1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright 2011-2014 Autronica Fire and Security AS 3 * 4 * Author(s): 5 * 2011-2014 Arvid Brodin, arvid.brodin@alten.se 6 * 7 * The HSR spec says never to forward the same frame twice on the same 8 * interface. A frame is identified by its source MAC address and its HSR 9 * sequence number. This code keeps track of senders and their sequence numbers 10 * to allow filtering of duplicate frames, and to detect HSR ring errors. 11 * Same code handles filtering of duplicates for PRP as well. 12 */ 13 14 #include <linux/if_ether.h> 15 #include <linux/etherdevice.h> 16 #include <linux/slab.h> 17 #include <linux/rculist.h> 18 #include <linux/jhash.h> 19 #include "hsr_main.h" 20 #include "hsr_framereg.h" 21 #include "hsr_netlink.h" 22 23 #ifdef CONFIG_LOCKDEP 24 int lockdep_hsr_is_held(spinlock_t *lock) 25 { 26 return lockdep_is_held(lock); 27 } 28 #endif 29 30 u32 hsr_mac_hash(struct hsr_priv *hsr, const unsigned char *addr) 31 { 32 u32 hash = jhash(addr, ETH_ALEN, hsr->hash_seed); 33 34 return reciprocal_scale(hash, hsr->hash_buckets); 35 } 36 37 struct hsr_node *hsr_node_get_first(struct hlist_head *head, spinlock_t *lock) 38 { 39 struct hlist_node *first; 40 41 first = rcu_dereference_bh_check(hlist_first_rcu(head), 42 lockdep_hsr_is_held(lock)); 43 if (first) 44 return hlist_entry(first, struct hsr_node, mac_list); 45 46 return NULL; 47 } 48 49 /* seq_nr_after(a, b) - return true if a is after (higher in sequence than) b, 50 * false otherwise. 51 */ 52 static bool seq_nr_after(u16 a, u16 b) 53 { 54 /* Remove inconsistency where 55 * seq_nr_after(a, b) == seq_nr_before(a, b) 56 */ 57 if ((int)b - a == 32768) 58 return false; 59 60 return (((s16)(b - a)) < 0); 61 } 62 63 #define seq_nr_before(a, b) seq_nr_after((b), (a)) 64 #define seq_nr_before_or_eq(a, b) (!seq_nr_after((a), (b))) 65 66 bool hsr_addr_is_self(struct hsr_priv *hsr, unsigned char *addr) 67 { 68 struct hsr_node *node; 69 70 node = hsr_node_get_first(&hsr->self_node_db, &hsr->list_lock); 71 if (!node) { 72 WARN_ONCE(1, "HSR: No self node\n"); 73 return false; 74 } 75 76 if (ether_addr_equal(addr, node->macaddress_A)) 77 return true; 78 if (ether_addr_equal(addr, node->macaddress_B)) 79 return true; 80 81 return false; 82 } 83 84 /* Search for mac entry. Caller must hold rcu read lock. 85 */ 86 static struct hsr_node *find_node_by_addr_A(struct hlist_head *node_db, 87 const unsigned char addr[ETH_ALEN]) 88 { 89 struct hsr_node *node; 90 91 hlist_for_each_entry_rcu(node, node_db, mac_list) { 92 if (ether_addr_equal(node->macaddress_A, addr)) 93 return node; 94 } 95 96 return NULL; 97 } 98 99 /* Helper for device init; the self_node_db is used in hsr_rcv() to recognize 100 * frames from self that's been looped over the HSR ring. 101 */ 102 int hsr_create_self_node(struct hsr_priv *hsr, 103 const unsigned char addr_a[ETH_ALEN], 104 const unsigned char addr_b[ETH_ALEN]) 105 { 106 struct hlist_head *self_node_db = &hsr->self_node_db; 107 struct hsr_node *node, *oldnode; 108 109 node = kmalloc(sizeof(*node), GFP_KERNEL); 110 if (!node) 111 return -ENOMEM; 112 113 ether_addr_copy(node->macaddress_A, addr_a); 114 ether_addr_copy(node->macaddress_B, addr_b); 115 116 spin_lock_bh(&hsr->list_lock); 117 oldnode = hsr_node_get_first(self_node_db, &hsr->list_lock); 118 if (oldnode) { 119 hlist_replace_rcu(&oldnode->mac_list, &node->mac_list); 120 spin_unlock_bh(&hsr->list_lock); 121 kfree_rcu(oldnode, rcu_head); 122 } else { 123 hlist_add_tail_rcu(&node->mac_list, self_node_db); 124 spin_unlock_bh(&hsr->list_lock); 125 } 126 127 return 0; 128 } 129 130 void hsr_del_self_node(struct hsr_priv *hsr) 131 { 132 struct hlist_head *self_node_db = &hsr->self_node_db; 133 struct hsr_node *node; 134 135 spin_lock_bh(&hsr->list_lock); 136 node = hsr_node_get_first(self_node_db, &hsr->list_lock); 137 if (node) { 138 hlist_del_rcu(&node->mac_list); 139 kfree_rcu(node, rcu_head); 140 } 141 spin_unlock_bh(&hsr->list_lock); 142 } 143 144 void hsr_del_nodes(struct hlist_head *node_db) 145 { 146 struct hsr_node *node; 147 struct hlist_node *tmp; 148 149 hlist_for_each_entry_safe(node, tmp, node_db, mac_list) 150 kfree_rcu(node, rcu_head); 151 } 152 153 void prp_handle_san_frame(bool san, enum hsr_port_type port, 154 struct hsr_node *node) 155 { 156 /* Mark if the SAN node is over LAN_A or LAN_B */ 157 if (port == HSR_PT_SLAVE_A) { 158 node->san_a = true; 159 return; 160 } 161 162 if (port == HSR_PT_SLAVE_B) 163 node->san_b = true; 164 } 165 166 /* Allocate an hsr_node and add it to node_db. 'addr' is the node's address_A; 167 * seq_out is used to initialize filtering of outgoing duplicate frames 168 * originating from the newly added node. 169 */ 170 static struct hsr_node *hsr_add_node(struct hsr_priv *hsr, 171 struct hlist_head *node_db, 172 unsigned char addr[], 173 u16 seq_out, bool san, 174 enum hsr_port_type rx_port) 175 { 176 struct hsr_node *new_node, *node; 177 unsigned long now; 178 int i; 179 180 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); 181 if (!new_node) 182 return NULL; 183 184 ether_addr_copy(new_node->macaddress_A, addr); 185 186 /* We are only interested in time diffs here, so use current jiffies 187 * as initialization. (0 could trigger an spurious ring error warning). 188 */ 189 now = jiffies; 190 for (i = 0; i < HSR_PT_PORTS; i++) { 191 new_node->time_in[i] = now; 192 new_node->time_out[i] = now; 193 } 194 for (i = 0; i < HSR_PT_PORTS; i++) 195 new_node->seq_out[i] = seq_out; 196 197 if (san && hsr->proto_ops->handle_san_frame) 198 hsr->proto_ops->handle_san_frame(san, rx_port, new_node); 199 200 spin_lock_bh(&hsr->list_lock); 201 hlist_for_each_entry_rcu(node, node_db, mac_list, 202 lockdep_hsr_is_held(&hsr->list_lock)) { 203 if (ether_addr_equal(node->macaddress_A, addr)) 204 goto out; 205 if (ether_addr_equal(node->macaddress_B, addr)) 206 goto out; 207 } 208 hlist_add_tail_rcu(&new_node->mac_list, node_db); 209 spin_unlock_bh(&hsr->list_lock); 210 return new_node; 211 out: 212 spin_unlock_bh(&hsr->list_lock); 213 kfree(new_node); 214 return node; 215 } 216 217 void prp_update_san_info(struct hsr_node *node, bool is_sup) 218 { 219 if (!is_sup) 220 return; 221 222 node->san_a = false; 223 node->san_b = false; 224 } 225 226 /* Get the hsr_node from which 'skb' was sent. 227 */ 228 struct hsr_node *hsr_get_node(struct hsr_port *port, struct hlist_head *node_db, 229 struct sk_buff *skb, bool is_sup, 230 enum hsr_port_type rx_port) 231 { 232 struct hsr_priv *hsr = port->hsr; 233 struct hsr_node *node; 234 struct ethhdr *ethhdr; 235 struct prp_rct *rct; 236 bool san = false; 237 u16 seq_out; 238 239 if (!skb_mac_header_was_set(skb)) 