1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * PF_INET protocol family socket handler. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Florian La Roche, <flla@stud.uni-sb.de> 11 * Alan Cox, <A.Cox@swansea.ac.uk> 12 * 13 * Changes (see also sock.c) 14 * 15 * piggy, 16 * Karl Knutson : Socket protocol table 17 * A.N.Kuznetsov : Socket death error in accept(). 18 * John Richardson : Fix non blocking error in connect() 19 * so sockets that fail to connect 20 * don't return -EINPROGRESS. 21 * Alan Cox : Asynchronous I/O support 22 * Alan Cox : Keep correct socket pointer on sock 23 * structures 24 * when accept() ed 25 * Alan Cox : Semantics of SO_LINGER aren't state 26 * moved to close when you look carefully. 27 * With this fixed and the accept bug fixed 28 * some RPC stuff seems happier. 29 * Niibe Yutaka : 4.4BSD style write async I/O 30 * Alan Cox, 31 * Tony Gale : Fixed reuse semantics. 32 * Alan Cox : bind() shouldn't abort existing but dead 33 * sockets. Stops FTP netin:.. I hope. 34 * Alan Cox : bind() works correctly for RAW sockets. 35 * Note that FreeBSD at least was broken 36 * in this respect so be careful with 37 * compatibility tests... 38 * Alan Cox : routing cache support 39 * Alan Cox : memzero the socket structure for 40 * compactness. 41 * Matt Day : nonblock connect error handler 42 * Alan Cox : Allow large numbers of pending sockets 43 * (eg for big web sites), but only if 44 * specifically application requested. 45 * Alan Cox : New buffering throughout IP. Used 46 * dumbly. 47 * Alan Cox : New buffering now used smartly. 48 * Alan Cox : BSD rather than common sense 49 * interpretation of listen. 50 * Germano Caronni : Assorted small races. 51 * Alan Cox : sendmsg/recvmsg basic support. 52 * Alan Cox : Only sendmsg/recvmsg now supported. 53 * Alan Cox : Locked down bind (see security list). 54 * Alan Cox : Loosened bind a little. 55 * Mike McLagan : ADD/DEL DLCI Ioctls 56 * Willy Konynenberg : Transparent proxying support. 57 * David S. Miller : New socket lookup architecture. 58 * Some other random speedups. 59 * Cyrus Durgin : Cleaned up file for kmod hacks. 60 * Andi Kleen : Fix inet_stream_connect TCP race. 61 * 62 * This program is free software; you can redistribute it and/or 63 * modify it under the terms of the GNU General Public License 64 * as published by the Free Software Foundation; either version 65 * 2 of the License, or (at your option) any later version. 66 */ 67 68 #define pr_fmt(fmt) "IPv4: " fmt 69 70 #include <linux/err.h> 71 #include <linux/errno.h> 72 #include <linux/types.h> 73 #include <linux/socket.h> 74 #include <linux/in.h> 75 #include <linux/kernel.h> 76 #include <linux/kmod.h> 77 #include <linux/sched.h> 78 #include <linux/timer.h> 79 #include <linux/string.h> 80 #include <linux/sockios.h> 81 #include <linux/net.h> 82 #include <linux/capability.h> 83 #include <linux/fcntl.h> 84 #include <linux/mm.h> 85 #include <linux/interrupt.h> 86 #include <linux/stat.h> 87 #include <linux/init.h> 88 #include <linux/poll.h> 89 #include <linux/netfilter_ipv4.h> 90 #include <linux/random.h> 91 #include <linux/slab.h> 92 93 #include <linux/uaccess.h> 94 95 #include <linux/inet.h> 96 #include <linux/igmp.h> 97 #include <linux/inetdevice.h> 98 #include <linux/netdevice.h> 99 #include <net/checksum.h> 100 #include <net/ip.h> 101 #include <net/protocol.h> 102 #include <net/arp.h> 103 #include <net/route.h> 104 #include <net/ip_fib.h> 105 #include <net/inet_connection_sock.h> 106 #include <net/tcp.h> 107 #include <net/udp.h> 108 #include <net/udplite.h> 109 #include <net/ping.h> 110 #include <linux/skbuff.h> 111 #include <net/sock.h> 112 #include <net/raw.h> 113 #include <net/icmp.h> 114 #include <net/inet_common.h> 115 #include <net/ip_tunnels.h> 116 #include <net/xfrm.h> 117 #include <net/net_namespace.h> 118 #include <net/secure_seq.h> 119 #ifdef CONFIG_IP_MROUTE 120 #include <linux/mroute.h> 121 #endif 122 #include <net/l3mdev.h> 123 124 #include <trace/events/sock.h> 125 126 /* The inetsw table contains everything that inet_create needs to 127 * build a new socket. 128 */ 129 static struct list_head inetsw[SOCK_MAX]; 130 static DEFINE_SPINLOCK(inetsw_lock); 131 132 /* New destruction routine */ 133 134 void inet_sock_destruct(struct sock *sk) 135 { 136 struct inet_sock *inet = inet_sk(sk); 137 138 __skb_queue_purge(&sk->sk_receive_queue); 139 if (sk->sk_rx_skb_cache) { 140 __kfree_skb(sk->sk_rx_skb_cache); 141 sk->sk_rx_skb_cache = NULL; 142 } 143 __skb_queue_purge(&sk->sk_error_queue); 144 145 sk_mem_reclaim(sk); 146 147 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { 148 pr_err("Attempt to release TCP socket in state %d %p\n", 149 sk->sk_state, sk); 150 return; 151 } 152 if (!sock_flag(sk, SOCK_DEAD)) { 153 pr_err("Attempt to release alive inet socket %p\n", sk); 154 return; 155 } 156 157 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 158 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 159 WARN_ON(sk->sk_wmem_queued); 160 WARN_ON(sk->sk_forward_alloc); 161 162 kfree(rcu_dereference_protected(inet->inet_opt, 1)); 163 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1)); 164 dst_release(sk->sk_rx_dst); 165 sk_refcnt_debug_dec(sk); 166 } 167 EXPORT_SYMBOL(inet_sock_destruct); 168 169 /* 170 * The routines beyond this point handle the behaviour of an AF_INET 171 * socket object. Mostly it punts to the subprotocols of IP to do 172 * the work. 173 */ 174 175 /* 176 * Automatically bind an unbound socket. 177 */ 178 179 static int inet_autobind(struct sock *sk) 180 { 181 struct inet_sock *inet; 182 /* We may need to bind the socket. */ 183 lock_sock(sk); 184 inet = inet_sk(sk); 185 if (!inet->inet_num) { 186 if (sk->sk_prot->get_port(sk, 0)) { 187 release_sock(sk); 188 return -EAGAIN; 189 } 190 inet->inet_sport = htons(inet->inet_num); 191 } 192 release_sock(sk); 193 return 0; 194 } 195 196 /* 197 * Move a socket into listening state. 198 */ 199 int inet_listen(struct socket *sock, int backlog) 200 { 201 struct sock *sk = sock->sk; 202 unsigned char old_state; 203 int err, tcp_fastopen; 204 205 lock_sock(sk); 206 207 err = -EINVAL; 208 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 209 goto out; 210 211 old_state = sk->sk_state; 212 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) 213 goto out; 214 215 sk->sk_max_ack_backlog = backlog; 216 /* Really, if the socket is already in listen state 217 * we can only allow the backlog to be adjusted. 218 */ 219 if (old_state != TCP_LISTEN) { 220 /* Enable TFO w/o requiring TCP_FASTOPEN socket option. 221 * Note that only TCP sockets (SOCK_STREAM) will reach here. 222 * Also fastopen backlog may already been set via the option 223 * because the socket was in TCP_LISTEN state previously but 224 * was shutdown() rather than close(). 225 */ 226 tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen; 227 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && 228 (tcp_fastopen & TFO_SERVER_ENABLE) && 229 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { 230 fastopen_queue_tune(sk, backlog); 231 tcp_fastopen_init_key_once(sock_net(sk)); 232 } 233 234 err = inet_csk_listen_start(sk, backlog); 235 if (err) 236 goto out; 237 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); 238 } 239 err = 0; 240 241 out: 242 release_sock(sk); 243 return err; 244 } 245 EXPORT_SYMBOL(inet_listen); 246 247 /* 248 * Create an inet socket. 