I like the idea of a module for the config stuff. ie ifconfig 929 * loads the devconfigure module does its configuring and unloads it. 930 * There's a good 20K of config code hanging around the kernel. 931 */ 932 933 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 934 { 935 struct sock *sk = sock->sk; 936 int err = 0; 937 struct net *net = sock_net(sk); 938 void __user *p = (void __user *)arg; 939 struct ifreq ifr; 940 struct rtentry rt; 941 942 switch (cmd) { 943 case SIOCADDRT: 944 case SIOCDELRT: 945 if (copy_from_user(&rt, p, sizeof(struct rtentry))) 946 return -EFAULT; 947 err = ip_rt_ioctl(net, cmd, &rt); 948 break; 949 case SIOCRTMSG: 950 err = -EINVAL; 951 break; 952 case SIOCDARP: 953 case SIOCGARP: 954 case SIOCSARP: 955 err = arp_ioctl(net, cmd, (void __user *)arg); 956 break; 957 case SIOCGIFADDR: 958 case SIOCGIFBRDADDR: 959 case SIOCGIFNETMASK: 960 case SIOCGIFDSTADDR: 961 case SIOCGIFPFLAGS: 962 if (get_user_ifreq(&ifr, NULL, p)) 963 return -EFAULT; 964 err = devinet_ioctl(net, cmd, &ifr); 965 if (!err && put_user_ifreq(&ifr, p)) 966 err = -EFAULT; 967 break; 968 969 case SIOCSIFADDR: 970 case SIOCSIFBRDADDR: 971 case SIOCSIFNETMASK: 972 case SIOCSIFDSTADDR: 973 case SIOCSIFPFLAGS: 974 case SIOCSIFFLAGS: 975 if (get_user_ifreq(&ifr, NULL, p)) 976 return -EFAULT; 977 err = devinet_ioctl(net, cmd, &ifr); 978 break; 979 default: 980 if (sk->sk_prot->ioctl) 981 err = sk->sk_prot->ioctl(sk, cmd, arg); 982 else 983 err = -ENOIOCTLCMD; 984 break; 985 } 986 return err; 987 } 988 EXPORT_SYMBOL(inet_ioctl); 989 990 #ifdef CONFIG_COMPAT 991 static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd, 992 struct compat_rtentry __user *ur) 993 { 994 compat_uptr_t rtdev; 995 struct rtentry rt; 996 997 if (copy_from_user(&rt.rt_dst, &ur->rt_dst, 998 3 * sizeof(struct sockaddr)) || 999 get_user(rt.rt_flags, &ur->rt_flags) || 1000 get_user(rt.rt_metric, &ur->rt_metric) || 1001 get_user(rt.rt_mtu, &ur->rt_mtu) || 1002 get_user(rt.rt_window, &ur->rt_window) || 1003 get_user(rt.rt_irtt, &ur->rt_irtt) || 1004 get_user(rtdev, &ur->rt_dev)) 1005 return -EFAULT; 1006 1007 rt.rt_dev = compat_ptr(rtdev); 1008 return ip_rt_ioctl(sock_net(sk), cmd, &rt); 1009 } 1010 1011 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1012 { 1013 void __user *argp = compat_ptr(arg); 1014 struct sock *sk = sock->sk; 1015 1016 switch (cmd) { 1017 case SIOCADDRT: 1018 case SIOCDELRT: 1019 return inet_compat_routing_ioctl(sk, cmd, argp); 1020 default: 1021 if (!sk->sk_prot->compat_ioctl) 1022 return -ENOIOCTLCMD; 1023 return sk->sk_prot->compat_ioctl(sk, cmd, arg); 1024 } 1025 } 1026 #endif /* CONFIG_COMPAT */ 1027 1028 const struct proto_ops inet_stream_ops = { 1029 .family = PF_INET, 1030 .owner = THIS_MODULE, 1031 .release = inet_release, 1032 .bind = inet_bind, 1033 .connect = inet_stream_connect, 1034 .socketpair = sock_no_socketpair, 1035 .accept = inet_accept, 1036 .getname = inet_getname, 1037 .poll = tcp_poll, 1038 .ioctl = inet_ioctl, 1039 .gettstamp = sock_gettstamp, 1040 .listen = inet_listen, 1041 .shutdown = inet_shutdown, 1042 .setsockopt = sock_common_setsockopt, 1043 .getsockopt = sock_common_getsockopt, 1044 .sendmsg = inet_sendmsg, 1045 .recvmsg = inet_recvmsg, 1046 #ifdef CONFIG_MMU 1047 .mmap = tcp_mmap, 1048 #endif 1049 .sendpage = inet_sendpage, 1050 .splice_read = tcp_splice_read, 1051 .read_sock = tcp_read_sock, 1052 .read_skb = tcp_read_skb, 1053 .sendmsg_locked = tcp_sendmsg_locked, 1054 .sendpage_locked = tcp_sendpage_locked, 1055 .peek_len = tcp_peek_len, 1056 #ifdef CONFIG_COMPAT 1057 .compat_ioctl = inet_compat_ioctl, 1058 #endif 1059 .set_rcvlowat = tcp_set_rcvlowat, 1060 }; 1061 EXPORT_SYMBOL(inet_stream_ops); 1062 1063 const struct proto_ops inet_dgram_ops = { 1064 .family = PF_INET, 1065 .owner = THIS_MODULE, 1066 .release = inet_release, 1067 .bind = inet_bind, 1068 .connect = inet_dgram_connect, 1069 .socketpair = sock_no_socketpair, 1070 .accept = sock_no_accept, 1071 .getname = inet_getname, 1072 .poll = udp_poll, 1073 .ioctl = inet_ioctl, 1074 .gettstamp = sock_gettstamp, 