1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * DSA topology and switch handling 4 * 5 * Copyright (c) 2008-2009 Marvell Semiconductor 6 * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org> 7 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch> 8 */ 9 10 #include <linux/device.h> 11 #include <linux/err.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/netdevice.h> 15 #include <linux/slab.h> 16 #include <linux/rtnetlink.h> 17 #include <linux/of.h> 18 #include <linux/of_mdio.h> 19 #include <linux/of_net.h> 20 #include <net/sch_generic.h> 21 22 #include "devlink.h" 23 #include "dsa.h" 24 #include "master.h" 25 #include "netlink.h" 26 #include "port.h" 27 #include "slave.h" 28 #include "switch.h" 29 #include "tag.h" 30 31 #define DSA_MAX_NUM_OFFLOADING_BRIDGES BITS_PER_LONG 32 33 static DEFINE_MUTEX(dsa2_mutex); 34 LIST_HEAD(dsa_tree_list); 35 36 static struct workqueue_struct *dsa_owq; 37 38 /* Track the bridges with forwarding offload enabled */ 39 static unsigned long dsa_fwd_offloading_bridges; 40 41 bool dsa_schedule_work(struct work_struct *work) 42 { 43 return queue_work(dsa_owq, work); 44 } 45 46 void dsa_flush_workqueue(void) 47 { 48 flush_workqueue(dsa_owq); 49 } 50 EXPORT_SYMBOL_GPL(dsa_flush_workqueue); 51 52 /** 53 * dsa_lag_map() - Map LAG structure to a linear LAG array 54 * @dst: Tree in which to record the mapping. 55 * @lag: LAG structure that is to be mapped to the tree's array. 56 * 57 * dsa_lag_id/dsa_lag_by_id can then be used to translate between the 58 * two spaces. The size of the mapping space is determined by the 59 * driver by setting ds->num_lag_ids. It is perfectly legal to leave 60 * it unset if it is not needed, in which case these functions become 61 * no-ops. 62 */ 63 void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag) 64 { 65 unsigned int id; 66 67 for (id = 1; id <= dst->lags_len; id++) { 68 if (!dsa_lag_by_id(dst, id)) { 69 dst->lags[id - 1] = lag; 70 lag->id = id; 71 return; 72 } 73 } 74 75 /* No IDs left, which is OK. Some drivers do not need it. The 76 * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id 77 * returns an error for this device when joining the LAG. The 78 * driver can then return -EOPNOTSUPP back to DSA, which will 79 * fall back to a software LAG. 80 */ 81 } 82 83 /** 84 * dsa_lag_unmap() - Remove a LAG ID mapping 85 * @dst: Tree in which the mapping is recorded. 86 * @lag: LAG structure that was mapped. 87 * 88 * As there may be multiple users of the mapping, it is only removed 89 * if there are no other references to it. 90 */ 91 void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag) 92 { 93 unsigned int id; 94 95 dsa_lags_foreach_id(id, dst) { 96 if (dsa_lag_by_id(dst, id) == lag) { 97 dst->lags[id - 1] = NULL; 98 lag->id = 0; 99 break; 100 } 101 } 102 } 103 104 struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst, 105 const struct net_device *lag_dev) 106 { 107 struct dsa_port *dp; 108 109 list_for_each_entry(dp, &dst->ports, list) 110 if (dsa_port_lag_dev_get(dp) == lag_dev) 111 return dp->lag; 112 113 return NULL; 114 } 115 116 struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst, 117 const struct net_device *br) 118 { 119 struct dsa_port *dp; 120 121 list_for_each_entry(dp, &dst->ports, list) 122 if (dsa_port_bridge_dev_get(dp) == br) 123 return dp->bridge; 124 125 return NULL; 126 } 127 128 static int dsa_bridge_num_find(const struct net_device *bridge_dev) 129 { 130 struct dsa_switch_tree *dst; 131 132 list_for_each_entry(dst, &dsa_tree_list, list) { 133 struct dsa_bridge *bridge; 134 135 bridge = dsa_tree_bridge_find(dst, bridge_dev); 136 if (bridge) 137 return bridge->num; 138 } 139 140 return 0; 141 } 142 143 unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max) 144 { 145 unsigned int bridge_num = dsa_bridge_num_find(bridge_dev); 146 147 /* Switches without FDB isolation support don't get unique 148 * bridge numbering 149 */ 150 if (!max) 151 return 0; 152 153 if (!bridge_num) { 154 /* First port that requests FDB isolation or TX forwarding 155 * offload for this bridge 156 */ 157 bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges, 158 DSA_MAX_NUM_OFFLOADING_BRIDGES, 159 1); 160 if (bridge_num >= max) 161 return 0; 162 163 set_bit(bridge_num, &dsa_fwd_offloading_bridges); 164 } 165 166 return bridge_num; 167 } 168 169 void dsa_bridge_num_put(const struct net_device *bridge_dev, 170 unsigned int bridge_num) 171 { 172 /* Since we refcount bridges, we know that when we call this function 173 * it is no longer in use, so we can just go ahead and remove it from 174 * the bit mask. 175 */ 176 clear_bit(bridge_num, &dsa_fwd_offloading_bridges); 177 } 178 179 struct dsa_switch *dsa_switch_find(int tree_index, int sw_index) 180 { 181 struct dsa_switch_tree *dst; 182 struct dsa_port *dp; 183 184 list_for_each_entry(dst, &dsa_tree_list, list) { 185 if (dst->index != tree_index) 186 continue; 187 188 list_for_each_entry(dp, &dst->ports, list) { 189 if (dp->ds->index != sw_index) 190 continue; 191 192 return dp->ds; 193 } 194 } 195 196 return NULL; 197 } 198 EXPORT_SYMBOL_GPL(dsa_switch_find); 199 200 static struct dsa_switch_tree *dsa_tree_find(int index) 201 { 202 struct dsa_switch_tree *dst; 203 204 list_for_each_entry(dst, &dsa_tree_list, list) 205 if (dst->index == index) 206 return dst; 207 208 return NULL; 209 } 210 211 static