249 */ 250 251 static int inet_create(struct net *net, struct socket *sock, int protocol, 252 int kern) 253 { 254 struct sock *sk; 255 struct inet_protosw *answer; 256 struct inet_sock *inet; 257 struct proto *answer_prot; 258 unsigned char answer_flags; 259 int try_loading_module = 0; 260 int err; 261 262 if (protocol < 0 || protocol >= IPPROTO_MAX) 263 return -EINVAL; 264 265 sock->state = SS_UNCONNECTED; 266 267 /* Look for the requested type/protocol pair. */ 268 lookup_protocol: 269 err = -ESOCKTNOSUPPORT; 270 rcu_read_lock(); 271 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { 272 273 err = 0; 274 /* Check the non-wild match. */ 275 if (protocol == answer->protocol) { 276 if (protocol != IPPROTO_IP) 277 break; 278 } else { 279 /* Check for the two wild cases. */ 280 if (IPPROTO_IP == protocol) { 281 protocol = answer->protocol; 282 break; 283 } 284 if (IPPROTO_IP == answer->protocol) 285 break; 286 } 287 err = -EPROTONOSUPPORT; 288 } 289 290 if (unlikely(err)) { 291 if (try_loading_module < 2) { 292 rcu_read_unlock(); 293 /* 294 * Be more specific, e.g. net-pf-2-proto-132-type-1 295 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) 296 */ 297 if (++try_loading_module == 1) 298 request_module("net-pf-%d-proto-%d-type-%d", 299 PF_INET, protocol, sock->type); 300 /* 301 * Fall back to generic, e.g. net-pf-2-proto-132 302 * (net-pf-PF_INET-proto-IPPROTO_SCTP) 303 */ 304 else 305 request_module("net-pf-%d-proto-%d", 306 PF_INET, protocol); 307 goto lookup_protocol; 308 } else 309 goto out_rcu_unlock; 310 } 311 312 err = -EPERM; 313 if (sock->type == SOCK_RAW && !kern && 314 !ns_capable(net->user_ns, CAP_NET_RAW)) 315 goto out_rcu_unlock; 316 317 sock->ops = answer->ops; 318 answer_prot = answer->prot; 319 answer_flags = answer->flags; 320 rcu_read_unlock(); 321 322 WARN_ON(!answer_prot->slab); 323 324 err = -ENOBUFS; 325 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); 326 if (!sk) 327 goto out; 328 329 err = 0; 330 if (INET_PROTOSW_REUSE & answer_flags) 331 sk->sk_reuse = SK_CAN_REUSE; 332 333 inet = inet_sk(sk); 334 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0; 335 336 inet->nodefrag = 0; 337 338 if (SOCK_RAW == sock->type) { 339 inet->inet_num = protocol; 340 if (IPPROTO_RAW == protocol) 341 inet->hdrincl = 1; 342 } 343 344 if (net->ipv4.sysctl_ip_no_pmtu_disc) 345 inet->pmtudisc = IP_PMTUDISC_DONT; 346 else 347 inet->pmtudisc = IP_PMTUDISC_WANT; 348 349 inet->inet_id = 0; 350 351 sock_init_data(sock, sk); 352 353 sk->sk_destruct = inet_sock_destruct; 354 sk->sk_protocol = protocol; 355 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 356 357 inet->uc_ttl = -1; 358 inet->mc_loop = 1; 359 inet->mc_ttl = 1; 360 inet->mc_all = 1; 361 inet->mc_index = 0; 362 inet->mc_list = NULL; 363 inet->rcv_tos = 0; 364 365 sk_refcnt_debug_inc(sk); 366 367 if (inet->inet_num) { 368 /* It assumes that any protocol which allows 369 * the user to assign a number at socket 370 * creation time automatically 371 * shares. 372 */ 373 inet->inet_sport = htons(inet->inet_num); 374 /* Add to protocol hash chains. */ 375 err = sk->sk_prot->hash(sk); 376 if (err) { 377 sk_common_release(sk); 378 goto out; 379 } 380 } 381 382 if (sk->sk_prot->init) { 383 err = sk->sk_prot->init(sk); 384 if (err) { 385 sk_common_release(sk); 386 goto out; 387 } 388 } 389 390 if (!kern) { 391 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); 392 if (err) { 393 sk_common_release(sk); 394 goto out; 395 } 396 } 397 out: 398 return err; 399 out_rcu_unlock: 400 rcu_read_unlock(); 401 goto out; 402 } 403 404 405 /* 406 * The peer socket should always be NULL (or else). When we call this 407 * function we are destroying the object and from then on nobody 408 * should refer to it. 409 */ 410 int inet_release(struct socket *sock) 411 { 412 struct sock *sk = sock->sk; 413 414 if (sk) { 415 long timeout; 416 417 /* Applications forget to leave groups before exiting */ 418 ip_mc_drop_socket(sk); 419 420 /* If linger is set, we don't return until the close 421 * is complete. Otherwise we return immediately. The 422 * actually closing is done the same either way. 423 * 424 * If the close is due to the process exiting, we never 425 * linger.. 426 */ 427 timeout = 0; 428 if (sock_flag(sk, SOCK_LINGER) && 429 !(current->flags & PF_EXITING)) 430 timeout = sk->sk_lingertime; 431 sock->sk = NULL; 432 sk->sk_prot->close(sk, timeout); 433 } 434 return 0; 435 } 436 EXPORT_SYMBOL(inet_release); 437 438 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 439 { 440 struct sock *sk = sock->sk; 441 int err; 442 443 /* If the socket has its own bind function then use it. (RAW) */ 444 if (sk->sk_prot->bind) { 445 return sk->sk_prot->bind(sk, uaddr, addr_len); 446 } 447 if (addr_len < sizeof(struct sockaddr_in)) 448 return -EINVAL; 449 450 /* BPF prog is run before any checks are done so that if the prog 451 * changes context in a wrong way it will be caught. 452 */ 453 err = BPF_CGROUP_RUN_PROG_INET4_BIND(sk, uaddr); 454 if (err) 455 return err; 456 457 return __inet_bind(sk, uaddr, addr_len, false, true); 458 } 459 EXPORT_SYMBOL(inet_bind); 460 461 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, 462 bool force_bind_address_no_port, bool with_lock) 463 { 464 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; 465 struct inet_sock *inet = inet_sk(sk); 466 struct net *net = sock_net(sk); 467 unsigned short snum; 468 int chk_addr_ret; 469 u32 tb_id = RT_TABLE_LOCAL; 470 int err; 471 472 if (addr->sin_family != AF_INET) { 473 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) 474 * only if s_addr is INADDR_ANY. 475 */ 476 err = -EAFNOSUPPORT; 477 if (addr->sin_family != AF_UNSPEC || 478 addr->sin_addr.s_addr != htonl(INADDR_ANY)) 479 goto out; 480 } 481 482 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; 483 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); 484 485 /* Not specified by any standard per-se, however it breaks too 486 * many applications when removed. It is unfortunate since 487 * allowing applications to make a non-local bind solves 488 * several problems with systems using dynamic addressing. 489 * (ie. your servers still start up even if your ISDN link 490 * is temporarily down) 491 */ 492 err = -EADDRNOTAVAIL; 493 if (!inet_can_nonlocal_bind(net, inet) && 494 addr->sin_addr.s_addr != htonl(INADDR_ANY) && 495 chk_addr_ret != RTN_LOCAL && 496 chk_addr_ret != RTN_MULTICAST && 497 chk_addr_ret != RTN_BROADCAST) 498 goto out; 499 500 snum = ntohs(addr->sin_port); 501 err = -EACCES; 502 if (snum && snum < inet_prot_sock(net) && 503 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 504 goto out; 505 506 /* We keep a pair of addresses. rcv_saddr is the one 507 * used by hash lookups, and saddr is used for transmit. 