1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Ethernet-type device handling. 8 * 9 * Version: @(#)eth.c 1.0.7 05/25/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Mark Evans, <evansmp@uhura.aston.ac.uk> 14 * Florian La Roche, <rzsfl@rz.uni-sb.de> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * 17 * Fixes: 18 * Mr Linux : Arp problems 19 * Alan Cox : Generic queue tidyup (very tiny here) 20 * Alan Cox : eth_header ntohs should be htons 21 * Alan Cox : eth_rebuild_header missing an htons and 22 * minor other things. 23 * Tegge : Arp bug fixes. 24 * Florian : Removed many unnecessary functions, code cleanup 25 * and changes for new arp and skbuff. 26 * Alan Cox : Redid header building to reflect new format. 27 * Alan Cox : ARP only when compiled with CONFIG_INET 28 * Greg Page : 802.2 and SNAP stuff. 29 * Alan Cox : MAC layer pointers/new format. 30 * Paul Gortmaker : eth_copy_and_sum shouldn't csum padding. 31 * Alan Cox : Protect against forwarding explosions with 32 * older network drivers and IFF_ALLMULTI. 33 * Christer Weinigel : Better rebuild header message. 34 * Andrew Morton : 26Feb01: kill ether_setup() - use netdev_boot_setup(). 35 */ 36 #include <linux/module.h> 37 #include <linux/types.h> 38 #include <linux/kernel.h> 39 #include <linux/string.h> 40 #include <linux/mm.h> 41 #include <linux/socket.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/ip.h> 45 #include <linux/netdevice.h> 46 #include <linux/nvmem-consumer.h> 47 #include <linux/etherdevice.h> 48 #include <linux/skbuff.h> 49 #include <linux/errno.h> 50 #include <linux/init.h> 51 #include <linux/if_ether.h> 52 #include <linux/of_net.h> 53 #include <linux/pci.h> 54 #include <net/dst.h> 55 #include <net/arp.h> 56 #include <net/sock.h> 57 #include <net/ipv6.h> 58 #include <net/ip.h> 59 #include <net/dsa.h> 60 #include <net/flow_dissector.h> 61 #include <net/gro.h> 62 #include <linux/uaccess.h> 63 #include <net/pkt_sched.h> 64 65 /** 66 * eth_header - create the Ethernet header 67 * @skb: buffer to alter 68 * @dev: source device 69 * @type: Ethernet type field 70 * @daddr: destination address (NULL leave destination address) 71 * @saddr: source address (NULL use device source address) 72 * @len: packet length (<= skb->len) 73 * 74 * 75 * Set the protocol type. For a packet of type ETH_P_802_3/2 we put the length 76 * in here instead. 77 */ 78 int eth_header(struct sk_buff *skb, struct net_device *dev, 79 unsigned short type, 80 const void *daddr, const void *saddr, unsigned int len) 81 { 82 struct ethhdr *eth = skb_push(skb, ETH_HLEN); 83 84 if (type != ETH_P_802_3 && type != ETH_P_802_2) 85 eth->h_proto = htons(type); 86 else 87 eth->h_proto = htons(len); 88 89 /* 90 * Set the source hardware address. 91 */ 92 93 if (!saddr) 94 saddr = dev->dev_addr; 95 memcpy(eth->h_source, saddr, ETH_ALEN); 96 97 if (daddr) { 98 memcpy(eth->h_dest, daddr, ETH_ALEN); 99 return ETH_HLEN; 100 } 101 102 /* 103 * Anyway, the loopback-device should never use this function... 104 */ 105 106 if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) { 107 eth_zero_addr(eth->h_dest); 108 return ETH_HLEN; 109 } 110 111 return -ETH_HLEN; 112 } 113 EXPORT_SYMBOL(eth_header); 114 115 /** 116 * eth_get_headlen - determine the length of header for an ethernet frame 117 * @dev: pointer to network device 118 * @data: pointer to start of frame 119 * @len: total length of frame 120 * 121 * Make a best effort attempt to pull the length for all of the headers for 122 * a given frame in a linear buffer. 