struct dsa_switch_tree *dsa_tree_alloc(int index) 212 { 213 struct dsa_switch_tree *dst; 214 215 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 216 if (!dst) 217 return NULL; 218 219 dst->index = index; 220 221 INIT_LIST_HEAD(&dst->rtable); 222 223 INIT_LIST_HEAD(&dst->ports); 224 225 INIT_LIST_HEAD(&dst->list); 226 list_add_tail(&dst->list, &dsa_tree_list); 227 228 kref_init(&dst->refcount); 229 230 return dst; 231 } 232 233 static void dsa_tree_free(struct dsa_switch_tree *dst) 234 { 235 if (dst->tag_ops) 236 dsa_tag_driver_put(dst->tag_ops); 237 list_del(&dst->list); 238 kfree(dst); 239 } 240 241 static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst) 242 { 243 if (dst) 244 kref_get(&dst->refcount); 245 246 return dst; 247 } 248 249 static struct dsa_switch_tree *dsa_tree_touch(int index) 250 { 251 struct dsa_switch_tree *dst; 252 253 dst = dsa_tree_find(index); 254 if (dst) 255 return dsa_tree_get(dst); 256 else 257 return dsa_tree_alloc(index); 258 } 259 260 static void dsa_tree_release(struct kref *ref) 261 { 262 struct dsa_switch_tree *dst; 263 264 dst = container_of(ref, struct dsa_switch_tree, refcount); 265 266 dsa_tree_free(dst); 267 } 268 269 static void dsa_tree_put(struct dsa_switch_tree *dst) 270 { 271 if (dst) 272 kref_put(&dst->refcount, dsa_tree_release); 273 } 274 275 static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst, 276 struct device_node *dn) 277 { 278 struct dsa_port *dp; 279 280 list_for_each_entry(dp, &dst->ports, list) 281 if (dp->dn == dn) 282 return dp; 283 284 return NULL; 285 } 286 287 static struct dsa_link *dsa_link_touch(struct dsa_port *dp, 288 struct dsa_port *link_dp) 289 { 290 struct dsa_switch *ds = dp->ds; 291 struct dsa_switch_tree *dst; 292 struct dsa_link *dl; 293 294 dst = ds->dst; 295 296 list_for_each_entry(dl, &dst->rtable, list) 297 if (dl->dp == dp && dl->link_dp == link_dp) 298 return dl; 299 300 dl = kzalloc(sizeof(*dl), GFP_KERNEL); 301 if (!dl) 302 return NULL; 303 304 dl->dp = dp; 305 dl->link_dp = link_dp; 306 307 INIT_LIST_HEAD(&dl->list); 308 list_add_tail(&dl->list, &dst->rtable); 309 310 return dl; 311 } 312 313 static bool dsa_port_setup_routing_table(struct dsa_port *dp) 314 { 315 struct dsa_switch *ds = dp->ds; 316 struct dsa_switch_tree *dst = ds->dst; 317 struct device_node *dn = dp->dn; 318 struct of_phandle_iterator it; 319 struct dsa_port *link_dp; 320 struct dsa_link *dl; 321 int err; 322 323 of_for_each_phandle(&it, err, dn, "link", NULL, 0) { 324 link_dp = dsa_tree_find_port_by_node(dst, it.node); 325 if (!link_dp) { 326 of_node_put(it.node); 327 return false; 328 } 329 330 dl = dsa_link_touch(dp, link_dp); 331 if (!dl) { 332 of_node_put(it.node); 333 return false; 334 } 335 } 336 337 return true; 338 } 339 340 static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst) 341 { 342 bool complete = true; 343 struct dsa_port *dp; 344 345 list_for_each_entry(dp, &dst->ports, list) { 346 if (dsa_port_is_dsa(dp)) { 347 complete = dsa_port_setup_routing_table(dp); 348 if (!complete) 349 break; 350 } 351 } 352 353 return complete; 354 } 355 356 static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst) 357 { 358 struct dsa_port *dp; 359 360 list_for_each_entry(dp, &dst->ports, list) 361 if (dsa_port_is_cpu(dp)) 362 return dp; 363 364 return NULL; 365 } 366 367 struct net_device *dsa_tree_find_first_master(struct dsa_switch_tree *dst) 368 { 369 struct device_node *ethernet; 370 struct net_device *master; 371 struct dsa_port *cpu_dp; 372 373 cpu_dp = dsa_tree_find_first_cpu(dst); 374 ethernet = of_parse_phandle(cpu_dp->dn, "ethernet", 0); 375 master = of_find_net_device_by_node(ethernet); 376 of_node_put(ethernet); 377 378 return master; 379 } 380 381 /* Assign the default CPU port (the first one in the tree) to all ports of the 382 * fabric which don't already have one as part of their own switch. 383 */ 384 static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst) 385 { 386 struct dsa_port *cpu_dp, *dp; 387 388 cpu_dp = dsa_tree_find_first_cpu(dst); 389 if (!cpu_dp) { 390 pr_err("DSA: tree %d has no CPU port\n", dst->index); 391 return -EINVAL; 392 } 393 394 list_for_each_entry(dp, &dst->ports, list) { 395 if (dp->cpu_dp) 396 continue; 397 398 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp)) 399 dp->cpu_dp = cpu_dp; 400 } 401 402 return 0; 403 } 404 405 /* Perform initial assignment of CPU ports to user ports and DSA links in the 406 * fabric, giving preference to CPU ports local to each switch. Default to 407 * using the first CPU port in the switch tree if the port does not have a CPU 408 * port local to this switch. 