1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Ethernet-type device handling. 7 * 8 * Version: @(#)eth.c 1.0.7 05/25/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Florian La Roche, <rzsfl@rz.uni-sb.de> 14 * Alan Cox, <gw4pts@gw4pts.ampr.org> 15 * 16 * Fixes: 17 * Mr Linux : Arp problems 18 * Alan Cox : Generic queue tidyup (very tiny here) 19 * Alan Cox : eth_header ntohs should be htons 20 * Alan Cox : eth_rebuild_header missing an htons and 21 * minor other things. 22 * Tegge : Arp bug fixes. 23 * Florian : Removed many unnecessary functions, code cleanup 24 * and changes for new arp and skbuff. 25 * Alan Cox : Redid header building to reflect new format. 26 * Alan Cox : ARP only when compiled with CONFIG_INET 27 * Greg Page : 802.2 and SNAP stuff. 28 * Alan Cox : MAC layer pointers/new format. 29 * Paul Gortmaker : eth_copy_and_sum shouldn't csum padding. 30 * Alan Cox : Protect against forwarding explosions with 31 * older network drivers and IFF_ALLMULTI. 32 * Christer Weinigel : Better rebuild header message. 33 * Andrew Morton : 26Feb01: kill ether_setup() - use netdev_boot_setup(). 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #include <linux/module.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/string.h> 44 #include <linux/mm.h> 45 #include <linux/socket.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/ip.h> 49 #include <linux/netdevice.h> 50 #include <linux/etherdevice.h> 51 #include <linux/skbuff.h> 52 #include <linux/errno.h> 53 #include <linux/init.h> 54 #include <linux/if_ether.h> 55 #include <linux/of_net.h> 56 #include <linux/pci.h> 57 #include <net/dst.h> 58 #include <net/arp.h> 59 #include <net/sock.h> 60 #include <net/ipv6.h> 61 #include <net/ip.h> 62 #include <net/dsa.h> 63 #include <net/flow_dissector.h> 64 #include <linux/uaccess.h> 65 #include <net/pkt_sched.h> 66 67 __setup("ether=", netdev_boot_setup); 68 69 /** 70 * eth_header - create the Ethernet header 71 * @skb: buffer to alter 72 * @dev: source device 73 * @type: Ethernet type field 74 * @daddr: destination address (NULL leave destination address) 75 * @saddr: source address (NULL use device source address) 76 * @len: packet length (<= skb->len) 77 * 78 * 79 * Set the protocol type. For a packet of type ETH_P_802_3/2 we put the length 80 * in here instead. 81 */ 82 int eth_header(struct sk_buff *skb, struct net_device *dev, 83 unsigned short type, 84 const void *daddr, const void *saddr, unsigned int len) 85 { 86 struct ethhdr *eth = skb_push(skb, ETH_HLEN); 87 88 if (type != ETH_P_802_3 && type != ETH_P_802_2) 89 eth->h_proto = htons(type); 90 else 91 eth->h_proto = htons(len); 92 93 /* 94 * Set the source hardware address. 95 */ 96 97 if (!saddr) 98 saddr = dev->dev_addr; 99 memcpy(eth->h_source, saddr, ETH_ALEN); 100 101 if (daddr) { 102 memcpy(eth->h_dest, daddr, ETH_ALEN); 103 return ETH_HLEN; 104 } 105 106 /* 107 * Anyway, the loopback-device should never use this function... 108 */ 109 110 if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) { 111 eth_zero_addr(eth->h_dest); 112 return ETH_HLEN; 113 } 114 115 return -ETH_HLEN; 116 } 117 EXPORT_SYMBOL(eth_header); 118 119 /** 120 * eth_get_headlen - determine the length of header for an ethernet frame 121 * @data: pointer to start of frame 122 * @len: total length of frame 123 * 124 * Make a best effort attempt to pull the length for all of the headers for 125 * a given frame in a linear buffer. 