1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * PF_INET protocol family socket handler. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Florian La Roche, <flla@stud.uni-sb.de> 11 * Alan Cox, <A.Cox@swansea.ac.uk> 12 * 13 * Changes (see also sock.c) 14 * 15 * piggy, 16 * Karl Knutson : Socket protocol table 17 * A.N.Kuznetsov : Socket death error in accept(). 18 * John Richardson : Fix non blocking error in connect() 19 * so sockets that fail to connect 20 * don't return -EINPROGRESS. 21 * Alan Cox : Asynchronous I/O support 22 * Alan Cox : Keep correct socket pointer on sock 23 * structures 24 * when accept() ed 25 * Alan Cox : Semantics of SO_LINGER aren't state 26 * moved to close when you look carefully. 27 * With this fixed and the accept bug fixed 28 * some RPC stuff seems happier. 29 * Niibe Yutaka : 4.4BSD style write async I/O 30 * Alan Cox, 31 * Tony Gale : Fixed reuse semantics. 32 * Alan Cox : bind() shouldn't abort existing but dead 33 * sockets. Stops FTP netin:.. I hope. 34 * Alan Cox : bind() works correctly for RAW sockets. 35 * Note that FreeBSD at least was broken 36 * in this respect so be careful with 37 * compatibility tests... 38 * Alan Cox : routing cache support 39 * Alan Cox : memzero the socket structure for 40 * compactness. 41 * Matt Day : nonblock connect error handler 42 * Alan Cox : Allow large numbers of pending sockets 43 * (eg for big web sites), but only if 44 * specifically application requested. 45 * Alan Cox : New buffering throughout IP. Used 46 * dumbly. 47 * Alan Cox : New buffering now used smartly. 48 * Alan Cox : BSD rather than common sense 49 * interpretation of listen. 50 * Germano Caronni : Assorted small races. 51 * Alan Cox : sendmsg/recvmsg basic support. 52 * Alan Cox : Only sendmsg/recvmsg now supported. 53 * Alan Cox : Locked down bind (see security list). 54 * Alan Cox : Loosened bind a little. 55 * Mike McLagan : ADD/DEL DLCI Ioctls 56 * Willy Konynenberg : Transparent proxying support. 57 * David S. Miller : New socket lookup architecture. 58 * Some other random speedups. 59 * Cyrus Durgin : Cleaned up file for kmod hacks. 60 * Andi Kleen : Fix inet_stream_connect TCP race. 61 * 62 * This program is free software; you can redistribute it and/or 63 * modify it under the terms of the GNU General Public License 64 * as published by the Free Software Foundation; either version 65 * 2 of the License, or (at your option) any later version. 66 */ 67 68 #define pr_fmt(fmt) "IPv4: " fmt 69 70 #include <linux/err.h> 71 #include <linux/errno.h> 72 #include <linux/types.h> 73 #include <linux/socket.h> 74 #include <linux/in.h> 75 #include <linux/kernel.h> 76 #include <linux/kmod.h> 77 #include <linux/sched.h> 78 #include <linux/timer.h> 79 #include <linux/string.h> 80 #include <linux/sockios.h> 81 #include <linux/net.h> 82 #include <linux/capability.h> 83 #include <linux/fcntl.h> 84 #include <linux/mm.h> 85 #include <linux/interrupt.h> 86 #include <linux/stat.h> 87 #include <linux/init.h> 88 #include <linux/poll.h> 89 #include <linux/netfilter_ipv4.h> 90 #include <linux/random.h> 91 #include <linux/slab.h> 92 93 #include <linux/uaccess.h> 94 95 #include <linux/inet.h> 96 #include <linux/igmp.h> 97 #include <linux/inetdevice.h> 98 #include <linux/netdevice.h> 99 #include <net/checksum.h> 100 #include <net/ip.h> 101 #include <net/protocol.h> 102 #include <net/arp.h> 103 #include <net/route.h> 104 #include <net/ip_fib.h> 105 #include <net/inet_connection_sock.h> 106 #include <net/tcp.h> 107 #include <net/udp.h> 108 #include <net/udplite.h> 109 #include <net/ping.h> 110 #include <linux/skbuff.h> 111 #include <net/sock.h> 112 #include <net/raw.h> 113 #include <net/icmp.h> 114 #include <net/inet_common.h> 115 #include <net/ip_tunnels.h> 116 #include <net/xfrm.h> 117 #include <net/net_namespace.h> 118 #include <net/secure_seq.h> 119 #ifdef CONFIG_IP_MROUTE 120 #include <linux/mroute.h> 121 #endif 122 #include <net/l3mdev.h> 123 124 #include <trace/events/sock.h> 125 126 /* The inetsw table contains everything that inet_create needs to 127 * build a new socket. 128 */ 129 static struct list_head inetsw[SOCK_MAX]; 130 static DEFINE_SPINLOCK(inetsw_lock); 131 132 /* New destruction routine */ 133 134 void inet_sock_destruct(struct sock *sk) 135 { 136 struct inet_sock *inet = inet_sk(sk); 137 138 __skb_queue_purge(&sk->sk_receive_queue); 139 __skb_queue_purge(&sk->sk_error_queue); 140 141 sk_mem_reclaim(sk); 142 143 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { 144 pr_err("Attempt to release TCP socket in state %d %p\n", 145 sk->sk_state, sk); 146 return; 147 } 148 if (!sock_flag(sk, SOCK_DEAD)) { 149 pr_err("Attempt to release alive inet socket %p\n", sk); 150 return; 151 } 152 153 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 154 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 155 WARN_ON(sk->sk_wmem_queued); 156 WARN_ON(sk->sk_forward_alloc); 157 158 kfree(rcu_dereference_protected(inet->inet_opt, 1)); 159 dst_release(rcu_dereference_check(sk->sk_dst_cache, 1)); 160 dst_release(sk->sk_rx_dst); 161 sk_refcnt_debug_dec(sk); 162 } 163 EXPORT_SYMBOL(inet_sock_destruct); 164 165 /* 166 * The routines beyond this point handle the behaviour of an AF_INET 167 * socket object. Mostly it punts to the subprotocols of IP to do 168 * the work. 169 */ 170 171 /* 172 * Automatically bind an unbound socket. 173 */ 174 175 static int inet_autobind(struct sock *sk) 176 { 177 struct inet_sock *inet; 178 /* We may need to bind the socket. */ 179 lock_sock(sk); 180 inet = inet_sk(sk); 181 if (!inet->inet_num) { 182 if (sk->sk_prot->get_port(sk, 0)) { 183 release_sock(sk); 184 return -EAGAIN; 185 } 186 inet->inet_sport = htons(inet->inet_num); 187 } 188 release_sock(sk); 189 return 0; 190 } 191 192 /* 193 * Move a socket into listening state. 194 */ 195 int inet_listen(struct socket *sock, int backlog) 196 { 197 struct sock *sk = sock->sk; 198 unsigned char old_state; 199 int err, tcp_fastopen; 200 201 lock_sock(sk); 202 203 err = -EINVAL; 204 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 205 goto out; 206 207 old_state = sk->sk_state; 208 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) 209 goto out; 210 211 /* Really, if the socket is already in listen state 212 * we can only allow the backlog to be adjusted. 213 */ 214 if (old_state != TCP_LISTEN) { 215 /* Enable TFO w/o requiring TCP_FASTOPEN socket option. 216 * Note that only TCP sockets (SOCK_STREAM) will reach here. 217 * Also fastopen backlog may already been set via the option 218 * because the socket was in TCP_LISTEN state previously but 219 * was shutdown() rather than close(). 220 */ 221 tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen; 222 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && 223 (tcp_fastopen & TFO_SERVER_ENABLE) && 224 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { 225 fastopen_queue_tune(sk, backlog); 226 tcp_fastopen_init_key_once(sock_net(sk)); 227 } 228 229 err = inet_csk_listen_start(sk, backlog); 230 if (err) 231 goto out; 232 } 233 sk->sk_max_ack_backlog = backlog; 234 err = 0; 235 236 out: 237 release_sock(sk); 238 return err; 239 } 240 EXPORT_SYMBOL(inet_listen); 241 242 /* 243 * Create an inet socket. 