409 */ 410 static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst) 411 { 412 struct dsa_port *cpu_dp, *dp; 413 414 list_for_each_entry(cpu_dp, &dst->ports, list) { 415 if (!dsa_port_is_cpu(cpu_dp)) 416 continue; 417 418 /* Prefer a local CPU port */ 419 dsa_switch_for_each_port(dp, cpu_dp->ds) { 420 /* Prefer the first local CPU port found */ 421 if (dp->cpu_dp) 422 continue; 423 424 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp)) 425 dp->cpu_dp = cpu_dp; 426 } 427 } 428 429 return dsa_tree_setup_default_cpu(dst); 430 } 431 432 static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst) 433 { 434 struct dsa_port *dp; 435 436 list_for_each_entry(dp, &dst->ports, list) 437 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp)) 438 dp->cpu_dp = NULL; 439 } 440 441 static int dsa_port_setup(struct dsa_port *dp) 442 { 443 bool dsa_port_link_registered = false; 444 struct dsa_switch *ds = dp->ds; 445 bool dsa_port_enabled = false; 446 int err = 0; 447 448 if (dp->setup) 449 return 0; 450 451 err = dsa_port_devlink_setup(dp); 452 if (err) 453 return err; 454 455 switch (dp->type) { 456 case DSA_PORT_TYPE_UNUSED: 457 dsa_port_disable(dp); 458 break; 459 case DSA_PORT_TYPE_CPU: 460 if (dp->dn) { 461 err = dsa_shared_port_link_register_of(dp); 462 if (err) 463 break; 464 dsa_port_link_registered = true; 465 } else { 466 dev_warn(ds->dev, 467 "skipping link registration for CPU port %d\n", 468 dp->index); 469 } 470 471 err = dsa_port_enable(dp, NULL); 472 if (err) 473 break; 474 dsa_port_enabled = true; 475 476 break; 477 case DSA_PORT_TYPE_DSA: 478 if (dp->dn) { 479 err = dsa_shared_port_link_register_of(dp); 480 if (err) 481 break; 482 dsa_port_link_registered = true; 483 } else { 484 dev_warn(ds->dev, 485 "skipping link registration for DSA port %d\n", 486 dp->index); 487 } 488 489 err = dsa_port_enable(dp, NULL); 490 if (err) 491 break; 492 dsa_port_enabled = true; 493 494 break; 495 case DSA_PORT_TYPE_USER: 496 of_get_mac_address(dp->dn, dp->mac); 497 err = dsa_slave_create(dp); 498 break; 499 } 500 501 if (err && dsa_port_enabled) 502 dsa_port_disable(dp); 503 if (err && dsa_port_link_registered) 504 dsa_shared_port_link_unregister_of(dp); 505 if (err) { 506 dsa_port_devlink_teardown(dp); 507 return err; 508 } 509 510 dp->setup = true; 511 512 return 0; 513 } 514 515 static void dsa_port_teardown(struct dsa_port *dp) 516 { 517 if (!dp->setup) 518 return; 519 520 switch (dp->type) { 521 case DSA_PORT_TYPE_UNUSED: 522 break; 523 case DSA_PORT_TYPE_CPU: 524 dsa_port_disable(dp); 525 if (dp->dn) 526 dsa_shared_port_link_unregister_of(dp); 527 break; 528 case DSA_PORT_TYPE_DSA: 529 dsa_port_disable(dp); 530 if (dp->dn) 531 dsa_shared_port_link_unregister_of(dp); 532 break; 533 case DSA_PORT_TYPE_USER: 534 if (dp->slave) { 535 dsa_slave_destroy(dp->slave); 536 dp->slave = NULL; 537 } 538 break; 539 } 540 541 dsa_port_devlink_teardown(dp); 542 543 dp->setup = false; 544 } 545 546 static int dsa_port_setup_as_unused(struct dsa_port *dp) 547 { 548 dp->type = DSA_PORT_TYPE_UNUSED; 549 return dsa_port_setup(dp); 550 } 551 552 static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds) 553 { 554 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops; 555 struct dsa_switch_tree *dst = ds->dst; 556 int err; 557 558 if (tag_ops->proto == dst->default_proto) 559 goto connect; 560 561 rtnl_lock(); 562 err = ds->ops->change_tag_protocol(ds, tag_ops->proto); 563 rtnl_unlock(); 564 if (err) { 565 dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n", 566 tag_ops->name, ERR_PTR(err)); 567 return err; 568 } 569 570 connect: 571 if (tag_ops->connect) { 572 err = tag_ops->connect(ds); 573 if (err) 574 return err; 575 } 576 577 if (ds->ops->connect_tag_protocol) { 578 err = ds->ops->connect_tag_protocol(ds, tag_ops->proto); 579 if (err) { 580 dev_err(ds->dev, 581 "Unable to connect to tag protocol \"%s\": %pe\n", 582 tag_ops->name, ERR_PTR(err)); 583 goto disconnect; 584 } 585 } 586 587 return 0; 588 589 disconnect: 590 if (tag_ops->disconnect) 591 tag_ops->disconnect(ds); 592 593 return err; 594 } 595 596 static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds) 597 { 598 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops; 599 600 if (tag_ops->disconnect) 601 tag_ops->disconnect(ds); 602 } 603 604 static int dsa_switch_setup(struct dsa_switch *ds) 605 { 606 struct device_node *dn; 607 int err; 608 609 if (ds->setup) 610 return 0; 611 612 /* Initialize ds->phys_mii_mask before registering the slave MDIO bus 613 * driver and before ops->setup() has run, since the switch drivers and 614 * the slave MDIO bus driver rely on these values for probing PHY 615 * devices or not 616 */ 617 ds->phys_mii_mask |= dsa_user_ports(ds); 618 619 err = dsa_switch_devlink_alloc(ds); 620 if (err) 621 return err; 622 623 err = dsa_switch_register_notifier(ds); 624 if (err) 625 goto devlink_free; 626 627 ds->configure_vlan_while_not_filtering = true; 628 629 err = ds->ops->setup(ds); 630 if (err < 0) 631 goto unregister_notifier; 632 633 err = dsa_switch_setup_tag_protocol(ds); 634 if (err) 635 goto teardown; 636 637 if (!ds->slave_mii_bus && ds->ops->phy_read) { 638 ds->slave_mii_bus = mdiobus_alloc(); 639 if (!ds->slave_mii_bus) { 640 err = -ENOMEM; 641 goto teardown; 642 } 643 644 dsa_slave_mii_bus_init(ds); 645 646 dn = of_get_child_by_name(ds->dev->of_node, "mdio"); 647 648 err = of_mdiobus_register(ds->slave_mii_bus, dn); 649 of_node_put(dn); 650 if (err < 0) 651 goto free_slave_mii_bus; 652 } 653 654 dsa_switch_devlink_register(ds); 655 656 ds->setup = true; 657 return 0; 658 659 free_slave_mii_bus: 660 if (ds->slave_mii_bus && ds->ops->phy_read) 661 mdiobus_free(ds->slave_mii_bus); 662 teardown: 663 if (ds->ops->teardown) 664 ds->ops->teardown(ds); 665 unregister_notifier: 666 dsa_switch_unregister_notifier(ds); 667 devlink_free: 668 dsa_switch_devlink_free(ds); 669 return err; 670 } 671 672 static void dsa_switch_teardown(struct dsa_switch *ds) 673 { 674 if (!ds->setup) 675 return; 676 677 dsa_switch_devlink_unregister(ds); 678 679 if (ds->slave_mii_bus && ds->ops->phy_read) { 680 mdiobus_unregister(ds->slave_mii_bus); 681 mdiobus_free(ds->slave_mii_bus); 682 ds->slave_mii_bus = NULL; 683 } 684 685 dsa_switch_teardown_tag_protocol(ds); 686 687 if (ds->ops->teardown) 688 ds->ops->teardown(ds); 689 690 dsa_switch_unregister_notifier(ds); 691 692 dsa_switch_devlink_free(ds); 693 694 ds->setup = false; 695 } 696 697 /* First tear down the non-shared, then the shared ports. This ensures that 698 * all work items scheduled by our switchdev handlers for user ports have 699 * completed before we destroy the refcounting kept on the shared ports. 