508 * 509 * In the BSD API these are the same except where it 510 * would be illegal to use them (multicast/broadcast) in 511 * which case the sending device address is used. 512 */ 513 if (with_lock) 514 lock_sock(sk); 515 516 /* Check these errors (active socket, double bind). */ 517 err = -EINVAL; 518 if (sk->sk_state != TCP_CLOSE || inet->inet_num) 519 goto out_release_sock; 520 521 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; 522 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) 523 inet->inet_saddr = 0; /* Use device */ 524 525 /* Make sure we are allowed to bind here. */ 526 if (snum || !(inet->bind_address_no_port || 527 force_bind_address_no_port)) { 528 if (sk->sk_prot->get_port(sk, snum)) { 529 inet->inet_saddr = inet->inet_rcv_saddr = 0; 530 err = -EADDRINUSE; 531 goto out_release_sock; 532 } 533 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); 534 if (err) { 535 inet->inet_saddr = inet->inet_rcv_saddr = 0; 536 goto out_release_sock; 537 } 538 } 539 540 if (inet->inet_rcv_saddr) 541 sk->sk_userlocks |= SOCK_BINDADDR_LOCK; 542 if (snum) 543 sk->sk_userlocks |= SOCK_BINDPORT_LOCK; 544 inet->inet_sport = htons(inet->inet_num); 545 inet->inet_daddr = 0; 546 inet->inet_dport = 0; 547 sk_dst_reset(sk); 548 err = 0; 549 out_release_sock: 550 if (with_lock) 551 release_sock(sk); 552 out: 553 return err; 554 } 555 556 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, 557 int addr_len, int flags) 558 { 559 struct sock *sk = sock->sk; 560 int err; 561 562 if (addr_len < sizeof(uaddr->sa_family)) 563 return -EINVAL; 564 if (uaddr->sa_family == AF_UNSPEC) 565 return sk->sk_prot->disconnect(sk, flags); 566 567 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 568 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 569 if (err) 570 return err; 571 } 572 573 if (!inet_sk(sk)->inet_num && inet_autobind(sk)) 574 return -EAGAIN; 575 return sk->sk_prot->connect(sk, uaddr, addr_len); 576 } 577 EXPORT_SYMBOL(inet_dgram_connect); 578 579 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) 580 { 581 DEFINE_WAIT_FUNC(wait, woken_wake_function); 582 583 add_wait_queue(sk_sleep(sk), &wait); 584 sk->sk_write_pending += writebias; 585 586 /* Basic assumption: if someone sets sk->sk_err, he _must_ 587 * change state of the socket from TCP_SYN_*. 588 * Connect() does not allow to get error notifications 589 * without closing the socket. 590 */ 591 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 592 release_sock(sk); 593 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 594 lock_sock(sk); 595 if (signal_pending(current) || !timeo) 596 break; 597 } 598 remove_wait_queue(sk_sleep(sk), &wait); 599 sk->sk_write_pending -= writebias; 600 return timeo; 601 } 602 603 /* 604 * Connect to a remote host. There is regrettably still a little 605 * TCP 'magic' in here. 606 */ 607 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 608 int addr_len, int flags, int is_sendmsg) 609 { 610 struct sock *sk = sock->sk; 611 int err; 612 long timeo; 613 614 /* 615 * uaddr can be NULL and addr_len can be 0 if: 616 * sk is a TCP fastopen active socket and 617 * TCP_FASTOPEN_CONNECT sockopt is set and 618 * we already have a valid cookie for this socket. 619 * In this case, user can call write() after connect(). 620 * write() will invoke tcp_sendmsg_fastopen() which calls 621 * __inet_stream_connect(). 622 */ 623 if (uaddr) { 624 if (addr_len < sizeof(uaddr->sa_family)) 625 return -EINVAL; 626 627 if (uaddr->sa_family == AF_UNSPEC) { 628 err = sk->sk_prot->disconnect(sk, flags); 629 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 630 goto out; 631 } 632 } 633 634 switch (sock->state) { 635 default: 636 err = -EINVAL; 637 goto out; 638 case SS_CONNECTED: 639 err = -EISCONN; 640 goto out; 641 case SS_CONNECTING: 642 if (inet_sk(sk)->defer_connect) 643 err = is_sendmsg ? -EINPROGRESS : -EISCONN; 644 else 645 err = -EALREADY; 646 /* Fall out of switch with err, set for this state */ 647 break; 648 case SS_UNCONNECTED: 649 err = -EISCONN; 650 if (sk->sk_state != TCP_CLOSE) 651 goto out; 652 653 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 654 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 655 if (err) 656 goto out; 657 } 658 659 err = sk->sk_prot->connect(sk, uaddr, addr_len); 660 if (err < 0) 661 goto out; 662 663 sock->state = SS_CONNECTING; 664 665 if (!err && inet_sk(sk)->defer_connect) 666 goto out; 667 668 /* Just entered SS_CONNECTING state; the only 669 * difference is that return value in non-blocking 670 * case is EINPROGRESS, rather than EALREADY. 671 */ 672 err = -EINPROGRESS; 673 break; 674 } 675 676 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 677 678 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 679 int writebias = (sk->sk_protocol == IPPROTO_TCP) && 680 tcp_sk(sk)->fastopen_req && 681 tcp_sk(sk)->fastopen_req->data ? 1 : 0; 682 683 /* Error code is set above */ 684 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) 685 goto out; 686 687 err = sock_intr_errno(timeo); 688 if (signal_pending(current)) 689 goto out; 690 } 691 692 /* Connection was closed by RST, timeout, ICMP error 693 * or another process disconnected us. 694 */ 695 if (sk->sk_state == TCP_CLOSE) 696 goto sock_error; 697 698 /* sk->sk_err may be not zero now, if RECVERR was ordered by user 699 * and error was received after socket entered established state. 700 * Hence, it is handled normally after connect() return successfully. 701 */ 702 703 sock->state = SS_CONNECTED; 704 err = 0; 705 out: 706 return err; 707 708 sock_error: 709 err = sock_error(sk) ? : -ECONNABORTED; 710 sock->state = SS_UNCONNECTED; 711 if (sk->sk_prot->disconnect(sk, flags)) 712 sock->state = SS_DISCONNECTING; 713 goto out; 714 } 715 EXPORT_SYMBOL(__inet_stream_connect); 716 717 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 718 int addr_len, int flags) 719 { 720 int err; 721 722 lock_sock(sock->sk); 723 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 724 release_sock(sock->sk); 725 return err; 726 } 727 EXPORT_SYMBOL(inet_stream_connect); 728 729 /* 730 * Accept a pending connection. The TCP layer now gives BSD semantics. 731 */ 732 733 int inet_accept(struct socket *sock, struct socket *newsock, int flags, 734 bool kern) 735 { 736 struct sock *sk1 = sock->sk; 737 int err = -EINVAL; 738 struct sock *sk2 = sk1->sk_prot->accept(sk1, flags, &err, kern); 739 740 if (!sk2) 741 goto do_err; 742 743 lock_sock(sk2); 744 745 sock_rps_record_flow(sk2); 746 WARN_ON(!((1 << sk2->sk_state) & 747 (TCPF_ESTABLISHED | TCPF_SYN_RECV | 748 TCPF_CLOSE_WAIT | TCPF_CLOSE))); 749 750 sock_graft(sk2, newsock); 751 752 newsock->state = SS_CONNECTED; 753 err = 0; 754 release_sock(sk2); 755 do_err: 756 return err; 757 } 758 EXPORT_SYMBOL(inet_accept); 759 760 761 /* 762 * This does both peername and sockname. 