1075 .listen = sock_no_listen, 1076 .shutdown = inet_shutdown, 1077 .setsockopt = sock_common_setsockopt, 1078 .getsockopt = sock_common_getsockopt, 1079 .sendmsg = inet_sendmsg, 1080 .read_skb = udp_read_skb, 1081 .recvmsg = inet_recvmsg, 1082 .mmap = sock_no_mmap, 1083 .sendpage = inet_sendpage, 1084 .set_peek_off = sk_set_peek_off, 1085 #ifdef CONFIG_COMPAT 1086 .compat_ioctl = inet_compat_ioctl, 1087 #endif 1088 }; 1089 EXPORT_SYMBOL(inet_dgram_ops); 1090 1091 /* 1092 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without 1093 * udp_poll 1094 */ 1095 static const struct proto_ops inet_sockraw_ops = { 1096 .family = PF_INET, 1097 .owner = THIS_MODULE, 1098 .release = inet_release, 1099 .bind = inet_bind, 1100 .connect = inet_dgram_connect, 1101 .socketpair = sock_no_socketpair, 1102 .accept = sock_no_accept, 1103 .getname = inet_getname, 1104 .poll = datagram_poll, 1105 .ioctl = inet_ioctl, 1106 .gettstamp = sock_gettstamp, 1107 .listen = sock_no_listen, 1108 .shutdown = inet_shutdown, 1109 .setsockopt = sock_common_setsockopt, 1110 .getsockopt = sock_common_getsockopt, 1111 .sendmsg = inet_sendmsg, 1112 .recvmsg = inet_recvmsg, 1113 .mmap = sock_no_mmap, 1114 .sendpage = inet_sendpage, 1115 #ifdef CONFIG_COMPAT 1116 .compat_ioctl = inet_compat_ioctl, 1117 #endif 1118 }; 1119 1120 static const struct net_proto_family inet_family_ops = { 1121 .family = PF_INET, 1122 .create = inet_create, 1123 .owner = THIS_MODULE, 1124 }; 1125 1126 /* Upon startup we insert all the elements in inetsw_array[] into 1127 * the linked list inetsw. 1128 */ 1129 static struct inet_protosw inetsw_array[] = 1130 { 1131 { 1132 .type = SOCK_STREAM, 1133 .protocol = IPPROTO_TCP, 1134 .prot = &tcp_prot, 1135 .ops = &inet_stream_ops, 1136 .flags = INET_PROTOSW_PERMANENT | 1137 INET_PROTOSW_ICSK, 1138 }, 1139 1140 { 1141 .type = SOCK_DGRAM, 1142 .protocol = IPPROTO_UDP, 1143 .prot = &udp_prot, 1144 .ops = &inet_dgram_ops, 1145 .flags = INET_PROTOSW_PERMANENT, 1146 }, 1147 1148 { 1149 .type = SOCK_DGRAM, 1150 .protocol = IPPROTO_ICMP, 1151 .prot = &ping_prot, 1152 .ops = &inet_sockraw_ops, 1153 .flags = INET_PROTOSW_REUSE, 1154 }, 1155 1156 { 1157 .type = SOCK_RAW, 1158 .protocol = IPPROTO_IP, /* wild card */ 1159 .prot = &raw_prot, 1160 .ops = &inet_sockraw_ops, 1161 .flags = INET_PROTOSW_REUSE, 1162 } 1163 }; 1164 1165 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) 1166 1167 void inet_register_protosw(struct inet_protosw *p) 1168 { 1169 struct list_head *lh; 1170 struct inet_protosw *answer; 1171 int protocol = p->protocol; 1172 struct list_head *last_perm; 1173 1174 spin_lock_bh(&inetsw_lock); 1175 1176 if (p->type >= SOCK_MAX) 1177 goto out_illegal; 1178 1179 /* If we are trying to override a permanent protocol, bail. */ 1180 last_perm = &inetsw[p->type]; 1181 list_for_each(lh, &inetsw[p->type]) { 1182 answer = list_entry(lh, struct inet_protosw, list); 1183 /* Check only the non-wild match. */ 1184 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) 1185 break; 1186 if (protocol == answer->protocol) 1187 goto out_permanent; 1188 last_perm = lh; 1189 } 1190 1191 /* Add the new entry after the last permanent entry if any, so that 1192 * the new entry does not override a permanent entry when matched with 1193 * a wild-card protocol. But it is allowed to override any existing 1194 * non-permanent entry. This means that when we remove this entry, the 1195 * system automatically returns to the old behavior. 