1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Ethernet-type device handling. 8 * 9 * Version: @(#)eth.c 1.0.7 05/25/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Mark Evans, <evansmp@uhura.aston.ac.uk> 14 * Florian La Roche, <rzsfl@rz.uni-sb.de> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * 17 * Fixes: 18 * Mr Linux : Arp problems 19 * Alan Cox : Generic queue tidyup (very tiny here) 20 * Alan Cox : eth_header ntohs should be htons 21 * Alan Cox : eth_rebuild_header missing an htons and 22 * minor other things. 23 * Tegge : Arp bug fixes. 24 * Florian : Removed many unnecessary functions, code cleanup 25 * and changes for new arp and skbuff. 26 * Alan Cox : Redid header building to reflect new format. 27 * Alan Cox : ARP only when compiled with CONFIG_INET 28 * Greg Page : 802.2 and SNAP stuff. 29 * Alan Cox : MAC layer pointers/new format. 30 * Paul Gortmaker : eth_copy_and_sum shouldn't csum padding. 31 * Alan Cox : Protect against forwarding explosions with 32 * older network drivers and IFF_ALLMULTI. 33 * Christer Weinigel : Better rebuild header message. 34 * Andrew Morton : 26Feb01: kill ether_setup() - use netdev_boot_setup(). 35 */ 36 #include <linux/module.h> 37 #include <linux/types.h> 38 #include <linux/kernel.h> 39 #include <linux/string.h> 40 #include <linux/mm.h> 41 #include <linux/socket.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/ip.h> 45 #include <linux/netdevice.h> 46 #include <linux/nvmem-consumer.h> 47 #include <linux/etherdevice.h> 48 #include <linux/skbuff.h> 49 #include <linux/errno.h> 50 #include <linux/init.h> 51 #include <linux/if_ether.h> 52 #include <linux/of_net.h> 53 #include <linux/pci.h> 54 #include <net/dst.h> 55 #include <net/arp.h> 56 #include <net/sock.h> 57 #include <net/ipv6.h> 58 #include <net/ip.h> 59 #include <net/dsa.h> 60 #include <net/flow_dissector.h> 61 #include <linux/uaccess.h> 62 #include <net/pkt_sched.h> 63 64 __setup("ether=", netdev_boot_setup); 65 66 /** 67 * eth_header - create the Ethernet header 68 * @skb: buffer to alter 69 * @dev: source device 70 * @type: Ethernet type field 71 * @daddr: destination address (NULL leave destination address) 72 * @saddr: source address (NULL use device source address) 73 * @len: packet length (<= skb->len) 74 * 75 * 76 * Set the protocol type. For a packet of type ETH_P_802_3/2 we put the length 77 * in here instead. 78 */ 79 int eth_header(struct sk_buff *skb, struct net_device *dev, 80 unsigned short type, 81 const void *daddr, const void *saddr, unsigned int len) 82 { 83 struct ethhdr *eth = skb_push(skb, ETH_HLEN); 84 85 if (type != ETH_P_802_3 && type != ETH_P_802_2) 86 eth->h_proto = htons(type); 87 else 88 eth->h_proto = htons(len); 89 90 /* 91 * Set the source hardware address. 92 */ 93 94 if (!saddr) 95 saddr = dev->dev_addr; 96 memcpy(eth->h_source, saddr, ETH_ALEN); 97 98 if (daddr) { 99 memcpy(eth->h_dest, daddr, ETH_ALEN); 100 return ETH_HLEN; 101 } 102 103 /* 104 * Anyway, the loopback-device should never use this function... 