1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright 2011-2014 Autronica Fire and Security AS 3 * 4 * Author(s): 5 * 2011-2014 Arvid Brodin, arvid.brodin@alten.se 6 * 7 * The HSR spec says never to forward the same frame twice on the same 8 * interface. A frame is identified by its source MAC address and its HSR 9 * sequence number. This code keeps track of senders and their sequence numbers 10 * to allow filtering of duplicate frames, and to detect HSR ring errors. 11 */ 12 13 #include <linux/if_ether.h> 14 #include <linux/etherdevice.h> 15 #include <linux/slab.h> 16 #include <linux/rculist.h> 17 #include "hsr_main.h" 18 #include "hsr_framereg.h" 19 #include "hsr_netlink.h" 20 21 /* TODO: use hash lists for mac addresses (linux/jhash.h)? */ 22 23 /* seq_nr_after(a, b) - return true if a is after (higher in sequence than) b, 24 * false otherwise. 25 */ 26 static bool seq_nr_after(u16 a, u16 b) 27 { 28 /* Remove inconsistency where 29 * seq_nr_after(a, b) == seq_nr_before(a, b) 30 */ 31 if ((int)b - a == 32768) 32 return false; 33 34 return (((s16)(b - a)) < 0); 35 } 36 37 #define seq_nr_before(a, b) seq_nr_after((b), (a)) 38 #define seq_nr_before_or_eq(a, b) (!seq_nr_after((a), (b))) 39 40 bool hsr_addr_is_self(struct hsr_priv *hsr, unsigned char *addr) 41 { 42 struct hsr_node *node; 43 44 node = list_first_or_null_rcu(&hsr->self_node_db, struct hsr_node, 45 mac_list); 46 if (!node) { 47 WARN_ONCE(1, "HSR: No self node\n"); 48 return false; 49 } 50 51 if (ether_addr_equal(addr, node->macaddress_A)) 52 return true; 53 if (ether_addr_equal(addr, node->macaddress_B)) 54 return true; 55 56 return false; 57 } 58 59 /* Search for mac entry. Caller must hold rcu read lock. 60 */ 61 static struct hsr_node *find_node_by_addr_A(struct list_head *node_db, 62 const unsigned char addr[ETH_ALEN]) 63 { 64 struct hsr_node *node; 65 66 list_for_each_entry_rcu(node, node_db, mac_list) { 67 if (ether_addr_equal(node->macaddress_A, addr)) 68 return node; 69 } 70 71 return NULL; 72 } 73 74 /* Helper for device init; the self_node_db is used in hsr_rcv() to recognize 75 * frames from self that's been looped over the HSR ring. 76 */ 77 int hsr_create_self_node(struct hsr_priv *hsr, 78 unsigned char addr_a[ETH_ALEN], 79 unsigned char addr_b[ETH_ALEN]) 80 { 81 struct list_head *self_node_db = &hsr->self_node_db; 82 struct hsr_node *node, *oldnode; 83 84 node = kmalloc(sizeof(*node), GFP_KERNEL); 85 if (!node) 86 return -ENOMEM; 87 88 ether_addr_copy(node->macaddress_A, addr_a); 89 ether_addr_copy(node->macaddress_B, addr_b); 90 91 spin_lock_bh(&hsr->list_lock); 92 oldnode = list_first_or_null_rcu(self_node_db, 93 struct hsr_node, mac_list); 94 if (oldnode) { 95 list_replace_rcu(&oldnode->mac_list, &node->mac_list); 96 spin_unlock_bh(&hsr->list_lock); 97 kfree_rcu(oldnode, rcu_head); 98 } else { 99 list_add_tail_rcu(&node->mac_list, self_node_db); 100 spin_unlock_bh(&hsr->list_lock); 101 } 102 103 return 0; 104 } 105 106 void hsr_del_self_node(struct hsr_priv *hsr) 107 { 108 struct list_head *self_node_db = &hsr->self_node_db; 109 struct hsr_node *node; 110 111 spin_lock_bh(&hsr->list_lock); 112 node = list_first_or_null_rcu(self_node_db, struct hsr_node, mac_list); 113 if (node) { 114 list_del_rcu(&node->mac_list); 115 kfree_rcu(node, rcu_head); 116 } 117 spin_unlock_bh(&hsr->list_lock); 118 } 119 120 void hsr_del_nodes(struct list_head *node_db) 121 { 122 struct hsr_node *node; 123 struct hsr_node *tmp; 124 125 list_for_each_entry_safe(node, tmp, node_db, mac_list) 126 kfree(node); 127 } 128 129 /* Allocate an hsr_node and add it to node_db. 