244 */ 245 246 static int inet_create(struct net *net, struct socket *sock, int protocol, 247 int kern) 248 { 249 struct sock *sk; 250 struct inet_protosw *answer; 251 struct inet_sock *inet; 252 struct proto *answer_prot; 253 unsigned char answer_flags; 254 int try_loading_module = 0; 255 int err; 256 257 if (protocol < 0 || protocol >= IPPROTO_MAX) 258 return -EINVAL; 259 260 sock->state = SS_UNCONNECTED; 261 262 /* Look for the requested type/protocol pair. */ 263 lookup_protocol: 264 err = -ESOCKTNOSUPPORT; 265 rcu_read_lock(); 266 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { 267 268 err = 0; 269 /* Check the non-wild match. */ 270 if (protocol == answer->protocol) { 271 if (protocol != IPPROTO_IP) 272 break; 273 } else { 274 /* Check for the two wild cases. */ 275 if (IPPROTO_IP == protocol) { 276 protocol = answer->protocol; 277 break; 278 } 279 if (IPPROTO_IP == answer->protocol) 280 break; 281 } 282 err = -EPROTONOSUPPORT; 283 } 284 285 if (unlikely(err)) { 286 if (try_loading_module < 2) { 287 rcu_read_unlock(); 288 /* 289 * Be more specific, e.g. net-pf-2-proto-132-type-1 290 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) 291 */ 292 if (++try_loading_module == 1) 293 request_module("net-pf-%d-proto-%d-type-%d", 294 PF_INET, protocol, sock->type); 295 /* 296 * Fall back to generic, e.g. net-pf-2-proto-132 297 * (net-pf-PF_INET-proto-IPPROTO_SCTP) 298 */ 299 else 300 request_module("net-pf-%d-proto-%d", 301 PF_INET, protocol); 302 goto lookup_protocol; 303 } else 304 goto out_rcu_unlock; 305 } 306 307 err = -EPERM; 308 if (sock->type == SOCK_RAW && !kern && 309 !ns_capable(net->user_ns, CAP_NET_RAW)) 310 goto out_rcu_unlock; 311 312 sock->ops = answer->ops; 313 answer_prot = answer->prot; 314 answer_flags = answer->flags; 315 rcu_read_unlock(); 316 317 WARN_ON(!answer_prot->slab); 318 319 err = -ENOBUFS; 320 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); 321 if (!sk) 322 goto out; 323 324 err = 0; 325 if (INET_PROTOSW_REUSE & answer_flags) 326 sk->sk_reuse = SK_CAN_REUSE; 327 328 inet = inet_sk(sk); 329 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0; 330 331 inet->nodefrag = 0; 332 333 if (SOCK_RAW == sock->type) { 334 inet->inet_num = protocol; 335 if (IPPROTO_RAW == protocol) 336 inet->hdrincl = 1; 337 } 338 339 if (net->ipv4.sysctl_ip_no_pmtu_disc) 340 inet->pmtudisc = IP_PMTUDISC_DONT; 341 else 342 inet->pmtudisc = IP_PMTUDISC_WANT; 343 344 inet->inet_id = 0; 345 346 sock_init_data(sock, sk); 347 348 sk->sk_destruct = inet_sock_destruct; 349 sk->sk_protocol = protocol; 350 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 351 352 inet->uc_ttl = -1; 353 inet->mc_loop = 1; 354 inet->mc_ttl = 1; 355 inet->mc_all = 1; 356 inet->mc_index = 0; 357 inet->mc_list = NULL; 358 inet->rcv_tos = 0; 359 360 sk_refcnt_debug_inc(sk); 361 362 if (inet->inet_num) { 363 /* It assumes that any protocol which allows 364 * the user to assign a number at socket 365 * creation time automatically 366 * shares. 367 */ 368 inet->inet_sport = htons(inet->inet_num); 369 /* Add to protocol hash chains. */ 370 err = sk->sk_prot->hash(sk); 371 if (err) { 372 sk_common_release(sk); 373 goto out; 374 } 375 } 376 377 if (sk->sk_prot->init) { 378 err = sk->sk_prot->init(sk); 379 if (err) { 380 sk_common_release(sk); 381 goto out; 382 } 383 } 384 385 if (!kern) { 386 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); 387 if (err) { 388 sk_common_release(sk); 389 goto out; 390 } 391 } 392 out: 393 return err; 394 out_rcu_unlock: 395 rcu_read_unlock(); 396 goto out; 397 } 398 399 400 /* 401 * The peer socket should always be NULL (or else). When we call this 402 * function we are destroying the object and from then on nobody 403 * should refer to it. 404 */ 405 int inet_release(struct socket *sock) 406 { 407 struct sock *sk = sock->sk; 408 409 if (sk) { 410 long timeout; 411 412 /* Applications forget to leave groups before exiting */ 413 ip_mc_drop_socket(sk); 414 415 /* If linger is set, we don't return until the close 416 * is complete. Otherwise we return immediately. The 417 * actually closing is done the same either way. 418 * 419 * If the close is due to the process exiting, we never 420 * linger.. 421 */ 422 timeout = 0; 423 if (sock_flag(sk, SOCK_LINGER) && 424 !(current->flags & PF_EXITING)) 425 timeout = sk->sk_lingertime; 426 sock->sk = NULL; 427 sk->sk_prot->close(sk, timeout); 428 } 429 return 0; 430 } 431 EXPORT_SYMBOL(inet_release); 432 433 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 434 { 435 struct sock *sk = sock->sk; 436 int err; 437 438 /* If the socket has its own bind function then use it. (RAW) */ 439 if (sk->sk_prot->bind) { 440 return sk->sk_prot->bind(sk, uaddr, addr_len); 441 } 442 if (addr_len < sizeof(struct sockaddr_in)) 443 return -EINVAL; 444 445 /* BPF prog is run before any checks are done so that if the prog 446 * changes context in a wrong way it will be caught. 447 */ 448 err = BPF_CGROUP_RUN_PROG_INET4_BIND(sk, uaddr); 449 if (err) 450 return err; 451 452 return __inet_bind(sk, uaddr, addr_len, false, true); 453 } 454 EXPORT_SYMBOL(inet_bind); 455 456 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, 457 bool force_bind_address_no_port, bool with_lock) 458 { 459 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; 460 struct inet_sock *inet = inet_sk(sk); 461 struct net *net = sock_net(sk); 462 unsigned short snum; 463 int chk_addr_ret; 464 u32 tb_id = RT_TABLE_LOCAL; 465 int err; 466 467 if (addr->sin_family != AF_INET) { 468 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) 469 * only if s_addr is INADDR_ANY. 470 */ 471 err = -EAFNOSUPPORT; 472 if (addr->sin_family != AF_UNSPEC || 473 addr->sin_addr.s_addr != htonl(INADDR_ANY)) 474 goto out; 475 } 476 477 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; 478 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); 479 480 /* Not specified by any standard per-se, however it breaks too 481 * many applications when removed. It is unfortunate since 482 * allowing applications to make a non-local bind solves 483 * several problems with systems using dynamic addressing. 484 * (ie. your servers still start up even if your ISDN link 485 * is temporarily down) 486 */ 487 err = -EADDRNOTAVAIL; 488 if (!net->ipv4.sysctl_ip_nonlocal_bind && 489 !(inet->freebind || inet->transparent) && 490 addr->sin_addr.s_addr != htonl(INADDR_ANY) && 491 chk_addr_ret != RTN_LOCAL && 492 chk_addr_ret != RTN_MULTICAST && 493 chk_addr_ret != RTN_BROADCAST) 494 goto out; 495 496 snum = ntohs(addr->sin_port); 497 err = -EACCES; 498 if (snum && snum < inet_prot_sock(net) && 499 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 500 goto out; 501 502 /* We keep a pair of addresses. rcv_saddr is the one 503 * used by hash lookups, and saddr is used for transmit. 