240 return NULL; 241 242 ethhdr = (struct ethhdr *)skb_mac_header(skb); 243 244 hlist_for_each_entry_rcu(node, node_db, mac_list) { 245 if (ether_addr_equal(node->macaddress_A, ethhdr->h_source)) { 246 if (hsr->proto_ops->update_san_info) 247 hsr->proto_ops->update_san_info(node, is_sup); 248 return node; 249 } 250 if (ether_addr_equal(node->macaddress_B, ethhdr->h_source)) { 251 if (hsr->proto_ops->update_san_info) 252 hsr->proto_ops->update_san_info(node, is_sup); 253 return node; 254 } 255 } 256 257 /* Everyone may create a node entry, connected node to a HSR/PRP 258 * device. 259 */ 260 if (ethhdr->h_proto == htons(ETH_P_PRP) || 261 ethhdr->h_proto == htons(ETH_P_HSR)) { 262 /* Use the existing sequence_nr from the tag as starting point 263 * for filtering duplicate frames. 264 */ 265 seq_out = hsr_get_skb_sequence_nr(skb) - 1; 266 } else { 267 rct = skb_get_PRP_rct(skb); 268 if (rct && prp_check_lsdu_size(skb, rct, is_sup)) { 269 seq_out = prp_get_skb_sequence_nr(rct); 270 } else { 271 if (rx_port != HSR_PT_MASTER) 272 san = true; 273 seq_out = HSR_SEQNR_START; 274 } 275 } 276 277 return hsr_add_node(hsr, node_db, ethhdr->h_source, seq_out, 278 san, rx_port); 279 } 280 281 /* Use the Supervision frame's info about an eventual macaddress_B for merging 282 * nodes that has previously had their macaddress_B registered as a separate 283 * node. 284 */ 285 void hsr_handle_sup_frame(struct hsr_frame_info *frame) 286 { 287 struct hsr_node *node_curr = frame->node_src; 288 struct hsr_port *port_rcv = frame->port_rcv; 289 struct hsr_priv *hsr = port_rcv->hsr; 290 struct hsr_sup_payload *hsr_sp; 291 struct hsr_sup_tlv *hsr_sup_tlv; 292 struct hsr_node *node_real; 293 struct sk_buff *skb = NULL; 294 struct hlist_head *node_db; 295 struct ethhdr *ethhdr; 296 int i; 297 unsigned int pull_size = 0; 298 unsigned int total_pull_size = 0; 299 u32 hash; 300 301 /* Here either frame->skb_hsr or frame->skb_prp should be 302 * valid as supervision frame always will have protocol 303 * header info. 304 */ 305 if (frame->skb_hsr) 306 skb = frame->skb_hsr; 307 else if (frame->skb_prp) 308 skb = frame->skb_prp; 309 else if (frame->skb_std) 310 skb = frame->skb_std; 311 if (!skb) 312 return; 313 314 /* Leave the ethernet header. */ 315 pull_size = sizeof(struct ethhdr); 316 skb_pull(skb, pull_size); 317 total_pull_size += pull_size; 318 319 ethhdr = (struct ethhdr *)skb_mac_header(skb); 320 321 /* And leave the HSR tag. */ 322 if (ethhdr->h_proto == htons(ETH_P_HSR)) { 323 pull_size = sizeof(struct ethhdr); 324 skb_pull(skb, pull_size); 325 total_pull_size += pull_size; 326 } 327 328 /* And leave the HSR sup tag. */ 329 pull_size = sizeof(struct hsr_tag); 330 skb_pull(skb, pull_size); 331 total_pull_size += pull_size; 332 333 /* get HSR sup payload */ 334 hsr_sp = (struct hsr_sup_payload *)skb->data; 335 336 /* Merge node_curr (registered on macaddress_B) into node_real */ 337 node_db = port_rcv->hsr->node_db; 338 hash = hsr_mac_hash(hsr, hsr_sp->macaddress_A); 339 node_real = find_node_by_addr_A(&node_db[hash], hsr_sp->macaddress_A); 340 if (!node_real) 341 /* No frame received from AddrA of this node yet */ 342 node_real = hsr_add_node(hsr, &node_db[hash], 343 hsr_sp->macaddress_A, 344 HSR_SEQNR_START - 1, true, 345 port_rcv->type); 346 if (!node_real) 347 goto done; /* No mem */ 348 if (node_real == node_curr) 349 /* Node has already been merged */ 350 goto done; 351 352 /* Leave the first HSR sup payload. */ 353 pull_size = sizeof(struct hsr_sup_payload); 354 skb_pull(skb, pull_size); 355 total_pull_size += pull_size; 356 357 /* Get second supervision tlv */ 358 hsr_sup_tlv = (struct hsr_sup_tlv *)skb->data; 359 /* And check if it is a redbox mac TLV */ 360 if (hsr_sup_tlv->HSR_TLV_type == PRP_TLV_REDBOX_MAC) { 361 /* We could stop here after pushing hsr_sup_payload, 362 * or proceed and allow macaddress_B and for redboxes. 363 */ 364 /* Sanity check length */ 365 if (hsr_sup_tlv->HSR_TLV_length != 6) 366 goto done; 367 368 /* Leave the second HSR sup tlv. */ 369 pull_size = sizeof(struct hsr_sup_tlv); 370 skb_pull(skb, pull_size); 371 total_pull_size += pull_size; 372 373 /* Get redbox mac address. */ 374 hsr_sp = (struct hsr_sup_payload *)skb->data; 375 376 /* Check if redbox mac and node mac are equal. */ 377 if (!ether_addr_equal(node_real->macaddress_A, 378 hsr_sp->macaddress_A)) { 379 /* This is a redbox supervision frame for a VDAN! */ 380 goto done; 381 } 382 } 383 384 ether_addr_copy(node_real->macaddress_B, ethhdr->h_source); 385 for (i = 0; i < HSR_PT_PORTS; i++) { 386 if (!node_curr->time_in_stale[i] && 387 time_after(node_curr->time_in[i], node_real->time_in[i])) { 388 node_real->time_in[i] = node_curr->time_in[i]; 389 node_real->time_in_stale[i] = 390 node_curr->time_in_stale[i]; 391 } 392 if (seq_nr_after(node_curr->seq_out[i], node_real->seq_out[i])) 393 node_real->seq_out[i] = node_curr->seq_out[i]; 394 } 395 node_real->addr_B_port = port_rcv->type; 396 397 spin_lock_bh(&hsr->list_lock); 398 hlist_del_rcu(&node_curr->mac_list); 399 spin_unlock_bh(&hsr->list_lock); 400 kfree_rcu(node_curr, rcu_head); 401 402 done: 403 /* Push back here */ 404 skb_push(skb, total_pull_size); 405 } 406 407 /* 'skb' is a frame meant for this host, that is to be passed to upper layers. 408 * 409 * If the frame was sent by a node's B interface, replace the source 410 * address with that node's "official" address (macaddress_A) so that upper 411 * layers recognize where it came from. 412 */ 413 void hsr_addr_subst_source(struct hsr_node *node, struct sk_buff *skb) 414 { 415 if (!skb_mac_header_was_set(skb)) { 416 WARN_ONCE(1, "%s: Mac header not set\n", __func__); 417 return; 418 } 419 420 memcpy(ð_hdr(skb)->h_source, node->macaddress_A, ETH_ALEN); 421 } 422 423 /* 'skb' is a frame meant for another host. 424 * 'port' is the outgoing interface 425 * 426 * Substitute the target (dest) MAC address if necessary, so the it matches the 427 * recipient interface MAC address, regardless of whether that is the 428 * recipient's A or B interface. 429 * This is needed to keep the packets flowing through switches that learn on 430 * which "side" the different interfaces are. 431 */ 432 void hsr_addr_subst_dest(struct hsr_node *node_src, struct sk_buff *skb, 433 struct hsr_port *port) 434 { 435 struct hsr_node *node_dst; 436 u32 hash; 437 438 if (!skb_mac_header_was_set(skb)) { 439 WARN_ONCE(1, "%s: Mac header not set\n", __func__); 440 return; 441 } 442 443 if (!is_unicast_ether_addr(eth_hdr(skb)->h_dest)) 444 return; 445 446 hash = hsr_mac_hash(port->hsr, eth_hdr(skb)->h_dest); 447 node_dst = find_node_by_addr_A(&port->hsr->node_db[hash], 448 eth_hdr(skb)->h_dest); 