1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright 2011-2014 Autronica Fire and Security AS 3 * 4 * Author(s): 5 * 2011-2014 Arvid Brodin, arvid.brodin@alten.se 6 * 7 * The HSR spec says never to forward the same frame twice on the same 8 * interface. A frame is identified by its source MAC address and its HSR 9 * sequence number. This code keeps track of senders and their sequence numbers 10 * to allow filtering of duplicate frames, and to detect HSR ring errors. 11 */ 12 13 #include <linux/if_ether.h> 14 #include <linux/etherdevice.h> 15 #include <linux/slab.h> 16 #include <linux/rculist.h> 17 #include "hsr_main.h" 18 #include "hsr_framereg.h" 19 #include "hsr_netlink.h" 20 21 /* TODO: use hash lists for mac addresses (linux/jhash.h)? */ 22 23 /* seq_nr_after(a, b) - return true if a is after (higher in sequence than) b, 24 * false otherwise. 25 */ 26 static bool seq_nr_after(u16 a, u16 b) 27 { 28 /* Remove inconsistency where 29 * seq_nr_after(a, b) == seq_nr_before(a, b) 30 */ 31 if ((int)b - a == 32768) 32 return false; 33 34 return (((s16)(b - a)) < 0); 35 } 36 37 #define seq_nr_before(a, b) seq_nr_after((b), (a)) 38 #define seq_nr_after_or_eq(a, b) (!seq_nr_before((a), (b))) 39 #define seq_nr_before_or_eq(a, b) (!seq_nr_after((a), (b))) 40 41 bool hsr_addr_is_self(struct hsr_priv *hsr, unsigned char *addr) 42 { 43 struct hsr_node *node; 44 45 node = list_first_or_null_rcu(&hsr->self_node_db, struct hsr_node, 46 mac_list); 47 if (!node) { 48 WARN_ONCE(1, "HSR: No self node\n"); 49 return false; 50 } 51 52 if (ether_addr_equal(addr, node->macaddress_A)) 53 return true; 54 if (ether_addr_equal(addr, node->macaddress_B)) 55 return true; 56 57 return false; 58 } 59 60 /* Search for mac entry. Caller must hold rcu read lock. 61 */ 62 static struct hsr_node *find_node_by_addr_A(struct list_head *node_db, 63 const unsigned char addr[ETH_ALEN]) 64 { 65 struct hsr_node *node; 66 67 list_for_each_entry_rcu(node, node_db, mac_list) { 68 if (ether_addr_equal(node->macaddress_A, addr)) 69 return node; 70 } 71 72 return NULL; 73 } 74 75 /* Helper for device init; the self_node_db is used in hsr_rcv() to recognize 76 * frames from self that's been looped over the HSR ring. 77 */ 78 int hsr_create_self_node(struct list_head *self_node_db, 79 unsigned char addr_a[ETH_ALEN], 80 unsigned char addr_b[ETH_ALEN]) 81 { 82 struct hsr_node *node, *oldnode; 83 84 node = kmalloc(sizeof(*node), GFP_KERNEL); 85 if (!node) 86 return -ENOMEM; 87 88 ether_addr_copy(node->macaddress_A, addr_a); 89 ether_addr_copy(node->macaddress_B, addr_b); 90 91 rcu_read_lock(); 92 oldnode = list_first_or_null_rcu(self_node_db, 93 struct hsr_node, mac_list); 94 if (oldnode) { 95 list_replace_rcu(&oldnode->mac_list, &node->mac_list); 96 rcu_read_unlock(); 97 synchronize_rcu(); 98 kfree(oldnode); 99 } else { 100 rcu_read_unlock(); 101 list_add_tail_rcu(&node->mac_list, self_node_db); 102 } 103 104 return 0; 105 } 106 107 void hsr_del_node(struct list_head *self_node_db) 108 { 109 struct hsr_node *node; 110 111 rcu_read_lock(); 112 node = list_first_or_null_rcu(self_node_db, struct hsr_node, mac_list); 113 rcu_read_unlock(); 114 if (node) { 115 list_del_rcu(&node->mac_list); 116 kfree(node); 117 } 118 } 119 120 /* Allocate an hsr_node and add it to node_db. 'addr' is the node's address_A; 121 * seq_out is used to initialize filtering of outgoing duplicate frames 122 * originating from the newly added node. 123 */ 124 struct hsr_node *hsr_add_node(struct list_head *node_db, unsigned char addr[], 125 u16 seq_out) 126 { 127 struct hsr_node *node; 128 unsigned long now; 129 int i; 130 131 node = kzalloc(sizeof(*node), GFP_ATOMIC); 132 if (!node) 133 return NULL; 134 135 ether_addr_copy(node->macaddress_A, addr); 136 137 /* We are only interested in time diffs here, so use current jiffies 138 * as initialization. (0 could trigger an spurious ring error warning). 