504 * 505 * In the BSD API these are the same except where it 506 * would be illegal to use them (multicast/broadcast) in 507 * which case the sending device address is used. 508 */ 509 if (with_lock) 510 lock_sock(sk); 511 512 /* Check these errors (active socket, double bind). */ 513 err = -EINVAL; 514 if (sk->sk_state != TCP_CLOSE || inet->inet_num) 515 goto out_release_sock; 516 517 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; 518 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) 519 inet->inet_saddr = 0; /* Use device */ 520 521 /* Make sure we are allowed to bind here. */ 522 if (snum || !(inet->bind_address_no_port || 523 force_bind_address_no_port)) { 524 if (sk->sk_prot->get_port(sk, snum)) { 525 inet->inet_saddr = inet->inet_rcv_saddr = 0; 526 err = -EADDRINUSE; 527 goto out_release_sock; 528 } 529 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); 530 if (err) { 531 inet->inet_saddr = inet->inet_rcv_saddr = 0; 532 goto out_release_sock; 533 } 534 } 535 536 if (inet->inet_rcv_saddr) 537 sk->sk_userlocks |= SOCK_BINDADDR_LOCK; 538 if (snum) 539 sk->sk_userlocks |= SOCK_BINDPORT_LOCK; 540 inet->inet_sport = htons(inet->inet_num); 541 inet->inet_daddr = 0; 542 inet->inet_dport = 0; 543 sk_dst_reset(sk); 544 err = 0; 545 out_release_sock: 546 if (with_lock) 547 release_sock(sk); 548 out: 549 return err; 550 } 551 552 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, 553 int addr_len, int flags) 554 { 555 struct sock *sk = sock->sk; 556 int err; 557 558 if (addr_len < sizeof(uaddr->sa_family)) 559 return -EINVAL; 560 if (uaddr->sa_family == AF_UNSPEC) 561 return sk->sk_prot->disconnect(sk, flags); 562 563 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 564 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 565 if (err) 566 return err; 567 } 568 569 if (!inet_sk(sk)->inet_num && inet_autobind(sk)) 570 return -EAGAIN; 571 return sk->sk_prot->connect(sk, uaddr, addr_len); 572 } 573 EXPORT_SYMBOL(inet_dgram_connect); 574 575 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) 576 { 577 DEFINE_WAIT_FUNC(wait, woken_wake_function); 578 579 add_wait_queue(sk_sleep(sk), &wait); 580 sk->sk_write_pending += writebias; 581 582 /* Basic assumption: if someone sets sk->sk_err, he _must_ 583 * change state of the socket from TCP_SYN_*. 584 * Connect() does not allow to get error notifications 585 * without closing the socket. 586 */ 587 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 588 release_sock(sk); 589 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 590 lock_sock(sk); 591 if (signal_pending(current) || !timeo) 592 break; 593 } 594 remove_wait_queue(sk_sleep(sk), &wait); 595 sk->sk_write_pending -= writebias; 596 return timeo; 597 } 598 599 /* 600 * Connect to a remote host. There is regrettably still a little 601 * TCP 'magic' in here. 602 */ 603 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 604 int addr_len, int flags, int is_sendmsg) 605 { 606 struct sock *sk = sock->sk; 607 int err; 608 long timeo; 609 610 /* 611 * uaddr can be NULL and addr_len can be 0 if: 612 * sk is a TCP fastopen active socket and 613 * TCP_FASTOPEN_CONNECT sockopt is set and 614 * we already have a valid cookie for this socket. 615 * In this case, user can call write() after connect(). 616 * write() will invoke tcp_sendmsg_fastopen() which calls 617 * __inet_stream_connect(). 618 */ 619 if (uaddr) { 620 if (addr_len < sizeof(uaddr->sa_family)) 621 return -EINVAL; 622 623 if (uaddr->sa_family == AF_UNSPEC) { 624 err = sk->sk_prot->disconnect(sk, flags); 625 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 626 goto out; 627 } 628 } 629 630 switch (sock->state) { 631 default: 632 err = -EINVAL; 633 goto out; 634 case SS_CONNECTED: 635 err = -EISCONN; 636 goto out; 637 case SS_CONNECTING: 638 if (inet_sk(sk)->defer_connect) 639 err = is_sendmsg ? -EINPROGRESS : -EISCONN; 640 else 641 err = -EALREADY; 642 /* Fall out of switch with err, set for this state */ 643 break; 644 case SS_UNCONNECTED: 645 err = -EISCONN; 646 if (sk->sk_state != TCP_CLOSE) 647 goto out; 648 649 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 650 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 651 if (err) 652 goto out; 653 } 654 655 err = sk->sk_prot->connect(sk, uaddr, addr_len); 656 if (err < 0) 657 goto out; 658 659 sock->state = SS_CONNECTING; 660 661 if (!err && inet_sk(sk)->defer_connect) 662 goto out; 663 664 /* Just entered SS_CONNECTING state; the only 665 * difference is that return value in non-blocking 666 * case is EINPROGRESS, rather than EALREADY. 667 */ 668 err = -EINPROGRESS; 669 break; 670 } 671 672 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 673 674 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 675 int writebias = (sk->sk_protocol == IPPROTO_TCP) && 676 tcp_sk(sk)->fastopen_req && 677 tcp_sk(sk)->fastopen_req->data ? 1 : 0; 678 679 /* Error code is set above */ 680 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) 681 goto out; 682 683 err = sock_intr_errno(timeo); 684 if (signal_pending(current)) 685 goto out; 686 } 687 688 /* Connection was closed by RST, timeout, ICMP error 689 * or another process disconnected us. 690 */ 691 if (sk->sk_state == TCP_CLOSE) 692 goto sock_error; 693 694 /* sk->sk_err may be not zero now, if RECVERR was ordered by user 695 * and error was received after socket entered established state. 696 * Hence, it is handled normally after connect() return successfully. 697 */ 698 699 sock->state = SS_CONNECTED; 700 err = 0; 701 out: 702 return err; 703 704 sock_error: 705 err = sock_error(sk) ? : -ECONNABORTED; 706 sock->state = SS_UNCONNECTED; 707 if (sk->sk_prot->disconnect(sk, flags)) 708 sock->state = SS_DISCONNECTING; 709 goto out; 710 } 711 EXPORT_SYMBOL(__inet_stream_connect); 712 713 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 714 int addr_len, int flags) 715 { 716 int err; 717 718 lock_sock(sock->sk); 719 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 720 release_sock(sock->sk); 721 return err; 722 } 723 EXPORT_SYMBOL(inet_stream_connect); 724 725 /* 726 * Accept a pending connection. The TCP layer now gives BSD semantics. 727 */ 728 729 int inet_accept(struct socket *sock, struct socket *newsock, int flags, 730 bool kern) 731 { 732 struct sock *sk1 = sock->sk; 733 int err = -EINVAL; 734 struct sock *sk2 = sk1->sk_prot->accept(sk1, flags, &err, kern); 735 736 if (!sk2) 737 goto do_err; 738 739 lock_sock(sk2); 740 741 sock_rps_record_flow(sk2); 742 WARN_ON(!((1 << sk2->sk_state) & 743 (TCPF_ESTABLISHED | TCPF_SYN_RECV | 744 TCPF_CLOSE_WAIT | TCPF_CLOSE))); 745 746 sock_graft(sk2, newsock); 747 748 newsock->state = SS_CONNECTED; 749 err = 0; 750 release_sock(sk2); 751 do_err: 752 return err; 753 } 754 EXPORT_SYMBOL(inet_accept); 755 756 757 /* 758 * This does both peername and sockname. 