xref: /openbmc/linux/net/dsa/dsa.c (revision 9b12f050)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * DSA topology and switch handling
4  *
5  * Copyright (c) 2008-2009 Marvell Semiconductor
6  * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
7  * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
8  */
9 
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/slab.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/of.h>
18 #include <linux/of_mdio.h>
19 #include <linux/of_net.h>
20 #include <net/sch_generic.h>
21 
22 #include "devlink.h"
23 #include "dsa.h"
24 #include "master.h"
25 #include "netlink.h"
26 #include "port.h"
27 #include "slave.h"
28 #include "switch.h"
29 #include "tag.h"
30 
31 #define DSA_MAX_NUM_OFFLOADING_BRIDGES		BITS_PER_LONG
32 
33 static DEFINE_MUTEX(dsa2_mutex);
34 LIST_HEAD(dsa_tree_list);
35 
36 static struct workqueue_struct *dsa_owq;
37 
38 /* Track the bridges with forwarding offload enabled */
39 static unsigned long dsa_fwd_offloading_bridges;
40 
41 bool dsa_schedule_work(struct work_struct *work)
42 {
43 	return queue_work(dsa_owq, work);
44 }
45 
46 void dsa_flush_workqueue(void)
47 {
48 	flush_workqueue(dsa_owq);
49 }
50 EXPORT_SYMBOL_GPL(dsa_flush_workqueue);
51 
52 /**
53  * dsa_lag_map() - Map LAG structure to a linear LAG array
54  * @dst: Tree in which to record the mapping.
55  * @lag: LAG structure that is to be mapped to the tree's array.
56  *
57  * dsa_lag_id/dsa_lag_by_id can then be used to translate between the
58  * two spaces. The size of the mapping space is determined by the
59  * driver by setting ds->num_lag_ids. It is perfectly legal to leave
60  * it unset if it is not needed, in which case these functions become
61  * no-ops.
62  */
63 void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag)
64 {
65 	unsigned int id;
66 
67 	for (id = 1; id <= dst->lags_len; id++) {
68 		if (!dsa_lag_by_id(dst, id)) {
69 			dst->lags[id - 1] = lag;
70 			lag->id = id;
71 			return;
72 		}
73 	}
74 
75 	/* No IDs left, which is OK. Some drivers do not need it. The
76 	 * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id
77 	 * returns an error for this device when joining the LAG. The
78 	 * driver can then return -EOPNOTSUPP back to DSA, which will
79 	 * fall back to a software LAG.
80 	 */
81 }
82 
83 /**
84  * dsa_lag_unmap() - Remove a LAG ID mapping
85  * @dst: Tree in which the mapping is recorded.
86  * @lag: LAG structure that was mapped.
87  *
88  * As there may be multiple users of the mapping, it is only removed
89  * if there are no other references to it.
90  */
91 void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag)
92 {
93 	unsigned int id;
94 
95 	dsa_lags_foreach_id(id, dst) {
96 		if (dsa_lag_by_id(dst, id) == lag) {
97 			dst->lags[id - 1] = NULL;
98 			lag->id = 0;
99 			break;
100 		}
101 	}
102 }
103 
104 struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst,
105 				  const struct net_device *lag_dev)
106 {
107 	struct dsa_port *dp;
108 
109 	list_for_each_entry(dp, &dst->ports, list)
110 		if (dsa_port_lag_dev_get(dp) == lag_dev)
111 			return dp->lag;
112 
113 	return NULL;
114 }
115 
116 struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst,
117 					const struct net_device *br)
118 {
119 	struct dsa_port *dp;
120 
121 	list_for_each_entry(dp, &dst->ports, list)
122 		if (dsa_port_bridge_dev_get(dp) == br)
123 			return dp->bridge;
124 
125 	return NULL;
126 }
127 
128 static int dsa_bridge_num_find(const struct net_device *bridge_dev)
129 {
130 	struct dsa_switch_tree *dst;
131 
132 	list_for_each_entry(dst, &dsa_tree_list, list) {
133 		struct dsa_bridge *bridge;
134 
135 		bridge = dsa_tree_bridge_find(dst, bridge_dev);
136 		if (bridge)
137 			return bridge->num;
138 	}
139 
140 	return 0;
141 }
142 
143 unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max)
144 {
145 	unsigned int bridge_num = dsa_bridge_num_find(bridge_dev);
146 
147 	/* Switches without FDB isolation support don't get unique
148 	 * bridge numbering
149 	 */
150 	if (!max)
151 		return 0;
152 
153 	if (!bridge_num) {
154 		/* First port that requests FDB isolation or TX forwarding
155 		 * offload for this bridge
156 		 */
157 		bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges,
158 						DSA_MAX_NUM_OFFLOADING_BRIDGES,
159 						1);
160 		if (bridge_num >= max)
161 			return 0;
162 
163 		set_bit(bridge_num, &dsa_fwd_offloading_bridges);
164 	}
165 
166 	return bridge_num;
167 }
168 
169 void dsa_bridge_num_put(const struct net_device *bridge_dev,
170 			unsigned int bridge_num)
171 {
172 	/* Since we refcount bridges, we know that when we call this function
173 	 * it is no longer in use, so we can just go ahead and remove it from
174 	 * the bit mask.