700 */ 701 static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst) 702 { 703 struct dsa_port *dp; 704 705 list_for_each_entry(dp, &dst->ports, list) 706 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) 707 dsa_port_teardown(dp); 708 709 dsa_flush_workqueue(); 710 711 list_for_each_entry(dp, &dst->ports, list) 712 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) 713 dsa_port_teardown(dp); 714 } 715 716 static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst) 717 { 718 struct dsa_port *dp; 719 720 list_for_each_entry(dp, &dst->ports, list) 721 dsa_switch_teardown(dp->ds); 722 } 723 724 /* Bring shared ports up first, then non-shared ports */ 725 static int dsa_tree_setup_ports(struct dsa_switch_tree *dst) 726 { 727 struct dsa_port *dp; 728 int err = 0; 729 730 list_for_each_entry(dp, &dst->ports, list) { 731 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) { 732 err = dsa_port_setup(dp); 733 if (err) 734 goto teardown; 735 } 736 } 737 738 list_for_each_entry(dp, &dst->ports, list) { 739 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) { 740 err = dsa_port_setup(dp); 741 if (err) { 742 err = dsa_port_setup_as_unused(dp); 743 if (err) 744 goto teardown; 745 } 746 } 747 } 748 749 return 0; 750 751 teardown: 752 dsa_tree_teardown_ports(dst); 753 754 return err; 755 } 756 757 static int dsa_tree_setup_switches(struct dsa_switch_tree *dst) 758 { 759 struct dsa_port *dp; 760 int err = 0; 761 762 list_for_each_entry(dp, &dst->ports, list) { 763 err = dsa_switch_setup(dp->ds); 764 if (err) { 765 dsa_tree_teardown_switches(dst); 766 break; 767 } 768 } 769 770 return err; 771 } 772 773 static int dsa_tree_setup_master(struct dsa_switch_tree *dst) 774 { 775 struct dsa_port *cpu_dp; 776 int err = 0; 777 778 rtnl_lock(); 779 780 dsa_tree_for_each_cpu_port(cpu_dp, dst) { 781 struct net_device *master = cpu_dp->master; 782 bool admin_up = (master->flags & IFF_UP) && 783 !qdisc_tx_is_noop(master); 784 785 err = dsa_master_setup(master, cpu_dp); 786 if (err) 787 break; 788 789 /* Replay master state event */ 790 dsa_tree_master_admin_state_change(dst, master, admin_up); 791 dsa_tree_master_oper_state_change(dst, master, 792 netif_oper_up(master)); 793 } 794 795 rtnl_unlock(); 796 797 return err; 798 } 799 800 static void dsa_tree_teardown_master(struct dsa_switch_tree *dst) 801 { 802 struct dsa_port *cpu_dp; 803 804 rtnl_lock(); 805 806 dsa_tree_for_each_cpu_port(cpu_dp, dst) { 807 struct net_device *master = cpu_dp->master; 808 809 /* Synthesizing an "admin down" state is sufficient for 810 * the switches to get a notification if the master is 811 * currently up and running. 812 */ 813 dsa_tree_master_admin_state_change(dst, master, false); 814 815 dsa_master_teardown(master); 816 } 817 818 rtnl_unlock(); 819 } 820 821 static int dsa_tree_setup_lags(struct dsa_switch_tree *dst) 822 { 823 unsigned int len = 0; 824 struct dsa_port *dp; 825 826 list_for_each_entry(dp, &dst->ports, list) { 827 if (dp->ds->num_lag_ids > len) 828 len = dp->ds->num_lag_ids; 829 } 830 831 if (!len) 832 return 0; 833 834 dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL); 835 if (!dst->lags) 836 return -ENOMEM; 837 838 dst->lags_len = len; 839 return 0; 840 } 841 842 static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst) 843 { 844 kfree(dst->lags); 845 } 846 847 static int dsa_tree_setup(struct dsa_switch_tree *dst) 848 { 849 bool complete; 850 int err; 851 852 if (dst->setup) { 853 pr_err("DSA: tree %d already setup! Disjoint trees?\n", 854 dst->index); 855 return -EEXIST; 856 } 857 858 complete = dsa_tree_setup_routing_table(dst); 859 if (!complete) 860 return 0; 861 862 err = dsa_tree_setup_cpu_ports(dst); 863 if (err) 864 return err; 865 866 err = dsa_tree_setup_switches(dst); 867 if (err) 868 goto teardown_cpu_ports; 869 870 err = dsa_tree_setup_ports(dst); 871 if (err) 872 goto teardown_switches; 873 874 err = dsa_tree_setup_master(dst); 875 if (err) 876 goto teardown_ports; 877 878 err = dsa_tree_setup_lags(dst); 879 if (err) 880 goto teardown_master; 881 882 dst->setup = true; 883 884 pr_info("DSA: tree %d setup\n", dst->index); 885 886 return 0; 887 888 teardown_master: 889 dsa_tree_teardown_master(dst); 890 teardown_ports: 891 dsa_tree_teardown_ports(dst); 892 teardown_switches: 893 dsa_tree_teardown_switches(dst); 894 teardown_cpu_ports: 895 dsa_tree_teardown_cpu_ports(dst); 896 897 return err; 898 } 899 900 static void dsa_tree_teardown(struct dsa_switch_tree *dst) 901 { 902 struct dsa_link *dl, *next; 903 904 if (!dst->setup) 905 return; 906 907 dsa_tree_teardown_lags(dst); 908 909 dsa_tree_teardown_master(dst); 910 911 dsa_tree_teardown_ports(dst); 912 913 dsa_tree_teardown_switches(dst); 914 915 dsa_tree_teardown_cpu_ports(dst); 916 917 