759 */ 760 int inet_getname(struct socket *sock, struct sockaddr *uaddr, 761 int peer) 762 { 763 struct sock *sk = sock->sk; 764 struct inet_sock *inet = inet_sk(sk); 765 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); 766 767 sin->sin_family = AF_INET; 768 if (peer) { 769 if (!inet->inet_dport || 770 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && 771 peer == 1)) 772 return -ENOTCONN; 773 sin->sin_port = inet->inet_dport; 774 sin->sin_addr.s_addr = inet->inet_daddr; 775 } else { 776 __be32 addr = inet->inet_rcv_saddr; 777 if (!addr) 778 addr = inet->inet_saddr; 779 sin->sin_port = inet->inet_sport; 780 sin->sin_addr.s_addr = addr; 781 } 782 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 783 return sizeof(*sin); 784 } 785 EXPORT_SYMBOL(inet_getname); 786 787 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 788 { 789 struct sock *sk = sock->sk; 790 791 sock_rps_record_flow(sk); 792 793 /* We may need to bind the socket. */ 794 if (!inet_sk(sk)->inet_num && !sk->sk_prot->no_autobind && 795 inet_autobind(sk)) 796 return -EAGAIN; 797 798 return sk->sk_prot->sendmsg(sk, msg, size); 799 } 800 EXPORT_SYMBOL(inet_sendmsg); 801 802 ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset, 803 size_t size, int flags) 804 { 805 struct sock *sk = sock->sk; 806 807 sock_rps_record_flow(sk); 808 809 /* We may need to bind the socket. */ 810 if (!inet_sk(sk)->inet_num && !sk->sk_prot->no_autobind && 811 inet_autobind(sk)) 812 return -EAGAIN; 813 814 if (sk->sk_prot->sendpage) 815 return sk->sk_prot->sendpage(sk, page, offset, size, flags); 816 return sock_no_sendpage(sock, page, offset, size, flags); 817 } 818 EXPORT_SYMBOL(inet_sendpage); 819 820 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 821 int flags) 822 { 823 struct sock *sk = sock->sk; 824 int addr_len = 0; 825 int err; 826 827 if (likely(!(flags & MSG_ERRQUEUE))) 828 sock_rps_record_flow(sk); 829 830 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 831 flags & ~MSG_DONTWAIT, &addr_len); 832 if (err >= 0) 833 msg->msg_namelen = addr_len; 834 return err; 835 } 836 EXPORT_SYMBOL(inet_recvmsg); 837 838 int inet_shutdown(struct socket *sock, int how) 839 { 840 struct sock *sk = sock->sk; 841 int err = 0; 842 843 /* This should really check to make sure 844 * the socket is a TCP socket. (WHY AC...) 845 */ 846 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 847 1->2 bit 2 snds. 848 2->3 */ 849 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ 850 return -EINVAL; 851 852 lock_sock(sk); 853 if (sock->state == SS_CONNECTING) { 854 if ((1 << sk->sk_state) & 855 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 856 sock->state = SS_DISCONNECTING; 857 else 858 sock->state = SS_CONNECTED; 859 } 860 861 switch (sk->sk_state) { 862 case TCP_CLOSE: 863 err = -ENOTCONN; 864 /* Hack to wake up other listeners, who can poll for 865 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ 866 /* fall through */ 867 default: 868 sk->sk_shutdown |= how; 869 if (sk->sk_prot->shutdown) 870 sk->sk_prot->shutdown(sk, how); 871 break; 872 873 /* Remaining two branches are temporary solution for missing 874 * close() in multithreaded environment. It is _not_ a good idea, 875 * but we have no choice until close() is repaired at VFS level. 876 */ 877 case TCP_LISTEN: 878 if (!(how & RCV_SHUTDOWN)) 879 break; 880 /* fall through */ 881 case TCP_SYN_SENT: 882 err = sk->sk_prot->disconnect(sk, O_NONBLOCK); 883 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 884 break; 885 } 886 887 /* Wake up anyone sleeping in poll. */ 888 sk->sk_state_change(sk); 889 release_sock(sk); 890 return err; 891 } 892 EXPORT_SYMBOL(inet_shutdown); 893 894 /* 895 * ioctl() calls you can issue on an INET socket. Most of these are 896 * device configuration and stuff and very rarely used. Some ioctls 897 * pass on to the socket itself. 898 * 899 * NOTE: I like the idea of a module for the config stuff. ie ifconfig 900 * loads the devconfigure module does its configuring and unloads it. 901 * There's a good 20K of config code hanging around the kernel. 902 */ 903 904 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 905 { 906 struct sock *sk = sock->sk; 907 int err = 0; 908 struct net *net = sock_net(sk); 909 void __user *p = (void __user *)arg; 910 struct ifreq ifr; 911 struct rtentry rt; 912 913 switch (cmd) { 914 case SIOCGSTAMP: 915 err = sock_get_timestamp(sk, (struct timeval __user *)arg); 916 break; 917 case SIOCGSTAMPNS: 918 err = sock_get_timestampns(sk, (struct timespec __user *)arg); 919 break; 920 case SIOCADDRT: 921 case SIOCDELRT: 922 if (copy_from_user(&rt, p, sizeof(struct rtentry))) 923 return -EFAULT; 924 err = ip_rt_ioctl(net, cmd, &rt); 925 break; 926 case SIOCRTMSG: 927 err = -EINVAL; 928 break; 929 case SIOCDARP: 930 case SIOCGARP: 931 case SIOCSARP: 932 err = arp_ioctl(net, cmd, (void __user *)arg); 933 break; 934 case SIOCGIFADDR: 935 case SIOCGIFBRDADDR: 936 case SIOCGIFNETMASK: 937 case SIOCGIFDSTADDR: 938 case SIOCGIFPFLAGS: 939 if (copy_from_user(&ifr, p, sizeof(struct ifreq))) 940 return -EFAULT; 941 err = devinet_ioctl(net, cmd, &ifr); 942 if (!err && copy_to_user(p, &ifr, sizeof(struct ifreq))) 943 err = -EFAULT; 944 break; 945 946 case SIOCSIFADDR: 947 case SIOCSIFBRDADDR: 948 case SIOCSIFNETMASK: 949 case SIOCSIFDSTADDR: 950 case SIOCSIFPFLAGS: 951 case SIOCSIFFLAGS: 952 if (copy_from_user(&ifr, p, sizeof(struct ifreq))) 953 return -EFAULT; 954 err = devinet_ioctl(net, cmd, &ifr); 955 break; 956 default: 957 if (sk->sk_prot->ioctl) 958 err = sk->sk_prot->ioctl(sk, cmd, arg); 959 else 960 err = -ENOIOCTLCMD; 961 break; 962 } 963 return err; 964 } 965 EXPORT_SYMBOL(inet_ioctl); 966 967 #ifdef CONFIG_COMPAT 968 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 969 { 970 struct sock *sk = sock->sk; 971 int err = -ENOIOCTLCMD; 972 973 if (sk->sk_prot->compat_ioctl) 974 err = sk->sk_prot->compat_ioctl(sk, cmd, arg); 975 976 return err; 977 } 978 #endif 979 980 const struct proto_ops inet_stream_ops = { 981 .family = PF_INET, 982 .owner = THIS_MODULE, 983 .release = inet_release, 984 .bind = inet_bind, 985 .connect = inet_stream_connect, 986 .socketpair = sock_no_socketpair, 987 .accept = inet_accept, 988 .getname = inet_getname, 989 .poll = tcp_poll, 990 .ioctl = inet_ioctl, 991 .listen = inet_listen, 992 .shutdown = inet_shutdown, 993 .setsockopt = sock_common_setsockopt, 994 .getsockopt = sock_common_getsockopt, 995 .sendmsg = inet_sendmsg, 996 .recvmsg = inet_recvmsg, 997 .mmap = tcp_mmap, 998 .sendpage = inet_sendpage, 999 .splice_read = tcp_splice_read, 1000 .read_sock = tcp_read_sock, 1001 .sendmsg_locked = tcp_sendmsg_locked, 1002 .sendpage_locked = tcp_sendpage_locked, 1003 .peek_len = tcp_peek_len, 1004 #ifdef CONFIG_COMPAT 1005 .compat_setsockopt = compat_sock_common_setsockopt, 1006 .compat_getsockopt = compat_sock_common_getsockopt, 1007 .compat_ioctl = inet_compat_ioctl, 1008 #endif 1009 .set_rcvlowat = tcp_set_rcvlowat, 1010 }; 1011 EXPORT_SYMBOL(inet_stream_ops); 1012 1013 const struct proto_ops inet_dgram_ops = { 1014 .family = PF_INET, 1015 .owner = THIS_MODULE, 1016 .release = inet_release, 1017 .bind = inet_bind, 1018 .connect = inet_dgram_connect, 1019 .socketpair = sock_no_socketpair, 1020 .accept = sock_no_accept, 1021 .getname = inet_getname, 1022 .poll = udp_poll, 1023 .ioctl = inet_ioctl, 1024 .listen = sock_no_listen, 1025 .shutdown = inet_shutdown, 1026 .setsockopt = sock_common_setsockopt, 1027 .getsockopt = sock_common_getsockopt, 