1196 */ 1197 list_add_rcu(&p->list, last_perm); 1198 out: 1199 spin_unlock_bh(&inetsw_lock); 1200 1201 return; 1202 1203 out_permanent: 1204 pr_err("Attempt to override permanent protocol %d\n", protocol); 1205 goto out; 1206 1207 out_illegal: 1208 pr_err("Ignoring attempt to register invalid socket type %d\n", 1209 p->type); 1210 goto out; 1211 } 1212 EXPORT_SYMBOL(inet_register_protosw); 1213 1214 void inet_unregister_protosw(struct inet_protosw *p) 1215 { 1216 if (INET_PROTOSW_PERMANENT & p->flags) { 1217 pr_err("Attempt to unregister permanent protocol %d\n", 1218 p->protocol); 1219 } else { 1220 spin_lock_bh(&inetsw_lock); 1221 list_del_rcu(&p->list); 1222 spin_unlock_bh(&inetsw_lock); 1223 1224 synchronize_net(); 1225 } 1226 } 1227 EXPORT_SYMBOL(inet_unregister_protosw); 1228 1229 static int inet_sk_reselect_saddr(struct sock *sk) 1230 { 1231 struct inet_bind_hashbucket *prev_addr_hashbucket; 1232 struct inet_sock *inet = inet_sk(sk); 1233 __be32 old_saddr = inet->inet_saddr; 1234 __be32 daddr = inet->inet_daddr; 1235 struct flowi4 *fl4; 1236 struct rtable *rt; 1237 __be32 new_saddr; 1238 struct ip_options_rcu *inet_opt; 1239 int err; 1240 1241 inet_opt = rcu_dereference_protected(inet->inet_opt, 1242 lockdep_sock_is_held(sk)); 1243 if (inet_opt && inet_opt->opt.srr) 1244 daddr = inet_opt->opt.faddr; 1245 1246 /* Query new route. */ 1247 fl4 = &inet->cork.fl.u.ip4; 1248 rt = ip_route_connect(fl4, daddr, 0, sk->sk_bound_dev_if, 1249 sk->sk_protocol, inet->inet_sport, 1250 inet->inet_dport, sk); 1251 if (IS_ERR(rt)) 1252 return PTR_ERR(rt); 1253 1254 new_saddr = fl4->saddr; 1255 1256 if (new_saddr == old_saddr) { 1257 sk_setup_caps(sk, &rt->dst); 1258 return 0; 1259 } 1260 1261 prev_addr_hashbucket = 1262 inet_bhashfn_portaddr(tcp_or_dccp_get_hashinfo(sk), sk, 1263 sock_net(sk), inet->inet_num); 1264 1265 inet->inet_saddr = inet->inet_rcv_saddr = new_saddr; 1266 1267 err = inet_bhash2_update_saddr(prev_addr_hashbucket, sk); 1268 if (err) { 1269 inet->inet_saddr = old_saddr; 1270 inet->inet_rcv_saddr = old_saddr; 1271 ip_rt_put(rt); 1272 return err; 1273 } 1274 1275 sk_setup_caps(sk, &rt->dst); 1276 1277 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) > 1) { 1278 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", 1279 __func__, &old_saddr, &new_saddr); 1280 } 1281 1282 /* 1283 * XXX The only one ugly spot where we need to 1284 * XXX really change the sockets identity after 1285 * XXX it has entered the hashes. -DaveM 1286 * 1287 * Besides that, it does not check for connection 1288 * uniqueness. Wait for troubles. 1289 */ 1290 return __sk_prot_rehash(sk); 1291 } 1292 1293 int inet_sk_rebuild_header(struct sock *sk) 1294 { 1295 struct inet_sock *inet = inet_sk(sk); 1296 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); 1297 __be32 daddr; 1298 struct ip_options_rcu *inet_opt; 1299 struct flowi4 *fl4; 1300 int err; 1301 1302 /* Route is OK, nothing to do. */ 1303 if (rt) 1304 return 0; 1305 1306 /* Reroute. */ 1307 rcu_read_lock(); 1308 inet_opt = rcu_dereference(inet->inet_opt); 1309 daddr = inet->inet_daddr; 1310 if (inet_opt && inet_opt->opt.srr) 1311 daddr = inet_opt->opt.faddr; 1312 rcu_read_unlock(); 1313 fl4 = &inet->cork.fl.u.ip4; 1314 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, 1315 inet->inet_dport, inet->inet_sport, 1316 sk->sk_protocol, RT_CONN_FLAGS(sk), 1317 sk->sk_bound_dev_if); 1318 if (!IS_ERR(rt)) { 1319 err = 0; 1320 sk_setup_caps(sk, &rt->dst); 1321 } else { 1322 err = PTR_ERR(rt); 1323 1324 /* Routing failed... */ 1325 sk->sk_route_caps = 0; 1326 /* 1327 * Other protocols have to map its equivalent state to TCP_SYN_SENT. 1328 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme 1329 */ 1330 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) || 1331 sk->sk_state != TCP_SYN_SENT || 1332 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || 1333 (err = inet_sk_reselect_saddr(sk)) != 0) 1334 sk->sk_err_soft = -err; 1335 } 1336 1337 return err; 1338 } 1339 EXPORT_SYMBOL(inet_sk_rebuild_header); 1340 1341 void inet_sk_set_state(struct sock *sk, int state) 1342 { 1343 trace_inet_sock_set_state(sk, sk->sk_state, state); 1344 sk->sk_state = state; 1345 } 1346 EXPORT_SYMBOL(inet_sk_set_state); 1347 1348 void inet_sk_state_store(struct sock *sk, int newstate) 1349 { 1350 trace_inet_sock_set_state(sk, sk->sk_state, newstate); 1351 smp_store_release(&sk->sk_state, newstate); 1352 } 1353 1354 struct sk_buff *inet_gso_segment(struct sk_buff *skb, 1355 netdev_features_t features) 1356 { 1357 bool udpfrag = false, fixedid = false, gso_partial, encap; 1358 struct sk_buff *segs = ERR_PTR(-EINVAL); 1359 const struct net_offload *ops; 1360 