139 */ 140 now = jiffies; 141 for (i = 0; i < HSR_PT_PORTS; i++) 142 node->time_in[i] = now; 143 for (i = 0; i < HSR_PT_PORTS; i++) 144 node->seq_out[i] = seq_out; 145 146 list_add_tail_rcu(&node->mac_list, node_db); 147 148 return node; 149 } 150 151 /* Get the hsr_node from which 'skb' was sent. 152 */ 153 struct hsr_node *hsr_get_node(struct hsr_port *port, struct sk_buff *skb, 154 bool is_sup) 155 { 156 struct list_head *node_db = &port->hsr->node_db; 157 struct hsr_node *node; 158 struct ethhdr *ethhdr; 159 u16 seq_out; 160 161 if (!skb_mac_header_was_set(skb)) 162 return NULL; 163 164 ethhdr = (struct ethhdr *)skb_mac_header(skb); 165 166 list_for_each_entry_rcu(node, node_db, mac_list) { 167 if (ether_addr_equal(node->macaddress_A, ethhdr->h_source)) 168 return node; 169 if (ether_addr_equal(node->macaddress_B, ethhdr->h_source)) 170 return node; 171 } 172 173 /* Everyone may create a node entry, connected node to a HSR device. */ 174 175 if (ethhdr->h_proto == htons(ETH_P_PRP) || 176 ethhdr->h_proto == htons(ETH_P_HSR)) { 177 /* Use the existing sequence_nr from the tag as starting point 178 * for filtering duplicate frames. 179 */ 180 seq_out = hsr_get_skb_sequence_nr(skb) - 1; 181 } else { 182 /* this is called also for frames from master port and 183 * so warn only for non master ports 184 */ 185 if (port->type != HSR_PT_MASTER) 186 WARN_ONCE(1, "%s: Non-HSR frame\n", __func__); 187 seq_out = HSR_SEQNR_START; 188 } 189 190 return hsr_add_node(node_db, ethhdr->h_source, seq_out); 191 } 192 193 /* Use the Supervision frame's info about an eventual macaddress_B for merging 194 * nodes that has previously had their macaddress_B registered as a separate 195 * node. 196 */ 197 void hsr_handle_sup_frame(struct sk_buff *skb, struct hsr_node *node_curr, 198 struct hsr_port *port_rcv) 199 { 200 struct ethhdr *ethhdr; 201 struct hsr_node *node_real; 202 struct hsr_sup_payload *hsr_sp; 203 struct list_head *node_db; 204 int i; 205 206 ethhdr = (struct ethhdr *)skb_mac_header(skb); 207 208 /* Leave the ethernet header. */ 209 skb_pull(skb, sizeof(struct ethhdr)); 210 211 /* And leave the HSR tag. */ 212 if (ethhdr->h_proto == htons(ETH_P_HSR)) 213 skb_pull(skb, sizeof(struct hsr_tag)); 214 215 /* And leave the HSR sup tag. */ 216 skb_pull(skb, sizeof(struct hsr_sup_tag)); 217 218 hsr_sp = (struct hsr_sup_payload *)skb->data; 219 220 /* Merge node_curr (registered on macaddress_B) into node_real */ 221 node_db = &port_rcv->hsr->node_db; 222 node_real = find_node_by_addr_A(node_db, hsr_sp->macaddress_A); 223 if (!node_real) 224 /* No frame received from AddrA of this node yet */ 225 node_real = hsr_add_node(node_db, hsr_sp->macaddress_A, 226 HSR_SEQNR_START - 1); 227 if (!node_real) 228 goto done; /* No mem */ 229 if (node_real == node_curr) 230 /* Node has already been merged */ 231 goto done; 232 233 ether_addr_copy(node_real->macaddress_B, ethhdr->h_source); 234 for (i = 0; i < HSR_PT_PORTS; i++) { 235 if (!node_curr->time_in_stale[i] && 236 time_after(node_curr->time_in[i], node_real->time_in[i])) { 237 node_real->time_in[i] = node_curr->time_in[i]; 238 node_real->time_in_stale[i] = 239 node_curr->time_in_stale[i]; 240 } 241 if (seq_nr_after(node_curr->seq_out[i], node_real->seq_out[i])) 242 node_real->seq_out[i] = node_curr->seq_out[i]; 243 } 244 node_real->addr_B_port = port_rcv->type; 245 246 list_del_rcu(&node_curr->mac_list); 247 kfree_rcu(node_curr, rcu_head); 248 249 done: 250 skb_push(skb, sizeof(struct hsrv1_ethhdr_sp)); 251 } 252 253 /* 'skb' is a frame meant for this host, that is to be passed to upper layers. 