1028 .sendmsg = inet_sendmsg, 1029 .recvmsg = inet_recvmsg, 1030 .mmap = sock_no_mmap, 1031 .sendpage = inet_sendpage, 1032 .set_peek_off = sk_set_peek_off, 1033 #ifdef CONFIG_COMPAT 1034 .compat_setsockopt = compat_sock_common_setsockopt, 1035 .compat_getsockopt = compat_sock_common_getsockopt, 1036 .compat_ioctl = inet_compat_ioctl, 1037 #endif 1038 }; 1039 EXPORT_SYMBOL(inet_dgram_ops); 1040 1041 /* 1042 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without 1043 * udp_poll 1044 */ 1045 static const struct proto_ops inet_sockraw_ops = { 1046 .family = PF_INET, 1047 .owner = THIS_MODULE, 1048 .release = inet_release, 1049 .bind = inet_bind, 1050 .connect = inet_dgram_connect, 1051 .socketpair = sock_no_socketpair, 1052 .accept = sock_no_accept, 1053 .getname = inet_getname, 1054 .poll = datagram_poll, 1055 .ioctl = inet_ioctl, 1056 .listen = sock_no_listen, 1057 .shutdown = inet_shutdown, 1058 .setsockopt = sock_common_setsockopt, 1059 .getsockopt = sock_common_getsockopt, 1060 .sendmsg = inet_sendmsg, 1061 .recvmsg = inet_recvmsg, 1062 .mmap = sock_no_mmap, 1063 .sendpage = inet_sendpage, 1064 #ifdef CONFIG_COMPAT 1065 .compat_setsockopt = compat_sock_common_setsockopt, 1066 .compat_getsockopt = compat_sock_common_getsockopt, 1067 .compat_ioctl = inet_compat_ioctl, 1068 #endif 1069 }; 1070 1071 static const struct net_proto_family inet_family_ops = { 1072 .family = PF_INET, 1073 .create = inet_create, 1074 .owner = THIS_MODULE, 1075 }; 1076 1077 /* Upon startup we insert all the elements in inetsw_array[] into 1078 * the linked list inetsw. 1079 */ 1080 static struct inet_protosw inetsw_array[] = 1081 { 1082 { 1083 .type = SOCK_STREAM, 1084 .protocol = IPPROTO_TCP, 1085 .prot = &tcp_prot, 1086 .ops = &inet_stream_ops, 1087 .flags = INET_PROTOSW_PERMANENT | 1088 INET_PROTOSW_ICSK, 1089 }, 1090 1091 { 1092 .type = SOCK_DGRAM, 1093 .protocol = IPPROTO_UDP, 1094 .prot = &udp_prot, 1095 .ops = &inet_dgram_ops, 1096 .flags = INET_PROTOSW_PERMANENT, 1097 }, 1098 1099 { 1100 .type = SOCK_DGRAM, 1101 .protocol = IPPROTO_ICMP, 1102 .prot = &ping_prot, 1103 .ops = &inet_sockraw_ops, 1104 .flags = INET_PROTOSW_REUSE, 1105 }, 1106 1107 { 1108 .type = SOCK_RAW, 1109 .protocol = IPPROTO_IP, /* wild card */ 1110 .prot = &raw_prot, 1111 .ops = &inet_sockraw_ops, 1112 .flags = INET_PROTOSW_REUSE, 1113 } 1114 }; 1115 1116 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) 1117 1118 void inet_register_protosw(struct inet_protosw *p) 1119 { 1120 struct list_head *lh; 1121 struct inet_protosw *answer; 1122 int protocol = p->protocol; 1123 struct list_head *last_perm; 1124 1125 spin_lock_bh(&inetsw_lock); 1126 1127 if (p->type >= SOCK_MAX) 1128 goto out_illegal; 1129 1130 /* If we are trying to override a permanent protocol, bail. */ 1131 last_perm = &inetsw[p->type]; 1132 list_for_each(lh, &inetsw[p->type]) { 1133 answer = list_entry(lh, struct inet_protosw, list); 1134 /* Check only the non-wild match. */ 1135 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) 1136 break; 1137 if (protocol == answer->protocol) 1138 goto out_permanent; 1139 last_perm = lh; 1140 } 1141 1142 /* Add the new entry after the last permanent entry if any, so that 1143 * the new entry does not override a permanent entry when matched with 1144 * a wild-card protocol. But it is allowed to override any existing 1145 * non-permanent entry. This means that when we remove this entry, the 1146 * system automatically returns to the old behavior. 1147 */ 1148 list_add_rcu(&p->list, last_perm); 1149 out: 1150 spin_unlock_bh(&inetsw_lock); 1151 1152 return; 1153 1154 out_permanent: 1155 pr_err("Attempt to override permanent protocol %d\n", protocol); 1156 goto out; 1157 1158 out_illegal: 1159 pr_err("Ignoring attempt to register invalid socket type %d\n", 1160 p->type); 1161 goto out; 1162 } 1163 EXPORT_SYMBOL(inet_register_protosw); 1164 1165 void inet_unregister_protosw(struct inet_protosw *p) 1166 { 1167 if (INET_PROTOSW_PERMANENT & p->flags) { 1168 pr_err("Attempt to unregister permanent protocol %d\n", 1169 p->protocol); 1170 } else { 1171 spin_lock_bh(&inetsw_lock); 1172 list_del_rcu(&p->list); 1173 spin_unlock_bh(&inetsw_lock); 1174 1175 synchronize_net(); 1176 } 1177 } 1178 EXPORT_SYMBOL(inet_unregister_protosw); 1179 1180 static int inet_sk_reselect_saddr(struct sock *sk) 1181 { 1182 struct inet_sock *inet = inet_sk(sk); 1183 __be32 old_saddr = inet->inet_saddr; 1184 __be32 daddr = inet->inet_daddr; 1185 struct flowi4 *fl4; 1186 struct rtable *rt; 1187 __be32 new_saddr; 1188 struct ip_options_rcu *inet_opt; 1189 1190 inet_opt = rcu_dereference_protected(inet->inet_opt, 1191 lockdep_sock_is_held(sk)); 1192 if (inet_opt && inet_opt->opt.srr) 1193 daddr = inet_opt->opt.faddr; 1194 1195 /* Query new route. */ 1196 fl4 = &inet->cork.fl.u.ip4; 1197 rt = ip_route_connect(fl4, daddr, 0, RT_CONN_FLAGS(sk), 1198 sk->sk_bound_dev_if, sk->sk_protocol, 1199 inet->inet_sport, inet->inet_dport, sk); 1200 if (IS_ERR(rt)) 1201 return PTR_ERR(rt); 1202 1203 sk_setup_caps(sk, &rt->dst); 1204 1205 new_saddr = fl4->saddr; 1206 1207 if (new_saddr == old_saddr) 1208 return 0; 1209 1210 if (sock_net(sk)->ipv4.sysctl_ip_dynaddr > 1) { 1211 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", 1212 __func__, &old_saddr, &new_saddr); 1213 } 1214 1215 inet->inet_saddr = inet->inet_rcv_saddr = new_saddr; 1216 1217 /* 1218 * XXX The only one ugly spot where we need to 1219 * XXX really change the sockets identity after 1220 * XXX it has entered the hashes. -DaveM 1221 * 1222 * Besides that, it does not check for connection 1223 * uniqueness. Wait for troubles. 1224 */ 1225 return __sk_prot_rehash(sk); 1226 } 1227 1228 int inet_sk_rebuild_header(struct sock *sk) 1229 { 1230 struct inet_sock *inet = inet_sk(sk); 1231 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); 1232 __be32 daddr; 1233 struct ip_options_rcu *inet_opt; 1234 struct flowi4 *fl4; 1235 int err; 1236 1237 /* Route is OK, nothing to do. */ 1238 if (rt) 1239 return 0; 1240 1241 /* Reroute. */ 1242 rcu_read_lock(); 1243 inet_opt = rcu_dereference(inet->inet_opt); 1244 daddr = inet->inet_daddr; 1245 if (inet_opt && inet_opt->opt.srr) 1246 daddr = inet_opt->opt.faddr; 1247 rcu_read_unlock(); 1248 fl4 = &inet->cork.fl.u.ip4; 1249 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, 1250 inet->inet_dport, inet->inet_sport, 1251 sk->sk_protocol, RT_CONN_FLAGS(sk), 1252 sk->sk_bound_dev_if); 1253 if (!IS_ERR(rt)) { 1254 err = 0; 1255 sk_setup_caps(sk, &rt->dst); 1256 } else { 1257 err = PTR_ERR(rt); 1258 1259 /* Routing failed... */ 1260 sk->sk_route_caps = 0; 1261 /* 1262 * Other protocols have to map its equivalent state to TCP_SYN_SENT. 1263 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme 1264 */ 1265 if (!sock_net(sk)->ipv4.sysctl_ip_dynaddr || 1266 sk->sk_state != TCP_SYN_SENT || 1267 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || 1268 (err = inet_sk_reselect_saddr(sk)) != 0) 1269 sk->sk_err_soft = -err; 1270 } 1271 1272 return err; 1273 } 1274 EXPORT_SYMBOL(inet_sk_rebuild_header); 1275 1276 void