list_for_each_entry_safe(dl, next, &dst->rtable, list) { 918 list_del(&dl->list); 919 kfree(dl); 920 } 921 922 pr_info("DSA: tree %d torn down\n", dst->index); 923 924 dst->setup = false; 925 } 926 927 static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst, 928 const struct dsa_device_ops *tag_ops) 929 { 930 const struct dsa_device_ops *old_tag_ops = dst->tag_ops; 931 struct dsa_notifier_tag_proto_info info; 932 int err; 933 934 dst->tag_ops = tag_ops; 935 936 /* Notify the switches from this tree about the connection 937 * to the new tagger 938 */ 939 info.tag_ops = tag_ops; 940 err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info); 941 if (err && err != -EOPNOTSUPP) 942 goto out_disconnect; 943 944 /* Notify the old tagger about the disconnection from this tree */ 945 info.tag_ops = old_tag_ops; 946 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info); 947 948 return 0; 949 950 out_disconnect: 951 info.tag_ops = tag_ops; 952 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info); 953 dst->tag_ops = old_tag_ops; 954 955 return err; 956 } 957 958 /* Since the dsa/tagging sysfs device attribute is per master, the assumption 959 * is that all DSA switches within a tree share the same tagger, otherwise 960 * they would have formed disjoint trees (different "dsa,member" values). 961 */ 962 int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst, 963 const struct dsa_device_ops *tag_ops, 964 const struct dsa_device_ops *old_tag_ops) 965 { 966 struct dsa_notifier_tag_proto_info info; 967 struct dsa_port *dp; 968 int err = -EBUSY; 969 970 if (!rtnl_trylock()) 971 return restart_syscall(); 972 973 /* At the moment we don't allow changing the tag protocol under 974 * traffic. The rtnl_mutex also happens to serialize concurrent 975 * attempts to change the tagging protocol. If we ever lift the IFF_UP 976 * restriction, there needs to be another mutex which serializes this. 977 */ 978 dsa_tree_for_each_user_port(dp, dst) { 979 if (dsa_port_to_master(dp)->flags & IFF_UP) 980 goto out_unlock; 981 982 if (dp->slave->flags & IFF_UP) 983 goto out_unlock; 984 } 985 986 /* Notify the tag protocol change */ 987 info.tag_ops = tag_ops; 988 err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info); 989 if (err) 990 goto out_unwind_tagger; 991 992 err = dsa_tree_bind_tag_proto(dst, tag_ops); 993 if (err) 994 goto out_unwind_tagger; 995 996 rtnl_unlock(); 997 998 return 0; 999 1000 out_unwind_tagger: 1001 info.tag_ops = old_tag_ops; 1002 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info); 1003 out_unlock: 1004 rtnl_unlock(); 1005 return err; 1006 } 1007 1008 static void dsa_tree_master_state_change(struct dsa_switch_tree *dst, 1009 struct net_device *master) 1010 { 1011 struct dsa_notifier_master_state_info info; 1012 struct dsa_port *cpu_dp = master->dsa_ptr; 1013 1014 info.master = master; 1015 info.operational = dsa_port_master_is_operational(cpu_dp); 1016 1017 dsa_tree_notify(dst, DSA_NOTIFIER_MASTER_STATE_CHANGE, &info); 1018 } 1019 1020 void dsa_tree_master_admin_state_change(struct dsa_switch_tree *dst, 1021 struct net_device *master, 1022 bool up) 1023 { 1024 struct dsa_port *cpu_dp = master->dsa_ptr; 1025 bool notify = false; 1026 1027 /* Don't keep track of admin state on LAG DSA masters, 1028 * but rather just of physical DSA masters 1029 */ 1030 if (netif_is_lag_master(master)) 1031 return; 1032 1033 if ((dsa_port_master_is_operational(cpu_dp)) != 1034 (up && cpu_dp->master_oper_up)) 1035 notify = true; 1036 1037 cpu_dp->master_admin_up = up; 1038 1039 if (notify) 1040 dsa_tree_master_state_change(dst, master); 1041 } 1042 1043 void dsa_tree_master_oper_state_change(struct dsa_switch_tree *dst, 1044 struct net_device *master, 1045 bool up) 1046 { 1047 struct dsa_port *cpu_dp = master->dsa_ptr; 1048 bool notify = false; 1049 1050 /* Don't keep track of oper state on LAG DSA masters, 1051 * but rather just of physical DSA masters 1052 */ 1053 if (netif_is_lag_master(master)) 1054 return; 1055 1056 if ((dsa_port_master_is_operational(cpu_dp)) != 1057 (cpu_dp->master_admin_up && up)) 1058 notify = true; 1059 1060 cpu_dp->master_oper_up = up; 1061 1062 if (notify) 1063 dsa_tree_master_state_change(dst, master); 1064 } 1065 1066 static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index) 1067 { 1068 struct dsa_switch_tree *dst = ds->dst; 1069 struct dsa_port *dp; 1070 1071 dsa_switch_for_each_port(dp, ds) 1072 if (dp->index == index) 1073 return dp; 1074 1075 dp = kzalloc(sizeof(*dp), GFP_KERNEL); 1076 if (!dp) 1077 return NULL; 1078 1079 dp->ds = ds; 1080 dp->index = index; 1081 1082 mutex_init(&dp->addr_lists_lock); 1083 mutex_init(&dp->vlans_lock); 1084 INIT_LIST_HEAD(&dp->fdbs); 1085 INIT_LIST_HEAD(&dp->mdbs); 1086 INIT_LIST_HEAD(&dp->vlans); 1087 INIT_LIST_HEAD(&dp->list); 1088 list_add_tail(&dp->list, &dst->ports); 1089 1090 return dp; 1091 } 1092 1093 static int dsa_port_parse_user(struct dsa_port *dp, const char *name) 1094 { 1095 dp->type = DSA_PORT_TYPE_USER; 1096 dp->name = name; 1097 1098 return 0; 1099 } 1100 1101 static int dsa_port_parse_dsa(struct dsa_port *dp) 1102 { 1103 dp->type = DSA_PORT_TYPE_DSA; 1104 1105 return 0; 1106 } 1107 1108 static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp, 1109 struct net_device *master) 1110 { 1111 enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE; 1112 struct dsa_switch *mds, *ds = dp->ds; 1113 unsigned int mdp_upstream; 1114 struct dsa_port *mdp; 1115 1116 /* It is possible to stack DSA switches onto one another when that 1117 * happens the switch driver may want to know if its tagging protocol 1118 * is going to work in such a configuration. 