763 */ 764 int inet_getname(struct socket *sock, struct sockaddr *uaddr, 765 int peer) 766 { 767 struct sock *sk = sock->sk; 768 struct inet_sock *inet = inet_sk(sk); 769 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); 770 771 sin->sin_family = AF_INET; 772 if (peer) { 773 if (!inet->inet_dport || 774 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && 775 peer == 1)) 776 return -ENOTCONN; 777 sin->sin_port = inet->inet_dport; 778 sin->sin_addr.s_addr = inet->inet_daddr; 779 } else { 780 __be32 addr = inet->inet_rcv_saddr; 781 if (!addr) 782 addr = inet->inet_saddr; 783 sin->sin_port = inet->inet_sport; 784 sin->sin_addr.s_addr = addr; 785 } 786 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 787 return sizeof(*sin); 788 } 789 EXPORT_SYMBOL(inet_getname); 790 791 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 792 { 793 struct sock *sk = sock->sk; 794 795 sock_rps_record_flow(sk); 796 797 /* We may need to bind the socket. */ 798 if (!inet_sk(sk)->inet_num && !sk->sk_prot->no_autobind && 799 inet_autobind(sk)) 800 return -EAGAIN; 801 802 return sk->sk_prot->sendmsg(sk, msg, size); 803 } 804 EXPORT_SYMBOL(inet_sendmsg); 805 806 ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset, 807 size_t size, int flags) 808 { 809 struct sock *sk = sock->sk; 810 811 sock_rps_record_flow(sk); 812 813 /* We may need to bind the socket. */ 814 if (!inet_sk(sk)->inet_num && !sk->sk_prot->no_autobind && 815 inet_autobind(sk)) 816 return -EAGAIN; 817 818 if (sk->sk_prot->sendpage) 819 return sk->sk_prot->sendpage(sk, page, offset, size, flags); 820 return sock_no_sendpage(sock, page, offset, size, flags); 821 } 822 EXPORT_SYMBOL(inet_sendpage); 823 824 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 825 int flags) 826 { 827 struct sock *sk = sock->sk; 828 int addr_len = 0; 829 int err; 830 831 if (likely(!(flags & MSG_ERRQUEUE))) 832 sock_rps_record_flow(sk); 833 834 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 835 flags & ~MSG_DONTWAIT, &addr_len); 836 if (err >= 0) 837 msg->msg_namelen = addr_len; 838 return err; 839 } 840 EXPORT_SYMBOL(inet_recvmsg); 841 842 int inet_shutdown(struct socket *sock, int how) 843 { 844 struct sock *sk = sock->sk; 845 int err = 0; 846 847 /* This should really check to make sure 848 * the socket is a TCP socket. (WHY AC...) 849 */ 850 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 851 1->2 bit 2 snds. 852 2->3 */ 853 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ 854 return -EINVAL; 855 856 lock_sock(sk); 857 if (sock->state == SS_CONNECTING) { 858 if ((1 << sk->sk_state) & 859 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 860 sock->state = SS_DISCONNECTING; 861 else 862 sock->state = SS_CONNECTED; 863 } 864 865 switch (sk->sk_state) { 866 case TCP_CLOSE: 867 err = -ENOTCONN; 868 /* Hack to wake up other listeners, who can poll for 869 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ 870 /* fall through */ 871 default: 872 sk->sk_shutdown |= how; 873 if (sk->sk_prot->shutdown) 874 sk->sk_prot->shutdown(sk, how); 875 break; 876 877 /* Remaining two branches are temporary solution for missing 878 * close() in multithreaded environment. It is _not_ a good idea, 879 * but we have no choice until close() is repaired at VFS level. 880 */ 881 case TCP_LISTEN: 882 if (!(how & RCV_SHUTDOWN)) 883 break; 884 /* fall through */ 885 case TCP_SYN_SENT: 886 err = sk->sk_prot->disconnect(sk, O_NONBLOCK); 887 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 888 break; 889 } 890 891 /* Wake up anyone sleeping in poll. */ 892 sk->sk_state_change(sk); 893 release_sock(sk); 894 return err; 895 } 896 EXPORT_SYMBOL(inet_shutdown); 897 898 /* 899 * ioctl() calls you can issue on an INET socket. Most of these are 900 * device configuration and stuff and very rarely used. Some ioctls 901 * pass on to the socket itself. 902 * 903 * NOTE: I like the idea of a module for the config stuff. ie ifconfig 904 * loads the devconfigure module does its configuring and unloads it. 905 * There's a good 20K of config code hanging around the kernel. 906 */ 907 908 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 909 { 910 struct sock *sk = sock->sk; 911 int err = 0; 912 struct net *net = sock_net(sk); 913 void __user *p = (void __user *)arg; 914 struct ifreq ifr; 915 struct rtentry rt; 916 917 switch (cmd) { 918 case SIOCGSTAMP: 919 err = sock_get_timestamp(sk, (struct timeval __user *)arg); 920 break; 921 case SIOCGSTAMPNS: 922 err = sock_get_timestampns(sk, (struct timespec __user *)arg); 923 break; 924 case SIOCADDRT: 925 case SIOCDELRT: 926 if (copy_from_user(&rt, p, sizeof(struct rtentry))) 927 return -EFAULT; 928 err = ip_rt_ioctl(net, cmd, &rt); 929 break; 930 case SIOCRTMSG: 931 err = -EINVAL; 932 break; 933 case SIOCDARP: 934 case SIOCGARP: 935 case SIOCSARP: 936 err = arp_ioctl(net, cmd, (void __user *)arg); 937 break; 938 case SIOCGIFADDR: 939 case SIOCGIFBRDADDR: 940 case SIOCGIFNETMASK: 941 case SIOCGIFDSTADDR: 942 case SIOCGIFPFLAGS: 943 if (copy_from_user(&ifr, p, sizeof(struct ifreq))) 944 return -EFAULT; 945 err = devinet_ioctl(net, cmd, &ifr); 946 if (!err && copy_to_user(p, &ifr, sizeof(struct ifreq))) 947 err = -EFAULT; 948 break; 949 950 case SIOCSIFADDR: 951 case SIOCSIFBRDADDR: 952 case SIOCSIFNETMASK: 953 case SIOCSIFDSTADDR: 954 case SIOCSIFPFLAGS: 955 case SIOCSIFFLAGS: 956 if (copy_from_user(&ifr, p, sizeof(struct ifreq))) 957 return -EFAULT; 958 err = devinet_ioctl(net, cmd, &ifr); 959 break; 960 default: 961 if (sk->sk_prot->ioctl) 962 err = sk->sk_prot->ioctl(sk, cmd, arg); 963 else 964 err = -ENOIOCTLCMD; 965 break; 966 } 967 return err; 968 } 969 EXPORT_SYMBOL(inet_ioctl); 970 971 #ifdef CONFIG_COMPAT 972 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 973 { 974 struct sock *sk = sock->sk; 975 int err = -ENOIOCTLCMD; 976 977 if (sk->sk_prot->compat_ioctl) 978 err = sk->sk_prot->compat_ioctl(sk, cmd, arg); 979 980 return err; 981 } 982 #endif 983 984 const struct proto_ops inet_stream_ops = { 985 .family = PF_INET, 986 .owner = THIS_MODULE, 987 .release = inet_release, 988 .bind = inet_bind, 989 .connect = inet_stream_connect, 990 .socketpair = sock_no_socketpair, 991 .accept = inet_accept, 992 .getname = inet_getname, 993 .poll = tcp_poll, 994 .ioctl = inet_ioctl, 995 .listen = inet_listen, 996 .shutdown = inet_shutdown, 997 .setsockopt = sock_common_setsockopt, 998 .getsockopt = sock_common_getsockopt, 999 .sendmsg = inet_sendmsg, 1000 .recvmsg = inet_recvmsg, 1001 #ifdef CONFIG_MMU 1002 .mmap = tcp_mmap, 1003 #endif 1004 .sendpage = inet_sendpage, 1005 .splice_read = tcp_splice_read, 1006 .read_sock = tcp_read_sock, 1007 .sendmsg_locked = tcp_sendmsg_locked, 1008 .sendpage_locked = tcp_sendpage_locked, 1009 .peek_len = tcp_peek_len, 1010 #ifdef CONFIG_COMPAT 1011 .compat_setsockopt = compat_sock_common_setsockopt, 1012 .compat_getsockopt = compat_sock_common_getsockopt, 1013 .compat_ioctl = inet_compat_ioctl, 1014 #endif 1015 .set_rcvlowat = tcp_set_rcvlowat, 1016 }; 1017 EXPORT_SYMBOL(inet_stream_ops); 1018 1019 const struct proto_ops inet_dgram_ops = { 1020 .family = PF_INET, 1021 .owner = THIS_MODULE, 1022 .release = inet_release, 1023 .bind = inet_bind, 1024 .connect = inet_dgram_connect, 1025 .socketpair = sock_no_socketpair, 1026 .accept = sock_no_accept, 1027 .getname = inet_getname, 1028 .poll = udp_poll, 1029 .ioctl = inet_ioctl, 1030 .listen = sock_no_listen, 1031 .shutdown = inet_shutdown, 1032 .setsockopt = sock_common_setsockopt, 1033 .getsockopt = sock_common_getsockopt, 1034 .sendmsg = inet_sendmsg, 1035 .recvmsg = inet_recvmsg, 1036 .mmap = sock_no_mmap, 1037 .sendpage = inet_sendpage, 1038 .set_peek_off = sk_set_peek_off, 1039 #ifdef CONFIG_COMPAT 1040 .compat_setsockopt = compat_sock_common_setsockopt, 1041 .compat_getsockopt = compat_sock_common_getsockopt, 1042 .compat_ioctl = inet_compat_ioctl, 1043 #endif 1044 }; 1045 EXPORT_SYMBOL(inet_dgram_ops); 1046 1047 /* 1048 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without 1049 * udp_poll 1050 */ 1051 static const struct proto_ops inet_sockraw_ops = { 1052 .family = PF_INET, 1053 .owner = THIS_MODULE, 1054 .release = inet_release, 1055 .bind = inet_bind, 1056 .connect = inet_dgram_connect, 1057 .socketpair = sock_no_socketpair, 1058 .accept = sock_no_accept, 1059 .getname = inet_getname, 1060 .poll = datagram_poll, 1061 .ioctl = inet_ioctl, 1062 .listen = sock_no_listen, 1063 .shutdown = inet_shutdown, 1064 .setsockopt = sock_common_setsockopt, 1065 .getsockopt = sock_common_getsockopt, 1066 .sendmsg = inet_sendmsg, 1067 .recvmsg = inet_recvmsg, 1068 .mmap = sock_no_mmap, 1069 .sendpage = inet_sendpage, 1070 #ifdef CONFIG_COMPAT 1071 .compat_setsockopt = compat_sock_common_setsockopt, 1072 .compat_getsockopt = compat_sock_common_getsockopt, 1073 .compat_ioctl = inet_compat_ioctl, 1074 #endif 1075 }; 1076 1077 static const struct net_proto_family inet_family_ops = { 1078 .family = PF_INET, 1079 .create = inet_create, 1080 .owner = THIS_MODULE, 1081 }; 1082 1083 /* Upon startup we insert all the elements in inetsw_array[] into 1084 * the linked list inetsw. 1085 */ 1086 static struct inet_protosw inetsw_array[] = 1087 { 1088 { 1089 .type = SOCK_STREAM, 1090 .protocol = IPPROTO_TCP, 1091 .prot = &tcp_prot, 1092 .ops = &inet_stream_ops, 1093 .flags = INET_PROTOSW_PERMANENT | 1094 INET_PROTOSW_ICSK, 1095 }, 1096 1097 { 1098 .type = SOCK_DGRAM, 1099 .protocol = IPPROTO_UDP, 1100 .prot = &udp_prot, 1101 .ops = &inet_dgram_ops, 1102 .flags = INET_PROTOSW_PERMANENT, 1103 }, 1104 1105 { 1106 .type = SOCK_DGRAM, 1107 .protocol = IPPROTO_ICMP, 1108 .prot = &ping_prot, 1109 .ops = &inet_sockraw_ops, 1110 .flags = INET_PROTOSW_REUSE, 1111 }, 1112 1113 { 1114 .type = SOCK_RAW, 1115 .protocol = IPPROTO_IP, /* wild card */ 1116 .prot = &raw_prot, 1117 .ops = &inet_sockraw_ops, 1118 .flags = INET_PROTOSW_REUSE, 1119 } 1120 }; 1121 1122 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) 1123 1124 void inet_register_protosw(struct inet_protosw *p) 1125 { 1126 struct list_head *lh; 1127 struct inet_protosw *answer; 1128 int protocol = p->protocol; 1129 struct list_head *last_perm; 1130 1131 spin_lock_bh(&inetsw_lock); 1132 1133 if (p->type >= SOCK_MAX) 1134 goto out_illegal; 1135 1136 /* If we are trying to override a permanent protocol, bail. */ 1137 last_perm = &inetsw[p->type]; 1138 list_for_each(lh, &inetsw[p->type]) { 1139 answer = list_entry(lh, struct inet_protosw, list); 1140 /* Check only the non-wild match. */ 1141 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) 1142 break; 1143 if (protocol == answer->protocol) 1144 goto out_permanent; 1145 last_perm = lh; 1146 } 1147 1148 /* Add the new entry after the last permanent entry if any, so that 1149 * the new entry does not override a permanent entry when matched with 1150 * a wild-card protocol. But it is allowed to override any existing 1151 * non-permanent entry. This means that when we remove this entry, the 1152 * system automatically returns to the old behavior. 1153 */ 1154 list_add_rcu(&p->list, last_perm); 1155 out: 1156 spin_unlock_bh(&inetsw_lock); 1157 1158 return; 1159 1160 out_permanent: 1161 pr_err("Attempt to override permanent protocol %d\n", protocol); 1162 goto out; 1163 1164 out_illegal: 1165 pr_err("Ignoring attempt to register invalid socket type %d\n", 1166 p->type); 1167 goto out; 1168 } 1169 EXPORT_SYMBOL(inet_register_protosw); 1170 1171 void inet_unregister_protosw(struct inet_protosw *p) 1172 { 1173 if (INET_PROTOSW_PERMANENT & p->flags) { 1174 pr_err("Attempt to unregister permanent protocol %d\n", 1175 p->protocol); 1176 } else { 1177 spin_lock_bh(&inetsw_lock); 1178 list_del_rcu(&p->list); 1179 spin_unlock_bh(&inetsw_lock); 1180 1181 synchronize_net(); 1182 } 1183 } 1184 EXPORT_SYMBOL(inet_unregister_protosw); 1185 1186 static int inet_sk_reselect_saddr(struct sock *sk) 1187 { 1188 struct inet_sock *inet = inet_sk(sk); 1189 __be32 old_saddr = inet->inet_saddr; 1190 __be32 daddr = inet->inet_daddr; 1191 struct flowi4 *fl4; 1192 struct rtable *rt; 1193 __be32 new_saddr; 1194 struct ip_options_rcu *inet_opt; 1195 1196 inet_opt = rcu_dereference_protected(inet->inet_opt, 1197 lockdep_sock_is_held(sk)); 1198 if (inet_opt && inet_opt->opt.srr) 1199 daddr = inet_opt->opt.faddr; 1200 1201 /* Query new route. */ 1202 fl4 = &inet->cork.fl.u.ip4; 1203 rt = ip_route_connect(fl4, daddr, 0, RT_CONN_FLAGS(sk), 1204 sk->sk_bound_dev_if, sk->sk_protocol, 1205 inet->inet_sport, inet->inet_dport, sk); 1206 if (IS_ERR(rt)) 1207 return PTR_ERR(rt); 1208 1209 sk_setup_caps(sk, &rt->dst); 1210 1211 new_saddr = fl4->saddr; 1212 1213 if (new_saddr == old_saddr) 1214 return 0; 1215 1216 if (sock_net(sk)->ipv4.sysctl_ip_dynaddr > 1) { 1217 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", 1218 __func__, &old_saddr, &new_saddr); 1219 } 1220 1221 inet->inet_saddr = inet->inet_rcv_saddr = new_saddr; 1222 1223 /* 1224 * XXX The only one ugly spot where we need to 1225 * XXX really change the sockets identity after 1226 * XXX it has entered the hashes. -DaveM 1227 * 1228 * Besides that, it does not check for connection 1229 * uniqueness. Wait for troubles. 1230 */ 1231 return __sk_prot_rehash(sk); 1232 } 1233 1234 int inet_sk_rebuild_header(struct sock *sk) 1235 { 1236 struct inet_sock *inet = inet_sk(sk); 1237 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); 1238 __be32 daddr; 1239 struct ip_options_rcu *inet_opt; 1240 struct flowi4 *fl4; 1241 int err; 1242 1243 /* Route is OK, nothing to do. */ 1244 if (rt) 1245 return 0; 1246 1247 /* Reroute. */ 1248 rcu_read_lock(); 1249 inet_opt = rcu_dereference(inet->inet_opt); 1250 daddr = inet->inet_daddr; 1251 if (inet_opt && inet_opt->opt.srr) 1252 daddr = inet_opt->opt.faddr; 1253 rcu_read_unlock(); 1254 fl4 = &inet->cork.fl.u.ip4; 1255 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, 1256 inet->inet_dport, inet->inet_sport, 1257 sk->sk_protocol, RT_CONN_FLAGS(sk), 1258 sk->sk_bound_dev_if); 1259 if (!IS_ERR(rt)) { 1260 err = 0; 1261 sk_setup_caps(sk, &rt->dst); 1262 } else { 1263 err = PTR_ERR(rt); 1264 1265 /* Routing failed... */ 1266 sk->sk_route_caps = 0; 1267 /* 1268 * Other protocols have to map its equivalent state to TCP_SYN_SENT. 1269 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme 1270 */ 1271 if (!sock_net(sk)->ipv4.sysctl_ip_dynaddr || 1272 sk->sk_state != TCP_SYN_SENT || 1273 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || 1274 (err = inet_sk_reselect_saddr(sk)) != 0) 1275 sk->sk_err_soft = -err; 1276 } 1277 1278 return err; 1279 } 1280 EXPORT_SYMBOL(inet_sk_rebuild_header); 1281 1282 void inet_sk_set_state(struct sock *sk, int state) 1283 { 1284 trace_inet_sock_set_state(sk, sk->sk_state, state); 1285 sk->sk_state = state; 1286 } 1287 EXPORT_SYMBOL(inet_sk_set_state); 1288 1289 void inet_sk_state_store(struct sock *sk, int newstate) 1290 { 1291 trace_inet_sock_set_state(sk, sk->sk_state, newstate); 1292 smp_store_release(&sk->sk_state, newstate); 1293 } 1294 1295 struct sk_buff *inet_gso_segment(struct sk_buff *skb, 1296 netdev_features_t