123 */ 124 u32 eth_get_headlen(const struct net_device *dev, const void *data, u32 len) 125 { 126 const unsigned int flags = FLOW_DISSECTOR_F_PARSE_1ST_FRAG; 127 const struct ethhdr *eth = (const struct ethhdr *)data; 128 struct flow_keys_basic keys; 129 130 /* this should never happen, but better safe than sorry */ 131 if (unlikely(len < sizeof(*eth))) 132 return len; 133 134 /* parse any remaining L2/L3 headers, check for L4 */ 135 if (!skb_flow_dissect_flow_keys_basic(dev_net(dev), NULL, &keys, data, 136 eth->h_proto, sizeof(*eth), 137 len, flags)) 138 return max_t(u32, keys.control.thoff, sizeof(*eth)); 139 140 /* parse for any L4 headers */ 141 return min_t(u32, __skb_get_poff(NULL, data, &keys, len), len); 142 } 143 EXPORT_SYMBOL(eth_get_headlen); 144 145 /** 146 * eth_type_trans - determine the packet's protocol ID. 147 * @skb: received socket data 148 * @dev: receiving network device 149 * 150 * The rule here is that we 151 * assume 802.3 if the type field is short enough to be a length. 152 * This is normal practice and works for any 'now in use' protocol. 153 */ 154 __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev) 155 { 156 unsigned short _service_access_point; 157 const unsigned short *sap; 158 const struct ethhdr *eth; 159 160 skb->dev = dev; 161 skb_reset_mac_header(skb); 162 163 eth = (struct ethhdr *)skb->data; 164 skb_pull_inline(skb, ETH_HLEN); 165 166 if (unlikely(!ether_addr_equal_64bits(eth->h_dest, 167 dev->dev_addr))) { 168 if (unlikely(is_multicast_ether_addr_64bits(eth->h_dest))) { 169 if (ether_addr_equal_64bits(eth->h_dest, dev->broadcast)) 170 skb->pkt_type = PACKET_BROADCAST; 171 else 172 skb->pkt_type = PACKET_MULTICAST; 173 } else { 174 skb->pkt_type = PACKET_OTHERHOST; 175 } 176 } 177 178 /* 179 * Some variants of DSA tagging don't have an ethertype field 180 * at all, so we check here whether one of those tagging 181 * variants has been configured on the receiving interface, 182 * and if so, set skb->protocol without looking at the packet. 183 */ 184 if (unlikely(netdev_uses_dsa(dev))) 185 return htons(ETH_P_XDSA); 186 187 if (likely(eth_proto_is_802_3(eth->h_proto))) 188 return eth->h_proto; 189 190 /* 191 * This is a magic hack to spot IPX packets. Older Novell breaks 192 * the protocol design and runs IPX over 802.3 without an 802.2 LLC 193 * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This 194 * won't work for fault tolerant netware but does for the rest. 195 */ 196 sap = skb_header_pointer(skb, 0, sizeof(*sap), &_service_access_point); 197 if (sap && *sap == 0xFFFF) 198 return htons(ETH_P_802_3); 199 200 /* 201 * Real 802.2 LLC 202 */ 203 return htons(ETH_P_802_2); 204 } 205 EXPORT_SYMBOL(eth_type_trans); 206 207 /** 208 * eth_header_parse - extract hardware address from packet 209 * @skb: packet to extract header from 210 * @haddr: destination buffer 211 */ 212 int eth_header_parse(const struct sk_buff *skb, unsigned char *haddr) 213 { 214 const struct ethhdr *eth = eth_hdr(skb); 215 memcpy(haddr, eth->h_source, ETH_ALEN); 216 return ETH_ALEN; 217 } 218 EXPORT_SYMBOL(eth_header_parse); 219 220 /** 221 * eth_header_cache - fill cache entry from neighbour 222 * @neigh: source neighbour 223 * @hh: destination cache entry 224 * @type: Ethernet type field 225 * 226 * Create an Ethernet header template from the neighbour. 227 */ 228 int eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type) 229 { 230 struct ethhdr *eth; 231 const struct net_device *dev = neigh->dev; 232 233 eth = (struct ethhdr *) 234 (((u8 *) hh->hh_data) + (HH_DATA_OFF(sizeof(*eth)))); 235 236 if (type == htons(ETH_P_802_3)) 237 return -1; 238 239 eth->h_proto = type; 240 memcpy(eth->h_source, dev->dev_addr, ETH_ALEN); 241 memcpy(eth->h_dest, neigh->ha, ETH_ALEN); 242 243 /* Pairs with READ_ONCE() in neigh_resolve_output(), 244 * neigh_hh_output() and neigh_update_hhs(). 245 */ 246 smp_store_release(&hh->hh_len, ETH_HLEN); 247 248 return 0; 249 } 250 EXPORT_SYMBOL(eth_header_cache); 251 252 /** 253 * eth_header_cache_update - update cache entry 254 * @hh: destination cache entry 255 * @dev: network device 256 * @haddr: new hardware address 257 * 258 * Called by Address Resolution module to notify changes in address. 