126 */ 127 u32 eth_get_headlen(void *data, unsigned int len) 128 { 129 const unsigned int flags = FLOW_DISSECTOR_F_PARSE_1ST_FRAG; 130 const struct ethhdr *eth = (const struct ethhdr *)data; 131 struct flow_keys_basic keys; 132 133 /* this should never happen, but better safe than sorry */ 134 if (unlikely(len < sizeof(*eth))) 135 return len; 136 137 /* parse any remaining L2/L3 headers, check for L4 */ 138 if (!skb_flow_dissect_flow_keys_basic(NULL, &keys, data, eth->h_proto, 139 sizeof(*eth), len, flags)) 140 return max_t(u32, keys.control.thoff, sizeof(*eth)); 141 142 /* parse for any L4 headers */ 143 return min_t(u32, __skb_get_poff(NULL, data, &keys, len), len); 144 } 145 EXPORT_SYMBOL(eth_get_headlen); 146 147 /** 148 * eth_type_trans - determine the packet's protocol ID. 149 * @skb: received socket data 150 * @dev: receiving network device 151 * 152 * The rule here is that we 153 * assume 802.3 if the type field is short enough to be a length. 154 * This is normal practice and works for any 'now in use' protocol. 155 */ 156 __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev) 157 { 158 unsigned short _service_access_point; 159 const unsigned short *sap; 160 const struct ethhdr *eth; 161 162 skb->dev = dev; 163 skb_reset_mac_header(skb); 164 165 eth = (struct ethhdr *)skb->data; 166 skb_pull_inline(skb, ETH_HLEN); 167 168 if (unlikely(is_multicast_ether_addr_64bits(eth->h_dest))) { 169 if (ether_addr_equal_64bits(eth->h_dest, dev->broadcast)) 170 skb->pkt_type = PACKET_BROADCAST; 171 else 172 skb->pkt_type = PACKET_MULTICAST; 173 } 174 else if (unlikely(!ether_addr_equal_64bits(eth->h_dest, 175 dev->dev_addr))) 176 skb->pkt_type = PACKET_OTHERHOST; 177 178 /* 179 * Some variants of DSA tagging don't have an ethertype field 180 * at all, so we check here whether one of those tagging 181 * variants has been configured on the receiving interface, 182 * and if so, set skb->protocol without looking at the packet. 183 */ 184 if (unlikely(netdev_uses_dsa(dev))) 185 return htons(ETH_P_XDSA); 186 187 if (likely(eth_proto_is_802_3(eth->h_proto))) 188 return eth->h_proto; 189 190 /* 191 * This is a magic hack to spot IPX packets. Older Novell breaks 192 * the protocol design and runs IPX over 802.3 without an 802.2 LLC 193 * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This 194 * won't work for fault tolerant netware but does for the rest. 195 */ 196 sap = skb_header_pointer(skb, 0, sizeof(*sap), &_service_access_point); 197 if (sap && *sap == 0xFFFF) 198 return htons(ETH_P_802_3); 199 200 /* 201 * Real 802.2 LLC 202 */ 203 return htons(ETH_P_802_2); 204 } 205 EXPORT_SYMBOL(eth_type_trans); 206 207 /** 208 * eth_header_parse - extract hardware address from packet 209 * @skb: packet to extract header from 210 * @haddr: destination buffer 211 */ 212 int eth_header_parse(const struct sk_buff *skb, unsigned char *haddr) 213 { 214 const struct ethhdr *eth = eth_hdr(skb); 215 memcpy(haddr, eth->h_source, ETH_ALEN); 216 return ETH_ALEN; 217 } 218 EXPORT_SYMBOL(eth_header_parse); 219 220 /** 221 * eth_header_cache - fill cache entry from neighbour 222 * @neigh: source neighbour 223 * @hh: destination cache entry 224 * @type: Ethernet type field 225 * 226 * Create an Ethernet header template from the neighbour. 227 */ 228 int eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type) 229 { 230 struct ethhdr *eth; 231 const struct net_device *dev = neigh->dev; 232 233 eth = (struct ethhdr *) 234 (((u8 *) hh->hh_data) + (HH_DATA_OFF(sizeof(*eth)))); 235 236 if (type == htons(ETH_P_802_3)) 237 return -1; 238 239 eth->h_proto = type; 240 memcpy(eth->h_source, dev->dev_addr, ETH_ALEN); 241 memcpy(eth->h_dest, neigh->ha, ETH_ALEN); 242 hh->hh_len = ETH_HLEN; 243 return 0; 244 } 245 EXPORT_SYMBOL(eth_header_cache); 246 247 /** 248 * eth_header_cache_update - update cache entry 249 * @hh: destination cache entry 250 * @dev: network device 251 * @haddr: new hardware address 252 * 253 * Called by Address Resolution module to notify changes in address. 