175 	 */
176 	clear_bit(bridge_num, &dsa_fwd_offloading_bridges);
177 }
178 
179 struct dsa_switch *dsa_switch_find(int tree_index, int sw_index)
180 {
181 	struct dsa_switch_tree *dst;
182 	struct dsa_port *dp;
183 
184 	list_for_each_entry(dst, &dsa_tree_list, list) {
185 		if (dst->index != tree_index)
186 			continue;
187 
188 		list_for_each_entry(dp, &dst->ports, list) {
189 			if (dp->ds->index != sw_index)
190 				continue;
191 
192 			return dp->ds;
193 		}
194 	}
195 
196 	return NULL;
197 }
198 EXPORT_SYMBOL_GPL(dsa_switch_find);
199 
200 static struct dsa_switch_tree *dsa_tree_find(int index)
201 {
202 	struct dsa_switch_tree *dst;
203 
204 	list_for_each_entry(dst, &dsa_tree_list, list)
205 		if (dst->index == index)
206 			return dst;
207 
208 	return NULL;
209 }
210 
211 static struct dsa_switch_tree *dsa_tree_alloc(int index)
212 {
213 	struct dsa_switch_tree *dst;
214 
215 	dst = kzalloc(sizeof(*dst), GFP_KERNEL);
216 	if (!dst)
217 		return NULL;
218 
219 	dst->index = index;
220 
221 	INIT_LIST_HEAD(&dst->rtable);
222 
223 	INIT_LIST_HEAD(&dst->ports);
224 
225 	INIT_LIST_HEAD(&dst->list);
226 	list_add_tail(&dst->list, &dsa_tree_list);
227 
228 	kref_init(&dst->refcount);
229 
230 	return dst;
231 }
232 
233 static void dsa_tree_free(struct dsa_switch_tree *dst)
234 {
235 	if (dst->tag_ops)
236 		dsa_tag_driver_put(dst->tag_ops);
237 	list_del(&dst->list);
238 	kfree(dst);
239 }
240 
241 static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
242 {
243 	if (dst)
244 		kref_get(&dst->refcount);
245 
246 	return dst;
247 }
248 
249 static struct dsa_switch_tree *dsa_tree_touch(int index)
250 {
251 	struct dsa_switch_tree *dst;
252 
253 	dst = dsa_tree_find(index);
254 	if (dst)
255 		return dsa_tree_get(dst);
256 	else
257 		return dsa_tree_alloc(index);
258 }
259 
260 static void dsa_tree_release(struct kref *ref)
261 {
262 	struct dsa_switch_tree *dst;
263 
264 	dst = container_of(ref, struct dsa_switch_tree, refcount);
265 
266 	dsa_tree_free(dst);
267 }
268 
269 static void dsa_tree_put(struct dsa_switch_tree *dst)
270 {
271 	if (dst)
272 		kref_put(&dst->refcount, dsa_tree_release);
273 }
274 
275 static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
276 						   struct device_node *dn)
277 {
278 	struct dsa_port *dp;
279 
280 	list_for_each_entry(dp, &dst->ports, list)
281 		if (dp->dn == dn)
282 			return dp;
283 
284 	return NULL;
285 }
286 
287 static struct dsa_link *dsa_link_touch(struct dsa_port *dp,
288 				       struct dsa_port *link_dp)
289 {
290 	struct dsa_switch *ds = dp->ds;
291 	struct dsa_switch_tree *dst;
292 	struct dsa_link *dl;
293 
294 	dst = ds->dst;
295 
296 	list_for_each_entry(dl, &dst->rtable, list)
297 		if (dl->dp == dp && dl->link_dp == link_dp)
298 			return dl;
299 
300 	dl = kzalloc(sizeof(*dl), GFP_KERNEL);
301 	if (!dl)
302 		return NULL;
303 
304 	dl->dp = dp;
305 	dl->link_dp = link_dp;
306 
307 	INIT_LIST_HEAD(&dl->list);
308 	list_add_tail(&dl->list, &dst->rtable);
309 
310 	return dl;
311 }
312 
313 static bool dsa_port_setup_routing_table(struct dsa_port *dp)
314 {
315 	struct dsa_switch *ds = dp->ds;
316 	struct dsa_switch_tree *dst = ds->dst;
317 	struct device_node *dn = dp->dn;
318 	struct of_phandle_iterator it;
319 	struct dsa_port *link_dp;
320 	struct dsa_link *dl;
321 	int err;
322 
323 	of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
324 		link_dp = dsa_tree_find_port_by_node(dst, it.node);
325 		if (!link_dp) {
326 			of_node_put(it.node);
327 			return false;
328 		}
329 
330 		dl = dsa_link_touch(dp, link_dp);
331 		if (!dl) {
332 			of_node_put(it.node);
333 			return false;
334 		}
335 	}
336 
337 	return true;
338 }
339 
340 static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
341 {
342 	bool complete = true;
343 	struct dsa_port *dp;
344 
345 	list_for_each_entry(dp, &dst->ports, list) {
346 		if (dsa_port_is_dsa(dp)) {
347 			complete = dsa_port_setup_routing_table(dp);
348 			if (!complete)
349 				break;
350 		}
351 	}
352 
353 	return complete;
354 }
355 
356 static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
357 {
358 	struct dsa_port *dp;
359 
360 	list_for_each_entry(dp, &dst->ports, list)
361 		if (dsa_port_is_cpu(dp))
362 			return dp;
363 
364 	return NULL;
365 }
366 
367 struct net_device *dsa_tree_find_first_master(struct dsa_switch_tree *dst)
368 {
369 	struct device_node *ethernet;
370 	struct net_device *master;
371 	struct dsa_port *cpu_dp;
372 
373 	cpu_dp = dsa_tree_find_first_cpu(dst);
374 	ethernet = of_parse_phandle(cpu_dp->dn, "ethernet", 0);
375 	master = of_find_net_device_by_node(ethernet);
376 	of_node_put(ethernet);
377 
378 	return master;
379 }
380 
381 /* Assign the default CPU port (the first one in the tree) to all ports of the
382  * fabric which don't already have one as part of their own switch.
383  */
384 static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
385 {
386 	struct dsa_port *cpu_dp, *dp;
387 
388 	cpu_dp = dsa_tree_find_first_cpu(dst);
389 	if (!cpu_dp) {
390 		pr_err("DSA: tree %d has no CPU port\n", dst->index);
391 		return -EINVAL;
392 	}
393 
394 	list_for_each_entry(dp, &dst->ports, list) {
395 		if (dp->cpu_dp)
396 			continue;
397 
398 		if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
399 			dp->cpu_dp = cpu_dp;
400 	}
401 
402 	return 0;
403 }
404 
405 /* Perform initial assignment of CPU ports to user ports and DSA links in the
406  * fabric, giving preference to CPU ports local to each switch. Default to
407  * using the first CPU port in the switch tree if the port does not have a CPU
408  * port local to this switch.