259 */ 260 void eth_header_cache_update(struct hh_cache *hh, 261 const struct net_device *dev, 262 const unsigned char *haddr) 263 { 264 memcpy(((u8 *) hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)), 265 haddr, ETH_ALEN); 266 } 267 EXPORT_SYMBOL(eth_header_cache_update); 268 269 /** 270 * eth_header_parse_protocol - extract protocol from L2 header 271 * @skb: packet to extract protocol from 272 */ 273 __be16 eth_header_parse_protocol(const struct sk_buff *skb) 274 { 275 const struct ethhdr *eth = eth_hdr(skb); 276 277 return eth->h_proto; 278 } 279 EXPORT_SYMBOL(eth_header_parse_protocol); 280 281 /** 282 * eth_prepare_mac_addr_change - prepare for mac change 283 * @dev: network device 284 * @p: socket address 285 */ 286 int eth_prepare_mac_addr_change(struct net_device *dev, void *p) 287 { 288 struct sockaddr *addr = p; 289 290 if (!(dev->priv_flags & IFF_LIVE_ADDR_CHANGE) && netif_running(dev)) 291 return -EBUSY; 292 if (!is_valid_ether_addr(addr->sa_data)) 293 return -EADDRNOTAVAIL; 294 return 0; 295 } 296 EXPORT_SYMBOL(eth_prepare_mac_addr_change); 297 298 /** 299 * eth_commit_mac_addr_change - commit mac change 300 * @dev: network device 301 * @p: socket address 302 */ 303 void eth_commit_mac_addr_change(struct net_device *dev, void *p) 304 { 305 struct sockaddr *addr = p; 306 307 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 308 } 309 EXPORT_SYMBOL(eth_commit_mac_addr_change); 310 311 /** 312 * eth_mac_addr - set new Ethernet hardware address 313 * @dev: network device 314 * @p: socket address 315 * 316 * Change hardware address of device. 317 * 318 * This doesn't change hardware matching, so needs to be overridden 319 * for most real devices. 320 */ 321 int eth_mac_addr(struct net_device *dev, void *p) 322 { 323 int ret; 324 325 ret = eth_prepare_mac_addr_change(dev, p); 326 if (ret < 0) 327 return ret; 328 eth_commit_mac_addr_change(dev, p); 329 return 0; 330 } 331 EXPORT_SYMBOL(eth_mac_addr); 332 333 int eth_validate_addr(struct net_device *dev) 334 { 335 if (!is_valid_ether_addr(dev->dev_addr)) 336 return -EADDRNOTAVAIL; 337 338 return 0; 339 } 340 EXPORT_SYMBOL(eth_validate_addr); 341 342 const struct header_ops eth_header_ops ____cacheline_aligned = { 343 .create = eth_header, 344 .parse = eth_header_parse, 345 .cache = eth_header_cache, 346 .cache_update = eth_header_cache_update, 347 .parse_protocol = eth_header_parse_protocol, 348 }; 349 350 /** 351 * ether_setup - setup Ethernet network device 352 * @dev: network device 353 * 354 * Fill in the fields of the device structure with Ethernet-generic values. 355 */ 356 void ether_setup(struct net_device *dev) 357 { 358 dev->header_ops = ð_header_ops; 359 dev->type = ARPHRD_ETHER; 360 dev->hard_header_len = ETH_HLEN; 361 dev->min_header_len = ETH_HLEN; 362 dev->mtu = ETH_DATA_LEN; 363 dev->min_mtu = ETH_MIN_MTU; 364 dev->max_mtu = ETH_DATA_LEN; 365 dev->addr_len = ETH_ALEN; 366 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 367 dev->flags = IFF_BROADCAST|IFF_MULTICAST; 368 dev->priv_flags |= IFF_TX_SKB_SHARING; 369 370 eth_broadcast_addr(dev->broadcast); 371 372 } 373 EXPORT_SYMBOL(ether_setup); 374 375 /** 376 * alloc_etherdev_mqs - Allocates and sets up an Ethernet device 377 * @sizeof_priv: Size of additional driver-private structure to be allocated 378 * for this Ethernet device 379 * @txqs: The number of TX queues this device has. 380 * @rxqs: The number of RX queues this device has. 381 * 382 * Fill in the fields of the device structure with Ethernet-generic 383 * values. Basically does everything except registering the device. 