254 */ 255 void eth_header_cache_update(struct hh_cache *hh, 256 const struct net_device *dev, 257 const unsigned char *haddr) 258 { 259 memcpy(((u8 *) hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)), 260 haddr, ETH_ALEN); 261 } 262 EXPORT_SYMBOL(eth_header_cache_update); 263 264 /** 265 * eth_prepare_mac_addr_change - prepare for mac change 266 * @dev: network device 267 * @p: socket address 268 */ 269 int eth_prepare_mac_addr_change(struct net_device *dev, void *p) 270 { 271 struct sockaddr *addr = p; 272 273 if (!(dev->priv_flags & IFF_LIVE_ADDR_CHANGE) && netif_running(dev)) 274 return -EBUSY; 275 if (!is_valid_ether_addr(addr->sa_data)) 276 return -EADDRNOTAVAIL; 277 return 0; 278 } 279 EXPORT_SYMBOL(eth_prepare_mac_addr_change); 280 281 /** 282 * eth_commit_mac_addr_change - commit mac change 283 * @dev: network device 284 * @p: socket address 285 */ 286 void eth_commit_mac_addr_change(struct net_device *dev, void *p) 287 { 288 struct sockaddr *addr = p; 289 290 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 291 } 292 EXPORT_SYMBOL(eth_commit_mac_addr_change); 293 294 /** 295 * eth_mac_addr - set new Ethernet hardware address 296 * @dev: network device 297 * @p: socket address 298 * 299 * Change hardware address of device. 300 * 301 * This doesn't change hardware matching, so needs to be overridden 302 * for most real devices. 303 */ 304 int eth_mac_addr(struct net_device *dev, void *p) 305 { 306 int ret; 307 308 ret = eth_prepare_mac_addr_change(dev, p); 309 if (ret < 0) 310 return ret; 311 eth_commit_mac_addr_change(dev, p); 312 return 0; 313 } 314 EXPORT_SYMBOL(eth_mac_addr); 315 316 /** 317 * eth_change_mtu - set new MTU size 318 * @dev: network device 319 * @new_mtu: new Maximum Transfer Unit 320 * 321 * Allow changing MTU size. Needs to be overridden for devices 322 * supporting jumbo frames. 323 */ 324 int eth_change_mtu(struct net_device *dev, int new_mtu) 325 { 326 netdev_warn(dev, "%s is deprecated\n", __func__); 327 dev->mtu = new_mtu; 328 return 0; 329 } 330 EXPORT_SYMBOL(eth_change_mtu); 331 332 int eth_validate_addr(struct net_device *dev) 333 { 334 if (!is_valid_ether_addr(dev->dev_addr)) 335 return -EADDRNOTAVAIL; 336 337 return 0; 338 } 339 EXPORT_SYMBOL(eth_validate_addr); 340 341 const struct header_ops eth_header_ops ____cacheline_aligned = { 342 .create = eth_header, 343 .parse = eth_header_parse, 344 .cache = eth_header_cache, 345 .cache_update = eth_header_cache_update, 346 }; 347 348 /** 349 * ether_setup - setup Ethernet network device 350 * @dev: network device 351 * 352 * Fill in the fields of the device structure with Ethernet-generic values. 353 */ 354 void ether_setup(struct net_device *dev) 355 { 356 dev->header_ops = ð_header_ops; 357 dev->type = ARPHRD_ETHER; 358 dev->hard_header_len = ETH_HLEN; 359 dev->min_header_len = ETH_HLEN; 360 dev->mtu = ETH_DATA_LEN; 361 dev->min_mtu = ETH_MIN_MTU; 362 dev->max_mtu = ETH_DATA_LEN; 363 dev->addr_len = ETH_ALEN; 364 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 365 dev->flags = IFF_BROADCAST|IFF_MULTICAST; 366 dev->priv_flags |= IFF_TX_SKB_SHARING; 367 368 eth_broadcast_addr(dev->broadcast); 369 370 } 371 EXPORT_SYMBOL(ether_setup); 372 373 /** 374 * alloc_etherdev_mqs - Allocates and sets up an Ethernet device 375 * @sizeof_priv: Size of additional driver-private structure to be allocated 376 * for this Ethernet device 377 * @txqs: The number of TX queues this device has. 378 * @rxqs: The number of RX queues this device has. 379 * 380 * Fill in the fields of the device structure with Ethernet-generic 381 * values. Basically does everything except registering the device. 