105 */ 106 107 if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) { 108 eth_zero_addr(eth->h_dest); 109 return ETH_HLEN; 110 } 111 112 return -ETH_HLEN; 113 } 114 EXPORT_SYMBOL(eth_header); 115 116 /** 117 * eth_get_headlen - determine the length of header for an ethernet frame 118 * @dev: pointer to network device 119 * @data: pointer to start of frame 120 * @len: total length of frame 121 * 122 * Make a best effort attempt to pull the length for all of the headers for 123 * a given frame in a linear buffer. 124 */ 125 u32 eth_get_headlen(const struct net_device *dev, const void *data, u32 len) 126 { 127 const unsigned int flags = FLOW_DISSECTOR_F_PARSE_1ST_FRAG; 128 const struct ethhdr *eth = (const struct ethhdr *)data; 129 struct flow_keys_basic keys; 130 131 /* this should never happen, but better safe than sorry */ 132 if (unlikely(len < sizeof(*eth))) 133 return len; 134 135 /* parse any remaining L2/L3 headers, check for L4 */ 136 if (!skb_flow_dissect_flow_keys_basic(dev_net(dev), NULL, &keys, data, 137 eth->h_proto, sizeof(*eth), 138 len, flags)) 139 return max_t(u32, keys.control.thoff, sizeof(*eth)); 140 141 /* parse for any L4 headers */ 142 return min_t(u32, __skb_get_poff(NULL, data, &keys, len), len); 143 } 144 EXPORT_SYMBOL(eth_get_headlen); 145 146 /** 147 * eth_type_trans - determine the packet's protocol ID. 148 * @skb: received socket data 149 * @dev: receiving network device 150 * 151 * The rule here is that we 152 * assume 802.3 if the type field is short enough to be a length. 153 * This is normal practice and works for any 'now in use' protocol. 154 */ 155 __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev) 156 { 157 unsigned short _service_access_point; 158 const unsigned short *sap; 159 const struct ethhdr *eth; 160 161 skb->dev = dev; 162 skb_reset_mac_header(skb); 163 164 eth = (struct ethhdr *)skb->data; 165 skb_pull_inline(skb, ETH_HLEN); 166 167 if (unlikely(!ether_addr_equal_64bits(eth->h_dest, 168 dev->dev_addr))) { 169 if (unlikely(is_multicast_ether_addr_64bits(eth->h_dest))) { 170 if (ether_addr_equal_64bits(eth->h_dest, dev->broadcast)) 171 skb->pkt_type = PACKET_BROADCAST; 172 else 173 skb->pkt_type = PACKET_MULTICAST; 174 } else { 175 skb->pkt_type = PACKET_OTHERHOST; 176 } 177 } 178 179 /* 180 * Some variants of DSA tagging don't have an ethertype field 181 * at all, so we check here whether one of those tagging 182 * variants has been configured on the receiving interface, 183 * and if so, set skb->protocol without looking at the packet. 184 * The DSA tagging protocol may be able to decode some but not all 185 * traffic (for example only for management). In that case give it the 186 * option to filter the packets from which it can decode source port 187 * information. 188 */ 189 if (unlikely(netdev_uses_dsa(dev)) && dsa_can_decode(skb, dev)) 190 return htons(ETH_P_XDSA); 191 192 if (likely(eth_proto_is_802_3(eth->h_proto))) 193 return eth->h_proto; 194 195 /* 196 * This is a magic hack to spot IPX packets. Older Novell breaks 197 * the protocol design and runs IPX over 802.3 without an 802.2 LLC 198 * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This 199 * won't work for fault tolerant netware but does for the rest. 200 */ 201 sap = skb_header_pointer(skb, 0, sizeof(*sap), &_service_access_point); 202 if (sap && *sap == 