inet_sk_set_state(struct sock *sk, int state) 1277 { 1278 trace_inet_sock_set_state(sk, sk->sk_state, state); 1279 sk->sk_state = state; 1280 } 1281 EXPORT_SYMBOL(inet_sk_set_state); 1282 1283 void inet_sk_state_store(struct sock *sk, int newstate) 1284 { 1285 trace_inet_sock_set_state(sk, sk->sk_state, newstate); 1286 smp_store_release(&sk->sk_state, newstate); 1287 } 1288 1289 struct sk_buff *inet_gso_segment(struct sk_buff *skb, 1290 netdev_features_t features) 1291 { 1292 bool udpfrag = false, fixedid = false, gso_partial, encap; 1293 struct sk_buff *segs = ERR_PTR(-EINVAL); 1294 const struct net_offload *ops; 1295 unsigned int offset = 0; 1296 struct iphdr *iph; 1297 int proto, tot_len; 1298 int nhoff; 1299 int ihl; 1300 int id; 1301 1302 skb_reset_network_header(skb); 1303 nhoff = skb_network_header(skb) - skb_mac_header(skb); 1304 if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) 1305 goto out; 1306 1307 iph = ip_hdr(skb); 1308 ihl = iph->ihl * 4; 1309 if (ihl < sizeof(*iph)) 1310 goto out; 1311 1312 id = ntohs(iph->id); 1313 proto = iph->protocol; 1314 1315 /* Warning: after this point, iph might be no longer valid */ 1316 if (unlikely(!pskb_may_pull(skb, ihl))) 1317 goto out; 1318 __skb_pull(skb, ihl); 1319 1320 encap = SKB_GSO_CB(skb)->encap_level > 0; 1321 if (encap) 1322 features &= skb->dev->hw_enc_features; 1323 SKB_GSO_CB(skb)->encap_level += ihl; 1324 1325 skb_reset_transport_header(skb); 1326 1327 segs = ERR_PTR(-EPROTONOSUPPORT); 1328 1329 if (!skb->encapsulation || encap) { 1330 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); 1331 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); 1332 1333 /* fixed ID is invalid if DF bit is not set */ 1334 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) 1335 goto out; 1336 } 1337 1338 ops = rcu_dereference(inet_offloads[proto]); 1339 if (likely(ops && ops->callbacks.gso_segment)) 1340 segs = ops->callbacks.gso_segment(skb, features); 1341 1342 if (IS_ERR_OR_NULL(segs)) 1343 goto out; 1344 1345 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); 1346 1347 skb = segs; 1348 do { 1349 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); 1350 if (udpfrag) { 1351 iph->frag_off = htons(offset >> 3); 1352 if (skb->next) 1353 iph->frag_off |= htons(IP_MF); 1354 offset += skb->len - nhoff - ihl; 1355 tot_len = skb->len - nhoff; 1356 } else if (skb_is_gso(skb)) { 1357 if (!fixedid) { 1358 iph->id = htons(id); 1359 id += skb_shinfo(skb)->gso_segs; 1360 } 1361 1362 if (gso_partial) 1363 tot_len = skb_shinfo(skb)->gso_size + 1364 SKB_GSO_CB(skb)->data_offset + 1365 skb->head - (unsigned char *)iph; 1366 else 1367 tot_len = skb->len - nhoff; 1368 } else { 1369 if (!fixedid) 1370 iph->id = htons(id++); 1371 tot_len = skb->len - nhoff; 1372 } 1373 iph->tot_len = htons(tot_len); 1374 ip_send_check(iph); 1375 if (encap) 1376 skb_reset_inner_headers(skb); 1377 skb->network_header = (u8 *)iph - skb->head; 1378 } while ((skb = skb->next)); 1379 1380 out: 1381 return segs; 1382 } 1383 EXPORT_SYMBOL(inet_gso_segment); 1384 1385 struct sk_buff **inet_gro_receive(struct sk_buff **head, struct sk_buff *skb) 1386 { 1387 const struct net_offload *ops; 1388 struct sk_buff **pp = NULL; 1389 struct sk_buff *p; 1390 const struct iphdr *iph; 1391 unsigned int hlen; 1392 unsigned int off; 1393 unsigned int id; 1394 int flush = 1; 1395 int proto; 1396 1397 off = skb_gro_offset(skb); 1398 hlen = off + sizeof(*iph); 1399 iph = skb_gro_header_fast(skb, off); 1400 if (skb_gro_header_hard(skb, hlen)) { 1401 iph = skb_gro_header_slow(skb, hlen, off); 1402 if (unlikely(!iph)) 1403 goto out; 1404 } 1405 1406 proto = iph->protocol; 1407 1408 rcu_read_lock(); 1409 ops = rcu_dereference(inet_offloads[proto]); 1410 if (!ops || !ops->callbacks.gro_receive) 1411 goto out_unlock; 1412 1413 if (*(u8 *)iph != 0x45) 1414 goto out_unlock; 1415 1416 if (ip_is_fragment(iph)) 1417 goto out_unlock; 1418 1419 if (unlikely(ip_fast_csum((u8 *)iph, 5))) 1420 goto out_unlock; 1421 1422 id = ntohl(*(__be32 *)&iph->id); 1423 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); 1424 id >>= 16; 1425 1426 for (p = *head; p; p = p->next) { 1427 struct iphdr *iph2; 1428 u16 flush_id; 1429 1430 if (!NAPI_GRO_CB(p)->same_flow) 1431 continue; 1432 1433 iph2 = (struct iphdr *)(p->data + off); 1434 /* The above works because, with the exception of the top 1435 * (inner most) layer, we only aggregate pkts with the same 1436 * hdr length so all the hdrs we'll need to verify will start 1437 * at the same offset. 1438 */ 1439 if ((iph->protocol ^ iph2->protocol) | 1440 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | 1441 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { 1442 NAPI_GRO_CB(p)->same_flow = 0; 1443 continue; 1444 } 1445 1446 /* All fields must match except length and checksum. */ 1447 NAPI_GRO_CB(p)->flush |= 1448 (iph->ttl ^ iph2->ttl) | 1449 (iph->tos ^ iph2->tos) | 1450 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); 1451 1452 NAPI_GRO_CB(p)->flush |= flush; 1453 1454 /* We need to store of the IP ID check to be included later 1455 * when we can verify that this packet does in fact belong 1456 * to a given flow. 1457 */ 1458 flush_id = (u16)(id - ntohs(iph2->id)); 1459 1460 /* This bit of code makes it much easier for us to identify 1461 * the cases where we are doing atomic vs non-atomic IP ID 1462 * checks. Specifically an atomic check can return IP ID 1463 * values 0 - 0xFFFF, while a non-atomic check can only 1464 * return 0 or 0xFFFF. 1465 */ 1466 if (!NAPI_GRO_CB(p)->is_atomic || 1467 !(iph->frag_off & htons(IP_DF))) { 1468 flush_id ^= NAPI_GRO_CB(p)->count; 1469 flush_id = flush_id ? 0xFFFF : 0; 1470 } 1471 1472 /* If the previous IP ID value was based on an atomic 1473 * datagram we can overwrite the value and ignore it. 1474 */ 1475 if (NAPI_GRO_CB(skb)->is_atomic) 1476 NAPI_GRO_CB(p)->flush_id = flush_id; 1477 else 1478 NAPI_GRO_CB(p)->flush_id |= flush_id; 1479 } 1480 1481 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); 1482 NAPI_GRO_CB(skb)->flush |= flush; 1483 skb_set_network_header(skb, off); 1484 /* The above will be needed by the transport layer if there is one 1485 * immediately following this IP hdr. 1486 */ 1487 1488 /* Note : No need to call skb_gro_postpull_rcsum() here, 1489 * as we already checked checksum over ipv4 header was 0 1490 */ 1491 skb_gro_pull(skb, sizeof(*iph)); 1492 skb_set_transport_header(skb, skb_gro_offset(skb)); 1493 1494 pp = call_gro_receive(ops->callbacks.gro_receive, head, skb); 1495 1496 out_unlock: 1497 rcu_read_unlock(); 1498 1499 out: 1500 skb_gro_flush_final(skb, pp, flush); 1501 1502 return pp; 1503 } 1504 EXPORT_SYMBOL(inet_gro_receive); 1505 1506 static struct sk_buff **ipip_gro_receive(struct sk_buff **head, 1507 struct sk_buff *skb) 1508 { 1509 if (NAPI_GRO_CB(skb)->encap_mark) { 1510 NAPI_GRO_CB(skb)->flush = 1; 1511 return NULL; 1512 } 1513 1514 NAPI_GRO_CB(skb)->encap_mark = 1; 1515 1516 return inet_gro_receive(head, skb); 1517 } 1518 1519 #define SECONDS_PER_DAY 86400 1520 1521 /* inet_current_timestamp - Return IP network timestamp 1522 * 1523 * Return milliseconds since midnight in network byte order. 