unsigned int offset = 0; 1361 struct iphdr *iph; 1362 int proto, tot_len; 1363 int nhoff; 1364 int ihl; 1365 int id; 1366 1367 skb_reset_network_header(skb); 1368 nhoff = skb_network_header(skb) - skb_mac_header(skb); 1369 if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) 1370 goto out; 1371 1372 iph = ip_hdr(skb); 1373 ihl = iph->ihl * 4; 1374 if (ihl < sizeof(*iph)) 1375 goto out; 1376 1377 id = ntohs(iph->id); 1378 proto = iph->protocol; 1379 1380 /* Warning: after this point, iph might be no longer valid */ 1381 if (unlikely(!pskb_may_pull(skb, ihl))) 1382 goto out; 1383 __skb_pull(skb, ihl); 1384 1385 encap = SKB_GSO_CB(skb)->encap_level > 0; 1386 if (encap) 1387 features &= skb->dev->hw_enc_features; 1388 SKB_GSO_CB(skb)->encap_level += ihl; 1389 1390 skb_reset_transport_header(skb); 1391 1392 segs = ERR_PTR(-EPROTONOSUPPORT); 1393 1394 if (!skb->encapsulation || encap) { 1395 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); 1396 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); 1397 1398 /* fixed ID is invalid if DF bit is not set */ 1399 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) 1400 goto out; 1401 } 1402 1403 ops = rcu_dereference(inet_offloads[proto]); 1404 if (likely(ops && ops->callbacks.gso_segment)) { 1405 segs = ops->callbacks.gso_segment(skb, features); 1406 if (!segs) 1407 skb->network_header = skb_mac_header(skb) + nhoff - skb->head; 1408 } 1409 1410 if (IS_ERR_OR_NULL(segs)) 1411 goto out; 1412 1413 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); 1414 1415 skb = segs; 1416 do { 1417 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); 1418 if (udpfrag) { 1419 iph->frag_off = htons(offset >> 3); 1420 if (skb->next) 1421 iph->frag_off |= htons(IP_MF); 1422 offset += skb->len - nhoff - ihl; 1423 tot_len = skb->len - nhoff; 1424 } else if (skb_is_gso(skb)) { 1425 if (!fixedid) { 1426 iph->id = htons(id); 1427 id += skb_shinfo(skb)->gso_segs; 1428 } 1429 1430 if (gso_partial) 1431 tot_len = skb_shinfo(skb)->gso_size + 1432 SKB_GSO_CB(skb)->data_offset + 1433 skb->head - (unsigned char *)iph; 1434 else 1435 tot_len = skb->len - nhoff; 1436 } else { 1437 if (!fixedid) 1438 iph->id = htons(id++); 1439 tot_len = skb->len - nhoff; 1440 } 1441 iph->tot_len = htons(tot_len); 1442 ip_send_check(iph); 1443 if (encap) 1444 skb_reset_inner_headers(skb); 1445 skb->network_header = (u8 *)iph - skb->head; 1446 skb_reset_mac_len(skb); 1447 } while ((skb = skb->next)); 1448 1449 out: 1450 return segs; 1451 } 1452 1453 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb, 1454 netdev_features_t features) 1455 { 1456 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) 1457 return ERR_PTR(-EINVAL); 1458 1459 return inet_gso_segment(skb, features); 1460 } 1461 1462 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) 1463 { 1464 const struct net_offload *ops; 1465 struct sk_buff *pp = NULL; 1466 const struct iphdr *iph; 1467 struct sk_buff *p; 1468 unsigned int hlen; 1469 unsigned int off; 1470 unsigned int id; 1471 int flush = 1; 1472 int proto; 1473 1474 off = skb_gro_offset(skb); 1475 hlen = off + sizeof(*iph); 1476 iph = skb_gro_header(skb, hlen, off); 1477 if (unlikely(!iph)) 1478 goto out; 1479 1480 proto = iph->protocol; 1481 1482 ops = rcu_dereference(inet_offloads[proto]); 1483 if (!ops || !ops->callbacks.gro_receive) 1484 goto out; 1485 1486 if (*(u8 *)iph != 0x45) 1487 goto out; 1488 1489 if (ip_is_fragment(iph)) 1490 goto out; 1491 1492 if (unlikely(ip_fast_csum((u8 *)iph, 5))) 1493 goto out; 1494 1495 id = ntohl(*(__be32 *)&iph->id); 1496 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); 1497 id >>= 16; 1498 1499 list_for_each_entry(p, head, list) { 1500 struct iphdr *iph2; 1501 u16 flush_id; 1502 1503 if (!NAPI_GRO_CB(p)->same_flow) 1504 continue; 1505 1506 iph2 = (struct iphdr *)(p->data + off); 1507 /* The above works because, with the exception of the top 1508 * (inner most) layer, we only aggregate pkts with the same 1509 * hdr length so all the hdrs we'll need to verify will start 1510 * at the same offset. 