1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright 2011-2014 Autronica Fire and Security AS 3 * 4 * Author(s): 5 * 2011-2014 Arvid Brodin, arvid.brodin@alten.se 6 * 7 * The HSR spec says never to forward the same frame twice on the same 8 * interface. A frame is identified by its source MAC address and its HSR 9 * sequence number. This code keeps track of senders and their sequence numbers 10 * to allow filtering of duplicate frames, and to detect HSR ring errors. 11 */ 12 13 #include <linux/if_ether.h> 14 #include <linux/etherdevice.h> 15 #include <linux/slab.h> 16 #include <linux/rculist.h> 17 #include "hsr_main.h" 18 #include "hsr_framereg.h" 19 #include "hsr_netlink.h" 20 21 /* TODO: use hash lists for mac addresses (linux/jhash.h)? */ 22 23 /* seq_nr_after(a, b) - return true if a is after (higher in sequence than) b, 24 * false otherwise. 25 */ 26 static bool seq_nr_after(u16 a, u16 b) 27 { 28 /* Remove inconsistency where 29 * seq_nr_after(a, b) == seq_nr_before(a, b) 30 */ 31 if ((int)b - a == 32768) 32 return false; 33 34 return (((s16)(b - a)) < 0); 35 } 36 37 #define seq_nr_before(a, b) seq_nr_after((b), (a)) 38 #define seq_nr_before_or_eq(a, b) (!seq_nr_after((a), (b))) 39 40 bool hsr_addr_is_self(struct hsr_priv *hsr, unsigned char *addr) 41 { 42 struct hsr_node *node; 43 44 node = list_first_or_null_rcu(&hsr->self_node_db, struct hsr_node, 45 mac_list); 46 if (!node) { 47 WARN_ONCE(1, "HSR: No self node\n"); 48 return false; 49 } 50 51 if (ether_addr_equal(addr, node->macaddress_A)) 52 return true; 53 if (ether_addr_equal(addr, node->macaddress_B)) 54 return true; 55 56 return false; 57 } 58 59 /* Search for mac entry. Caller must hold rcu read lock. 60 */ 61 static struct hsr_node *find_node_by_addr_A(struct list_head *node_db, 62 const unsigned char addr[ETH_ALEN]) 63 { 64 struct hsr_node *node; 65 66 list_for_each_entry_rcu(node, node_db, mac_list) { 67 if (ether_addr_equal(node->macaddress_A, addr)) 68 return node; 69 } 70 71 return NULL; 72 } 73 74 /* Helper for device init; the self_node_db is used in hsr_rcv() to recognize 75 * frames from self that's been looped over the HSR ring. 76 */ 77 int hsr_create_self_node(struct hsr_priv *hsr, 78 unsigned char addr_a[ETH_ALEN], 79 unsigned char addr_b[ETH_ALEN]) 80 { 81 struct list_head *self_node_db = &hsr->self_node_db; 82 struct hsr_node *node, *oldnode; 83 84 node = kmalloc(sizeof(*node), GFP_KERNEL); 85 if (!node) 86 return -ENOMEM; 87 88 ether_addr_copy(node->macaddress_A, addr_a); 89 ether_addr_copy(node->macaddress_B, addr_b); 90 91 spin_lock_bh(&hsr->list_lock); 92 oldnode = list_first_or_null_rcu(self_node_db, 93 struct hsr_node, mac_list); 94 if (oldnode) { 95 list_replace_rcu(&oldnode->mac_list, &node->mac_list); 96 spin_unlock_bh(&hsr->list_lock); 97 kfree_rcu(oldnode, rcu_head); 98 } else { 99 list_add_tail_rcu(&node->mac_list, self_node_db); 100 spin_unlock_bh(&hsr->list_lock); 101 } 102 103 return 0; 104 } 105 106 void hsr_del_self_node(struct hsr_priv *hsr) 107 { 108 struct list_head *self_node_db = &hsr->self_node_db; 109 struct hsr_node *node; 110 111 spin_lock_bh(&hsr->list_lock); 112 node = list_first_or_null_rcu(self_node_db, struct hsr_node, mac_list); 113 if (node) { 114 list_del_rcu(&node->mac_list); 115 kfree_rcu(node, rcu_head); 116 } 117 spin_unlock_bh(&hsr->list_lock); 118 } 119 120 void hsr_del_nodes(struct list_head *node_db) 121 { 122 struct hsr_node *node; 123 struct hsr_node *tmp; 124 125 list_for_each_entry_safe(node, tmp, node_db, mac_list) 126 kfree(node); 127 } 128 129 /* Allocate an hsr_node and add it to node_db. 