254 * 255 * If the frame was sent by a node's B interface, replace the source 256 * address with that node's "official" address (macaddress_A) so that upper 257 * layers recognize where it came from. 258 */ 259 void hsr_addr_subst_source(struct hsr_node *node, struct sk_buff *skb) 260 { 261 if (!skb_mac_header_was_set(skb)) { 262 WARN_ONCE(1, "%s: Mac header not set\n", __func__); 263 return; 264 } 265 266 memcpy(ð_hdr(skb)->h_source, node->macaddress_A, ETH_ALEN); 267 } 268 269 /* 'skb' is a frame meant for another host. 270 * 'port' is the outgoing interface 271 * 272 * Substitute the target (dest) MAC address if necessary, so the it matches the 273 * recipient interface MAC address, regardless of whether that is the 274 * recipient's A or B interface. 275 * This is needed to keep the packets flowing through switches that learn on 276 * which "side" the different interfaces are. 277 */ 278 void hsr_addr_subst_dest(struct hsr_node *node_src, struct sk_buff *skb, 279 struct hsr_port *port) 280 { 281 struct hsr_node *node_dst; 282 283 if (!skb_mac_header_was_set(skb)) { 284 WARN_ONCE(1, "%s: Mac header not set\n", __func__); 285 return; 286 } 287 288 if (!is_unicast_ether_addr(eth_hdr(skb)->h_dest)) 289 return; 290 291 node_dst = find_node_by_addr_A(&port->hsr->node_db, 292 eth_hdr(skb)->h_dest); 293 if (!node_dst) { 294 WARN_ONCE(1, "%s: Unknown node\n", __func__); 295 return; 296 } 297 if (port->type != node_dst->addr_B_port) 298 return; 299 300 ether_addr_copy(eth_hdr(skb)->h_dest, node_dst->macaddress_B); 301 } 302 303 void hsr_register_frame_in(struct hsr_node *node, struct hsr_port *port, 304 u16 sequence_nr) 305 { 306 /* Don't register incoming frames without a valid sequence number. This 307 * ensures entries of restarted nodes gets pruned so that they can 308 * re-register and resume communications. 309 */ 310 if (seq_nr_before(sequence_nr, node->seq_out[port->type])) 311 return; 312 313 node->time_in[port->type] = jiffies; 314 node->time_in_stale[port->type] = false; 315 } 316 317 /* 'skb' is a HSR Ethernet frame (with a HSR tag inserted), with a valid 318 * ethhdr->h_source address and skb->mac_header set. 319 * 320 * Return: 321 * 1 if frame can be shown to have been sent recently on this interface, 322 * 0 otherwise, or 323 * negative error code on error 324 */ 325 int hsr_register_frame_out(struct hsr_port *port, struct hsr_node *node, 326 u16 sequence_nr) 327 { 328 if (seq_nr_before_or_eq(sequence_nr, node->seq_out[port->type])) 329 return 1; 330 331 node->seq_out[port->type] = sequence_nr; 332 return 0; 333 } 334 335 static struct hsr_port *get_late_port(struct hsr_priv *hsr, 336 struct hsr_node *node) 337 { 338 if (node->time_in_stale[HSR_PT_SLAVE_A]) 339 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); 340 if (node->time_in_stale[HSR_PT_SLAVE_B]) 341 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); 342 343 if (time_after(node->time_in[HSR_PT_SLAVE_B], 344 node->time_in[HSR_PT_SLAVE_A] + 345 msecs_to_jiffies(MAX_SLAVE_DIFF))) 346 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); 347 if (time_after(node->time_in[HSR_PT_SLAVE_A], 348 node->time_in[HSR_PT_SLAVE_B] + 349 msecs_to_jiffies(MAX_SLAVE_DIFF))) 350 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); 351 352 return NULL; 353 } 354 355 /* Remove stale sequence_nr records. Called by timer every 356 * HSR_LIFE_CHECK_INTERVAL (two seconds or so). 