1511 */ 1512 if ((iph->protocol ^ iph2->protocol) | 1513 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | 1514 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { 1515 NAPI_GRO_CB(p)->same_flow = 0; 1516 continue; 1517 } 1518 1519 /* All fields must match except length and checksum. */ 1520 NAPI_GRO_CB(p)->flush |= 1521 (iph->ttl ^ iph2->ttl) | 1522 (iph->tos ^ iph2->tos) | 1523 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); 1524 1525 NAPI_GRO_CB(p)->flush |= flush; 1526 1527 /* We need to store of the IP ID check to be included later 1528 * when we can verify that this packet does in fact belong 1529 * to a given flow. 1530 */ 1531 flush_id = (u16)(id - ntohs(iph2->id)); 1532 1533 /* This bit of code makes it much easier for us to identify 1534 * the cases where we are doing atomic vs non-atomic IP ID 1535 * checks. Specifically an atomic check can return IP ID 1536 * values 0 - 0xFFFF, while a non-atomic check can only 1537 * return 0 or 0xFFFF. 1538 */ 1539 if (!NAPI_GRO_CB(p)->is_atomic || 1540 !(iph->frag_off & htons(IP_DF))) { 1541 flush_id ^= NAPI_GRO_CB(p)->count; 1542 flush_id = flush_id ? 0xFFFF : 0; 1543 } 1544 1545 /* If the previous IP ID value was based on an atomic 1546 * datagram we can overwrite the value and ignore it. 1547 */ 1548 if (NAPI_GRO_CB(skb)->is_atomic) 1549 NAPI_GRO_CB(p)->flush_id = flush_id; 1550 else 1551 NAPI_GRO_CB(p)->flush_id |= flush_id; 1552 } 1553 1554 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); 1555 NAPI_GRO_CB(skb)->flush |= flush; 1556 skb_set_network_header(skb, off); 1557 /* The above will be needed by the transport layer if there is one 1558 * immediately following this IP hdr. 1559 */ 1560 1561 /* Note : No need to call skb_gro_postpull_rcsum() here, 1562 * as we already checked checksum over ipv4 header was 0 1563 */ 1564 skb_gro_pull(skb, sizeof(*iph)); 1565 skb_set_transport_header(skb, skb_gro_offset(skb)); 1566 1567 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive, 1568 ops->callbacks.gro_receive, head, skb); 1569 1570 out: 1571 skb_gro_flush_final(skb, pp, flush); 1572 1573 return pp; 1574 } 1575 1576 static struct sk_buff *ipip_gro_receive(struct list_head *head, 1577 struct sk_buff *skb) 1578 { 1579 if (NAPI_GRO_CB(skb)->encap_mark) { 1580 NAPI_GRO_CB(skb)->flush = 1; 1581 return NULL; 1582 } 1583 1584 NAPI_GRO_CB(skb)->encap_mark = 1; 1585 1586 return inet_gro_receive(head, skb); 1587 } 1588 1589 #define SECONDS_PER_DAY 86400 1590 1591 /* inet_current_timestamp - Return IP network timestamp 1592 * 1593 * Return milliseconds since midnight in network byte order. 1594 */ 1595 __be32 inet_current_timestamp(void) 1596 { 1597 u32 secs; 1598 u32 msecs; 1599 struct timespec64 ts; 1600 1601 ktime_get_real_ts64(&ts); 1602 1603 /* Get secs since midnight. */ 1604 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); 1605 /* Convert to msecs. */ 1606 msecs = secs * MSEC_PER_SEC; 1607 /* Convert nsec to msec. */ 1608 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; 1609 1610 /* Convert to network byte order. */ 1611 return htonl(msecs); 1612 } 1613 EXPORT_SYMBOL(inet_current_timestamp); 1614 1615 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) 1616 { 1617 if (sk->sk_family == AF_INET) 1618 return ip_recv_error(sk, msg, len, addr_len); 1619 #if IS_ENABLED(CONFIG_IPV6) 1620 if (sk->sk_family == AF_INET6) 1621 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); 1622 #endif 1623 return -EINVAL; 1624 } 1625 1626 int inet_gro_complete(struct sk_buff *skb, int nhoff) 1627 { 1628 __be16 newlen = htons(skb->len - nhoff); 1629 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); 1630 const struct net_offload *ops; 1631 int proto = iph->protocol; 1632 int err = -ENOSYS; 1633 1634 if (skb->encapsulation) { 1635 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); 1636 skb_set_inner_network_header(skb, nhoff); 1637 } 1638 1639 csum_replace2(&iph->check, iph->tot_len, newlen); 1640 iph->tot_len = newlen; 1641 1642 ops = rcu_dereference(inet_offloads[proto]); 1643 if (WARN_ON(!ops || !ops->callbacks.gro_complete)) 1644 goto out; 1645 1646 /* Only need to add sizeof(*iph) to get to the next hdr below 1647 * because any hdr with option will have been flushed in 1648 * inet_gro_receive(). 