'addr' is the node's address_A; 130 * seq_out is used to initialize filtering of outgoing duplicate frames 131 * originating from the newly added node. 132 */ 133 static struct hsr_node *hsr_add_node(struct hsr_priv *hsr, 134 struct list_head *node_db, 135 unsigned char addr[], 136 u16 seq_out) 137 { 138 struct hsr_node *new_node, *node; 139 unsigned long now; 140 int i; 141 142 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); 143 if (!new_node) 144 return NULL; 145 146 ether_addr_copy(new_node->macaddress_A, addr); 147 148 /* We are only interested in time diffs here, so use current jiffies 149 * as initialization. (0 could trigger an spurious ring error warning). 150 */ 151 now = jiffies; 152 for (i = 0; i < HSR_PT_PORTS; i++) 153 new_node->time_in[i] = now; 154 for (i = 0; i < HSR_PT_PORTS; i++) 155 new_node->seq_out[i] = seq_out; 156 157 spin_lock_bh(&hsr->list_lock); 158 list_for_each_entry_rcu(node, node_db, mac_list, 159 lockdep_is_held(&hsr->list_lock)) { 160 if (ether_addr_equal(node->macaddress_A, addr)) 161 goto out; 162 if (ether_addr_equal(node->macaddress_B, addr)) 163 goto out; 164 } 165 list_add_tail_rcu(&new_node->mac_list, node_db); 166 spin_unlock_bh(&hsr->list_lock); 167 return new_node; 168 out: 169 spin_unlock_bh(&hsr->list_lock); 170 kfree(new_node); 171 return node; 172 } 173 174 /* Get the hsr_node from which 'skb' was sent. 175 */ 176 struct hsr_node *hsr_get_node(struct hsr_port *port, struct sk_buff *skb, 177 bool is_sup) 178 { 179 struct list_head *node_db = &port->hsr->node_db; 180 struct hsr_priv *hsr = port->hsr; 181 struct hsr_node *node; 182 struct ethhdr *ethhdr; 183 u16 seq_out; 184 185 if (!skb_mac_header_was_set(skb)) 186 return NULL; 187 188 ethhdr = (struct ethhdr *)skb_mac_header(skb); 189 190 list_for_each_entry_rcu(node, node_db, mac_list) { 191 if (ether_addr_equal(node->macaddress_A, ethhdr->h_source)) 192 return node; 193 if (ether_addr_equal(node->macaddress_B, ethhdr->h_source)) 194 return node; 195 } 196 197 /* Everyone may create a node entry, connected node to a HSR device. */ 198 199 if (ethhdr->h_proto == htons(ETH_P_PRP) || 200 ethhdr->h_proto == htons(ETH_P_HSR)) { 201 /* Use the existing sequence_nr from the tag as starting point 202 * for filtering duplicate frames. 203 */ 204 seq_out = hsr_get_skb_sequence_nr(skb) - 1; 205 } else { 206 /* this is called also for frames from master port and 207 * so warn only for non master ports 208 */ 209 if (port->type != HSR_PT_MASTER) 210 WARN_ONCE(1, "%s: Non-HSR frame\n", __func__); 211 seq_out = HSR_SEQNR_START; 212 } 213 214 return hsr_add_node(hsr, node_db, ethhdr->h_source, seq_out); 215 } 216 217 /* Use the Supervision frame's info about an eventual macaddress_B for merging 218 * nodes that has previously had their macaddress_B registered as a