features) 1297 { 1298 bool udpfrag = false, fixedid = false, gso_partial, encap; 1299 struct sk_buff *segs = ERR_PTR(-EINVAL); 1300 const struct net_offload *ops; 1301 unsigned int offset = 0; 1302 struct iphdr *iph; 1303 int proto, tot_len; 1304 int nhoff; 1305 int ihl; 1306 int id; 1307 1308 skb_reset_network_header(skb); 1309 nhoff = skb_network_header(skb) - skb_mac_header(skb); 1310 if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) 1311 goto out; 1312 1313 iph = ip_hdr(skb); 1314 ihl = iph->ihl * 4; 1315 if (ihl < sizeof(*iph)) 1316 goto out; 1317 1318 id = ntohs(iph->id); 1319 proto = iph->protocol; 1320 1321 /* Warning: after this point, iph might be no longer valid */ 1322 if (unlikely(!pskb_may_pull(skb, ihl))) 1323 goto out; 1324 __skb_pull(skb, ihl); 1325 1326 encap = SKB_GSO_CB(skb)->encap_level > 0; 1327 if (encap) 1328 features &= skb->dev->hw_enc_features; 1329 SKB_GSO_CB(skb)->encap_level += ihl; 1330 1331 skb_reset_transport_header(skb); 1332 1333 segs = ERR_PTR(-EPROTONOSUPPORT); 1334 1335 if (!skb->encapsulation || encap) { 1336 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); 1337 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); 1338 1339 /* fixed ID is invalid if DF bit is not set */ 1340 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) 1341 goto out; 1342 } 1343 1344 ops = rcu_dereference(inet_offloads[proto]); 1345 if (likely(ops && ops->callbacks.gso_segment)) 1346 segs = ops->callbacks.gso_segment(skb, features); 1347 1348 if (IS_ERR_OR_NULL(segs)) 1349 goto out; 1350 1351 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); 1352 1353 skb = segs; 1354 do { 1355 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); 1356 if (udpfrag) { 1357 iph->frag_off = htons(offset >> 3); 1358 if (skb->next) 1359 iph->frag_off |= htons(IP_MF); 1360 offset += skb->len - nhoff - ihl; 1361 tot_len = skb->len - nhoff; 1362 } else if (skb_is_gso(skb)) { 1363 if (!fixedid) { 1364 iph->id = htons(id); 1365 id += skb_shinfo(skb)->gso_segs; 1366 } 1367 1368 if (gso_partial) 1369 tot_len = skb_shinfo(skb)->gso_size + 1370 SKB_GSO_CB(skb)->data_offset + 1371 skb->head - (unsigned char *)iph; 1372 else 1373 tot_len = skb->len - nhoff; 1374 } else { 1375 if (!fixedid) 1376 iph->id = htons(id++); 1377 tot_len = skb->len - nhoff; 1378 } 1379 iph->tot_len = htons(tot_len); 1380 ip_send_check(iph); 1381 if (encap) 1382 skb_reset_inner_headers(skb); 1383 skb->network_header = (u8 *)iph - skb->head; 1384 skb_reset_mac_len(skb); 1385 } while ((skb = skb->next)); 1386 1387 out: 1388 return segs; 1389 } 1390 EXPORT_SYMBOL(inet_gso_segment); 1391 1392 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb, 1393 netdev_features_t features) 1394 { 1395 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) 1396 return ERR_PTR(-EINVAL); 1397 1398 return inet_gso_segment(skb, features); 1399 } 1400 1401 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *, 1402 struct sk_buff *)); 1403 INDIRECT_CALLABLE_DECLARE(struct sk_buff *udp4_gro_receive(struct list_head *, 1404 struct sk_buff *)); 1405 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) 1406 { 1407 const struct net_offload *ops; 1408 struct sk_buff *pp = NULL; 1409 const struct iphdr *iph; 1410 struct sk_buff *p; 1411 unsigned int hlen; 1412 unsigned int off; 1413 unsigned int id; 1414 int flush = 1; 1415 int proto; 1416 1417 off = skb_gro_offset(skb); 1418 hlen = off + sizeof(*iph); 1419 iph = skb_gro_header_fast(skb, off); 1420 if (skb_gro_header_hard(skb, hlen)) { 1421 iph = skb_gro_header_slow(skb, hlen, off); 1422 if (unlikely(!iph)) 1423 goto out; 1424 } 1425 1426 proto = iph->protocol; 1427 1428 rcu_read_lock(); 1429 ops = rcu_dereference(inet_offloads[proto]); 1430 if (!ops || !ops->callbacks.gro_receive) 1431 goto out_unlock; 1432 1433 if (*(u8 *)iph != 0x45) 1434 goto out_unlock; 1435 1436 if (ip_is_fragment(iph)) 1437 goto out_unlock; 1438 1439 if (unlikely(ip_fast_csum((u8 *)iph, 5))) 1440 goto out_unlock; 1441 1442 id = ntohl(*(__be32 *)&iph->id); 1443 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); 1444 id >>= 16; 1445 1446 list_for_each_entry(p, head, list) { 1447 struct iphdr *iph2; 1448 u16 flush_id; 1449 1450 if (!NAPI_GRO_CB(p)->same_flow) 1451 continue; 1452 1453 iph2 = (struct iphdr *)(p->data + off); 1454 /* The above works because, with the exception of the top 1455 * (inner most) layer, we only aggregate pkts with the same 1456 * hdr length so all the hdrs we'll need to verify will start 1457 * at the same offset. 1458 */ 1459 if ((iph->protocol ^ iph2->protocol) | 1460 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | 1461 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { 1462 NAPI_GRO_CB(p)->same_flow = 0; 1463 continue; 1464 } 1465 1466 /* All fields must match except length and checksum. */ 1467 NAPI_GRO_CB(p)->flush |= 1468 (iph->ttl ^ iph2->ttl) | 1469 (iph->tos ^ iph2->tos) | 1470 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); 1471 1472 NAPI_GRO_CB(p)->flush |= flush; 1473 1474 /* We need to store of the IP ID check to be included later 1475 * when we can verify that this packet does in fact belong 1476 * to a given flow. 1477 */ 1478 flush_id = (u16)(id - ntohs(iph2->id)); 1479 1480 /* This bit of code makes it much easier for us to identify 1481 * the cases where we are doing atomic vs non-atomic IP ID 1482 * checks. Specifically an atomic check can return IP ID 1483 * values 0 - 0xFFFF, while a non-atomic check can only 1484 * return 0 or 0xFFFF. 1485 */ 1486 if (!NAPI_GRO_CB(p)->is_atomic || 1487 !(iph->frag_off & htons(IP_DF))) { 1488 flush_id ^= NAPI_GRO_CB(p)->count; 1489 flush_id = flush_id ? 0xFFFF : 0; 1490 } 1491 1492 /* If the previous IP ID value was based on an atomic 1493 * datagram we can overwrite the value and ignore it. 1494 */ 1495 if (NAPI_GRO_CB(skb)->is_atomic) 1496 NAPI_GRO_CB(p)->flush_id = flush_id; 1497 else 1498 NAPI_GRO_CB(p)->flush_id |= flush_id; 1499 } 1500 1501 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); 1502 NAPI_GRO_CB(skb)->flush |= flush; 1503 skb_set_network_header(skb, off); 1504 /* The above will be needed by the transport layer if there is one 1505 * immediately following this IP hdr. 1506 */ 1507 1508 /* Note : No need to call skb_gro_postpull_rcsum() here, 1509 * as we already checked checksum over ipv4 header was 0 1510 */ 1511 skb_gro_pull(skb, sizeof(*iph)); 1512 skb_set_transport_header(skb, skb_gro_offset(skb)); 1513 1514 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive, 1515 ops->callbacks.gro_receive, head, skb); 1516 1517 out_unlock: 1518 rcu_read_unlock(); 1519 1520 out: 1521 skb_gro_flush_final(skb, pp, flush); 1522 1523 return pp; 1524 } 1525 EXPORT_SYMBOL(inet_gro_receive); 1526 1527 static struct sk_buff *ipip_gro_receive(struct list_head *head, 1528 struct sk_buff *skb) 1529 { 1530 if (NAPI_GRO_CB(skb)->encap_mark) { 1531 NAPI_GRO_CB(skb)->flush = 1; 1532 return NULL; 1533 } 1534 1535 NAPI_GRO_CB(skb)->encap_mark = 1; 1536 1537 return inet_gro_receive(head, skb); 1538 } 1539 1540 #define SECONDS_PER_DAY 86400 1541 1542 /* inet_current_timestamp - Return IP network timestamp 1543 * 1544 * Return milliseconds since midnight in network byte order. 