1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright 2011-2014 Autronica Fire and Security AS 3 * 4 * Author(s): 5 * 2011-2014 Arvid Brodin, arvid.brodin@alten.se 6 * 7 * The HSR spec says never to forward the same frame twice on the same 8 * interface. A frame is identified by its source MAC address and its HSR 9 * sequence number. This code keeps track of senders and their sequence numbers 10 * to allow filtering of duplicate frames, and to detect HSR ring errors. 11 */ 12 13 #include <linux/if_ether.h> 14 #include <linux/etherdevice.h> 15 #include <linux/slab.h> 16 #include <linux/rculist.h> 17 #include "hsr_main.h" 18 #include "hsr_framereg.h" 19 #include "hsr_netlink.h" 20 21 /* TODO: use hash lists for mac addresses (linux/jhash.h)? */ 22 23 /* seq_nr_after(a, b) - return true if a is after (higher in sequence than) b, 24 * false otherwise. 25 */ 26 static bool seq_nr_after(u16 a, u16 b) 27 { 28 /* Remove inconsistency where 29 * seq_nr_after(a, b) == seq_nr_before(a, b) 30 */ 31 if ((int)b - a == 32768) 32 return false; 33 34 return (((s16)(b - a)) < 0); 35 } 36 37 #define seq_nr_before(a, b) seq_nr_after((b), (a)) 38 #define seq_nr_after_or_eq(a, b) (!seq_nr_before((a), (b))) 39 #define seq_nr_before_or_eq(a, b) (!seq_nr_after((a), (b))) 40 41 bool hsr_addr_is_self(struct hsr_priv *hsr, unsigned char *addr) 42 { 43 struct hsr_node *node; 44 45 node = list_first_or_null_rcu(&hsr->self_node_db, struct hsr_node, 46 mac_list); 47 if (!node) { 48 WARN_ONCE(1, "HSR: No self node\n"); 49 return false; 50 } 51 52 if (ether_addr_equal(addr, node->macaddress_A)) 53 return true; 54 if (ether_addr_equal(addr, node->macaddress_B)) 55 return true; 56 57 return false; 58 } 59 60 /* Search for mac entry. Caller must hold rcu read lock. 61 */ 62 static struct hsr_node *find_node_by_addr_A(struct list_head *node_db, 63 const unsigned char addr[ETH_ALEN]) 64 { 65 struct hsr_node *node; 66 67 list_for_each_entry_rcu(node, node_db, mac_list) { 68 if (ether_addr_equal(node->macaddress_A, addr)) 69 return node; 70 } 71 72 return NULL; 73 } 74 75 /* Helper for device init; the self_node_db is used in hsr_rcv() to recognize 76 * frames from self that's been looped over the HSR ring. 77 */ 78 int hsr_create_self_node(struct list_head *self_node_db, 79 unsigned char addr_a[ETH_ALEN], 80 unsigned char addr_b[ETH_ALEN]) 81 { 82 struct hsr_node *node, *oldnode; 83 84 node = kmalloc(sizeof(*node), GFP_KERNEL); 85 if (!node) 86 return -ENOMEM; 87 88 ether_addr_copy(node->macaddress_A, addr_a); 89 ether_addr_copy(node->macaddress_B, addr_b); 90 91 rcu_read_lock(); 92 oldnode = list_first_or_null_rcu(self_node_db, 93 struct hsr_node, mac_list); 94 if (oldnode) { 95 list_replace_rcu(&oldnode->mac_list, &node->mac_list); 96 rcu_read_unlock(); 97 synchronize_rcu(); 98 kfree(oldnode); 99 } else { 100 rcu_read_unlock(); 101 list_add_tail_rcu(&node->mac_list, self_node_db); 102 } 103 104 return 0; 105 } 106 107 void hsr_del_self_node(struct list_head *self_node_db) 108 { 109 struct hsr_node *node; 110 111 rcu_read_lock(); 112 node = list_first_or_null_rcu(self_node_db, struct hsr_node, mac_list); 113 rcu_read_unlock(); 114 if (node) { 115 list_del_rcu(&node->mac_list); 116 kfree(node); 117 } 118 } 119 120 void hsr_del_nodes(struct list_head *node_db) 121 { 122 struct hsr_node *node; 123 struct hsr_node *tmp; 124 125 list_for_each_entry_safe(node, tmp, node_db, mac_list) 126 kfree(node); 127 } 128 129 /* Allocate an hsr_node and add it to node_db. 