409  */
410 static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst)
411 {
412 	struct dsa_port *cpu_dp, *dp;
413 
414 	list_for_each_entry(cpu_dp, &dst->ports, list) {
415 		if (!dsa_port_is_cpu(cpu_dp))
416 			continue;
417 
418 		/* Prefer a local CPU port */
419 		dsa_switch_for_each_port(dp, cpu_dp->ds) {
420 			/* Prefer the first local CPU port found */
421 			if (dp->cpu_dp)
422 				continue;
423 
424 			if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
425 				dp->cpu_dp = cpu_dp;
426 		}
427 	}
428 
429 	return dsa_tree_setup_default_cpu(dst);
430 }
431 
432 static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst)
433 {
434 	struct dsa_port *dp;
435 
436 	list_for_each_entry(dp, &dst->ports, list)
437 		if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
438 			dp->cpu_dp = NULL;
439 }
440 
441 static int dsa_port_setup(struct dsa_port *dp)
442 {
443 	bool dsa_port_link_registered = false;
444 	struct dsa_switch *ds = dp->ds;
445 	bool dsa_port_enabled = false;
446 	int err = 0;
447 
448 	if (dp->setup)
449 		return 0;
450 
451 	err = dsa_port_devlink_setup(dp);
452 	if (err)
453 		return err;
454 
455 	switch (dp->type) {
456 	case DSA_PORT_TYPE_UNUSED:
457 		dsa_port_disable(dp);
458 		break;
459 	case DSA_PORT_TYPE_CPU:
460 		if (dp->dn) {
461 			err = dsa_shared_port_link_register_of(dp);
462 			if (err)
463 				break;
464 			dsa_port_link_registered = true;
465 		} else {
466 			dev_warn(ds->dev,
467 				 "skipping link registration for CPU port %d\n",
468 				 dp->index);
469 		}
470 
471 		err = dsa_port_enable(dp, NULL);
472 		if (err)
473 			break;
474 		dsa_port_enabled = true;
475 
476 		break;
477 	case DSA_PORT_TYPE_DSA:
478 		if (dp->dn) {
479 			err = dsa_shared_port_link_register_of(dp);
480 			if (err)
481 				break;
482 			dsa_port_link_registered = true;
483 		} else {
484 			dev_warn(ds->dev,
485 				 "skipping link registration for DSA port %d\n",
486 				 dp->index);
487 		}
488 
489 		err = dsa_port_enable(dp, NULL);
490 		if (err)
491 			break;
492 		dsa_port_enabled = true;
493 
494 		break;
495 	case DSA_PORT_TYPE_USER:
496 		of_get_mac_address(dp->dn, dp->mac);
497 		err = dsa_slave_create(dp);
498 		break;
499 	}
500 
501 	if (err && dsa_port_enabled)
502 		dsa_port_disable(dp);
503 	if (err && dsa_port_link_registered)
504 		dsa_shared_port_link_unregister_of(dp);
505 	if (err) {
506 		dsa_port_devlink_teardown(dp);
507 		return err;
508 	}
509 
510 	dp->setup = true;
511 
512 	return 0;
513 }
514 
515 static void dsa_port_teardown(struct dsa_port *dp)
516 {
517 	if (!dp->setup)
518 		return;
519 
520 	switch (dp->type) {
521 	case DSA_PORT_TYPE_UNUSED:
522 		break;
523 	case DSA_PORT_TYPE_CPU:
524 		dsa_port_disable(dp);
525 		if (dp->dn)
526 			dsa_shared_port_link_unregister_of(dp);
527 		break;
528 	case DSA_PORT_TYPE_DSA:
529 		dsa_port_disable(dp);
530 		if (dp->dn)
531 			dsa_shared_port_link_unregister_of(dp);
532 		break;
533 	case DSA_PORT_TYPE_USER:
534 		if (dp->slave) {
535 			dsa_slave_destroy(dp->slave);
536 			dp->slave = NULL;
537 		}
538 		break;
539 	}
540 
541 	dsa_port_devlink_teardown(dp);
542 
543 	dp->setup = false;
544 }
545 
546 static int dsa_port_setup_as_unused(struct dsa_port *dp)
547 {
548 	dp->type = DSA_PORT_TYPE_UNUSED;
549 	return dsa_port_setup(dp);
550 }
551 
552 static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds)
553 {
554 	const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
555 	struct dsa_switch_tree *dst = ds->dst;
556 	int err;
557 
558 	if (tag_ops->proto == dst->default_proto)
559 		goto connect;
560 
561 	rtnl_lock();
562 	err = ds->ops->change_tag_protocol(ds, tag_ops->proto);
563 	rtnl_unlock();
564 	if (err) {
565 		dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n",
566 			tag_ops->name, ERR_PTR(err));
567 		return err;
568 	}
569 
570 connect:
571 	if (tag_ops->connect) {
572 		err = tag_ops->connect(ds);
573 		if (err)
574 			return err;
575 	}
576 
577 	if (ds->ops->connect_tag_protocol) {
578 		err = ds->ops->connect_tag_protocol(ds, tag_ops->proto);
579 		if (err) {
580 			dev_err(ds->dev,
581 				"Unable to connect to tag protocol \"%s\": %pe\n",
582 				tag_ops->name, ERR_PTR(err));
583 			goto disconnect;
584 		}
585 	}
586 
587 	return 0;
588 
589 disconnect:
590 	if (tag_ops->disconnect)
591 		tag_ops->disconnect(ds);
592 
593 	return err;
594 }
595 
596 static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds)
597 {
598 	const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
599 
600 	if (tag_ops->disconnect)
601 		tag_ops->disconnect(ds);
602 }
603 
604 static int dsa_switch_setup(struct dsa_switch *ds)
605 {
606 	struct device_node *dn;
607 	int err;
608 
609 	if (ds->setup)
610 		return 0;
611 
612 	/* Initialize ds->phys_mii_mask before registering the slave MDIO bus
613 	 * driver and before ops->setup() has run, since the switch drivers and
614 	 * the slave MDIO bus driver rely on these values for probing PHY