1524 */ 1525 __be32 inet_current_timestamp(void) 1526 { 1527 u32 secs; 1528 u32 msecs; 1529 struct timespec64 ts; 1530 1531 ktime_get_real_ts64(&ts); 1532 1533 /* Get secs since midnight. */ 1534 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); 1535 /* Convert to msecs. */ 1536 msecs = secs * MSEC_PER_SEC; 1537 /* Convert nsec to msec. */ 1538 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; 1539 1540 /* Convert to network byte order. */ 1541 return htonl(msecs); 1542 } 1543 EXPORT_SYMBOL(inet_current_timestamp); 1544 1545 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) 1546 { 1547 if (sk->sk_family == AF_INET) 1548 return ip_recv_error(sk, msg, len, addr_len); 1549 #if IS_ENABLED(CONFIG_IPV6) 1550 if (sk->sk_family == AF_INET6) 1551 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); 1552 #endif 1553 return -EINVAL; 1554 } 1555 1556 int inet_gro_complete(struct sk_buff *skb, int nhoff) 1557 { 1558 __be16 newlen = htons(skb->len - nhoff); 1559 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); 1560 const struct net_offload *ops; 1561 int proto = iph->protocol; 1562 int err = -ENOSYS; 1563 1564 if (skb->encapsulation) { 1565 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); 1566 skb_set_inner_network_header(skb, nhoff); 1567 } 1568 1569 csum_replace2(&iph->check, iph->tot_len, newlen); 1570 iph->tot_len = newlen; 1571 1572 rcu_read_lock(); 1573 ops = rcu_dereference(inet_offloads[proto]); 1574 if (WARN_ON(!ops || !ops->callbacks.gro_complete)) 1575 goto out_unlock; 1576 1577 /* Only need to add sizeof(*iph) to get to the next hdr below 1578 * because any hdr with option will have been flushed in 1579 * inet_gro_receive(). 1580 */ 1581 err = ops->callbacks.gro_complete(skb, nhoff + sizeof(*iph)); 1582 1583 out_unlock: 1584 rcu_read_unlock(); 1585 1586 return err; 1587 } 1588 EXPORT_SYMBOL(inet_gro_complete); 1589 1590 static int ipip_gro_complete(struct sk_buff *skb, int nhoff) 1591 { 1592 skb->encapsulation = 1; 1593 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; 1594 return inet_gro_complete(skb, nhoff); 1595 } 1596 1597 int inet_ctl_sock_create(struct sock **sk, unsigned short family, 1598 unsigned short type, unsigned char protocol, 1599 struct net *net) 1600 { 1601 struct socket *sock; 1602 int rc = sock_create_kern(net, family, type, protocol, &sock); 1603 1604 if (rc == 0) { 1605 *sk = sock->sk; 1606 (*sk)->sk_allocation = GFP_ATOMIC; 1607 /* 1608 * Unhash it so that IP input processing does not even see it, 1609 * we do not wish this socket to see incoming packets. 1610 */ 1611 (*sk)->sk_prot->unhash(*sk); 1612 } 1613 return rc; 1614 } 1615 EXPORT_SYMBOL_GPL(inet_ctl_sock_create); 1616 1617 u64 snmp_get_cpu_field(void __percpu *mib, int cpu, int offt) 1618 { 1619 return *(((unsigned long *)per_cpu_ptr(mib, cpu)) + offt); 1620 } 1621 EXPORT_SYMBOL_GPL(snmp_get_cpu_field); 1622 1623 unsigned long snmp_fold_field(void __percpu *mib, int offt) 1624 { 1625 unsigned long res = 0; 1626 int i; 1627 1628 for_each_possible_cpu(i) 1629 res += snmp_get_cpu_field(mib, i, offt); 1630 return res; 1631 } 1632 EXPORT_SYMBOL_GPL(snmp_fold_field); 1633 1634 #if BITS_PER_LONG==32 1635 1636 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, 1637 size_t syncp_offset) 1638 { 1639 void *bhptr; 1640 struct u64_stats_sync *syncp; 1641 u64 v; 1642 unsigned int start; 1643 1644 bhptr = per_cpu_ptr(mib, cpu); 1645 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); 1646 do { 1647 start = u64_stats_fetch_begin_irq(syncp); 1648 v = *(((u64 *)bhptr) + offt); 1649 } while (u64_stats_fetch_retry_irq(syncp, start)); 1650 1651 return v; 1652 } 1653 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); 1654 1655 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) 1656 { 1657 u64 res = 0; 1658 int cpu; 1659 1660 for_each_possible_cpu(cpu) { 1661 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); 1662 } 1663 return res; 1664 } 1665 EXPORT_SYMBOL_GPL(snmp_fold_field64); 1666 #endif 1667 1668 #ifdef CONFIG_IP_MULTICAST 1669 static const struct net_protocol igmp_protocol = { 1670 .handler = igmp_rcv, 1671 .netns_ok = 1, 1672 }; 1673 #endif 1674 1675 /* thinking of making this const? Don't. 1676 * early_demux can change based on sysctl. 1677 */ 1678 static struct net_protocol tcp_protocol = { 1679 .early_demux = tcp_v4_early_demux, 1680 .early_demux_handler = tcp_v4_early_demux, 1681 .handler = tcp_v4_rcv, 1682 .err_handler = tcp_v4_err, 1683 .no_policy = 1, 1684 .netns_ok = 1, 1685 .icmp_strict_tag_validation = 1, 1686 }; 1687 1688 /* thinking of making this const? Don't. 1689 * early_demux can change based on sysctl. 1690 */ 1691 static struct net_protocol udp_protocol = { 1692 .early_demux = udp_v4_early_demux, 1693 .early_demux_handler = udp_v4_early_demux, 1694 .handler = udp_rcv, 1695 .err_handler = udp_err, 1696 .no_policy = 1, 1697 .netns_ok = 1, 1698 }; 1699 1700 static const struct net_protocol icmp_protocol = { 1701 .handler = icmp_rcv, 1702 .err_handler = icmp_err, 1703 .no_policy = 1, 1704 .netns_ok = 1, 1705 }; 1706 1707 static __net_init int ipv4_mib_init_net(struct net *net) 1708 { 1709 int i; 1710 1711 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); 1712 if (!net->mib.tcp_statistics) 1713 goto err_tcp_mib; 1714 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); 1715 if (!net->mib.ip_statistics) 1716 goto err_ip_mib; 1717 1718 for_each_possible_cpu(i) { 1719 struct ipstats_mib *af_inet_stats; 1720 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); 1721 u64_stats_init(&af_inet_stats->syncp); 1722 } 1723 1724 net->mib.net_statistics = alloc_percpu(struct linux_mib); 1725 if (!net->mib.net_statistics) 1726 goto err_net_mib; 1727 net->mib.udp_statistics = alloc_percpu(struct udp_mib); 1728 if (!net->mib.udp_statistics) 1729 goto err_udp_mib; 1730 net->mib.udplite_statistics = alloc_percpu(struct udp_mib); 1731 if (!net->mib.udplite_statistics) 1732 goto err_udplite_mib; 1733 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); 1734 if (!net->mib.icmp_statistics) 1735 goto err_icmp_mib; 1736 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), 1737 GFP_KERNEL); 1738 if (!net->mib.icmpmsg_statistics) 1739 goto err_icmpmsg_mib; 1740 1741 tcp_mib_init(net); 1742 return 0; 1743 1744 err_icmpmsg_mib: 1745 free_percpu(net->mib.icmp_statistics); 1746 err_icmp_mib: 1747 free_percpu(net->mib.udplite_statistics); 1748 err_udplite_mib: 1749 free_percpu(net->mib.udp_statistics); 1750 err_udp_mib: 1751 free_percpu(net->mib.net_statistics); 1752 err_net_mib: 1753 free_percpu(net->mib.ip_statistics); 1754 err_ip_mib: 1755 free_percpu(net->mib.tcp_statistics); 1756 err_tcp_mib: 1757 return -ENOMEM; 1758 } 1759 1760 static __net_exit void ipv4_mib_exit_net(struct net *net) 1761 { 1762 kfree(net->mib.icmpmsg_statistics); 1763 free_percpu(net->mib.icmp_statistics); 1764 free_percpu(net->mib.udplite_statistics); 1765 free_percpu(net->mib.udp_statistics); 1766 free_percpu(net->mib.net_statistics); 1767 free_percpu(net->mib.ip_statistics); 1768 free_percpu(net->mib.tcp_statistics); 1769 } 1770 1771 static __net_initdata struct pernet_operations ipv4_mib_ops = { 1772 .init = ipv4_mib_init_net, 1773 .exit = ipv4_mib_exit_net, 1774 }; 1775 1776 static int __init init_ipv4_mibs(void) 1777 { 1778 return register_pernet_subsys(&ipv4_mib_ops); 1779 } 1780 1781 static __net_init int inet_init_net(struct net *net) 1782 { 1783 /* 1784 * Set defaults for local port range 1785 */ 1786 seqlock_init(&net->ipv4.ip_local_ports.lock); 1787 net->ipv4.ip_local_ports.range[0] = 32768; 1788 net->ipv4.ip_local_ports.range[1] = 60999; 1789 1790 seqlock_init(&net->ipv4.ping_group_range.lock); 1791 /* 1792 * Sane defaults - nobody may create ping sockets. 