1649 */ 1650 err = INDIRECT_CALL_2(ops->callbacks.gro_complete, 1651 tcp4_gro_complete, udp4_gro_complete, 1652 skb, nhoff + sizeof(*iph)); 1653 1654 out: 1655 return err; 1656 } 1657 1658 static int ipip_gro_complete(struct sk_buff *skb, int nhoff) 1659 { 1660 skb->encapsulation = 1; 1661 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; 1662 return inet_gro_complete(skb, nhoff); 1663 } 1664 1665 int inet_ctl_sock_create(struct sock **sk, unsigned short family, 1666 unsigned short type, unsigned char protocol, 1667 struct net *net) 1668 { 1669 struct socket *sock; 1670 int rc = sock_create_kern(net, family, type, protocol, &sock); 1671 1672 if (rc == 0) { 1673 *sk = sock->sk; 1674 (*sk)->sk_allocation = GFP_ATOMIC; 1675 /* 1676 * Unhash it so that IP input processing does not even see it, 1677 * we do not wish this socket to see incoming packets. 1678 */ 1679 (*sk)->sk_prot->unhash(*sk); 1680 } 1681 return rc; 1682 } 1683 EXPORT_SYMBOL_GPL(inet_ctl_sock_create); 1684 1685 unsigned long snmp_fold_field(void __percpu *mib, int offt) 1686 { 1687 unsigned long res = 0; 1688 int i; 1689 1690 for_each_possible_cpu(i) 1691 res += snmp_get_cpu_field(mib, i, offt); 1692 return res; 1693 } 1694 EXPORT_SYMBOL_GPL(snmp_fold_field); 1695 1696 #if BITS_PER_LONG==32 1697 1698 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, 1699 size_t syncp_offset) 1700 { 1701 void *bhptr; 1702 struct u64_stats_sync *syncp; 1703 u64 v; 1704 unsigned int start; 1705 1706 bhptr = per_cpu_ptr(mib, cpu); 1707 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); 1708 do { 1709 start = u64_stats_fetch_begin_irq(syncp); 1710 v = *(((u64 *)bhptr) + offt); 1711 } while (u64_stats_fetch_retry_irq(syncp, start)); 1712 1713 return v; 1714 } 1715 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); 1716 1717 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) 1718 { 1719 u64 res = 0; 1720 int cpu; 1721 1722 for_each_possible_cpu(cpu) { 1723 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); 1724 } 1725 return res; 1726 } 1727 EXPORT_SYMBOL_GPL(snmp_fold_field64); 1728 #endif 1729 1730 #ifdef CONFIG_IP_MULTICAST 1731 static const struct net_protocol igmp_protocol = { 1732 .handler = igmp_rcv, 1733 }; 1734 #endif 1735 1736 static const struct net_protocol tcp_protocol = { 1737 .handler = tcp_v4_rcv, 1738 .err_handler = tcp_v4_err, 1739 .no_policy = 1, 1740 .icmp_strict_tag_validation = 1, 1741 }; 1742 1743 static const struct net_protocol udp_protocol = { 1744 .handler = udp_rcv, 1745 .err_handler = udp_err, 1746 .no_policy = 1, 1747 }; 1748 1749 static const struct net_protocol icmp_protocol = { 1750 .handler = icmp_rcv, 1751 .err_handler = icmp_err, 1752 .no_policy = 1, 1753 }; 1754 1755 static __net_init int ipv4_mib_init_net(struct net *net) 1756 { 1757 int i; 1758 1759 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); 1760 if (!net->mib.tcp_statistics) 1761 goto err_tcp_mib; 1762 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); 1763 if (!net->mib.ip_statistics) 1764 goto err_ip_mib; 1765 1766 for_each_possible_cpu(i) { 1767 struct ipstats_mib *af_inet_stats; 1768 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); 1769 u64_stats_init(&af_inet_stats->syncp); 1770 } 1771 1772 net->mib.net_statistics = alloc_percpu(struct linux_mib); 1773 if (!net->mib.net_statistics) 1774 goto err_net_mib; 1775 net->mib.udp_statistics = alloc_percpu(struct udp_mib); 1776 if (!net->mib.udp_statistics) 1777 goto err_udp_mib; 1778 net->mib.udplite_statistics = alloc_percpu(struct udp_mib); 1779 if (!net->mib.udplite_statistics) 1780 goto err_udplite_mib; 1781 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); 1782 if (!net->mib.icmp_statistics) 1783 goto err_icmp_mib; 1784 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), 1785 GFP_KERNEL); 1786 if (!net->mib.icmpmsg_statistics) 1787 goto err_icmpmsg_mib; 1788 1789 