'addr' is the node's address_A; 130 * seq_out is used to initialize filtering of outgoing duplicate frames 131 * originating from the newly added node. 132 */ 133 static struct hsr_node *hsr_add_node(struct hsr_priv *hsr, 134 struct list_head *node_db, 135 unsigned char addr[], 136 u16 seq_out) 137 { 138 struct hsr_node *new_node, *node; 139 unsigned long now; 140 int i; 141 142 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); 143 if (!new_node) 144 return NULL; 145 146 ether_addr_copy(new_node->macaddress_A, addr); 147 148 /* We are only interested in time diffs here, so use current jiffies 149 * as initialization. (0 could trigger an spurious ring error warning). 150 */ 151 now = jiffies; 152 for (i = 0; i < HSR_PT_PORTS; i++) 153 new_node->time_in[i] = now; 154 for (i = 0; i < HSR_PT_PORTS; i++) 155 new_node->seq_out[i] = seq_out; 156 157 spin_lock_bh(&hsr->list_lock); 158 list_for_each_entry_rcu(node, node_db, mac_list) { 159 if (ether_addr_equal(node->macaddress_A, addr)) 160 goto out; 161 if (ether_addr_equal(node->macaddress_B, addr)) 162 goto out; 163 } 164 list_add_tail_rcu(&new_node->mac_list, node_db); 165 spin_unlock_bh(&hsr->list_lock); 166 return new_node; 167 out: 168 spin_unlock_bh(&hsr->list_lock); 169 kfree(new_node); 170 return node; 171 } 172 173 /* Get the hsr_node from which 'skb' was sent. 174 */ 175 struct hsr_node *hsr_get_node(struct hsr_port *port, struct sk_buff *skb, 176 bool is_sup) 177 { 178 struct list_head *node_db = &port->hsr->node_db; 179 struct hsr_priv *hsr = port->hsr; 180 struct hsr_node *node; 181 struct ethhdr *ethhdr; 182 u16 seq_out; 183 184 if (!skb_mac_header_was_set(skb)) 185 return NULL; 186 187 ethhdr = (struct ethhdr *)skb_mac_header(skb); 188 189 list_for_each_entry_rcu(node, node_db, mac_list) { 190 if (ether_addr_equal(node->macaddress_A, ethhdr->h_source)) 191 return node; 192 if (ether_addr_equal(node->macaddress_B, ethhdr->h_source)) 193 return node; 194 } 195 196 /* Everyone may create a node entry, connected node to a HSR device. */ 197 198 if (ethhdr->h_proto == htons(ETH_P_PRP) || 199 ethhdr->h_proto == htons(ETH_P_HSR)) { 200 /* Use the existing sequence_nr from the tag as starting point 201 * for filtering duplicate frames. 202 */ 203 seq_out = hsr_get_skb_sequence_nr(skb) - 1; 204 } else { 205 /* this is called also for frames from master port and 206 * so warn only for non master ports 207 */ 208 if (port->type != HSR_PT_MASTER) 209 WARN_ONCE(1, "%s: Non-HSR frame\n", __func__); 210 seq_out = HSR_SEQNR_START; 211 } 212 213 return hsr_add_node(hsr, node_db, ethhdr->h_source, seq_out); 214 } 215 216 /* Use the Supervision frame's info about an eventual macaddress_B for merging 217 * nodes that has previously had their macaddress_B registered as a separate 218 * node. 