615 	 * devices or not
616 	 */
617 	ds->phys_mii_mask |= dsa_user_ports(ds);
618 
619 	err = dsa_switch_devlink_alloc(ds);
620 	if (err)
621 		return err;
622 
623 	err = dsa_switch_register_notifier(ds);
624 	if (err)
625 		goto devlink_free;
626 
627 	ds->configure_vlan_while_not_filtering = true;
628 
629 	err = ds->ops->setup(ds);
630 	if (err < 0)
631 		goto unregister_notifier;
632 
633 	err = dsa_switch_setup_tag_protocol(ds);
634 	if (err)
635 		goto teardown;
636 
637 	if (!ds->slave_mii_bus && ds->ops->phy_read) {
638 		ds->slave_mii_bus = mdiobus_alloc();
639 		if (!ds->slave_mii_bus) {
640 			err = -ENOMEM;
641 			goto teardown;
642 		}
643 
644 		dsa_slave_mii_bus_init(ds);
645 
646 		dn = of_get_child_by_name(ds->dev->of_node, "mdio");
647 
648 		err = of_mdiobus_register(ds->slave_mii_bus, dn);
649 		of_node_put(dn);
650 		if (err < 0)
651 			goto free_slave_mii_bus;
652 	}
653 
654 	dsa_switch_devlink_register(ds);
655 
656 	ds->setup = true;
657 	return 0;
658 
659 free_slave_mii_bus:
660 	if (ds->slave_mii_bus && ds->ops->phy_read)
661 		mdiobus_free(ds->slave_mii_bus);
662 teardown:
663 	if (ds->ops->teardown)
664 		ds->ops->teardown(ds);
665 unregister_notifier:
666 	dsa_switch_unregister_notifier(ds);
667 devlink_free:
668 	dsa_switch_devlink_free(ds);
669 	return err;
670 }
671 
672 static void dsa_switch_teardown(struct dsa_switch *ds)
673 {
674 	if (!ds->setup)
675 		return;
676 
677 	dsa_switch_devlink_unregister(ds);
678 
679 	if (ds->slave_mii_bus && ds->ops->phy_read) {
680 		mdiobus_unregister(ds->slave_mii_bus);
681 		mdiobus_free(ds->slave_mii_bus);
682 		ds->slave_mii_bus = NULL;
683 	}
684 
685 	dsa_switch_teardown_tag_protocol(ds);
686 
687 	if (ds->ops->teardown)
688 		ds->ops->teardown(ds);
689 
690 	dsa_switch_unregister_notifier(ds);
691 
692 	dsa_switch_devlink_free(ds);
693 
694 	ds->setup = false;
695 }
696 
697 /* First tear down the non-shared, then the shared ports. This ensures that
698  * all work items scheduled by our switchdev handlers for user ports have
699  * completed before we destroy the refcounting kept on the shared ports.
700  */
701 static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst)
702 {
703 	struct dsa_port *dp;
704 
705 	list_for_each_entry(dp, &dst->ports, list)
706 		if (dsa_port_is_user(dp) || dsa_port_is_unused(dp))
707 			dsa_port_teardown(dp);
708 
709 	dsa_flush_workqueue();
710 
711 	list_for_each_entry(dp, &dst->ports, list)
712 		if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp))
713 			dsa_port_teardown(dp);
714 }
715 
716 static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
717 {
718 	struct dsa_port *dp;
719 
720 	list_for_each_entry(dp, &dst->ports, list)
721 		dsa_switch_teardown(dp->ds);
722 }
723 
724 /* Bring shared ports up first, then non-shared ports */
725 static int dsa_tree_setup_ports(struct dsa_switch_tree *dst)
726 {
727 	struct dsa_port *dp;
728 	int err = 0;
729 
730 	list_for_each_entry(dp, &dst->ports, list) {
731 		if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) {
732 			err = dsa_port_setup(dp);
733 			if (err)
734 				goto teardown;
735 		}
736 	}
737 
738 	list_for_each_entry(dp, &dst->ports, list) {
739 		if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) {
740 			err = dsa_port_setup(dp);
741 			if (err) {
742 				err = dsa_port_setup_as_unused(dp);
743 				if (err)
744 					goto teardown;
745 			}
746 		}
747 	}
748 
749 	return 0;
750 
751 teardown:
752 	dsa_tree_teardown_ports(dst);
753 
754 	return err;
755 }
756 
757 static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
758 {
759 	struct dsa_port *dp;
760 	int err = 0;
761 
762 	list_for_each_entry(dp, &dst->ports, list) {
763 		err = dsa_switch_setup(dp->ds);
764 		if (err) {
765 			dsa_tree_teardown_switches(dst);
766 			break;
767 		}
768 	}
769 
770 	return err;
771 }
772 
773 static int dsa_tree_setup_master(struct dsa_switch_tree *dst)
774 {
775 	struct dsa_port *cpu_dp;
776 	int err = 0;
777 
778 	rtnl_lock();
779 
780 	dsa_tree_for_each_cpu_port(cpu_dp, dst) {
781 		struct net_device *master = cpu_dp->master;
782 		bool admin_up = (master->flags & IFF_UP) &&
783 				!qdisc_tx_is_noop(master);
784 
785 		err = dsa_master_setup(master, cpu_dp);
786 		if (err)
787 			break;
788 
789 		/* Replay master state event */
790 		dsa_tree_master_admin_state_change(dst, master, admin_up);
791 		dsa_tree_master_oper_state_change(dst, master,
792 						  netif_oper_up(master));
793 	}
794 
795 	rtnl_unlock();
796 
797 	return err;
798 }
799 
800 static void dsa_tree_teardown_master(struct dsa_switch_tree *dst)
801 {
802 	struct dsa_port *cpu_dp;
803 
804 	rtnl_lock();
805 
806 	dsa_tree_for_each_cpu_port(cpu_dp, dst) {
807 		struct net_device *master = cpu_dp->master;
808 
809 		/* Synthesizing an "admin down" state is sufficient for
810 		 * the switches to get a notification if the master is
811 		 * currently up and running.