separate 219 * node. 220 */ 221 void hsr_handle_sup_frame(struct sk_buff *skb, struct hsr_node *node_curr, 222 struct hsr_port *port_rcv) 223 { 224 struct hsr_priv *hsr = port_rcv->hsr; 225 struct hsr_sup_payload *hsr_sp; 226 struct hsr_node *node_real; 227 struct list_head *node_db; 228 struct ethhdr *ethhdr; 229 int i; 230 231 ethhdr = (struct ethhdr *)skb_mac_header(skb); 232 233 /* Leave the ethernet header. */ 234 skb_pull(skb, sizeof(struct ethhdr)); 235 236 /* And leave the HSR tag. */ 237 if (ethhdr->h_proto == htons(ETH_P_HSR)) 238 skb_pull(skb, sizeof(struct hsr_tag)); 239 240 /* And leave the HSR sup tag. */ 241 skb_pull(skb, sizeof(struct hsr_sup_tag)); 242 243 hsr_sp = (struct hsr_sup_payload *)skb->data; 244 245 /* Merge node_curr (registered on macaddress_B) into node_real */ 246 node_db = &port_rcv->hsr->node_db; 247 node_real = find_node_by_addr_A(node_db, hsr_sp->macaddress_A); 248 if (!node_real) 249 /* No frame received from AddrA of this node yet */ 250 node_real = hsr_add_node(hsr, node_db, hsr_sp->macaddress_A, 251 HSR_SEQNR_START - 1); 252 if (!node_real) 253 goto done; /* No mem */ 254 if (node_real == node_curr) 255 /* Node has already been merged */ 256 goto done; 257 258 ether_addr_copy(node_real->macaddress_B, ethhdr->h_source); 259 for (i = 0; i < HSR_PT_PORTS; i++) { 260 if (!node_curr->time_in_stale[i] && 261 time_after(node_curr->time_in[i], node_real->time_in[i])) { 262 node_real->time_in[i] = node_curr->time_in[i]; 263 node_real->time_in_stale[i] = 264 node_curr->time_in_stale[i]; 265 } 266 if (seq_nr_after(node_curr->seq_out[i], node_real->seq_out[i])) 267 node_real->seq_out[i] = node_curr->seq_out[i]; 268 } 269 node_real->addr_B_port = port_rcv->type; 270 271 spin_lock_bh(&hsr->list_lock); 272 list_del_rcu(&node_curr->mac_list); 273 spin_unlock_bh(&hsr->list_lock); 274 kfree_rcu(node_curr, rcu_head); 275 276 done: 277 skb_push(skb, sizeof(struct hsrv1_ethhdr_sp)); 278 } 279 280 /* 'skb' is a frame meant for this host, that is to be passed to upper layers. 281 * 282 * If the frame was sent by a node's B interface, replace the source 283 * address with that node's "official" address (macaddress_A) so that upper 284 * layers recognize where it came from. 285 */ 286 void hsr_addr_subst_source(struct hsr_node *node, struct sk_buff *skb) 287 { 288 if (!skb_mac_header_was_set(skb)) { 289 WARN_ONCE(1, "%s: Mac header not set\n", __func__); 290 return; 291 } 292 293 memcpy(ð_hdr(skb)->h_source, node->macaddress_A, ETH_ALEN); 294 } 295 296 /* 'skb' is a frame meant for another host. 297 * 'port' is the outgoing interface 298 * 299 * Substitute the target (dest) MAC address if necessary, so the it matches the 300 * recipient interface MAC address, regardless of whether that is the 301 * recipient's A or B interface. 