'addr' is the node's address_A; 130 * seq_out is used to initialize filtering of outgoing duplicate frames 131 * originating from the newly added node. 132 */ 133 struct hsr_node *hsr_add_node(struct list_head *node_db, unsigned char addr[], 134 u16 seq_out) 135 { 136 struct hsr_node *node; 137 unsigned long now; 138 int i; 139 140 node = kzalloc(sizeof(*node), GFP_ATOMIC); 141 if (!node) 142 return NULL; 143 144 ether_addr_copy(node->macaddress_A, addr); 145 146 /* We are only interested in time diffs here, so use current jiffies 147 * as initialization. (0 could trigger an spurious ring error warning). 148 */ 149 now = jiffies; 150 for (i = 0; i < HSR_PT_PORTS; i++) 151 node->time_in[i] = now; 152 for (i = 0; i < HSR_PT_PORTS; i++) 153 node->seq_out[i] = seq_out; 154 155 list_add_tail_rcu(&node->mac_list, node_db); 156 157 return node; 158 } 159 160 /* Get the hsr_node from which 'skb' was sent. 161 */ 162 struct hsr_node *hsr_get_node(struct hsr_port *port, struct sk_buff *skb, 163 bool is_sup) 164 { 165 struct list_head *node_db = &port->hsr->node_db; 166 struct hsr_node *node; 167 struct ethhdr *ethhdr; 168 u16 seq_out; 169 170 if (!skb_mac_header_was_set(skb)) 171 return NULL; 172 173 ethhdr = (struct ethhdr *)skb_mac_header(skb); 174 175 list_for_each_entry_rcu(node, node_db, mac_list) { 176 if (ether_addr_equal(node->macaddress_A, ethhdr->h_source)) 177 return node; 178 if (ether_addr_equal(node->macaddress_B, ethhdr->h_source)) 179 return node; 180 } 181 182 /* Everyone may create a node entry, connected node to a HSR device. */ 183 184 if (ethhdr->h_proto == htons(ETH_P_PRP) || 185 ethhdr->h_proto == htons(ETH_P_HSR)) { 186 /* Use the existing sequence_nr from the tag as starting point 187 * for filtering duplicate frames. 188 */ 189 seq_out = hsr_get_skb_sequence_nr(skb) - 1; 190 } else { 191 /* this is called also for frames from master port and 192 * so warn only for non master ports 193 */ 194 if (port->type != HSR_PT_MASTER) 195 WARN_ONCE(1, "%s: Non-HSR frame\n", __func__); 196 seq_out = HSR_SEQNR_START; 197 } 198 199 return hsr_add_node(node_db, ethhdr->h_source, seq_out); 200 } 201 202 /* Use the Supervision frame's info about an eventual macaddress_B for merging 203 * nodes that has previously had their macaddress_B registered as a separate 204 * node. 205 */ 206 void hsr_handle_sup_frame(struct sk_buff *skb, struct hsr_node *node_curr, 207 struct hsr_port *port_rcv) 208 { 209 struct ethhdr *ethhdr; 210 struct hsr_node *node_real; 211 struct hsr_sup_payload *hsr_sp; 212 struct list_head *node_db; 213 int i; 214 215 ethhdr = (struct ethhdr *)skb_mac_header(skb); 216 217 /* Leave the ethernet header. */ 218 skb_pull(skb, sizeof(struct ethhdr)); 219 220 /* And leave the HSR tag. */ 221 if (ethhdr->h_proto == htons(ETH_P_HSR)) 222 skb_pull(skb, sizeof(struct hsr_tag)); 223 224 /* And leave the HSR sup tag. */ 225 skb_pull(skb, sizeof(struct hsr_sup_tag)); 226 227 hsr_sp = (struct hsr_sup_payload *)skb->data; 228 229 /* Merge node_curr (registered on macaddress_B) into node_real */ 230 node_db = &port_rcv->hsr->node_db; 231 node_real = find_node_by_addr_A(node_db, hsr_sp->macaddress_A); 232 if (!node_real) 233 /* No frame received from AddrA of this node yet */ 234 node_real = hsr_add_node(node_db, hsr_sp->macaddress_A, 235 HSR_SEQNR_START - 1); 236 if (!node_real) 237 goto done; /* No mem */ 238 if (node_real == node_curr) 239 /* Node has already been merged */ 240 goto done; 241 242 ether_addr_copy(node_real->macaddress_B, ethhdr->h_source); 243 for (i = 0; i < HSR_PT_PORTS; i++) { 244 if (!node_curr->time_in_stale[i] && 245 time_after(node_curr->time_in[i], node_real->time_in[i])) { 246 node_real->time_in[i] = node_curr->time_in[i]; 247 node_real->time_in_stale[i] = 248 node_curr->time_in_stale[i]; 249 } 250 if (seq_nr_after(node_curr->seq_out[i], node_real->seq_out[i])) 251 node_real->seq_out[i] = node_curr->seq_out[i]; 252 } 253 node_real->addr_B_port = port_rcv->type; 254 255 list_del_rcu(&node_curr->mac_list); 256 kfree_rcu(node_curr, rcu_head); 257 258 done: 259 skb_push(skb, sizeof(struct hsrv1_ethhdr_sp)); 260 } 261 262 /* 'skb' is a frame meant for this host, that is to be passed to upper layers. 263 * 264 * If the frame was sent by a node's B interface, replace the source 265 * address with that node's "official" address (macaddress_A) so that upper 266 * layers recognize where it came from. 267 */ 268 void hsr_addr_subst_source(struct hsr_node *node, struct sk_buff *skb) 269 { 270 if (!skb_mac_header_was_set(skb)) { 271 WARN_ONCE(1, "%s: Mac header not set\n", __func__); 272 return; 273 } 274 275 memcpy(ð_hdr(skb)->h_source, node->macaddress_A, ETH_ALEN); 276 } 277 278 /* 'skb' is a frame meant for another host. 279 * 'port' is the outgoing interface 280 * 281 * Substitute the target (dest) MAC address if necessary, so the it matches the 282 * recipient interface MAC address, regardless of whether that is the 283 * recipient's A or B interface. 284 * This is needed to keep the packets flowing through switches that learn on 285 * which "side" the different interfaces are. 286 */ 287 void hsr_addr_subst_dest(struct hsr_node *node_src, struct sk_buff *skb, 288 struct hsr_port *port) 289 { 290 struct hsr_node *node_dst; 291 292 if (!skb_mac_header_was_set(skb)) { 293 WARN_ONCE(1, "%s: Mac header not set\n", __func__); 294 return; 295 } 296 297 if (!is_unicast_ether_addr(eth_hdr(skb)->h_dest)) 298 return; 299 300 node_dst = find_node_by_addr_A(&port->hsr->node_db, 301 eth_hdr(skb)->h_dest); 302 if (!node_dst) { 303 WARN_ONCE(1, "%s: Unknown node\n", __func__); 304 return; 305 } 306 if (port->type != node_dst->addr_B_port) 307 return; 308 309 ether_addr_copy(eth_hdr(skb)->h_dest, node_dst->macaddress_B); 310 } 311 312 void hsr_register_frame_in(struct hsr_node *node, struct hsr_port *port, 313 u16 sequence_nr) 314 { 315 /* Don't register incoming frames without a valid sequence number. This 316 * ensures entries of restarted nodes gets pruned so that they can 317 * re-register and resume communications. 