1545 */ 1546 __be32 inet_current_timestamp(void) 1547 { 1548 u32 secs; 1549 u32 msecs; 1550 struct timespec64 ts; 1551 1552 ktime_get_real_ts64(&ts); 1553 1554 /* Get secs since midnight. */ 1555 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); 1556 /* Convert to msecs. */ 1557 msecs = secs * MSEC_PER_SEC; 1558 /* Convert nsec to msec. */ 1559 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; 1560 1561 /* Convert to network byte order. */ 1562 return htonl(msecs); 1563 } 1564 EXPORT_SYMBOL(inet_current_timestamp); 1565 1566 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) 1567 { 1568 if (sk->sk_family == AF_INET) 1569 return ip_recv_error(sk, msg, len, addr_len); 1570 #if IS_ENABLED(CONFIG_IPV6) 1571 if (sk->sk_family == AF_INET6) 1572 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); 1573 #endif 1574 return -EINVAL; 1575 } 1576 1577 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *, int)); 1578 INDIRECT_CALLABLE_DECLARE(int udp4_gro_complete(struct sk_buff *, int)); 1579 int inet_gro_complete(struct sk_buff *skb, int nhoff) 1580 { 1581 __be16 newlen = htons(skb->len - nhoff); 1582 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); 1583 const struct net_offload *ops; 1584 int proto = iph->protocol; 1585 int err = -ENOSYS; 1586 1587 if (skb->encapsulation) { 1588 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); 1589 skb_set_inner_network_header(skb, nhoff); 1590 } 1591 1592 csum_replace2(&iph->check, iph->tot_len, newlen); 1593 iph->tot_len = newlen; 1594 1595 rcu_read_lock(); 1596 ops = rcu_dereference(inet_offloads[proto]); 1597 if (WARN_ON(!ops || !ops->callbacks.gro_complete)) 1598 goto out_unlock; 1599 1600 /* Only need to add sizeof(*iph) to get to the next hdr below 1601 * because any hdr with option will have been flushed in 1602 * inet_gro_receive(). 1603 */ 1604 err = INDIRECT_CALL_2(ops->callbacks.gro_complete, 1605 tcp4_gro_complete, udp4_gro_complete, 1606 skb, nhoff + sizeof(*iph)); 1607 1608 out_unlock: 1609 rcu_read_unlock(); 1610 1611 return err; 1612 } 1613 EXPORT_SYMBOL(inet_gro_complete); 1614 1615 static int ipip_gro_complete(struct sk_buff *skb, int nhoff) 1616 { 1617 skb->encapsulation = 1; 1618 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; 1619 return inet_gro_complete(skb, nhoff); 1620 } 1621 1622 int inet_ctl_sock_create(struct sock **sk, unsigned short family, 1623 unsigned short type, unsigned char protocol, 1624 struct net *net) 1625 { 1626 struct socket *sock; 1627 int rc = sock_create_kern(net, family, type, protocol, &sock); 1628 1629 if (rc == 0) { 1630 *sk = sock->sk; 1631 (*sk)->sk_allocation = GFP_ATOMIC; 1632 /* 1633 * Unhash it so that IP input processing does not even see it, 1634 * we do not wish this socket to see incoming packets. 1635 */ 1636 (*sk)->sk_prot->unhash(*sk); 1637 } 1638 return rc; 1639 } 1640 EXPORT_SYMBOL_GPL(inet_ctl_sock_create); 1641 1642 u64 snmp_get_cpu_field(void __percpu *mib, int cpu, int offt) 1643 { 1644 return *(((unsigned long *)per_cpu_ptr(mib, cpu)) + offt); 1645 } 1646 EXPORT_SYMBOL_GPL(snmp_get_cpu_field); 1647 1648 unsigned long snmp_fold_field(void __percpu *mib, int offt) 1649 { 1650 unsigned long res = 0; 1651 int i; 1652 1653 for_each_possible_cpu(i) 1654 res += snmp_get_cpu_field(mib, i, offt); 1655 return res; 1656 } 1657 EXPORT_SYMBOL_GPL(snmp_fold_field); 1658 1659 #if BITS_PER_LONG==32 1660 1661 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, 1662 size_t syncp_offset) 1663 { 1664 void *bhptr; 1665 struct u64_stats_sync *syncp; 1666 u64 v; 1667 unsigned int start; 1668 1669 bhptr = per_cpu_ptr(mib, cpu); 1670 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); 1671 do { 1672 start = u64_stats_fetch_begin_irq(syncp); 1673 v = *(((u64 *)bhptr) + offt); 1674 } while (u64_stats_fetch_retry_irq(syncp, start)); 1675 1676 return v; 1677 } 1678 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); 1679 1680 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) 1681 { 1682 u64 res = 0; 1683 int cpu; 1684 1685 for_each_possible_cpu(cpu) { 1686 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); 1687 } 1688 return res; 1689 } 1690 EXPORT_SYMBOL_GPL(snmp_fold_field64); 1691 #endif 1692 1693 #ifdef CONFIG_IP_MULTICAST 1694 static const struct net_protocol igmp_protocol = { 1695 .handler = igmp_rcv, 1696 .netns_ok = 1, 1697 }; 1698 #endif 1699 1700 /* thinking of making this const? Don't. 1701 * early_demux can change based on sysctl. 1702 */ 1703 static struct net_protocol tcp_protocol = { 1704 .early_demux = tcp_v4_early_demux, 1705 .early_demux_handler = tcp_v4_early_demux, 1706 .handler = tcp_v4_rcv, 1707 .err_handler = tcp_v4_err, 1708 .no_policy = 1, 1709 .netns_ok = 1, 1710 .icmp_strict_tag_validation = 1, 1711 }; 1712 1713 /* thinking of making this const? Don't. 1714 * early_demux can change based on sysctl. 1715 */ 1716 static struct net_protocol udp_protocol = { 1717 .early_demux = udp_v4_early_demux, 1718 .early_demux_handler = udp_v4_early_demux, 1719 .handler = udp_rcv, 1720 .err_handler = udp_err, 1721 .no_policy = 1, 1722 .netns_ok = 1, 1723 }; 1724 1725 static const struct net_protocol icmp_protocol = { 1726 .handler = icmp_rcv, 1727 .err_handler = icmp_err, 1728 .no_policy = 1, 1729 .netns_ok = 1, 1730 }; 1731 1732 static __net_init int ipv4_mib_init_net(struct net *net) 1733 { 1734 int i; 1735 1736 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); 1737 if (!net->mib.tcp_statistics) 1738 goto err_tcp_mib; 1739 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); 1740 if (!net->mib.ip_statistics) 1741 goto err_ip_mib; 1742 1743 for_each_possible_cpu(i) { 1744 struct ipstats_mib *af_inet_stats; 1745 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); 1746 u64_stats_init(&af_inet_stats->syncp); 1747 } 1748 1749 net->mib.net_statistics = alloc_percpu(struct linux_mib); 1750 if (!net->mib.net_statistics) 1751 goto err_net_mib; 1752 net->mib.udp_statistics = alloc_percpu(struct udp_mib); 1753 if (!net->mib.udp_statistics) 1754 goto err_udp_mib; 1755 net->mib.udplite_statistics = alloc_percpu(struct udp_mib); 1756 if (!net->mib.udplite_statistics) 1757 goto err_udplite_mib; 1758 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); 1759 if (!net->mib.icmp_statistics) 1760 goto err_icmp_mib; 1761 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), 1762 GFP_KERNEL); 1763 if (!net->mib.icmpmsg_statistics) 1764 goto err_icmpmsg_mib; 1765 1766 tcp_mib_init(net); 1767 return 0; 1768 1769 err_icmpmsg_mib: 1770 free_percpu(net->mib.icmp_statistics); 1771 err_icmp_mib: 1772 free_percpu(net->mib.udplite_statistics); 1773 err_udplite_mib: 1774 free_percpu(net->mib.udp_statistics); 1775 err_udp_mib: 1776 free_percpu(net->mib.net_statistics); 1777 err_net_mib: 1778 free_percpu(net->mib.ip_statistics); 1779 err_ip_mib: 1780 free_percpu(net->mib.tcp_statistics); 1781 err_tcp_mib: 1782 return -ENOMEM; 1783 } 1784 1785 static __net_exit void ipv4_mib_exit_net(struct net *net) 1786 { 1787 kfree(net->mib.icmpmsg_statistics); 1788 free_percpu(net->mib.icmp_statistics); 1789 free_percpu(net->mib.udplite_statistics); 1790 free_percpu(net->mib.udp_statistics); 1791 free_percpu(net->mib.net_statistics); 1792 free_percpu(net->mib.ip_statistics); 1793 free_percpu(net->mib.tcp_statistics); 1794 } 1795 1796 static __net_initdata struct pernet_operations ipv4_mib_ops = { 1797 .init = ipv4_mib_init_net, 1798 .exit = ipv4_mib_exit_net, 1799 }; 1800 1801 static int __init init_ipv4_mibs(void) 1802 { 1803 return register_pernet_subsys(&ipv4_mib_ops); 1804 } 1805 1806 static __net_init int inet_init_net(struct net *net) 1807 { 1808 /* 1809 * Set defaults for local port range 1810 */ 1811 seqlock_init(&net->ipv4.ip_local_ports.lock); 1812 net->ipv4.ip_local_ports.range[0] = 32768; 1813 net->ipv4.ip_local_ports.range[1] = 60999; 1814 1815 seqlock_init(&net->ipv4.ping_group_range.lock); 1816 /* 1817 * Sane defaults - nobody may create ping sockets. 