1119 */ 1120 if (dsa_slave_dev_check(master)) { 1121 mdp = dsa_slave_to_port(master); 1122 mds = mdp->ds; 1123 mdp_upstream = dsa_upstream_port(mds, mdp->index); 1124 tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream, 1125 DSA_TAG_PROTO_NONE); 1126 } 1127 1128 /* If the master device is not itself a DSA slave in a disjoint DSA 1129 * tree, then return immediately. 1130 */ 1131 return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol); 1132 } 1133 1134 static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *master, 1135 const char *user_protocol) 1136 { 1137 const struct dsa_device_ops *tag_ops = NULL; 1138 struct dsa_switch *ds = dp->ds; 1139 struct dsa_switch_tree *dst = ds->dst; 1140 enum dsa_tag_protocol default_proto; 1141 1142 /* Find out which protocol the switch would prefer. */ 1143 default_proto = dsa_get_tag_protocol(dp, master); 1144 if (dst->default_proto) { 1145 if (dst->default_proto != default_proto) { 1146 dev_err(ds->dev, 1147 "A DSA switch tree can have only one tagging protocol\n"); 1148 return -EINVAL; 1149 } 1150 } else { 1151 dst->default_proto = default_proto; 1152 } 1153 1154 /* See if the user wants to override that preference. */ 1155 if (user_protocol) { 1156 if (!ds->ops->change_tag_protocol) { 1157 dev_err(ds->dev, "Tag protocol cannot be modified\n"); 1158 return -EINVAL; 1159 } 1160 1161 tag_ops = dsa_tag_driver_get_by_name(user_protocol); 1162 if (IS_ERR(tag_ops)) { 1163 dev_warn(ds->dev, 1164 "Failed to find a tagging driver for protocol %s, using default\n", 1165 user_protocol); 1166 tag_ops = NULL; 1167 } 1168 } 1169 1170 if (!tag_ops) 1171 tag_ops = dsa_tag_driver_get_by_id(default_proto); 1172 1173 if (IS_ERR(tag_ops)) { 1174 if (PTR_ERR(tag_ops) == -ENOPROTOOPT) 1175 return -EPROBE_DEFER; 1176 1177 dev_warn(ds->dev, "No tagger for this switch\n"); 1178 return PTR_ERR(tag_ops); 1179 } 1180 1181 if (dst->tag_ops) { 1182 if (dst->tag_ops != tag_ops) { 1183 dev_err(ds->dev, 1184 "A DSA switch tree can have only one tagging protocol\n"); 1185 1186 dsa_tag_driver_put(tag_ops); 1187 return -EINVAL; 1188 } 1189 1190 /* In the case of multiple CPU ports per switch, the tagging 1191 * protocol is still reference-counted only per switch tree. 1192 */ 1193 dsa_tag_driver_put(tag_ops); 1194 } else { 1195 dst->tag_ops = tag_ops; 1196 } 1197 1198 dp->master = master; 1199 dp->type = DSA_PORT_TYPE_CPU; 1200 dsa_port_set_tag_protocol(dp, dst->tag_ops); 1201 dp->dst = dst; 1202 1203 /* At this point, the tree may be configured to use a different 1204 * tagger than the one chosen by the switch driver during 1205 * .setup, in the case when a user selects a custom protocol 1206 * through the DT. 1207 * 1208 * This is resolved by syncing the driver with the tree in 1209 * dsa_switch_setup_tag_protocol once .setup has run and the 1210 * driver is ready to accept calls to .change_tag_protocol. If 1211 * the driver does not support the custom protocol at that 1212 * point, the tree is wholly rejected, thereby ensuring that the 1213 * tree and driver are always in agreement on the protocol to 1214 * use. 1215 */ 1216 return 0; 1217 } 1218 1219 static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn) 1220 { 1221 struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0); 1222 const char *name = of_get_property(dn, "label", NULL); 1223 bool link = of_property_read_bool(dn, "link"); 1224 1225 dp->dn = dn; 1226 1227 if (ethernet) { 1228 struct net_device *master; 1229 const char *user_protocol; 1230 1231 master = of_find_net_device_by_node(ethernet); 1232 of_node_put(ethernet); 1233 if (!master) 1234 return -EPROBE_DEFER; 1235 1236 user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL); 1237 return dsa_port_parse_cpu(dp, master, user_protocol); 1238 } 1239 1240 if (link) 1241 return dsa_port_parse_dsa(dp); 1242 1243 return dsa_port_parse_user(dp, name); 1244 } 1245 1246 static int dsa_switch_parse_ports_of(struct dsa_switch *ds, 1247 struct device_node *dn) 1248 { 1249 struct device_node *ports, *port; 1250 struct dsa_port *dp; 1251 int err = 0; 1252 u32 reg; 1253 1254 ports = of_get_child_by_name(dn, "ports"); 1255 if (!ports) { 1256 /* The second possibility is "ethernet-ports" */ 1257 ports = of_get_child_by_name(dn, "ethernet-ports"); 1258 if (!ports) { 1259 dev_err(ds->dev, "no ports child node found\n"); 1260 return -EINVAL; 1261 } 1262 } 1263 1264 for_each_available_child_of_node(ports, port) { 1265 err = of_property_read_u32(port, "reg", ®); 1266 if (err) { 1267 of_node_put(port); 1268 goto out_put_node; 1269 } 1270 1271 if (reg >= ds->num_ports) { 1272 dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n", 1273 port, reg, ds->num_ports); 1274 of_node_put(port); 1275 err = -EINVAL; 1276 goto out_put_node; 1277 } 1278 1279 dp = dsa_to_port(ds, reg); 1280 1281 err = dsa_port_parse_of(dp, port); 1282 if (err) { 1283 of_node_put(port); 1284 goto out_put_node; 1285 } 1286 } 1287 1288 out_put_node: 1289 of_node_put(ports); 1290 return err; 1291 } 1292 1293 static int dsa_switch_parse_member_of(struct dsa_switch *ds, 1294 struct device_node *dn) 1295 { 1296 u32 m[2] = { 0, 0 }; 1297 int sz; 1298 1299 /* Don't error out if this optional property isn't found */ 1300 sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2); 1301 if (sz < 0 && sz != -EINVAL) 1302 return sz; 1303 1304 ds->index = m[1]; 1305 1306 ds->dst = dsa_tree_touch(m[0]); 1307 if (!ds->dst) 1308 return -ENOMEM; 1309 1310 if (dsa_switch_find(ds->dst->index, ds->index)) { 1311 dev_err(ds->dev, 1312 "A DSA switch with index %d already exists in tree %d\n", 1313 ds->index, ds->dst->index); 1314 return -EEXIST; 1315 } 1316 1317 if (ds->dst->last_switch < ds->index) 1318 ds->dst->last_switch = ds->index; 1319 1320 return 0; 1321 } 1322 1323 static int dsa_switch_touch_ports(struct dsa_switch *ds) 1324 { 1325 struct dsa_port *dp; 1326 int port; 1327 1328 for (port = 0; port < ds->num_ports; port++) { 1329 dp = dsa_port_touch(ds, port); 1330 if (!dp) 1331 return -ENOMEM; 1332 } 1333 1334 return 0; 1335 } 1336 1337 static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn) 1338 { 1339 int err; 1340 1341 err = dsa_switch_parse_member_of(ds, dn); 1342 if (err) 1343 return err; 1344 1345 err = dsa_switch_touch_ports(ds); 1346 if (err) 1347 return err; 1348 1349 return dsa_switch_parse_ports_of(ds, dn); 1350 } 1351 1352 static int dev_is_class(struct device *dev, void *class) 1353 { 1354 if (dev->class != NULL && !strcmp(dev->class->name, class)) 1355 return 1; 1356 1357 return 0; 1358 } 1359 1360 static struct device *dev_find_class(struct device *parent, char *class) 1361 { 1362 if (dev_is_class(parent, class)) { 1363 get_device(parent); 1364 return parent; 1365 } 1366 1367 return device_find_child(parent, class, dev_is_class); 1368 } 1369 1370 static struct net_device *dsa_dev_to_net_device(struct device *dev) 1371 { 1372 struct device *d; 1373 1374 d = dev_find_class(dev, "net"); 1375 if (d != NULL) { 1376 struct net_device *nd; 1377 1378 nd = to_net_dev(d); 1379 dev_hold(nd); 1380 put_device(d); 1381 1382 return nd; 1383 } 1384 1385 return NULL; 1386 } 1387 1388 static int dsa_port_parse(struct dsa_port *dp, const char *name, 1389 struct device *dev) 1390 { 1391 if (!strcmp(name, "cpu")) { 1392 struct net_device *master; 1393 1394 master = dsa_dev_to_net_device(dev); 1395 if (!master) 1396 return -EPROBE_DEFER; 1397 1398 dev_put(master); 1399 1400 return dsa_port_parse_cpu(dp, master, NULL); 1401 } 1402 1403 if (!strcmp(name, "dsa")) 1404 return dsa_port_parse_dsa(dp); 1405 1406 return dsa_port_parse_user(dp, name); 1407 } 1408 1409 static int dsa_switch_parse_ports(struct dsa_switch *ds, 1410 struct dsa_chip_data *cd) 1411 { 1412 bool valid_name_found = false; 1413 struct dsa_port *dp; 1414 struct device *dev; 1415 const char *name; 1416 unsigned int i; 1417 int err; 1418 1419 for (i = 0; i < DSA_MAX_PORTS; i++) { 1420 name = cd->port_names[i]; 1421 dev = cd->netdev[i]; 1422 dp = dsa_to_port(ds, i); 1423 1424 if (!name) 1425 continue; 1426 1427 err = dsa_port_parse(dp, name, dev); 1428 if (err) 1429 return err; 1430 1431 valid_name_found = true; 1432 } 1433 1434 if (!valid_name_found && i == DSA_MAX_PORTS) 1435 return -EINVAL; 1436 1437 return 0; 1438 } 1439 1440 static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd) 1441 { 1442 int err; 1443 1444 ds->cd = cd; 1445 1446 /* We don't support interconnected switches nor multiple trees via 1447 * platform data, so this is the unique switch of the tree. 1448 */ 1449 ds->index = 0; 1450 ds->dst = dsa_tree_touch(0); 1451 if (!ds->dst) 1452 return -ENOMEM; 1453 1454 err = dsa_switch_touch_ports(ds); 1455 if (err) 1456 return err; 1457 1458 return dsa_switch_parse_ports(ds, cd); 1459 } 1460 1461 static void dsa_switch_release_ports(struct dsa_switch *ds) 1462 { 1463 struct dsa_port *dp, *next; 1464 1465 dsa_switch_for_each_port_safe(dp, next, ds) { 1466 WARN_ON(!list_empty(&dp->fdbs)); 1467 WARN_ON(!list_empty(&dp->mdbs)); 1468 WARN_ON(!list_empty(&dp->vlans)); 1469 list_del(&dp->list); 1470 kfree(dp); 1471 } 1472 } 1473 1474 static int dsa_switch_probe(struct dsa_switch *ds) 1475 { 1476 struct dsa_switch_tree *dst; 1477 struct dsa_chip_data *pdata; 1478 struct device_node *np; 1479 int err; 1480 1481 if (!ds->dev) 1482 return -ENODEV; 1483 1484 pdata = ds->dev->platform_data; 1485 np = ds->dev->of_node; 1486 1487 if (!ds->num_ports) 1488 return -EINVAL; 1489 1490 if (np) { 1491 err = dsa_switch_parse_of(ds, np); 1492 if (err) 1493 dsa_switch_release_ports(ds); 1494 } else if (pdata) { 1495 err = dsa_switch_parse(ds, pdata); 1496 if (err) 1497 dsa_switch_release_ports(ds); 1498 } else { 1499 err = -ENODEV; 1500 } 1501 1502 if (err) 1503 return err; 1504 1505 dst = ds->dst; 1506 dsa_tree_get(dst); 1507 err = dsa_tree_setup(dst); 1508 if (err) { 1509 dsa_switch_release_ports(ds); 1510 dsa_tree_put(dst); 1511 } 1512 1513 return err; 1514 } 1515 1516 int dsa_register_switch(struct dsa_switch *ds) 1517 { 1518 int err; 1519 1520 mutex_lock(&dsa2_mutex); 1521 err = dsa_switch_probe(ds); 1522 dsa_tree_put(ds->dst); 1523 mutex_unlock(&dsa2_mutex); 1524 1525 return err; 1526 } 1527 EXPORT_SYMBOL_GPL(dsa_register_switch); 1528 1529 static void dsa_switch_remove(struct dsa_switch *ds) 1530 { 1531 struct dsa_switch_tree *dst = ds->dst; 1532 1533 dsa_tree_teardown(dst); 1534 dsa_switch_release_ports(ds); 1535 dsa_tree_put(dst); 1536 } 1537 1538 void dsa_unregister_switch(struct dsa_switch *ds) 1539 { 1540 mutex_lock(&dsa2_mutex); 1541 dsa_switch_remove(ds); 1542 mutex_unlock(&dsa2_mutex); 1543 } 1544 EXPORT_SYMBOL_GPL(dsa_unregister_switch); 1545 1546 /* If the DSA master chooses to unregister its net_device on .shutdown, DSA is 1547 * blocking that operation from completion, due to the dev_hold taken inside 1548 * netdev_upper_dev_link. Unlink the DSA slave interfaces from being uppers of 1549 * the DSA master, so that the system can reboot successfully. 