449 if (!node_dst) { 450 if (net_ratelimit()) 451 netdev_err(skb->dev, "%s: Unknown node\n", __func__); 452 return; 453 } 454 if (port->type != node_dst->addr_B_port) 455 return; 456 457 if (is_valid_ether_addr(node_dst->macaddress_B)) 458 ether_addr_copy(eth_hdr(skb)->h_dest, node_dst->macaddress_B); 459 } 460 461 void hsr_register_frame_in(struct hsr_node *node, struct hsr_port *port, 462 u16 sequence_nr) 463 { 464 /* Don't register incoming frames without a valid sequence number. This 465 * ensures entries of restarted nodes gets pruned so that they can 466 * re-register and resume communications. 467 */ 468 if (!(port->dev->features & NETIF_F_HW_HSR_TAG_RM) && 469 seq_nr_before(sequence_nr, node->seq_out[port->type])) 470 return; 471 472 node->time_in[port->type] = jiffies; 473 node->time_in_stale[port->type] = false; 474 } 475 476 /* 'skb' is a HSR Ethernet frame (with a HSR tag inserted), with a valid 477 * ethhdr->h_source address and skb->mac_header set. 478 * 479 * Return: 480 * 1 if frame can be shown to have been sent recently on this interface, 481 * 0 otherwise, or 482 * negative error code on error 483 */ 484 int hsr_register_frame_out(struct hsr_port *port, struct hsr_node *node, 485 u16 sequence_nr) 486 { 487 if (seq_nr_before_or_eq(sequence_nr, node->seq_out[port->type]) && 488 time_is_after_jiffies(node->time_out[port->type] + 489 msecs_to_jiffies(HSR_ENTRY_FORGET_TIME))) 490 return 1; 491 492 node->time_out[port->type] = jiffies; 493 node->seq_out[port->type] = sequence_nr; 494 return 0; 495 } 496 497 static struct hsr_port *get_late_port(struct hsr_priv *hsr, 498 struct hsr_node *node) 499 { 500 if (node->time_in_stale[HSR_PT_SLAVE_A]) 501 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); 502 if (node->time_in_stale[HSR_PT_SLAVE_B]) 503 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); 504 505 if (time_after(node->time_in[HSR_PT_SLAVE_B], 506 node->time_in[HSR_PT_SLAVE_A] + 507 msecs_to_jiffies(MAX_SLAVE_DIFF))) 508 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); 509 if (time_after(node->time_in[HSR_PT_SLAVE_A], 510 node->time_in[HSR_PT_SLAVE_B] + 511 msecs_to_jiffies(MAX_SLAVE_DIFF))) 512 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); 513 514 return NULL; 515 } 516 517 /* Remove stale sequence_nr records. Called by timer every 518 * HSR_LIFE_CHECK_INTERVAL (two seconds or so). 519 */ 520 void hsr_prune_nodes(struct timer_list *t) 521 { 522 struct hsr_priv *hsr = from_timer(hsr, t, prune_timer); 523 struct hlist_node *tmp; 524 struct hsr_node *node; 525 struct hsr_port *port; 526 unsigned long timestamp; 527 unsigned long time_a, time_b; 528 int i; 529 530 spin_lock_bh(&hsr->list_lock); 531 532 for (i = 0; i < hsr->hash_buckets; i++) { 533 hlist_for_each_entry_safe(node, tmp, &hsr->node_db[i], 534 mac_list) { 535 /* Don't prune own node. 536 * Neither time_in[HSR_PT_SLAVE_A] 537 * nor time_in[HSR_PT_SLAVE_B], will ever be updated 538 * for the master port. Thus the master node will be 539 * repeatedly pruned leading to packet loss. 540 */ 541 if (hsr_addr_is_self(hsr, node->macaddress_A)) 542 continue; 543 544 /* Shorthand */ 545 time_a = node->time_in[HSR_PT_SLAVE_A]; 546 time_b = node->time_in[HSR_PT_SLAVE_B]; 547 548 /* Check for timestamps old enough to 549 * risk wrap-around 550 */ 551 if (time_after(jiffies, time_a + MAX_JIFFY_OFFSET / 2)) 552 node->time_in_stale[HSR_PT_SLAVE_A] = true; 553 if (time_after(jiffies, time_b + MAX_JIFFY_OFFSET / 2)) 554 node->time_in_stale[HSR_PT_SLAVE_B] = true; 555 556 /* Get age of newest frame from node. 557 * At least one time_in is OK here; nodes get pruned 558 * long before both time_ins can get stale 559 */ 560 timestamp = time_a; 561 if (node->time_in_stale[HSR_PT_SLAVE_A] || 562 (!node->time_in_stale[HSR_PT_SLAVE_B] && 563 time_after(time_b, time_a))) 564 timestamp = time_b; 565 566 /* Warn of ring error only as long as we get 567 * frames at all 568 */ 569 if (time_is_after_jiffies(timestamp + 570 msecs_to_jiffies(1.5 * MAX_SLAVE_DIFF))) { 571 rcu_read_lock(); 572 port = get_late_port(hsr, node); 573 if (port) 574 hsr_nl_ringerror(hsr, 575 node->macaddress_A, 576 port); 577 rcu_read_unlock(); 578 } 579 580 /* Prune old entries */ 581 if (time_is_before_jiffies(timestamp + 582 msecs_to_jiffies(HSR_NODE_FORGET_TIME))) { 583 hsr_nl_nodedown(hsr, node->macaddress_A); 584 hlist_del_rcu(&node->mac_list); 585 /* Note that we need to free this 586 * entry later: 587 */ 588 kfree_rcu(node, rcu_head); 589 } 590 } 591 } 592 spin_unlock_bh(&hsr->list_lock); 593 594 /* Restart timer */ 595 mod_timer(&hsr->prune_timer, 596 jiffies + msecs_to_jiffies(PRUNE_PERIOD)); 597 } 598 599 void *hsr_get_next_node(struct hsr_priv *hsr, void *_pos, 600 unsigned char addr[ETH_ALEN]) 601 { 602 struct hsr_node *node; 603 u32 hash; 604 605 hash = hsr_mac_hash(hsr, addr); 606 607 if (!_pos) { 608 node = hsr_node_get_first(&hsr->node_db[hash], 609 &hsr->list_lock); 610 if (node) 611 ether_addr_copy(addr, node->macaddress_A); 612 return node; 613 } 614 615 node = _pos; 616 hlist_for_each_entry_continue_rcu(node, mac_list) { 617 ether_addr_copy(addr, node->macaddress_A); 618 return node; 619 } 620 621 return NULL; 622 } 623 624 int hsr_get_node_data(struct hsr_priv *hsr, 625 const unsigned char *addr, 626 unsigned char addr_b[ETH_ALEN], 627 unsigned int *addr_b_ifindex, 628 int *if1_age, 629 u16 *if1_seq, 630 int *if2_age, 631 u16 *if2_seq) 632 { 633 struct hsr_node *node; 634 struct hsr_port *port; 635 unsigned long tdiff; 636 u32 hash; 637 638 hash = hsr_mac_hash(hsr, addr); 639 640 node = find_node_by_addr_A(&hsr->node_db[hash], addr); 641 if (!node) 642 return -ENOENT; 643 644 ether_addr_copy(addr_b, node->macaddress_B); 645 646 tdiff = jiffies - node->time_in[HSR_PT_SLAVE_A]; 647 if (node->time_in_stale[HSR_PT_SLAVE_A]) 648 *if1_age = INT_MAX; 649 #if HZ <= MSEC_PER_SEC 650 else if (tdiff > msecs_to_jiffies(INT_MAX)) 651 *if1_age = INT_MAX; 652 #endif 653 else 654 *if1_age = jiffies_to_msecs(tdiff); 655 656 tdiff = jiffies - node->time_in[HSR_PT_SLAVE_B]; 657 if (node->time_in_stale[HSR_PT_SLAVE_B]) 658 *if2_age = INT_MAX; 659 #if HZ <= MSEC_PER_SEC 660 else if (tdiff > msecs_to_jiffies(INT_MAX)) 661 *if2_age = INT_MAX; 662 #endif 663 else 664 *if2_age = jiffies_to_msecs(tdiff); 665 666 /* Present sequence numbers as if they were incoming on interface */ 667 *if1_seq = node->seq_out[HSR_PT_SLAVE_B]; 668 *if2_seq = node->seq_out[HSR_PT_SLAVE_A]; 669 670 if (node->addr_B_port != HSR_PT_NONE) { 671 port = hsr_port_get_hsr(hsr, node->addr_B_port); 672 *addr_b_ifindex = port->dev->ifindex; 673 } else { 674 *addr_b_ifindex = -1; 675 } 676 677 return 0; 678 } 679