382 * 383 * Constructs a new net device, complete with a private data area of 384 * size (sizeof_priv). A 32-byte (not bit) alignment is enforced for 385 * this private data area. 386 */ 387 388 struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs, 389 unsigned int rxqs) 390 { 391 return alloc_netdev_mqs(sizeof_priv, "eth%d", NET_NAME_UNKNOWN, 392 ether_setup, txqs, rxqs); 393 } 394 EXPORT_SYMBOL(alloc_etherdev_mqs); 395 396 static void devm_free_netdev(struct device *dev, void *res) 397 { 398 free_netdev(*(struct net_device **)res); 399 } 400 401 struct net_device *devm_alloc_etherdev_mqs(struct device *dev, int sizeof_priv, 402 unsigned int txqs, unsigned int rxqs) 403 { 404 struct net_device **dr; 405 struct net_device *netdev; 406 407 dr = devres_alloc(devm_free_netdev, sizeof(*dr), GFP_KERNEL); 408 if (!dr) 409 return NULL; 410 411 netdev = alloc_etherdev_mqs(sizeof_priv, txqs, rxqs); 412 if (!netdev) { 413 devres_free(dr); 414 return NULL; 415 } 416 417 *dr = netdev; 418 devres_add(dev, dr); 419 420 return netdev; 421 } 422 EXPORT_SYMBOL(devm_alloc_etherdev_mqs); 423 424 ssize_t sysfs_format_mac(char *buf, const unsigned char *addr, int len) 425 { 426 return scnprintf(buf, PAGE_SIZE, "%*phC\n", len, addr); 427 } 428 EXPORT_SYMBOL(sysfs_format_mac); 429 430 struct sk_buff **eth_gro_receive(struct sk_buff **head, 431 struct sk_buff *skb) 432 { 433 struct sk_buff *p, **pp = NULL; 434 struct ethhdr *eh, *eh2; 435 unsigned int hlen, off_eth; 436 const struct packet_offload *ptype; 437 __be16 type; 438 int flush = 1; 439 440 off_eth = skb_gro_offset(skb); 441 hlen = off_eth + sizeof(*eh); 442 eh = skb_gro_header_fast(skb, off_eth); 443 if (skb_gro_header_hard(skb, hlen)) { 444 eh = skb_gro_header_slow(skb, hlen, off_eth); 445 if (unlikely(!eh)) 446 goto out; 447 } 448 449 flush = 0; 450 451 for (p = *head; p; p = p->next) { 452 if (!NAPI_GRO_CB(p)->same_flow) 453 continue; 454 455 eh2 = (struct ethhdr *)(p->data + off_eth); 456 if (compare_ether_header(eh, eh2)) { 457 NAPI_GRO_CB(p)->same_flow = 0; 458 continue; 459 } 460 } 461 462 type = eh->h_proto; 463 464 rcu_read_lock(); 465 ptype = gro_find_receive_by_type(type); 466 if (ptype == NULL) { 467 flush = 1; 468 goto out_unlock; 469 } 470 471 skb_gro_pull(skb, sizeof(*eh)); 472 skb_gro_postpull_rcsum(skb, eh, sizeof(*eh)); 473 pp = call_gro_receive(ptype->callbacks.gro_receive, head, skb); 474 475 out_unlock: 476 rcu_read_unlock(); 477 out: 478 skb_gro_flush_final(skb, pp, flush); 479 480 return pp; 481 } 482 EXPORT_SYMBOL(eth_gro_receive); 483 484 int eth_gro_complete(struct sk_buff *skb, int nhoff) 485 { 486 struct ethhdr *eh = (struct ethhdr *)(skb->data + nhoff); 487 __be16 type = eh->h_proto; 488 struct packet_offload *ptype; 489 int err = -ENOSYS; 490 491 if (skb->encapsulation) 492 skb_set_inner_mac_header(skb, nhoff); 493 494 rcu_read_lock(); 495 ptype = gro_find_complete_by_type(type); 496 if (ptype != NULL) 497 err = ptype->callbacks.gro_complete(skb, nhoff + 498 sizeof(struct ethhdr)); 499 500 rcu_read_unlock(); 501 return err; 502 } 503 EXPORT_SYMBOL(eth_gro_complete); 504 505 static struct packet_offload eth_packet_offload __read_mostly = { 506 .type = cpu_to_be16(ETH_P_TEB), 507 .priority = 10, 508 .callbacks = { 509 .gro_receive = eth_gro_receive, 510 .gro_complete = eth_gro_complete, 511 }, 512 }; 513 514 static int __init eth_offload_init(void) 515 { 516 dev_add_offload(ð_packet_offload); 517 518 return 0; 519 } 520 521 fs_initcall(eth_offload_init); 522 523 unsigned char * __weak arch_get_platform_mac_address(void) 524 { 525 return NULL; 526 } 527 528 int eth_platform_get_mac_address(struct device *dev, u8 *mac_addr) 529 { 530 const unsigned char *addr; 531 struct device_node *dp; 532 533 if (dev_is_pci(dev)) 534 dp = pci_device_to_OF_node(to_pci_dev(dev)); 535 else 536 dp = dev->of_node; 537 538 addr = NULL; 539 if (dp) 540 addr = of_get_mac_address(dp); 541 if (!addr) 542 addr = arch_get_platform_mac_address(); 543 544 if (!addr) 545 return -ENODEV; 546 547 ether_addr_copy(mac_addr, addr); 548 return 0; 549 } 550 EXPORT_SYMBOL(eth_platform_get_mac_address); 551