318 */ 319 if (seq_nr_before(sequence_nr, node->seq_out[port->type])) 320 return; 321 322 node->time_in[port->type] = jiffies; 323 node->time_in_stale[port->type] = false; 324 } 325 326 /* 'skb' is a HSR Ethernet frame (with a HSR tag inserted), with a valid 327 * ethhdr->h_source address and skb->mac_header set. 328 * 329 * Return: 330 * 1 if frame can be shown to have been sent recently on this interface, 331 * 0 otherwise, or 332 * negative error code on error 333 */ 334 int hsr_register_frame_out(struct hsr_port *port, struct hsr_node *node, 335 u16 sequence_nr) 336 { 337 if (seq_nr_before_or_eq(sequence_nr, node->seq_out[port->type])) 338 return 1; 339 340 node->seq_out[port->type] = sequence_nr; 341 return 0; 342 } 343 344 static struct hsr_port *get_late_port(struct hsr_priv *hsr, 345 struct hsr_node *node) 346 { 347 if (node->time_in_stale[HSR_PT_SLAVE_A]) 348 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); 349 if (node->time_in_stale[HSR_PT_SLAVE_B]) 350 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); 351 352 if (time_after(node->time_in[HSR_PT_SLAVE_B], 353 node->time_in[HSR_PT_SLAVE_A] + 354 msecs_to_jiffies(MAX_SLAVE_DIFF))) 355 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); 356 if (time_after(node->time_in[HSR_PT_SLAVE_A], 357 node->time_in[HSR_PT_SLAVE_B] + 358 msecs_to_jiffies(MAX_SLAVE_DIFF))) 359 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); 360 361 return NULL; 362 } 363 364 /* Remove stale sequence_nr records. Called by timer every 365 * HSR_LIFE_CHECK_INTERVAL (two seconds or so). 366 */ 367 void hsr_prune_nodes(struct timer_list *t) 368 { 369 struct hsr_priv *hsr = from_timer(hsr, t, prune_timer); 370 struct hsr_node *node; 371 struct hsr_port *port; 372 unsigned long timestamp; 373 unsigned long time_a, time_b; 374 375 rcu_read_lock(); 376 list_for_each_entry_rcu(node, &hsr->node_db, mac_list) { 377 /* Don't prune own node. Neither time_in[HSR_PT_SLAVE_A] 378 * nor time_in[HSR_PT_SLAVE_B], will ever be updated for 379 * the master port. Thus the master node will be repeatedly 380 * pruned leading to packet loss. 381 */ 382 if (hsr_addr_is_self(hsr, node->macaddress_A)) 383 continue; 384 385 /* Shorthand */ 386 time_a = node->time_in[HSR_PT_SLAVE_A]; 387 time_b = node->time_in[HSR_PT_SLAVE_B]; 388 389 /* Check for timestamps old enough to risk wrap-around */ 390 if (time_after(jiffies, time_a + MAX_JIFFY_OFFSET / 2)) 391 node->time_in_stale[HSR_PT_SLAVE_A] = true; 392 if (time_after(jiffies, time_b + MAX_JIFFY_OFFSET / 2)) 393 node->time_in_stale[HSR_PT_SLAVE_B] = true; 394 395 /* Get age of newest frame from node. 396 * At