1793 * Boot scripts should set this to distro-specific group. 1794 */ 1795 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); 1796 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); 1797 1798 /* Default values for sysctl-controlled parameters. 1799 * We set them here, in case sysctl is not compiled. 1800 */ 1801 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; 1802 net->ipv4.sysctl_ip_dynaddr = 0; 1803 net->ipv4.sysctl_ip_early_demux = 1; 1804 net->ipv4.sysctl_udp_early_demux = 1; 1805 net->ipv4.sysctl_tcp_early_demux = 1; 1806 #ifdef CONFIG_SYSCTL 1807 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; 1808 #endif 1809 1810 /* Some igmp sysctl, whose values are always used */ 1811 net->ipv4.sysctl_igmp_max_memberships = 20; 1812 net->ipv4.sysctl_igmp_max_msf = 10; 1813 /* IGMP reports for link-local multicast groups are enabled by default */ 1814 net->ipv4.sysctl_igmp_llm_reports = 1; 1815 net->ipv4.sysctl_igmp_qrv = 2; 1816 1817 return 0; 1818 } 1819 1820 static __net_exit void inet_exit_net(struct net *net) 1821 { 1822 } 1823 1824 static __net_initdata struct pernet_operations af_inet_ops = { 1825 .init = inet_init_net, 1826 .exit = inet_exit_net, 1827 }; 1828 1829 static int __init init_inet_pernet_ops(void) 1830 { 1831 return register_pernet_subsys(&af_inet_ops); 1832 } 1833 1834 static int ipv4_proc_init(void); 1835 1836 /* 1837 * IP protocol layer initialiser 1838 */ 1839 1840 static struct packet_offload ip_packet_offload __read_mostly = { 1841 .type = cpu_to_be16(ETH_P_IP), 1842 .callbacks = { 1843 .gso_segment = inet_gso_segment, 1844 .gro_receive = inet_gro_receive, 1845 .gro_complete = inet_gro_complete, 1846 }, 1847 }; 1848 1849 static const struct net_offload ipip_offload = { 1850 .callbacks = { 1851 .gso_segment = inet_gso_segment, 1852 .gro_receive = ipip_gro_receive, 1853 .gro_complete = ipip_gro_complete, 1854 }, 1855 }; 1856 1857 static int __init ipip_offload_init(void) 1858 { 1859 return inet_add_offload(&ipip_offload, IPPROTO_IPIP); 1860 } 1861 1862 static int __init ipv4_offload_init(void) 1863 { 1864 /* 1865 * Add offloads 1866 */ 1867 if (udpv4_offload_init() < 0) 1868 pr_crit("%s: Cannot add UDP protocol offload\n", __func__); 1869 if (tcpv4_offload_init() < 0) 1870 pr_crit("%s: Cannot add TCP protocol offload\n", __func__); 1871 if (ipip_offload_init() < 0) 1872 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); 1873 1874 dev_add_offload(&ip_packet_offload); 1875 return 0; 1876 } 1877 1878 fs_initcall(ipv4_offload_init); 1879 1880 static struct packet_type ip_packet_type __read_mostly = { 1881 .type = cpu_to_be16(ETH_P_IP), 1882 .func = ip_rcv, 1883 }; 1884 1885 static int __init inet_init(void) 1886 { 1887 struct inet_protosw *q; 1888 struct list_head *r; 1889 int rc = -EINVAL; 1890 1891 sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); 1892 1893 rc = proto_register(&tcp_prot, 1); 1894 if (rc) 1895 goto out; 1896 1897 rc = proto_register(&udp_prot, 1); 1898 if (rc) 1899 goto out_unregister_tcp_proto; 1900 1901 rc = proto_register(&raw_prot, 1); 1902 if (rc) 1903 goto out_unregister_udp_proto; 1904 1905 rc = proto_register(&ping_prot, 1); 1906 if (rc) 1907 goto out_unregister_raw_proto; 1908 1909 /* 1910 * Tell SOCKET that we are alive... 1911 */ 1912 1913 (void)sock_register(&inet_family_ops); 1914 1915 #ifdef CONFIG_SYSCTL 1916 ip_static_sysctl_init(); 1917 #endif 1918 1919 /* 1920 * Add all the base protocols. 1921 */ 1922 1923 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) 1924 pr_crit("%s: Cannot add ICMP protocol\n", __func__); 1925 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0) 1926 pr_crit("%s: Cannot add UDP protocol\n", __func__); 1927 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0) 1928 pr_crit("%s: Cannot add TCP protocol\n", __func__); 1929 #ifdef CONFIG_IP_MULTICAST 1930 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) 1931 pr_crit("%s: Cannot add IGMP protocol\n", __func__); 1932 #endif 1933 1934 /* Register the socket-side information for inet_create. */ 1935 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 1936 INIT_LIST_HEAD(r); 1937 1938 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 1939 inet_register_protosw(q); 1940 1941 /* 1942 * Set the ARP module up 1943 */ 1944 1945 arp_init(); 1946 1947 /* 1948 * Set the IP module up 1949 */ 1950 1951 ip_init(); 1952 1953 /* Setup TCP slab cache for open requests. */ 1954 tcp_init(); 1955 1956 /* Setup UDP memory threshold */ 1957 udp_init(); 1958 1959 /* Add UDP-Lite (RFC 3828) */ 1960 udplite4_register(); 1961 1962 ping_init(); 1963 1964 /* 1965 * Set the ICMP layer up 1966 */ 1967 1968 if (icmp_init() < 0) 1969 panic("Failed to create the ICMP control socket.\n"); 1970 1971 /* 1972 * Initialise the multicast router 1973 */ 1974 #if defined(CONFIG_IP_MROUTE) 1975 if (ip_mr_init()) 1976 pr_crit("%s: Cannot init ipv4 mroute\n", __func__); 1977 #endif 1978 1979 if (init_inet_pernet_ops()) 1980 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); 1981 /* 1982 * Initialise per-cpu ipv4 mibs 1983 */ 1984 1985 if (init_ipv4_mibs()) 1986 pr_crit("%s: Cannot init ipv4 mibs\n", __func__); 1987 1988 ipv4_proc_init(); 1989 1990 ipfrag_init(); 1991 1992 dev_add_pack(&ip_packet_type); 1993 1994 ip_tunnel_core_init(); 1995 1996 rc = 0; 1997 out: 1998 return rc; 1999 out_unregister_raw_proto: 2000 proto_unregister(&raw_prot); 2001 out_unregister_udp_proto: 2002 proto_unregister(&udp_prot); 2003 out_unregister_tcp_proto: 2004 proto_unregister(&tcp_prot); 2005 goto out; 2006 } 2007 2008 fs_initcall(inet_init); 2009 2010 /* ------------------------------------------------------------------------ */ 2011 2012 #ifdef CONFIG_PROC_FS 2013 static int __init ipv4_proc_init(void) 2014 { 2015 int rc = 0; 2016 2017 if (raw_proc_init()) 2018 goto out_raw; 2019 if (tcp4_proc_init()) 2020 goto out_tcp; 2021 if (udp4_proc_init()) 2022 goto out_udp; 2023 if (ping_proc_init()) 2024 goto out_ping; 2025 if (ip_misc_proc_init()) 2026 goto out_misc; 2027 out: 2028 return rc; 2029 out_misc: 2030 ping_proc_exit(); 2031 out_ping: 2032 udp4_proc_exit(); 2033 out_udp: 2034 tcp4_proc_exit(); 2035 out_tcp: 2036 raw_proc_exit(); 2037 out_raw: 2038 rc = -ENOMEM; 2039 goto out; 2040 } 2041 2042 #else /* CONFIG_PROC_FS */ 2043 static int __init ipv4_proc_init(void) 2044 { 2045 return 0; 2046 } 2047 #endif /* CONFIG_PROC_FS */ 2048