384 * 385 * Constructs a new net device, complete with a private data area of 386 * size (sizeof_priv). A 32-byte (not bit) alignment is enforced for 387 * this private data area. 388 */ 389 390 struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs, 391 unsigned int rxqs) 392 { 393 return alloc_netdev_mqs(sizeof_priv, "eth%d", NET_NAME_UNKNOWN, 394 ether_setup, txqs, rxqs); 395 } 396 EXPORT_SYMBOL(alloc_etherdev_mqs); 397 398 ssize_t sysfs_format_mac(char *buf, const unsigned char *addr, int len) 399 { 400 return scnprintf(buf, PAGE_SIZE, "%*phC\n", len, addr); 401 } 402 EXPORT_SYMBOL(sysfs_format_mac); 403 404 struct sk_buff *eth_gro_receive(struct list_head *head, struct sk_buff *skb) 405 { 406 const struct packet_offload *ptype; 407 unsigned int hlen, off_eth; 408 struct sk_buff *pp = NULL; 409 struct ethhdr *eh, *eh2; 410 struct sk_buff *p; 411 __be16 type; 412 int flush = 1; 413 414 off_eth = skb_gro_offset(skb); 415 hlen = off_eth + sizeof(*eh); 416 eh = skb_gro_header_fast(skb, off_eth); 417 if (skb_gro_header_hard(skb, hlen)) { 418 eh = skb_gro_header_slow(skb, hlen, off_eth); 419 if (unlikely(!eh)) 420 goto out; 421 } 422 423 flush = 0; 424 425 list_for_each_entry(p, head, list) { 426 if (!NAPI_GRO_CB(p)->same_flow) 427 continue; 428 429 eh2 = (struct ethhdr *)(p->data + off_eth); 430 if (compare_ether_header(eh, eh2)) { 431 NAPI_GRO_CB(p)->same_flow = 0; 432 continue; 433 } 434 } 435 436 type = eh->h_proto; 437 438 rcu_read_lock(); 439 ptype = gro_find_receive_by_type(type); 440 if (ptype == NULL) { 441 flush = 1; 442 goto out_unlock; 443 } 444 445 skb_gro_pull(skb, sizeof(*eh)); 446 skb_gro_postpull_rcsum(skb, eh, sizeof(*eh)); 447 448 pp = indirect_call_gro_receive_inet(ptype->callbacks.gro_receive, 449 ipv6_gro_receive, inet_gro_receive, 450 head, skb); 451 452 out_unlock: 453 rcu_read_unlock(); 454 out: 455 skb_gro_flush_final(skb, pp, flush); 456 457 return pp; 458 } 459 EXPORT_SYMBOL(eth_gro_receive); 460 461 int eth_gro_complete(struct sk_buff *skb, int nhoff) 462 { 463 struct ethhdr *eh = (struct ethhdr *)(skb->data + nhoff); 464 __be16 type = eh->h_proto; 465 struct packet_offload *ptype; 466 int err = -ENOSYS; 467 468 if (skb->encapsulation) 469 skb_set_inner_mac_header(skb, nhoff); 470 471 rcu_read_lock(); 472 ptype = gro_find_complete_by_type(type); 473 if (ptype != NULL) 474 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 475 ipv6_gro_complete, inet_gro_complete, 476 skb, nhoff + sizeof(*eh)); 477 478 rcu_read_unlock(); 479 return err; 480 } 481 EXPORT_SYMBOL(eth_gro_complete); 482 483 static struct packet_offload eth_packet_offload __read_mostly = { 484 .type = cpu_to_be16(ETH_P_TEB), 485 .priority = 10, 486 .callbacks = { 487 .gro_receive = eth_gro_receive, 488 .gro_complete = eth_gro_complete, 489 }, 490 }; 491 492 static int __init eth_offload_init(void) 493 { 494 dev_add_offload(ð_packet_offload); 495 496 return 0; 497 } 498 499 fs_initcall(eth_offload_init); 500 501 unsigned char * __weak arch_get_platform_mac_address(void) 502 { 503 return NULL; 504 } 505 506 int eth_platform_get_mac_address(struct device *dev, u8 *mac_addr) 507 { 508 unsigned char *addr; 509 int ret; 510 511 ret = of_get_mac_address(dev->of_node, mac_addr); 512 if (!ret) 513 return 0; 514 515 addr = arch_get_platform_mac_address(); 516 if (!addr) 517 return -ENODEV; 518 519 ether_addr_copy(mac_addr, addr); 520 521 return 0; 522 } 523 EXPORT_SYMBOL(eth_platform_get_mac_address); 524 525 /** 526 * nvmem_get_mac_address - Obtain the MAC address from an nvmem cell named 527 * 'mac-address' associated with given device. 528 * 529 * @dev: Device with which the mac-address cell is associated. 530 * @addrbuf: Buffer to which the MAC address will be copied on success. 531 * 532 * Returns 0 on success or a negative error number on failure. 533 */ 534 int nvmem_get_mac_address(struct device *dev, void *addrbuf) 535 { 536 struct nvmem_cell *cell; 537 const void *mac; 538 size_t len; 539 540 cell = nvmem_cell_get(dev, "mac-address"); 541 if (IS_ERR(cell)) 542 return PTR_ERR(cell); 543 544 mac = nvmem_cell_read(cell, &len); 545 nvmem_cell_put(cell); 546 547 if (IS_ERR(mac)) 548 return PTR_ERR(mac); 549 550 if (len != ETH_ALEN || !is_valid_ether_addr(mac)) { 551 kfree(mac); 552 return -EINVAL; 553 } 554 555 ether_addr_copy(addrbuf, mac); 556 kfree(mac); 557 558 return 0; 559 } 560 EXPORT_SYMBOL(nvmem_get_mac_address); 561