0xFFFF) 203 return htons(ETH_P_802_3); 204 205 /* 206 * Real 802.2 LLC 207 */ 208 return htons(ETH_P_802_2); 209 } 210 EXPORT_SYMBOL(eth_type_trans); 211 212 /** 213 * eth_header_parse - extract hardware address from packet 214 * @skb: packet to extract header from 215 * @haddr: destination buffer 216 */ 217 int eth_header_parse(const struct sk_buff *skb, unsigned char *haddr) 218 { 219 const struct ethhdr *eth = eth_hdr(skb); 220 memcpy(haddr, eth->h_source, ETH_ALEN); 221 return ETH_ALEN; 222 } 223 EXPORT_SYMBOL(eth_header_parse); 224 225 /** 226 * eth_header_cache - fill cache entry from neighbour 227 * @neigh: source neighbour 228 * @hh: destination cache entry 229 * @type: Ethernet type field 230 * 231 * Create an Ethernet header template from the neighbour. 232 */ 233 int eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type) 234 { 235 struct ethhdr *eth; 236 const struct net_device *dev = neigh->dev; 237 238 eth = (struct ethhdr *) 239 (((u8 *) hh->hh_data) + (HH_DATA_OFF(sizeof(*eth)))); 240 241 if (type == htons(ETH_P_802_3)) 242 return -1; 243 244 eth->h_proto = type; 245 memcpy(eth->h_source, dev->dev_addr, ETH_ALEN); 246 memcpy(eth->h_dest, neigh->ha, ETH_ALEN); 247 248 /* Pairs with READ_ONCE() in neigh_resolve_output(), 249 * neigh_hh_output() and neigh_update_hhs(). 250 */ 251 smp_store_release(&hh->hh_len, ETH_HLEN); 252 253 return 0; 254 } 255 EXPORT_SYMBOL(eth_header_cache); 256 257 /** 258 * eth_header_cache_update - update cache entry 259 * @hh: destination cache entry 260 * @dev: network device 261 * @haddr: new hardware address 262 * 263 * Called by Address Resolution module to notify changes in address. 264 */ 265 void eth_header_cache_update(struct hh_cache *hh, 266 const struct net_device *dev, 267 const unsigned char *haddr) 268 { 269 memcpy(((u8 *) hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)), 270 haddr, ETH_ALEN); 271 } 272 EXPORT_SYMBOL(eth_header_cache_update); 273 274 /** 275 * eth_header_parse_protocol - extract protocol from L2 header 276 * @skb: packet to extract protocol from 277 */ 278 __be16 eth_header_parse_protocol(const struct sk_buff *skb) 279 { 280 const struct ethhdr *eth = eth_hdr(skb); 281 282 return eth->h_proto; 283 } 284 EXPORT_SYMBOL(eth_header_parse_protocol); 285 286 /** 287 * eth_prepare_mac_addr_change - prepare for mac change 288 * @dev: network device 289 * @p: socket address 290 */ 291 int eth_prepare_mac_addr_change(struct net_device *dev, void *p) 292 { 293 struct sockaddr *addr = p; 294 295 if (!(dev->priv_flags & IFF_LIVE_ADDR_CHANGE) && netif_running(dev)) 296 return -EBUSY; 297 if (!is_valid_ether_addr(addr->sa_data)) 298 return -EADDRNOTAVAIL; 299 return 0; 300 } 301 EXPORT_SYMBOL(eth_prepare_mac_addr_change); 302 303 /** 304 * eth_commit_mac_addr_change - commit mac change 305 * @dev: network device 306 * @p: socket address 307 */ 308 void eth_commit_mac_addr_change(struct net_device *dev, void *p) 309 { 310 struct sockaddr *addr = p; 311 312 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 313 } 314 EXPORT_SYMBOL(eth_commit_mac_addr_change); 315 316 /** 317 * eth_mac_addr - set new Ethernet hardware address 318 * @dev: network device 319 * @p: socket address 320 * 321 * Change hardware address of device. 