302 * This is needed to keep the packets flowing through switches that learn on 303 * which "side" the different interfaces are. 304 */ 305 void hsr_addr_subst_dest(struct hsr_node *node_src, struct sk_buff *skb, 306 struct hsr_port *port) 307 { 308 struct hsr_node *node_dst; 309 310 if (!skb_mac_header_was_set(skb)) { 311 WARN_ONCE(1, "%s: Mac header not set\n", __func__); 312 return; 313 } 314 315 if (!is_unicast_ether_addr(eth_hdr(skb)->h_dest)) 316 return; 317 318 node_dst = find_node_by_addr_A(&port->hsr->node_db, 319 eth_hdr(skb)->h_dest); 320 if (!node_dst) { 321 WARN_ONCE(1, "%s: Unknown node\n", __func__); 322 return; 323 } 324 if (port->type != node_dst->addr_B_port) 325 return; 326 327 ether_addr_copy(eth_hdr(skb)->h_dest, node_dst->macaddress_B); 328 } 329 330 void hsr_register_frame_in(struct hsr_node *node, struct hsr_port *port, 331 u16 sequence_nr) 332 { 333 /* Don't register incoming frames without a valid sequence number. This 334 * ensures entries of restarted nodes gets pruned so that they can 335 * re-register and resume communications. 336 */ 337 if (seq_nr_before(sequence_nr, node->seq_out[port->type])) 338 return; 339 340 node->time_in[port->type] = jiffies; 341 node->time_in_stale[port->type] = false; 342 } 343 344 /* 'skb' is a HSR Ethernet frame (with a HSR tag inserted), with a valid 345 * ethhdr->h_source address and skb->mac_header set. 346 * 347 * Return: 348 * 1 if frame can be shown to have been sent recently on this interface, 349 * 0 otherwise, or 350 * negative error code on error 351 */ 352 int hsr_register_frame_out(struct hsr_port *port, struct hsr_node *node, 353 u16 sequence_nr) 354 { 355 if (seq_nr_before_or_eq(sequence_nr, node->seq_out[port->type])) 356 return 1; 357 358 node->seq_out[port->type] = sequence_nr; 359 return 0; 360 } 361 362 static struct hsr_port *get_late_port(struct hsr_priv *hsr, 363 struct hsr_node *node) 364 { 365 if (node->time_in_stale[HSR_PT_SLAVE_A]) 366 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); 367 if (node->time_in_stale[HSR_PT_SLAVE_B]) 368 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); 369 370 if (time_after(node->time_in[HSR_PT_SLAVE_B], 371 node->time_in[HSR_PT_SLAVE_A] + 372 msecs_to_jiffies(MAX_SLAVE_DIFF))) 373 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); 374 if (time_after(node->time_in[HSR_PT_SLAVE_A], 375 node->time_in[HSR_PT_SLAVE_B] + 376 msecs_to_jiffies(MAX_SLAVE_DIFF))) 377 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); 378 379 return NULL; 380 } 381 382 /* Remove stale sequence_nr records. Called by timer every 383 * HSR_LIFE_CHECK_INTERVAL (two seconds or so). 384 */ 385 void hsr_prune_nodes(struct timer_list *t) 386 { 387 struct hsr_priv *hsr = from_timer(hsr, t, prune_timer); 388 struct hsr_node *node; 389 struct hsr_node *tmp; 390 struct hsr_port *port; 391 unsigned long timestamp; 392 unsigned long time_a, time_b; 393 394 spin_lock_bh(&hsr->list_lock); 395 list_for_each_entry_safe(node, tmp, &hsr->node_db, mac_list) { 396 /* Don't prune own node. Neither time_in[HSR_PT_SLAVE_A] 397 * nor time_in[HSR_PT_SLAVE_B], will ever be updated for 398 * the master port. Thus the master node will be repeatedly 399 * pruned leading to packet loss. 400 */ 401 if (hsr_addr_is_self(hsr, node->macaddress_A)) 402 continue; 403 404 /* Shorthand */ 405 time_a = node->time_in[HSR_PT_SLAVE_A]; 406 time_b = node->time_in[HSR_PT_SLAVE_B]; 407 408 /* Check for timestamps old enough to risk wrap-around */ 409 if (time_after(jiffies, time_a + MAX_JIFFY_OFFSET / 2)) 410 node->time_in_stale[HSR_PT_SLAVE_A] = true; 411 if (time_after(jiffies, time_b + MAX_JIFFY_OFFSET / 2)) 412 node->time_in_stale[HSR_PT_SLAVE_B] = true; 413 414 /* Get age of newest frame from node. 415 * At least one time_in is OK here; nodes get pruned long 416 * before both time_ins can get stale 417 */ 418 timestamp = time_a; 419 if (node->time_in_stale[HSR_PT_SLAVE_A] || 420 (!node->time_in_stale[HSR_PT_SLAVE_B] && 421 time_after(time_b, time_a))) 422 timestamp = time_b; 423 424 /* Warn of ring error only as long as we get frames at all */ 425 if (time_is_after_jiffies(timestamp + 426 msecs_to_jiffies(1.5 * MAX_SLAVE_DIFF))) { 427 rcu_read_lock(); 428 port = get_late_port(hsr, node); 429 if (port) 430 hsr_nl_ringerror(hsr, node->macaddress_A, port); 431 rcu_read_unlock(); 432 } 433 434 /* Prune old entries */ 435 if (time_is_before_jiffies(timestamp + 436 msecs_to_jiffies(HSR_NODE_FORGET_TIME))) { 437 hsr_nl_nodedown(hsr, node->macaddress_A); 438 list_del_rcu(&node->mac_list); 439 /* Note that we need to free this entry later: */ 440 kfree_rcu(node, rcu_head); 441 } 442 } 443 spin_unlock_bh(&hsr->list_lock); 444 445 /* Restart timer */ 446 mod_timer(&hsr->prune_timer, 447 jiffies + msecs_to_jiffies(PRUNE_PERIOD)); 448 } 449 450 void *hsr_get_next_node(struct hsr_priv *hsr, void *_pos, 451 unsigned char addr[ETH_ALEN]) 452 { 453 struct hsr_node *node; 454 455 if (!_pos) { 456 node = list_first_or_null_rcu(&hsr->node_db, 457 struct hsr_node, mac_list); 458 if (node) 459 ether_addr_copy(addr, node->macaddress_A); 460 return node; 461 } 462 463 node = _pos; 464 list_for_each_entry_continue_rcu(node, &hsr->node_db, mac_list) { 465 ether_addr_copy(addr, node->macaddress_A); 466 return node; 467 } 468 469 return NULL; 470 } 471 472 int hsr_get_node_data(struct hsr_priv *hsr, 473 const unsigned char *addr, 474 unsigned char addr_b[ETH_ALEN], 475 unsigned int *addr_b_ifindex, 476 int *if1_age, 477 u16 *if1_seq, 478 int *if2_age, 479 u16 *if2_seq) 480 { 481 struct hsr_node *node; 482 struct hsr_port *port; 483 unsigned long tdiff; 484 485 rcu_read_lock(); 486 node = find_node_by_addr_A(&hsr->node_db, addr); 487 if (!node) { 488 rcu_read_unlock(); 489 return -ENOENT; /* No such entry */ 490 } 491 492 ether_addr_copy(addr_b, node->macaddress_B); 493 494 tdiff = jiffies - node->time_in[HSR_PT_SLAVE_A]; 495 if (node->time_in_stale[HSR_PT_SLAVE_A]) 496 *if1_age = INT_MAX; 497 #if HZ <= MSEC_PER_SEC 498 else if (tdiff > msecs_to_jiffies(INT_MAX)) 499 *if1_age = INT_MAX; 500 #endif 501 else 502 *if1_age = jiffies_to_msecs(tdiff); 503 504 tdiff = jiffies - node->time_in[HSR_PT_SLAVE_B]; 505 if (node->time_in_stale[HSR_PT_SLAVE_B]) 506 *if2_age = INT_MAX; 507 #if HZ <= MSEC_PER_SEC 508 else if (tdiff > msecs_to_jiffies(INT_MAX)) 509 *if2_age = INT_MAX; 510 #endif 511 else 512 *if2_age = jiffies_to_msecs(tdiff); 513 514 /* Present sequence numbers as if they were incoming on interface */ 515 *if1_seq = node->seq_out[HSR_PT_SLAVE_B]; 516 *if2_seq = node->seq_out[HSR_PT_SLAVE_A]; 517 518 if (node->addr_B_port != HSR_PT_NONE) { 519 port = hsr_port_get_hsr(hsr, node->addr_B_port); 520 *addr_b_ifindex = port->dev->ifindex; 521 } else { 522 *addr_b_ifindex = -1; 523 } 524 525 rcu_read_unlock(); 526 527 return 0; 528 } 529