tcp_mib_init(net); 1790 return 0; 1791 1792 err_icmpmsg_mib: 1793 free_percpu(net->mib.icmp_statistics); 1794 err_icmp_mib: 1795 free_percpu(net->mib.udplite_statistics); 1796 err_udplite_mib: 1797 free_percpu(net->mib.udp_statistics); 1798 err_udp_mib: 1799 free_percpu(net->mib.net_statistics); 1800 err_net_mib: 1801 free_percpu(net->mib.ip_statistics); 1802 err_ip_mib: 1803 free_percpu(net->mib.tcp_statistics); 1804 err_tcp_mib: 1805 return -ENOMEM; 1806 } 1807 1808 static __net_exit void ipv4_mib_exit_net(struct net *net) 1809 { 1810 kfree(net->mib.icmpmsg_statistics); 1811 free_percpu(net->mib.icmp_statistics); 1812 free_percpu(net->mib.udplite_statistics); 1813 free_percpu(net->mib.udp_statistics); 1814 free_percpu(net->mib.net_statistics); 1815 free_percpu(net->mib.ip_statistics); 1816 free_percpu(net->mib.tcp_statistics); 1817 #ifdef CONFIG_MPTCP 1818 /* allocated on demand, see mptcp_init_sock() */ 1819 free_percpu(net->mib.mptcp_statistics); 1820 #endif 1821 } 1822 1823 static __net_initdata struct pernet_operations ipv4_mib_ops = { 1824 .init = ipv4_mib_init_net, 1825 .exit = ipv4_mib_exit_net, 1826 }; 1827 1828 static int __init init_ipv4_mibs(void) 1829 { 1830 return register_pernet_subsys(&ipv4_mib_ops); 1831 } 1832 1833 static __net_init int inet_init_net(struct net *net) 1834 { 1835 /* 1836 * Set defaults for local port range 1837 */ 1838 seqlock_init(&net->ipv4.ip_local_ports.lock); 1839 net->ipv4.ip_local_ports.range[0] = 32768; 1840 net->ipv4.ip_local_ports.range[1] = 60999; 1841 1842 seqlock_init(&net->ipv4.ping_group_range.lock); 1843 /* 1844 * Sane defaults - nobody may create ping sockets. 1845 * Boot scripts should set this to distro-specific group. 1846 */ 1847 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); 1848 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); 1849 1850 /* Default values for sysctl-controlled parameters. 1851 * We set them here, in case sysctl is not compiled. 1852 */ 1853 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; 1854 net->ipv4.sysctl_ip_fwd_update_priority = 1; 1855 net->ipv4.sysctl_ip_dynaddr = 0; 1856 net->ipv4.sysctl_ip_early_demux = 1; 1857 net->ipv4.sysctl_udp_early_demux = 1; 1858 net->ipv4.sysctl_tcp_early_demux = 1; 1859 net->ipv4.sysctl_nexthop_compat_mode = 1; 1860 #ifdef CONFIG_SYSCTL 1861 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; 1862 #endif 1863 1864 /* Some igmp sysctl, whose values are always used */ 1865 net->ipv4.sysctl_igmp_max_memberships = 20; 1866 net->ipv4.sysctl_igmp_max_msf = 10; 1867 /* IGMP reports for link-local multicast groups are enabled by default */ 1868 net->ipv4.sysctl_igmp_llm_reports = 1; 1869 net->ipv4.sysctl_igmp_qrv = 2; 1870 1871 net->ipv4.sysctl_fib_notify_on_flag_change = 0; 1872 1873 return 0; 1874 } 1875 1876 static __net_initdata struct pernet_operations af_inet_ops = { 1877 .init = inet_init_net, 1878 }; 1879 1880 static int __init init_inet_pernet_ops(void) 1881 { 1882 return register_pernet_subsys(&af_inet_ops); 1883 } 1884 1885 static int ipv4_proc_init(void); 1886 1887 /* 1888 * IP protocol layer initialiser 1889 */ 1890 1891 static struct packet_offload ip_packet_offload __read_mostly = { 1892 .type = cpu_to_be16(ETH_P_IP), 1893 .callbacks = { 1894 .gso_segment = inet_gso_segment, 1895 .gro_receive = inet_gro_receive, 1896 .gro_complete = inet_gro_complete, 1897 }, 1898 }; 1899 1900 static const struct net_offload ipip_offload = { 1901 .callbacks = { 1902 .gso_segment = ipip_gso_segment, 1903 .gro_receive = ipip_gro_receive, 1904 .gro_complete = ipip_gro_complete, 1905 }, 1906 }; 1907 1908 static int __init ipip_offload_init(void) 1909 { 1910 return inet_add_offload(&ipip_offload, IPPROTO_IPIP); 1911 } 1912 1913 static int __init ipv4_offload_init(void) 1914 { 1915 /* 1916 * Add offloads 1917 */ 1918 if (udpv4_offload_init() < 0) 1919 pr_crit("%s: Cannot add UDP protocol offload\n", __func__); 1920 if (tcpv4_offload_init() < 0) 1921 pr_crit("%s: Cannot add TCP protocol offload\n", __func__); 1922 if (ipip_offload_init() < 0) 1923 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); 