812 		 */
813 		dsa_tree_master_admin_state_change(dst, master, false);
814 
815 		dsa_master_teardown(master);
816 	}
817 
818 	rtnl_unlock();
819 }
820 
821 static int dsa_tree_setup_lags(struct dsa_switch_tree *dst)
822 {
823 	unsigned int len = 0;
824 	struct dsa_port *dp;
825 
826 	list_for_each_entry(dp, &dst->ports, list) {
827 		if (dp->ds->num_lag_ids > len)
828 			len = dp->ds->num_lag_ids;
829 	}
830 
831 	if (!len)
832 		return 0;
833 
834 	dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL);
835 	if (!dst->lags)
836 		return -ENOMEM;
837 
838 	dst->lags_len = len;
839 	return 0;
840 }
841 
842 static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst)
843 {
844 	kfree(dst->lags);
845 }
846 
847 static int dsa_tree_setup(struct dsa_switch_tree *dst)
848 {
849 	bool complete;
850 	int err;
851 
852 	if (dst->setup) {
853 		pr_err("DSA: tree %d already setup! Disjoint trees?\n",
854 		       dst->index);
855 		return -EEXIST;
856 	}
857 
858 	complete = dsa_tree_setup_routing_table(dst);
859 	if (!complete)
860 		return 0;
861 
862 	err = dsa_tree_setup_cpu_ports(dst);
863 	if (err)
864 		return err;
865 
866 	err = dsa_tree_setup_switches(dst);
867 	if (err)
868 		goto teardown_cpu_ports;
869 
870 	err = dsa_tree_setup_ports(dst);
871 	if (err)
872 		goto teardown_switches;
873 
874 	err = dsa_tree_setup_master(dst);
875 	if (err)
876 		goto teardown_ports;
877 
878 	err = dsa_tree_setup_lags(dst);
879 	if (err)
880 		goto teardown_master;
881 
882 	dst->setup = true;
883 
884 	pr_info("DSA: tree %d setup\n", dst->index);
885 
886 	return 0;
887 
888 teardown_master:
889 	dsa_tree_teardown_master(dst);
890 teardown_ports:
891 	dsa_tree_teardown_ports(dst);
892 teardown_switches:
893 	dsa_tree_teardown_switches(dst);
894 teardown_cpu_ports:
895 	dsa_tree_teardown_cpu_ports(dst);
896 
897 	return err;
898 }
899 
900 static void dsa_tree_teardown(struct dsa_switch_tree *dst)
901 {
902 	struct dsa_link *dl, *next;
903 
904 	if (!dst->setup)
905 		return;
906 
907 	dsa_tree_teardown_lags(dst);
908 
909 	dsa_tree_teardown_master(dst);
910 
911 	dsa_tree_teardown_ports(dst);
912 
913 	dsa_tree_teardown_switches(dst);
914 
915 	dsa_tree_teardown_cpu_ports(dst);
916 
917 	list_for_each_entry_safe(dl, next, &dst->rtable, list) {
918 		list_del(&dl->list);
919 		kfree(dl);
920 	}
921 
922 	pr_info("DSA: tree %d torn down\n", dst->index);
923 
924 	dst->setup = false;
925 }
926 
927 static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst,
928 				   const struct dsa_device_ops *tag_ops)
929 {
930 	const struct dsa_device_ops *old_tag_ops = dst->tag_ops;
931 	struct dsa_notifier_tag_proto_info info;
932 	int err;
933 
934 	dst->tag_ops = tag_ops;
935 
936 	/* Notify the switches from this tree about the connection
937 	 * to the new tagger
938 	 */
939 	info.tag_ops = tag_ops;
940 	err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info);
941 	if (err && err != -EOPNOTSUPP)
942 		goto out_disconnect;
943 
944 	/* Notify the old tagger about the disconnection from this tree */
945 	info.tag_ops = old_tag_ops;
946 	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
947 
948 	return 0;
949 
950 out_disconnect:
951 	info.tag_ops = tag_ops;
952 	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
953 	dst->tag_ops = old_tag_ops;
954 
955 	return err;
956 }
957 
958 /* Since the dsa/tagging sysfs device attribute is per master, the assumption
959  * is that all DSA switches within a tree share the same tagger, otherwise
960  * they would have formed disjoint trees (different "dsa,member" values).
961  */
962 int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst,
963 			      const struct dsa_device_ops *tag_ops,
964 			      const struct dsa_device_ops *old_tag_ops)
965 {
966 	struct dsa_notifier_tag_proto_info info;
967 	struct dsa_port *dp;
968 	int err = -EBUSY;
969 
970 	if (!rtnl_trylock())
971 		return restart_syscall();
972 
973 	/* At the moment we don't allow changing the tag protocol under
974 	 * traffic. The rtnl_mutex also happens to serialize concurrent
975 	 * attempts to change the tagging protocol. If we ever lift the IFF_UP
976 	 * restriction, there needs to be another mutex which serializes this.