357 */ 358 void hsr_prune_nodes(struct timer_list *t) 359 { 360 struct hsr_priv *hsr = from_timer(hsr, t, prune_timer); 361 struct hsr_node *node; 362 struct hsr_port *port; 363 unsigned long timestamp; 364 unsigned long time_a, time_b; 365 366 rcu_read_lock(); 367 list_for_each_entry_rcu(node, &hsr->node_db, mac_list) { 368 /* Shorthand */ 369 time_a = node->time_in[HSR_PT_SLAVE_A]; 370 time_b = node->time_in[HSR_PT_SLAVE_B]; 371 372 /* Check for timestamps old enough to risk wrap-around */ 373 if (time_after(jiffies, time_a + MAX_JIFFY_OFFSET / 2)) 374 node->time_in_stale[HSR_PT_SLAVE_A] = true; 375 if (time_after(jiffies, time_b + MAX_JIFFY_OFFSET / 2)) 376 node->time_in_stale[HSR_PT_SLAVE_B] = true; 377 378 /* Get age of newest frame from node. 379 * At least one time_in is OK here; nodes get pruned long 380 * before both time_ins can get stale 381 */ 382 timestamp = time_a; 383 if (node->time_in_stale[HSR_PT_SLAVE_A] || 384 (!node->time_in_stale[HSR_PT_SLAVE_B] && 385 time_after(time_b, time_a))) 386 timestamp = time_b; 387 388 /* Warn of ring error only as long as we get frames at all */ 389 if (time_is_after_jiffies(timestamp + 390 msecs_to_jiffies(1.5 * MAX_SLAVE_DIFF))) { 391 rcu_read_lock(); 392 port = get_late_port(hsr, node); 393 if (port) 394 hsr_nl_ringerror(hsr, node->macaddress_A, port); 395 rcu_read_unlock(); 396 } 397 398 /* Prune old entries */ 399 if (time_is_before_jiffies(timestamp + 400 msecs_to_jiffies(HSR_NODE_FORGET_TIME))) { 401 hsr_nl_nodedown(hsr, node->macaddress_A); 402 list_del_rcu(&node->mac_list); 403 /* Note that we need to free this entry later: */ 404 kfree_rcu(node, rcu_head); 405 } 406 } 407 rcu_read_unlock(); 408 409 /* Restart timer */ 410 mod_timer(&hsr->prune_timer, 411 jiffies + msecs_to_jiffies(PRUNE_PERIOD)); 412 } 413 414 void *hsr_get_next_node(struct hsr_priv *hsr, void *_pos, 415 unsigned char addr[ETH_ALEN]) 416 { 417 struct hsr_node *node; 418 419 if (!_pos) { 420 node = list_first_or_null_rcu(&hsr->node_db, 421 struct hsr_node, mac_list); 422 if (node) 423 ether_addr_copy(addr, node->macaddress_A); 424 return node; 425 } 426 427 node = _pos; 428 list_for_each_entry_continue_rcu(node, &hsr->node_db, mac_list) { 429 ether_addr_copy(addr, node->macaddress_A); 430 return node; 431 } 432 433 return NULL; 434 } 435 436 int hsr_get_node_data(struct hsr_priv *hsr, 437 const unsigned char *addr, 438 unsigned char addr_b[ETH_ALEN], 439 unsigned int *addr_b_ifindex, 440 int *if1_age, 441 u16 *if1_seq, 442 int *if2_age, 443 u16 *if2_seq) 444 { 445 struct hsr_node *node; 446 struct hsr_port *port; 447 unsigned long tdiff; 448 449 rcu_read_lock(); 450 node = find_node_by_addr_A(&hsr->node_db, addr); 451 if (!node) { 452 rcu_read_unlock(); 453 return -ENOENT; /* No such entry */ 454 } 455 456 ether_addr_copy(addr_b, node->macaddress_B); 457 458 tdiff = jiffies - node->time_in[HSR_PT_SLAVE_A]; 459 if (node->time_in_stale[HSR_PT_SLAVE_A]) 460 *if1_age = INT_MAX; 461 #if HZ <= MSEC_PER_SEC 462 else if (tdiff > msecs_to_jiffies(INT_MAX)) 463 *if1_age = INT_MAX; 464 #endif 465 else 466 *if1_age = jiffies_to_msecs(tdiff); 467 468 tdiff = jiffies - node->time_in[HSR_PT_SLAVE_B]; 469 if (node->time_in_stale[HSR_PT_SLAVE_B]) 470 *if2_age = INT_MAX; 471 #if HZ <= MSEC_PER_SEC 472 else if (tdiff > msecs_to_jiffies(INT_MAX)) 473 *if2_age = INT_MAX; 474 #endif 475 else 476 *if2_age = jiffies_to_msecs(tdiff); 477 478 /* Present sequence numbers as if they were incoming on interface */ 479 *if1_seq = node->seq_out[HSR_PT_SLAVE_B]; 480 *if2_seq = node->seq_out[HSR_PT_SLAVE_A]; 481 482 if (node->addr_B_port != HSR_PT_NONE) { 483 port = hsr_port_get_hsr(hsr, node->addr_B_port); 484 *addr_b_ifindex = port->dev->ifindex; 485 } else { 486 *addr_b_ifindex = -1; 487 } 488 489 rcu_read_unlock(); 490 491 return 0; 492 } 493