219 */ 220 void hsr_handle_sup_frame(struct sk_buff *skb, struct hsr_node *node_curr, 221 struct hsr_port *port_rcv) 222 { 223 struct hsr_priv *hsr = port_rcv->hsr; 224 struct hsr_sup_payload *hsr_sp; 225 struct hsr_node *node_real; 226 struct list_head *node_db; 227 struct ethhdr *ethhdr; 228 int i; 229 230 ethhdr = (struct ethhdr *)skb_mac_header(skb); 231 232 /* Leave the ethernet header. */ 233 skb_pull(skb, sizeof(struct ethhdr)); 234 235 /* And leave the HSR tag. */ 236 if (ethhdr->h_proto == htons(ETH_P_HSR)) 237 skb_pull(skb, sizeof(struct hsr_tag)); 238 239 /* And leave the HSR sup tag. */ 240 skb_pull(skb, sizeof(struct hsr_sup_tag)); 241 242 hsr_sp = (struct hsr_sup_payload *)skb->data; 243 244 /* Merge node_curr (registered on macaddress_B) into node_real */ 245 node_db = &port_rcv->hsr->node_db; 246 node_real = find_node_by_addr_A(node_db, hsr_sp->macaddress_A); 247 if (!node_real) 248 /* No frame received from AddrA of this node yet */ 249 node_real = hsr_add_node(hsr, node_db, hsr_sp->macaddress_A, 250 HSR_SEQNR_START - 1); 251 if (!node_real) 252 goto done; /* No mem */ 253 if (node_real == node_curr) 254 /* Node has already been merged */ 255 goto done; 256 257 ether_addr_copy(node_real->macaddress_B, ethhdr->h_source); 258 for (i = 0; i < HSR_PT_PORTS; i++) { 259 if (!node_curr->time_in_stale[i] && 260 time_after(node_curr->time_in[i], node_real->time_in[i])) { 261 node_real->time_in[i] = node_curr->time_in[i]; 262 node_real->time_in_stale[i] = 263 node_curr->time_in_stale[i]; 264 } 265 if (seq_nr_after(node_curr->seq_out[i], node_real->seq_out[i])) 266 node_real->seq_out[i] = node_curr->seq_out[i]; 267 } 268 node_real->addr_B_port = port_rcv->type; 269 270 spin_lock_bh(&hsr->list_lock); 271 list_del_rcu(&node_curr->mac_list); 272 spin_unlock_bh(&hsr->list_lock); 273 kfree_rcu(node_curr, rcu_head); 274 275 done: 276 skb_push(skb, sizeof(struct hsrv1_ethhdr_sp)); 277 } 278 279 /* 'skb' is a frame meant for this host, that is to be passed to upper layers. 280 * 281 * If the frame was sent by a node's B interface, replace the source 282 * address with that node's "official" address (macaddress_A) so that upper 283 * layers recognize where it came from. 284 */ 285 void hsr_addr_subst_source(struct hsr_node *node, struct sk_buff *skb) 286 { 287 if (!skb_mac_header_was_set(skb)) { 288 WARN_ONCE(1, "%s: Mac header not set\n", __func__); 289 return; 290 } 291 292 memcpy(ð_hdr(skb)->h_source, node->macaddress_A, ETH_ALEN); 293 } 294 295 /* 'skb' is a frame meant for another host. 296 * 'port' is the outgoing interface 297 * 298 * Substitute the target (dest) MAC address if necessary, so the it matches the 299 * recipient interface MAC address, regardless of whether that is the 300 * recipient's A or B interface. 