977 	 */
978 	dsa_tree_for_each_user_port(dp, dst) {
979 		if (dsa_port_to_master(dp)->flags & IFF_UP)
980 			goto out_unlock;
981 
982 		if (dp->slave->flags & IFF_UP)
983 			goto out_unlock;
984 	}
985 
986 	/* Notify the tag protocol change */
987 	info.tag_ops = tag_ops;
988 	err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
989 	if (err)
990 		goto out_unwind_tagger;
991 
992 	err = dsa_tree_bind_tag_proto(dst, tag_ops);
993 	if (err)
994 		goto out_unwind_tagger;
995 
996 	rtnl_unlock();
997 
998 	return 0;
999 
1000 out_unwind_tagger:
1001 	info.tag_ops = old_tag_ops;
1002 	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1003 out_unlock:
1004 	rtnl_unlock();
1005 	return err;
1006 }
1007 
1008 static void dsa_tree_master_state_change(struct dsa_switch_tree *dst,
1009 					 struct net_device *master)
1010 {
1011 	struct dsa_notifier_master_state_info info;
1012 	struct dsa_port *cpu_dp = master->dsa_ptr;
1013 
1014 	info.master = master;
1015 	info.operational = dsa_port_master_is_operational(cpu_dp);
1016 
1017 	dsa_tree_notify(dst, DSA_NOTIFIER_MASTER_STATE_CHANGE, &info);
1018 }
1019 
1020 void dsa_tree_master_admin_state_change(struct dsa_switch_tree *dst,
1021 					struct net_device *master,
1022 					bool up)
1023 {
1024 	struct dsa_port *cpu_dp = master->dsa_ptr;
1025 	bool notify = false;
1026 
1027 	/* Don't keep track of admin state on LAG DSA masters,
1028 	 * but rather just of physical DSA masters
1029 	 */
1030 	if (netif_is_lag_master(master))
1031 		return;
1032 
1033 	if ((dsa_port_master_is_operational(cpu_dp)) !=
1034 	    (up && cpu_dp->master_oper_up))
1035 		notify = true;
1036 
1037 	cpu_dp->master_admin_up = up;
1038 
1039 	if (notify)
1040 		dsa_tree_master_state_change(dst, master);
1041 }
1042 
1043 void dsa_tree_master_oper_state_change(struct dsa_switch_tree *dst,
1044 				       struct net_device *master,
1045 				       bool up)
1046 {
1047 	struct dsa_port *cpu_dp = master->dsa_ptr;
1048 	bool notify = false;
1049 
1050 	/* Don't keep track of oper state on LAG DSA masters,
1051 	 * but rather just of physical DSA masters
1052 	 */
1053 	if (netif_is_lag_master(master))
1054 		return;
1055 
1056 	if ((dsa_port_master_is_operational(cpu_dp)) !=
1057 	    (cpu_dp->master_admin_up && up))
1058 		notify = true;
1059 
1060 	cpu_dp->master_oper_up = up;
1061 
1062 	if (notify)
1063 		dsa_tree_master_state_change(dst, master);
1064 }
1065 
1066 static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index)
1067 {
1068 	struct dsa_switch_tree *dst = ds->dst;
1069 	struct dsa_port *dp;
1070 
1071 	dsa_switch_for_each_port(dp, ds)
1072 		if (dp->index == index)
1073 			return dp;
1074 
1075 	dp = kzalloc(sizeof(*dp), GFP_KERNEL);
1076 	if (!dp)
1077 		return NULL;
1078 
1079 	dp->ds = ds;
1080 	dp->index = index;
1081 
1082 	mutex_init(&dp->addr_lists_lock);
1083 	mutex_init(&dp->vlans_lock);
1084 	INIT_LIST_HEAD(&dp->fdbs);
1085 	INIT_LIST_HEAD(&dp->mdbs);
1086 	INIT_LIST_HEAD(&dp->vlans);
1087 	INIT_LIST_HEAD(&dp->list);
1088 	list_add_tail(&dp->list, &dst->ports);
1089 
1090 	return dp;
1091 }
1092 
1093 static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
1094 {
1095 	dp->type = DSA_PORT_TYPE_USER;
1096 	dp->name = name;
1097 
1098 	return 0;
1099 }
1100 
1101 static int dsa_port_parse_dsa(struct dsa_port *dp)
1102 {
1103 	dp->type = DSA_PORT_TYPE_DSA;
1104 
1105 	return 0;
1106 }
1107 
1108 static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp,
1109 						  struct net_device *master)
1110 {
1111 	enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE;
1112 	struct dsa_switch *mds, *ds = dp->ds;
1113 	unsigned int mdp_upstream;
1114 	struct dsa_port *mdp;
1115 
1116 	/* It is possible to stack DSA switches onto one another when that
1117 	 * happens the switch driver may want to know if its tagging protocol
1118 	 * is going to work in such a configuration.
1119 	 */
1120 	if (dsa_slave_dev_check(master)) {
1121 		mdp = dsa_slave_to_port(master);
1122 		mds = mdp->ds;
1123 		mdp_upstream = dsa_upstream_port(mds, mdp->index);
1124 		tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream,
1125 							  DSA_TAG_PROTO_NONE);
1126 	}
1127 
1128 	/* If the master device is not itself a DSA slave in a disjoint DSA
1129 	 * tree, then return immediately.
1130 	 */
1131 	return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol);
1132 }
1133 
1134 static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *master,
1135 			      const char *user_protocol)
1136 {
1137 	const struct dsa_device_ops *tag_ops = NULL;
1138 	struct dsa_switch *ds = dp->ds;
1139 	struct dsa_switch_tree *dst = ds->dst;
1140 	enum dsa_tag_protocol default_proto;
1141 
1142 	/* Find out which protocol the switch would prefer. */
1143 	default_proto = dsa_get_tag_protocol(dp, master);
1144 	if (dst->default_proto) {
1145 		if (dst->default_proto != default_proto) {
1146 			dev_err(ds->dev,
1147 				"A DSA switch tree can have only one tagging protocol\n");
1148 			return -EINVAL;
1149 		}
1150 	} else {
1151 		dst->default_proto = default_proto;
1152 	}
1153 
1154 	/* See if the user wants to override that preference. */
1155 	if (user_protocol) {
1156 		if (!ds->ops->change_tag_protocol) {
1157 			dev_err(ds->dev, "Tag protocol cannot be modified\n");
1158 			return -EINVAL;
1159 		}
1160 
1161 		tag_ops = dsa_tag_driver_get_by_name(user_protocol);
1162 		if (IS_ERR(tag_ops)) {
1163 			dev_warn(ds->dev,
1164 				 "Failed to find a tagging driver for protocol %s, using default\n",
1165 				 user_protocol);
1166 			tag_ops = NULL;
1167 		}
1168 	}
1169 
1170 	if (!tag_ops)
1171 		tag_ops = dsa_tag_driver_get_by_id(default_proto);
1172 
1173 	if (IS_ERR(tag_ops)) {
1174 		if (PTR_ERR(tag_ops) == -ENOPROTOOPT)
1175 			return -EPROBE_DEFER;
1176 
1177 		dev_warn(ds->dev, "No tagger for this switch\n");
1178 		return PTR_ERR(tag_ops);
1179 	}
1180 
1181 	if (dst->tag_ops) {
1182 		if (dst->tag_ops != tag_ops) {
1183 			dev_err(ds->dev,
1184 				"A DSA switch tree can have only one tagging protocol\n");
1185 
1186 			dsa_tag_driver_put(tag_ops);
1187 			return -EINVAL;
1188 		}
1189 
1190 		/* In the case of multiple CPU ports per switch, the tagging
1191 		 * protocol is still reference-counted only per switch tree.