1550 */ 1551 void dsa_switch_shutdown(struct dsa_switch *ds) 1552 { 1553 struct net_device *master, *slave_dev; 1554 struct dsa_port *dp; 1555 1556 mutex_lock(&dsa2_mutex); 1557 1558 if (!ds->setup) 1559 goto out; 1560 1561 rtnl_lock(); 1562 1563 dsa_switch_for_each_user_port(dp, ds) { 1564 master = dsa_port_to_master(dp); 1565 slave_dev = dp->slave; 1566 1567 netdev_upper_dev_unlink(master, slave_dev); 1568 } 1569 1570 /* Disconnect from further netdevice notifiers on the master, 1571 * since netdev_uses_dsa() will now return false. 1572 */ 1573 dsa_switch_for_each_cpu_port(dp, ds) 1574 dp->master->dsa_ptr = NULL; 1575 1576 rtnl_unlock(); 1577 out: 1578 mutex_unlock(&dsa2_mutex); 1579 } 1580 EXPORT_SYMBOL_GPL(dsa_switch_shutdown); 1581 1582 #ifdef CONFIG_PM_SLEEP 1583 static bool dsa_port_is_initialized(const struct dsa_port *dp) 1584 { 1585 return dp->type == DSA_PORT_TYPE_USER && dp->slave; 1586 } 1587 1588 int dsa_switch_suspend(struct dsa_switch *ds) 1589 { 1590 struct dsa_port *dp; 1591 int ret = 0; 1592 1593 /* Suspend slave network devices */ 1594 dsa_switch_for_each_port(dp, ds) { 1595 if (!dsa_port_is_initialized(dp)) 1596 continue; 1597 1598 ret = dsa_slave_suspend(dp->slave); 1599 if (ret) 1600 return ret; 1601 } 1602 1603 if (ds->ops->suspend) 1604 ret = ds->ops->suspend(ds); 1605 1606 return ret; 1607 } 1608 EXPORT_SYMBOL_GPL(dsa_switch_suspend); 1609 1610 int dsa_switch_resume(struct dsa_switch *ds) 1611 { 1612 struct dsa_port *dp; 1613 int ret = 0; 1614 1615 if (ds->ops->resume) 1616 ret = ds->ops->resume(ds); 1617 1618 if (ret) 1619 return ret; 1620 1621 /* Resume slave network devices */ 1622 dsa_switch_for_each_port(dp, ds) { 1623 if (!dsa_port_is_initialized(dp)) 1624 continue; 1625 1626 ret = dsa_slave_resume(dp->slave); 1627 if (ret) 1628 return ret; 1629 } 1630 1631 return 0; 1632 } 1633 EXPORT_SYMBOL_GPL(dsa_switch_resume); 1634 #endif 1635 1636 struct dsa_port *dsa_port_from_netdev(struct net_device *netdev) 1637 { 1638 if (!netdev || !dsa_slave_dev_check(netdev)) 1639 return ERR_PTR(-ENODEV); 1640 1641 return dsa_slave_to_port(netdev); 1642 } 1643 EXPORT_SYMBOL_GPL(dsa_port_from_netdev); 1644 1645 bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b) 1646 { 1647 if (a->type != b->type) 1648 return false; 1649 1650 switch (a->type) { 1651 case DSA_DB_PORT: 1652 return a->dp == b->dp; 1653 case DSA_DB_LAG: 1654 return a->lag.dev == b->lag.dev; 1655 case DSA_DB_BRIDGE: 1656 return a->bridge.num == b->bridge.num; 1657 default: 1658 WARN_ON(1); 1659 return false; 1660 } 1661 } 1662 1663 bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port, 1664 const unsigned char *addr, u16 vid, 1665 struct dsa_db db) 1666 { 1667 struct dsa_port *dp = dsa_to_port(ds, port); 1668 struct dsa_mac_addr *a; 1669 1670 lockdep_assert_held(&dp->addr_lists_lock); 1671 1672 list_for_each_entry(a, &dp->fdbs, list) { 1673 if (!ether_addr_equal(a->addr, addr) || a->vid != vid) 1674 continue; 1675 1676 if (a->db.type == db.type && !dsa_db_equal(&a->db, &db)) 1677 return true; 1678 } 1679 1680 return false; 1681 } 1682 EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db); 1683 1684 bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port, 1685 const struct switchdev_obj_port_mdb *mdb, 1686 struct dsa_db db) 1687 { 1688 struct dsa_port *dp = dsa_to_port(ds, port); 1689 struct dsa_mac_addr *a; 1690 1691 lockdep_assert_held(&dp->addr_lists_lock); 1692 1693 list_for_each_entry(a, &dp->mdbs, list) { 1694 if (!ether_addr_equal(a->addr, mdb->addr) || a->vid != mdb->vid) 1695 continue; 1696 1697 if (a->db.type == db.type && !dsa_db_equal(&a->db, &db)) 1698 return true; 1699 } 1700 1701 return false; 1702 } 1703 EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db); 1704 1705 static int __init dsa_init_module(void) 1706 { 1707 int rc; 1708 1709 dsa_owq = alloc_ordered_workqueue("dsa_ordered", 1710 WQ_MEM_RECLAIM); 1711 if (!dsa_owq) 1712 return -ENOMEM; 1713 1714 rc = dsa_slave_register_notifier(); 1715 if (rc) 1716 goto register_notifier_fail; 1717 1718 dev_add_pack(&dsa_pack_type); 1719 1720 rc = rtnl_link_register(&dsa_link_ops); 1721 if (rc) 1722 goto netlink_register_fail; 1723 1724 return 0; 1725 1726 netlink_register_fail: 1727 dsa_slave_unregister_notifier(); 1728 dev_remove_pack(&dsa_pack_type); 1729 register_notifier_fail: 1730 destroy_workqueue(dsa_owq); 1731 1732 return rc; 1733 } 1734 module_init(dsa_init_module); 1735 1736 static void __exit dsa_cleanup_module(void) 1737 { 1738 rtnl_link_unregister(&dsa_link_ops); 1739 1740 dsa_slave_unregister_notifier(); 1741 dev_remove_pack(&dsa_pack_type); 1742 destroy_workqueue(dsa_owq); 1743 } 1744 module_exit(dsa_cleanup_module); 1745 1746 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>"); 1747 MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips"); 1748 MODULE_LICENSE("GPL"); 1749 MODULE_ALIAS("platform:dsa"); 1750