301 * This is needed to keep the packets flowing through switches that learn on 302 * which "side" the different interfaces are. 303 */ 304 void hsr_addr_subst_dest(struct hsr_node *node_src, struct sk_buff *skb, 305 struct hsr_port *port) 306 { 307 struct hsr_node *node_dst; 308 309 if (!skb_mac_header_was_set(skb)) { 310 WARN_ONCE(1, "%s: Mac header not set\n", __func__); 311 return; 312 } 313 314 if (!is_unicast_ether_addr(eth_hdr(skb)->h_dest)) 315 return; 316 317 node_dst = find_node_by_addr_A(&port->hsr->node_db, 318 eth_hdr(skb)->h_dest); 319 if (!node_dst) { 320 WARN_ONCE(1, "%s: Unknown node\n", __func__); 321 return; 322 } 323 if (port->type != node_dst->addr_B_port) 324 return; 325 326 ether_addr_copy(eth_hdr(skb)->h_dest, node_dst->macaddress_B); 327 } 328 329 void hsr_register_frame_in(struct hsr_node *node, struct hsr_port *port, 330 u16 sequence_nr) 331 { 332 /* Don't register incoming frames without a valid sequence number. This 333 * ensures entries of restarted nodes gets pruned so that they can 334 * re-register and resume communications. 335 */ 336 if (seq_nr_before(sequence_nr, node->seq_out[port->type])) 337 return; 338 339 node->time_in[port->type] = jiffies; 340 node->time_in_stale[port->type] = false; 341 } 342 343 /* 'skb' is a HSR Ethernet frame (with a HSR tag inserted), with a valid 344 * ethhdr->h_source address and skb->mac_header set. 345 * 346 * Return: 347 * 1 if frame can be shown to have been sent recently on this interface, 348 * 0 otherwise, or 349 * negative error code on error 350 */ 351 int hsr_register_frame_out(struct hsr_port *port, struct hsr_node *node, 352 u16 sequence_nr) 353 { 354 if (seq_nr_before_or_eq(sequence_nr, node->seq_out[port->type])) 355 return 1; 356 357 node->seq_out[port->type] = sequence_nr; 358 return 0; 359 } 360 361 static struct hsr_port *get_late_port(struct hsr_priv *hsr, 362 struct hsr_node *node) 363 { 364 if (node->time_in_stale[HSR_PT_SLAVE_A]) 365 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); 366 if (node->time_in_stale[HSR_PT_SLAVE_B]) 367 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); 368 369 if (time_after(node->time_in[HSR_PT_SLAVE_B], 370 node->time_in[HSR_PT_SLAVE_A] + 371 msecs_to_jiffies(MAX_SLAVE_DIFF))) 372 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); 373 if (time_after(node->time_in[HSR_PT_SLAVE_A], 374 node->time_in[HSR_PT_SLAVE_B] + 375 msecs_to_jiffies(MAX_SLAVE_DIFF))) 376 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); 377 378 return NULL; 379 } 380 381 /* Remove stale sequence_nr records. Called by timer every 382 * HSR_LIFE_CHECK_INTERVAL (two seconds or so). 383 */ 384 void hsr_prune_nodes(struct timer_list *t) 385 { 386 struct hsr_priv *hsr = from_timer(hsr, t, prune_timer); 387 struct hsr_node *node; 388 struct hsr_node *tmp; 389 struct hsr_port *port; 390 unsigned long timestamp; 391 unsigned long time_a, time_b; 392 393 spin_lock_bh(&hsr->list_lock); 394 list_for_each_entry_safe(node, tmp, &hsr->node_db, mac_list) { 395 /* Don't prune own node. Neither time_in[HSR_PT_SLAVE_A] 396 * nor time_in[HSR_PT_SLAVE_B], will ever be updated for 397 * the master port. Thus the master node will be repeatedly 398 * pruned leading to packet loss. 399 */ 400 if (hsr_addr_is_self(hsr, node->macaddress_A)) 401 continue; 402 403 /* Shorthand */ 404 time_a = node->time_in[HSR_PT_SLAVE_A]; 405 time_b = node->time_in[HSR_PT_SLAVE_B]; 406 407 /* Check for timestamps old enough to risk wrap-around */ 408 if (time_after(jiffies, time_a + MAX_JIFFY_OFFSET / 2)) 409 node->time_in_stale[HSR_PT_SLAVE_A] = true; 410 if (time_after(jiffies, time_b + MAX_JIFFY_OFFSET / 2)) 411 node->time_in_stale[HSR_PT_SLAVE_B] = true; 412 413 /* Get age of newest frame from node. 414 * At least one time_in is OK here; nodes get pruned long 415 * before both time_ins can get stale 416 */ 417 timestamp = time_a; 418 if (node->time_in_stale[HSR_PT_SLAVE_A] || 419 (!node->time_in_stale[HSR_PT_SLAVE_B] && 420 time_after(time_b, time_a))) 421 timestamp = time_b; 422 423 /* Warn of ring error only as long as we get frames at all */ 424 if (time_is_after_jiffies(timestamp + 425 msecs_to_jiffies(1.5 * MAX_SLAVE_DIFF))) { 426 rcu_read_lock(); 427 port = get_late_port(hsr, node); 428 if (port) 429 hsr_nl_ringerror(hsr, node->macaddress_A, port); 430 rcu_read_unlock(); 431 } 432 433 /* Prune old entries */ 434 if (time_is_before_jiffies(timestamp + 435 msecs_to_jiffies(HSR_NODE_FORGET_TIME))) { 436 hsr_nl_nodedown(hsr, node->macaddress_A); 437 list_del_rcu(&node->mac_list); 438 /* Note that we need to free this entry later: */ 439 kfree_rcu(node, rcu_head); 440 } 441 } 442 spin_unlock_bh(&hsr->list_lock); 443 444 /* Restart timer */ 445 mod_timer(&hsr->prune_timer, 446 jiffies + msecs_to_jiffies(PRUNE_PERIOD)); 447 } 448 449 void *hsr_get_next_node(struct hsr_priv *hsr, void *_pos, 450 unsigned char addr[ETH_ALEN]) 451 { 452 struct hsr_node *node; 453 454 if (!_pos) { 455 node = list_first_or_null_rcu(&hsr->node_db, 456 struct hsr_node, mac_list); 457 if (node) 458 ether_addr_copy(addr, node->macaddress_A); 459 return node; 460 } 461 462 node = _pos; 463 list_for_each_entry_continue_rcu(node, &hsr->node_db, mac_list) { 464 ether_addr_copy(addr, node->macaddress_A); 465 return node; 466 } 467 468 return NULL; 469 } 470 471 int hsr_get_node_data(struct hsr_priv *hsr, 472 const unsigned char *addr, 473 unsigned char addr_b[ETH_ALEN], 474 unsigned int *addr_b_ifindex, 475 int *if1_age, 476 u16 *if1_seq, 477 int *if2_age, 478 u16 *if2_seq) 479 { 480 struct hsr_node *node; 481 struct hsr_port *port; 482 unsigned long tdiff; 483 484 rcu_read_lock(); 485 node = find_node_by_addr_A(&hsr->node_db, addr); 486 if (!node) { 487 rcu_read_unlock(); 488 return -ENOENT; /* No such entry */ 489 } 490 491 ether_addr_copy(addr_b, node->macaddress_B); 492 493 tdiff = jiffies - node->time_in[HSR_PT_SLAVE_A]; 494 if (node->time_in_stale[HSR_PT_SLAVE_A]) 495 *if1_age = INT_MAX; 496 #if HZ <= MSEC_PER_SEC 497 else if (tdiff > msecs_to_jiffies(INT_MAX)) 498 *if1_age = INT_MAX; 499 #endif 500 else 501 *if1_age = jiffies_to_msecs(tdiff); 502 503 tdiff = jiffies - node->time_in[HSR_PT_SLAVE_B]; 504 if (node->time_in_stale[HSR_PT_SLAVE_B]) 505 *if2_age = INT_MAX; 506 #if HZ <= MSEC_PER_SEC 507 else if (tdiff > msecs_to_jiffies(INT_MAX)) 508 *if2_age = INT_MAX; 509 #endif 510 else 511 *if2_age = jiffies_to_msecs(tdiff); 512 513 /* Present sequence numbers as if they were incoming on interface */ 514 *if1_seq = node->seq_out[HSR_PT_SLAVE_B]; 515 *if2_seq = node->seq_out[HSR_PT_SLAVE_A]; 516 517 if (node->addr_B_port != HSR_PT_NONE) { 518 port = hsr_port_get_hsr(hsr, node->addr_B_port); 519 *addr_b_ifindex = port->dev->ifindex; 520 } else { 521 *addr_b_ifindex = -1; 522 } 523 524 rcu_read_unlock(); 525 526 return 0; 527 } 528