1192 		 */
1193 		dsa_tag_driver_put(tag_ops);
1194 	} else {
1195 		dst->tag_ops = tag_ops;
1196 	}
1197 
1198 	dp->master = master;
1199 	dp->type = DSA_PORT_TYPE_CPU;
1200 	dsa_port_set_tag_protocol(dp, dst->tag_ops);
1201 	dp->dst = dst;
1202 
1203 	/* At this point, the tree may be configured to use a different
1204 	 * tagger than the one chosen by the switch driver during
1205 	 * .setup, in the case when a user selects a custom protocol
1206 	 * through the DT.
1207 	 *
1208 	 * This is resolved by syncing the driver with the tree in
1209 	 * dsa_switch_setup_tag_protocol once .setup has run and the
1210 	 * driver is ready to accept calls to .change_tag_protocol. If
1211 	 * the driver does not support the custom protocol at that
1212 	 * point, the tree is wholly rejected, thereby ensuring that the
1213 	 * tree and driver are always in agreement on the protocol to
1214 	 * use.
1215 	 */
1216 	return 0;
1217 }
1218 
1219 static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
1220 {
1221 	struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
1222 	const char *name = of_get_property(dn, "label", NULL);
1223 	bool link = of_property_read_bool(dn, "link");
1224 
1225 	dp->dn = dn;
1226 
1227 	if (ethernet) {
1228 		struct net_device *master;
1229 		const char *user_protocol;
1230 
1231 		master = of_find_net_device_by_node(ethernet);
1232 		of_node_put(ethernet);
1233 		if (!master)
1234 			return -EPROBE_DEFER;
1235 
1236 		user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL);
1237 		return dsa_port_parse_cpu(dp, master, user_protocol);
1238 	}
1239 
1240 	if (link)
1241 		return dsa_port_parse_dsa(dp);
1242 
1243 	return dsa_port_parse_user(dp, name);
1244 }
1245 
1246 static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
1247 				     struct device_node *dn)
1248 {
1249 	struct device_node *ports, *port;
1250 	struct dsa_port *dp;
1251 	int err = 0;
1252 	u32 reg;
1253 
1254 	ports = of_get_child_by_name(dn, "ports");
1255 	if (!ports) {
1256 		/* The second possibility is "ethernet-ports" */
1257 		ports = of_get_child_by_name(dn, "ethernet-ports");
1258 		if (!ports) {
1259 			dev_err(ds->dev, "no ports child node found\n");
1260 			return -EINVAL;
1261 		}
1262 	}
1263 
1264 	for_each_available_child_of_node(ports, port) {
1265 		err = of_property_read_u32(port, "reg", &reg);
1266 		if (err) {
1267 			of_node_put(port);
1268 			goto out_put_node;
1269 		}
1270 
1271 		if (reg >= ds->num_ports) {
1272 			dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n",
1273 				port, reg, ds->num_ports);
1274 			of_node_put(port);
1275 			err = -EINVAL;
1276 			goto out_put_node;
1277 		}
1278 
1279 		dp = dsa_to_port(ds, reg);
1280 
1281 		err = dsa_port_parse_of(dp, port);
1282 		if (err) {
1283 			of_node_put(port);
1284 			goto out_put_node;
1285 		}
1286 	}
1287 
1288 out_put_node:
1289 	of_node_put(ports);
1290 	return err;
1291 }
1292 
1293 static int dsa_switch_parse_member_of(struct dsa_switch *ds,
1294 				      struct device_node *dn)
1295 {
1296 	u32 m[2] = { 0, 0 };
1297 	int sz;
1298 
1299 	/* Don't error out if this optional property isn't found */
1300 	sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
1301 	if (sz < 0 && sz != -EINVAL)
1302 		return sz;
1303 
1304 	ds->index = m[1];
1305 
1306 	ds->dst = dsa_tree_touch(m[0]);
1307 	if (!ds->dst)
1308 		return -ENOMEM;
1309 
1310 	if (dsa_switch_find(ds->dst->index, ds->index)) {
1311 		dev_err(ds->dev,
1312 			"A DSA switch with index %d already exists in tree %d\n",
1313 			ds->index, ds->dst->index);
1314 		return -EEXIST;
1315 	}
1316 
1317 	if (ds->dst->last_switch < ds->index)
1318 		ds->dst->last_switch = ds->index;
1319 
1320 	return 0;
1321 }
1322 
1323 static int dsa_switch_touch_ports(struct dsa_switch *ds)
1324 {
1325 	struct dsa_port *dp;
1326 	int port;
1327 
1328 	for (port = 0; port < ds->num_ports; port++) {
1329 		dp = dsa_port_touch(ds, port);
1330 		if (!dp)
1331 			return -ENOMEM;
1332 	}
1333 
1334 	return 0;
1335 }
1336 
1337 static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
1338 {
1339 	int err;
1340 
1341 	err = dsa_switch_parse_member_of(ds, dn);
1342 	if (err)
1343 		return err;
1344 
1345 	err = dsa_switch_touch_ports(ds);
1346 	if (err)
1347 		return err;
1348 
1349 	return dsa_switch_parse_ports_of(ds, dn);
1350 }
1351 