least one time_in is OK here; nodes get pruned long 397 * before both time_ins can get stale 398 */ 399 timestamp = time_a; 400 if (node->time_in_stale[HSR_PT_SLAVE_A] || 401 (!node->time_in_stale[HSR_PT_SLAVE_B] && 402 time_after(time_b, time_a))) 403 timestamp = time_b; 404 405 /* Warn of ring error only as long as we get frames at all */ 406 if (time_is_after_jiffies(timestamp + 407 msecs_to_jiffies(1.5 * MAX_SLAVE_DIFF))) { 408 rcu_read_lock(); 409 port = get_late_port(hsr, node); 410 if (port) 411 hsr_nl_ringerror(hsr, node->macaddress_A, port); 412 rcu_read_unlock(); 413 } 414 415 /* Prune old entries */ 416 if (time_is_before_jiffies(timestamp + 417 msecs_to_jiffies(HSR_NODE_FORGET_TIME))) { 418 hsr_nl_nodedown(hsr, node->macaddress_A); 419 list_del_rcu(&node->mac_list); 420 /* Note that we need to free this entry later: */ 421 kfree_rcu(node, rcu_head); 422 } 423 } 424 rcu_read_unlock(); 425 426 /* Restart timer */ 427 mod_timer(&hsr->prune_timer, 428 jiffies + msecs_to_jiffies(PRUNE_PERIOD)); 429 } 430 431 void *hsr_get_next_node(struct hsr_priv *hsr, void *_pos, 432 unsigned char addr[ETH_ALEN]) 433 { 434 struct hsr_node *node; 435 436 if (!_pos) { 437 node = list_first_or_null_rcu(&hsr->node_db, 438 struct hsr_node, mac_list); 439 if (node) 440 ether_addr_copy(addr, node->macaddress_A); 441 return node; 442 } 443 444 node = _pos; 445 list_for_each_entry_continue_rcu(node, &hsr->node_db, mac_list) { 446 ether_addr_copy(addr, node->macaddress_A); 447 return node; 448 } 449 450 return NULL; 451 } 452 453 int hsr_get_node_data(struct hsr_priv *hsr, 454 const unsigned char *addr, 455 unsigned char addr_b[ETH_ALEN], 456 unsigned int *addr_b_ifindex, 457 int *if1_age, 458 u16 *if1_seq, 459 int *if2_age, 460 u16 *if2_seq) 461 { 462 struct hsr_node *node; 463 struct hsr_port *port; 464 unsigned long tdiff; 465 466 rcu_read_lock(); 467 node = find_node_by_addr_A(&hsr->node_db, addr); 468 if (!node) { 469 rcu_read_unlock(); 470 return -ENOENT; /* No such entry */ 471 } 472 473 ether_addr_copy(addr_b, node->macaddress_B); 474 475 tdiff = jiffies - node->time_in[HSR_PT_SLAVE_A]; 476 if (node->time_in_stale[HSR_PT_SLAVE_A]) 477 *if1_age = INT_MAX; 478 #if HZ <= MSEC_PER_SEC 479 else if (tdiff > msecs_to_jiffies(INT_MAX)) 480 *if1_age = INT_MAX; 481 #endif 482 else 483 *if1_age = jiffies_to_msecs(tdiff); 484 485 tdiff = jiffies - node->time_in[HSR_PT_SLAVE_B]; 486 if (node->time_in_stale[HSR_PT_SLAVE_B]) 487 *if2_age = INT_MAX; 488 #if HZ <= MSEC_PER_SEC 489 else if (tdiff > msecs_to_jiffies(INT_MAX)) 490 *if2_age = INT_MAX; 491 #endif 492 else 493 *if2_age = jiffies_to_msecs(tdiff); 494 495 /* Present sequence numbers as if they were incoming on interface */ 496 *if1_seq = node->seq_out[HSR_PT_SLAVE_B]; 497 *if2_seq = node->seq_out[HSR_PT_SLAVE_A]; 498 499 if (node->addr_B_port != HSR_PT_NONE) { 500 port = hsr_port_get_hsr(hsr, node->addr_B_port); 501 *addr_b_ifindex = port->dev->ifindex; 502 } else { 503 *addr_b_ifindex = -1; 504 } 505 506 rcu_read_unlock(); 507 508 return 0; 509 } 510