1818 * Boot scripts should set this to distro-specific group. 1819 */ 1820 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); 1821 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); 1822 1823 /* Default values for sysctl-controlled parameters. 1824 * We set them here, in case sysctl is not compiled. 1825 */ 1826 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; 1827 net->ipv4.sysctl_ip_fwd_update_priority = 1; 1828 net->ipv4.sysctl_ip_dynaddr = 0; 1829 net->ipv4.sysctl_ip_early_demux = 1; 1830 net->ipv4.sysctl_udp_early_demux = 1; 1831 net->ipv4.sysctl_tcp_early_demux = 1; 1832 #ifdef CONFIG_SYSCTL 1833 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; 1834 #endif 1835 1836 /* Some igmp sysctl, whose values are always used */ 1837 net->ipv4.sysctl_igmp_max_memberships = 20; 1838 net->ipv4.sysctl_igmp_max_msf = 10; 1839 /* IGMP reports for link-local multicast groups are enabled by default */ 1840 net->ipv4.sysctl_igmp_llm_reports = 1; 1841 net->ipv4.sysctl_igmp_qrv = 2; 1842 1843 return 0; 1844 } 1845 1846 static __net_exit void inet_exit_net(struct net *net) 1847 { 1848 } 1849 1850 static __net_initdata struct pernet_operations af_inet_ops = { 1851 .init = inet_init_net, 1852 .exit = inet_exit_net, 1853 }; 1854 1855 static int __init init_inet_pernet_ops(void) 1856 { 1857 return register_pernet_subsys(&af_inet_ops); 1858 } 1859 1860 static int ipv4_proc_init(void); 1861 1862 /* 1863 * IP protocol layer initialiser 1864 */ 1865 1866 static struct packet_offload ip_packet_offload __read_mostly = { 1867 .type = cpu_to_be16(ETH_P_IP), 1868 .callbacks = { 1869 .gso_segment = inet_gso_segment, 1870 .gro_receive = inet_gro_receive, 1871 .gro_complete = inet_gro_complete, 1872 }, 1873 }; 1874 1875 static const struct net_offload ipip_offload = { 1876 .callbacks = { 1877 .gso_segment = ipip_gso_segment, 1878 .gro_receive = ipip_gro_receive, 1879 .gro_complete = ipip_gro_complete, 1880 }, 1881 }; 1882 1883 static int __init ipip_offload_init(void) 1884 { 1885 return inet_add_offload(&ipip_offload, IPPROTO_IPIP); 1886 } 1887 1888 static int __init ipv4_offload_init(void) 1889 { 1890 /* 1891 * Add offloads 1892 */ 1893 if (udpv4_offload_init() < 0) 1894 pr_crit("%s: Cannot add UDP protocol offload\n", __func__); 1895 if (tcpv4_offload_init() < 0) 1896 pr_crit("%s: Cannot add TCP protocol offload\n", __func__); 1897 if (ipip_offload_init() < 0) 1898 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); 1899 1900 dev_add_offload(&ip_packet_offload); 1901 return 0; 1902 } 1903 1904 fs_initcall(ipv4_offload_init); 1905 1906 static struct packet_type ip_packet_type __read_mostly = { 1907 .type = cpu_to_be16(ETH_P_IP), 1908 .func = ip_rcv, 1909 .list_func = ip_list_rcv, 1910 }; 1911 1912 static int __init inet_init(void) 1913 { 1914 struct inet_protosw *q; 1915 struct list_head *r; 1916 int rc = -EINVAL; 1917 1918 sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); 1919 1920 rc = proto_register(&tcp_prot, 1); 1921 if (rc) 1922 goto out; 1923 1924 rc = proto_register(&udp_prot, 1); 1925 if (rc) 1926 goto out_unregister_tcp_proto; 1927 1928 rc = proto_register(&raw_prot, 1); 1929 if (rc) 1930 goto out_unregister_udp_proto; 1931 1932 rc = proto_register(&ping_prot, 1); 1933 if (rc) 1934 goto out_unregister_raw_proto; 1935 1936 /* 1937 * Tell SOCKET that we are alive... 1938 */ 1939 1940 (void)sock_register(&inet_family_ops); 1941 1942 #ifdef CONFIG_SYSCTL 1943 ip_static_sysctl_init(); 1944 #endif 1945 1946 /* 1947 * Add all the base protocols. 1948 */ 1949 1950 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) 1951 pr_crit("%s: Cannot add ICMP protocol\n", __func__); 1952 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0) 1953 pr_crit("%s: Cannot add UDP protocol\n", __func__); 1954 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0) 1955 pr_crit("%s: Cannot add TCP protocol\n", __func__); 1956 #ifdef CONFIG_IP_MULTICAST 1957 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) 1958 pr_crit("%s: Cannot add IGMP protocol\n", __func__); 1959 #endif 1960 1961 /* Register the socket-side information for inet_create. */ 1962 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 1963 INIT_LIST_HEAD(r); 1964 1965 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 1966 inet_register_protosw(q); 1967 1968 /* 1969 * Set the ARP module up 1970 */ 1971 1972 arp_init(); 1973 1974 /* 1975 * Set the IP module up 1976 */ 1977 1978 ip_init(); 1979 1980 /* Setup TCP slab cache for open requests. */ 1981 tcp_init(); 1982 1983 /* Setup UDP memory threshold */ 1984 udp_init(); 1985 1986 /* Add UDP-Lite (RFC 3828) */ 1987 udplite4_register(); 1988 1989 raw_init(); 1990 1991 ping_init(); 1992 1993 /* 1994 * Set the ICMP layer up 1995 */ 1996 1997 if (icmp_init() < 0) 1998 panic("Failed to create the ICMP control socket.\n"); 1999 2000 /* 2001 * Initialise the multicast router 2002 */ 2003 #if defined(CONFIG_IP_MROUTE) 2004 if (ip_mr_init()) 2005 pr_crit("%s: Cannot init ipv4 mroute\n", __func__); 2006 #endif 2007 2008 if (init_inet_pernet_ops()) 2009 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); 2010 /* 2011 * Initialise per-cpu ipv4 mibs 2012 */ 2013 2014 if (init_ipv4_mibs()) 2015 pr_crit("%s: Cannot init ipv4 mibs\n", __func__); 2016 2017 ipv4_proc_init(); 2018 2019 ipfrag_init(); 2020 2021 dev_add_pack(&ip_packet_type); 2022 2023 ip_tunnel_core_init(); 2024 2025 rc = 0; 2026 out: 2027 return rc; 2028 out_unregister_raw_proto: 2029 proto_unregister(&raw_prot); 2030 out_unregister_udp_proto: 2031 proto_unregister(&udp_prot); 2032 out_unregister_tcp_proto: 2033 proto_unregister(&tcp_prot); 2034 goto out; 2035 } 2036 2037 fs_initcall(inet_init); 2038 2039 /* ------------------------------------------------------------------------ */ 2040 2041 #ifdef CONFIG_PROC_FS 2042 static int __init ipv4_proc_init(void) 2043 { 2044 int rc = 0; 2045 2046 if (raw_proc_init()) 2047 goto out_raw; 2048 if (tcp4_proc_init()) 2049 goto out_tcp; 2050 if (udp4_proc_init()) 2051 goto out_udp; 2052 if (ping_proc_init()) 2053 goto out_ping; 2054 if (ip_misc_proc_init()) 2055 goto out_misc; 2056 out: 2057 return rc; 2058 out_misc: 2059 ping_proc_exit(); 2060 out_ping: 2061 udp4_proc_exit(); 2062 out_udp: 2063 tcp4_proc_exit(); 2064 out_tcp: 2065 raw_proc_exit(); 2066 out_raw: 2067 rc = -ENOMEM; 2068 goto out; 2069 } 2070 2071 #else /* CONFIG_PROC_FS */ 2072 static int __init ipv4_proc_init(void) 2073 { 2074 return 0; 2075 } 2076 #endif /* CONFIG_PROC_FS */ 2077