322 * 323 * This doesn't change hardware matching, so needs to be overridden 324 * for most real devices. 325 */ 326 int eth_mac_addr(struct net_device *dev, void *p) 327 { 328 int ret; 329 330 ret = eth_prepare_mac_addr_change(dev, p); 331 if (ret < 0) 332 return ret; 333 eth_commit_mac_addr_change(dev, p); 334 return 0; 335 } 336 EXPORT_SYMBOL(eth_mac_addr); 337 338 int eth_validate_addr(struct net_device *dev) 339 { 340 if (!is_valid_ether_addr(dev->dev_addr)) 341 return -EADDRNOTAVAIL; 342 343 return 0; 344 } 345 EXPORT_SYMBOL(eth_validate_addr); 346 347 const struct header_ops eth_header_ops ____cacheline_aligned = { 348 .create = eth_header, 349 .parse = eth_header_parse, 350 .cache = eth_header_cache, 351 .cache_update = eth_header_cache_update, 352 .parse_protocol = eth_header_parse_protocol, 353 }; 354 355 /** 356 * ether_setup - setup Ethernet network device 357 * @dev: network device 358 * 359 * Fill in the fields of the device structure with Ethernet-generic values. 360 */ 361 void ether_setup(struct net_device *dev) 362 { 363 dev->header_ops = ð_header_ops; 364 dev->type = ARPHRD_ETHER; 365 dev->hard_header_len = ETH_HLEN; 366 dev->min_header_len = ETH_HLEN; 367 dev->mtu = ETH_DATA_LEN; 368 dev->min_mtu = ETH_MIN_MTU; 369 dev->max_mtu = ETH_DATA_LEN; 370 dev->addr_len = ETH_ALEN; 371 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 372 dev->flags = IFF_BROADCAST|IFF_MULTICAST; 373 dev->priv_flags |= IFF_TX_SKB_SHARING; 374 375 eth_broadcast_addr(dev->broadcast); 376 377 } 378 EXPORT_SYMBOL(ether_setup); 379 380 /** 381 * alloc_etherdev_mqs - Allocates and sets up an Ethernet device 382 * @sizeof_priv: Size of additional driver-private structure to be allocated 383 * for this Ethernet device 384 * @txqs: The number of TX queues this device has. 385 * @rxqs: The number of RX queues this device has. 386 * 387 * Fill in the fields of the device structure with Ethernet-generic 388 * values. Basically does everything except registering the device. 389 * 390 * Constructs a new net device, complete with a private data area of 391 * size (sizeof_priv). A 32-byte (not bit) alignment is enforced for 392 * this private data area. 393 */ 394 395 struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs, 396 unsigned int rxqs) 397 { 398 return alloc_netdev_mqs(sizeof_priv, "eth%d", NET_NAME_UNKNOWN, 399 ether_setup, txqs, rxqs); 400 } 401 EXPORT_SYMBOL(alloc_etherdev_mqs); 402 403 ssize_t sysfs_format_mac(char *buf, const unsigned char *addr, int len) 404 { 405 return scnprintf(buf, PAGE_SIZE, "%*phC\n", len, addr); 406 } 407 EXPORT_SYMBOL(sysfs_format_mac); 408 409 struct sk_buff *eth_gro_receive(struct list_head *head, struct sk_buff *skb) 410 { 411 const struct packet_offload *ptype; 412 unsigned int hlen, off_eth; 413 struct sk_buff *pp = NULL; 414 struct ethhdr *eh, *eh2; 415 struct sk_buff *p; 416 __be16 type; 417 int flush = 1; 418 419 off_eth = skb_gro_offset(skb); 420 hlen = off_eth + sizeof(*eh); 421 eh = skb_gro_header_fast(skb, off_eth); 422 if (skb_gro_header_hard(skb, hlen)) { 423 eh = skb_gro_header_slow(skb, hlen, off_eth); 424 if (unlikely(!eh)) 425 goto out; 426 } 427 428 flush = 0; 429 430 list_for_each_entry(p, head, list) { 431 if (!NAPI_GRO_CB(p)->same_flow) 432 continue; 433 434 eh2 = (struct ethhdr *)(p->data + off_eth); 435 if (compare_ether_header(eh, eh2)) { 436 NAPI_GRO_CB(p)->same_flow = 0; 437 continue; 438 } 439 } 440 441 type = eh->h_proto; 442 443 rcu_read_lock(); 444 ptype = gro_find_receive_by_type(type); 445 if (ptype == NULL) { 446 flush = 1; 447 goto out_unlock; 448 } 449 450 skb_gro_pull(skb, sizeof(*eh)); 451 skb_gro_postpull_rcsum(skb, eh, sizeof(*eh)); 452 pp = call_gro_receive(ptype->callbacks.gro_receive, head, skb); 453 454 out_unlock: 455 rcu_read_unlock(); 456 out: 457 skb_gro_flush_final(skb, pp, flush); 458 459 return pp; 460 } 461 EXPORT_SYMBOL(eth_gro_receive); 462 463 int eth_gro_complete(struct sk_buff *skb, int nhoff) 464 { 465 struct ethhdr *eh = (struct ethhdr *)(skb->data + nhoff); 466 __be16 type = eh->h_proto; 467 struct packet_offload *ptype; 468 int err = -ENOSYS; 469 470 if (skb->encapsulation) 471 skb_set_inner_mac_header(skb, nhoff); 472 473 rcu_read_lock(); 474 ptype = gro_find_complete_by_type(type); 475 if (ptype != NULL) 476 err = ptype->callbacks.gro_complete(skb, nhoff + 477 sizeof(struct ethhdr)); 478 479 rcu_read_unlock(); 480 return err; 481 } 482 EXPORT_SYMBOL(eth_gro_complete); 483 484 static struct packet_offload eth_packet_offload __read_mostly = { 485 .type = cpu_to_be16(ETH_P_TEB), 486 .priority = 10, 487 .callbacks = { 488 .gro_receive = eth_gro_receive, 489 .gro_complete = eth_gro_complete, 490 }, 491 }; 492 493 static int __init eth_offload_init(void) 494 { 495 dev_add_offload(ð_packet_offload); 496 497 return 0; 498 } 499 500 fs_initcall(eth_offload_init); 501 502 unsigned char * __weak arch_get_platform_mac_address(void) 503 { 504 return NULL; 505 } 506 507 int eth_platform_get_mac_address(struct device *dev, u8 *mac_addr) 508 { 509 const unsigned char *addr = NULL; 510 511 if (dev->of_node) 512 addr = of_get_mac_address(dev->of_node); 513 if (IS_ERR_OR_NULL(addr)) 514 addr = arch_get_platform_mac_address(); 515 516 if (!addr) 517 return -ENODEV; 518 519 ether_addr_copy(mac_addr, addr); 520 521 return 0; 522 } 523 EXPORT_SYMBOL(eth_platform_get_mac_address); 524 525 /** 526 * nvmem_get_mac_address - Obtain the MAC address from an nvmem cell named 527 * 'mac-address' associated with given device. 528 * 529 * @dev: Device with which the mac-address cell is associated. 530 * @addrbuf: Buffer to which the MAC address will be copied on success. 531 * 532 * Returns 0 on success or a negative error number on failure. 533 */ 534 int nvmem_get_mac_address(struct device *dev, void *addrbuf) 535 { 536 struct nvmem_cell *cell; 537 const void *mac; 538 size_t len; 539 540 cell = nvmem_cell_get(dev, "mac-address"); 541 if (IS_ERR(cell)) 542 return PTR_ERR(cell); 543 544 mac = nvmem_cell_read(cell, &len); 545 nvmem_cell_put(cell); 546 547 if (IS_ERR(mac)) 548 return PTR_ERR(mac); 549 550 if (len != ETH_ALEN || !is_valid_ether_addr(mac)) { 551 kfree(mac); 552 return -EINVAL; 553 } 554 555 ether_addr_copy(addrbuf, mac); 556 kfree(mac); 557 558 return 0; 559 } 560 EXPORT_SYMBOL(nvmem_get_mac_address); 561