1924 1925 dev_add_offload(&ip_packet_offload); 1926 return 0; 1927 } 1928 1929 fs_initcall(ipv4_offload_init); 1930 1931 static struct packet_type ip_packet_type __read_mostly = { 1932 .type = cpu_to_be16(ETH_P_IP), 1933 .func = ip_rcv, 1934 .list_func = ip_list_rcv, 1935 }; 1936 1937 static int __init inet_init(void) 1938 { 1939 struct inet_protosw *q; 1940 struct list_head *r; 1941 int rc; 1942 1943 sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); 1944 1945 raw_hashinfo_init(&raw_v4_hashinfo); 1946 1947 rc = proto_register(&tcp_prot, 1); 1948 if (rc) 1949 goto out; 1950 1951 rc = proto_register(&udp_prot, 1); 1952 if (rc) 1953 goto out_unregister_tcp_proto; 1954 1955 rc = proto_register(&raw_prot, 1); 1956 if (rc) 1957 goto out_unregister_udp_proto; 1958 1959 rc = proto_register(&ping_prot, 1); 1960 if (rc) 1961 goto out_unregister_raw_proto; 1962 1963 /* 1964 * Tell SOCKET that we are alive... 1965 */ 1966 1967 (void)sock_register(&inet_family_ops); 1968 1969 #ifdef CONFIG_SYSCTL 1970 ip_static_sysctl_init(); 1971 #endif 1972 1973 /* 1974 * Add all the base protocols. 1975 */ 1976 1977 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) 1978 pr_crit("%s: Cannot add ICMP protocol\n", __func__); 1979 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0) 1980 pr_crit("%s: Cannot add UDP protocol\n", __func__); 1981 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0) 1982 pr_crit("%s: Cannot add TCP protocol\n", __func__); 1983 #ifdef CONFIG_IP_MULTICAST 1984 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) 1985 pr_crit("%s: Cannot add IGMP protocol\n", __func__); 1986 #endif 1987 1988 /* Register the socket-side information for inet_create. */ 1989 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 1990 INIT_LIST_HEAD(r); 1991 1992 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 1993 inet_register_protosw(q); 1994 1995 /* 1996 * Set the ARP module up 1997 */ 1998 1999 arp_init(); 2000 2001 /* 2002 * Set the IP module up 2003 */ 2004 2005 ip_init(); 2006 2007 /* Initialise per-cpu ipv4 mibs */ 2008 if (init_ipv4_mibs()) 2009 panic("%s: Cannot init ipv4 mibs\n", __func__); 2010 2011 /* Setup TCP slab cache for open requests. */ 2012 tcp_init(); 2013 2014 /* Setup UDP memory threshold */ 2015 udp_init(); 2016 2017 /* Add UDP-Lite (RFC 3828) */ 2018 udplite4_register(); 2019 2020 raw_init(); 2021 2022 ping_init(); 2023 2024 /* 2025 * Set the ICMP layer up 2026 */ 2027 2028 if (icmp_init() < 0) 2029 panic("Failed to create the ICMP control socket.\n"); 2030 2031 /* 2032 * Initialise the multicast router 2033 */ 2034 #if defined(CONFIG_IP_MROUTE) 2035 if (ip_mr_init()) 2036 pr_crit("%s: Cannot init ipv4 mroute\n", __func__); 2037 #endif 2038 2039 if (init_inet_pernet_ops()) 2040 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); 2041 2042 ipv4_proc_init(); 2043 2044 ipfrag_init(); 2045 2046 dev_add_pack(&ip_packet_type); 2047 2048 ip_tunnel_core_init(); 2049 2050 rc = 0; 2051 out: 2052 return rc; 2053 out_unregister_raw_proto: 2054 proto_unregister(&raw_prot); 2055 out_unregister_udp_proto: 2056 proto_unregister(&udp_prot); 2057 out_unregister_tcp_proto: 2058 proto_unregister(&tcp_prot); 2059 goto out; 2060 } 2061 2062 fs_initcall(inet_init); 2063 2064 /* ------------------------------------------------------------------------ */ 2065 2066 #ifdef CONFIG_PROC_FS 2067 static int __init ipv4_proc_init(void) 2068 { 2069 int rc = 0; 2070 2071 if (raw_proc_init()) 2072 goto out_raw; 2073 if (tcp4_proc_init()) 2074 goto out_tcp; 2075 if (udp4_proc_init()) 2076 goto out_udp; 2077 if (ping_proc_init()) 2078 goto out_ping; 2079 if (ip_misc_proc_init()) 2080 goto out_misc; 2081 out: 2082 return rc; 2083 out_misc: 2084 ping_proc_exit(); 2085 out_ping: 2086 udp4_proc_exit(); 2087 out_udp: 2088 tcp4_proc_exit(); 2089 out_tcp: 2090 raw_proc_exit(); 2091 out_raw: 2092 rc = -ENOMEM; 2093 goto out; 2094 } 2095 2096 #else /* CONFIG_PROC_FS */ 2097 static int __init ipv4_proc_init(void) 2098 { 2099 return 0; 2100 } 2101 #endif /* CONFIG_PROC_FS */ 2102