1352 static int dev_is_class(struct device *dev, void *class)
1353 {
1354 	if (dev->class != NULL && !strcmp(dev->class->name, class))
1355 		return 1;
1356 
1357 	return 0;
1358 }
1359 
1360 static struct device *dev_find_class(struct device *parent, char *class)
1361 {
1362 	if (dev_is_class(parent, class)) {
1363 		get_device(parent);
1364 		return parent;
1365 	}
1366 
1367 	return device_find_child(parent, class, dev_is_class);
1368 }
1369 
1370 static struct net_device *dsa_dev_to_net_device(struct device *dev)
1371 {
1372 	struct device *d;
1373 
1374 	d = dev_find_class(dev, "net");
1375 	if (d != NULL) {
1376 		struct net_device *nd;
1377 
1378 		nd = to_net_dev(d);
1379 		dev_hold(nd);
1380 		put_device(d);
1381 
1382 		return nd;
1383 	}
1384 
1385 	return NULL;
1386 }
1387 
1388 static int dsa_port_parse(struct dsa_port *dp, const char *name,
1389 			  struct device *dev)
1390 {
1391 	if (!strcmp(name, "cpu")) {
1392 		struct net_device *master;
1393 
1394 		master = dsa_dev_to_net_device(dev);
1395 		if (!master)
1396 			return -EPROBE_DEFER;
1397 
1398 		dev_put(master);
1399 
1400 		return dsa_port_parse_cpu(dp, master, NULL);
1401 	}
1402 
1403 	if (!strcmp(name, "dsa"))
1404 		return dsa_port_parse_dsa(dp);
1405 
1406 	return dsa_port_parse_user(dp, name);
1407 }
1408 
1409 static int dsa_switch_parse_ports(struct dsa_switch *ds,
1410 				  struct dsa_chip_data *cd)
1411 {
1412 	bool valid_name_found = false;
1413 	struct dsa_port *dp;
1414 	struct device *dev;
1415 	const char *name;
1416 	unsigned int i;
1417 	int err;
1418 
1419 	for (i = 0; i < DSA_MAX_PORTS; i++) {
1420 		name = cd->port_names[i];
1421 		dev = cd->netdev[i];
1422 		dp = dsa_to_port(ds, i);
1423 
1424 		if (!name)
1425 			continue;
1426 
1427 		err = dsa_port_parse(dp, name, dev);
1428 		if (err)
1429 			return err;
1430 
1431 		valid_name_found = true;
1432 	}
1433 
1434 	if (!valid_name_found && i == DSA_MAX_PORTS)
1435 		return -EINVAL;
1436 
1437 	return 0;
1438 }
1439 
1440 static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
1441 {
1442 	int err;
1443 
1444 	ds->cd = cd;
1445 
1446 	/* We don't support interconnected switches nor multiple trees via
1447 	 * platform data, so this is the unique switch of the tree.
1448 	 */
1449 	ds->index = 0;
1450 	ds->dst = dsa_tree_touch(0);
1451 	if (!ds->dst)
1452 		return -ENOMEM;
1453 
1454 	err = dsa_switch_touch_ports(ds);
1455 	if (err)
1456 		return err;
1457 
1458 	return dsa_switch_parse_ports(ds, cd);
1459 }
1460 
1461 static void dsa_switch_release_ports(struct dsa_switch *ds)
1462 {
1463 	struct dsa_port *dp, *next;
1464 
1465 	dsa_switch_for_each_port_safe(dp, next, ds) {
1466 		WARN_ON(!list_empty(&dp->fdbs));
1467 		WARN_ON(!list_empty(&dp->mdbs));
1468 		WARN_ON(!list_empty(&dp->vlans));
1469 		list_del(&dp->list);
1470 		kfree(dp);
1471 	}
1472 }
1473 
1474 static int dsa_switch_probe(struct dsa_switch *ds)
1475 {
1476 	struct dsa_switch_tree *dst;
1477 	struct dsa_chip_data *pdata;
1478 	struct device_node *np;
1479 	int err;
1480 
1481 	if (!ds->dev)
1482 		return -ENODEV;
1483 
1484 	pdata = ds->dev->platform_data;
1485 	np = ds->dev->of_node;
1486 
1487 	if (!ds->num_ports)
1488 		return -EINVAL;
1489 
1490 	if (np) {
1491 		err = dsa_switch_parse_of(ds, np);
1492 		if (err)
1493 			dsa_switch_release_ports(ds);
1494 	} else if (pdata) {
1495 		err = dsa_switch_parse(ds, pdata);
1496 		if (err)
1497 			dsa_switch_release_ports(ds);
1498 	} else {
1499 		err = -ENODEV;
1500 	}
1501 
1502 	if (err)
1503 		return err;
1504 
1505 	dst = ds->dst;
1506 	dsa_tree_get(dst);
1507 	err = dsa_tree_setup(dst);
1508 	if (err) {
1509 		dsa_switch_release_ports(ds);
1510 		dsa_tree_put(dst);
1511 	}
1512 
1513 	return err;
1514 }
1515 
1516 int dsa_register_switch(struct dsa_switch *ds)
1517 {
1518 	int err;
1519 
1520 	mutex_lock(&dsa2_mutex);
1521 	err = dsa_switch_probe(ds);
1522 	dsa_tree_put(ds->dst);
1523 	mutex_unlock(&dsa2_mutex);
1524 
1525 	return err;
1526 }
1527 EXPORT_SYMBOL_GPL(dsa_register_switch);
1528 
1529 static void dsa_switch_remove(struct dsa_switch *ds)
1530 {
1531 	struct dsa_switch_tree *dst = ds->dst;
1532 
1533 	dsa_tree_teardown(dst);
1534 	dsa_switch_release_ports(ds);
1535 	dsa_tree_put(dst);
1536 }
1537 
1538 void dsa_unregister_switch(struct dsa_switch *ds)
1539 {
1540 	mutex_lock(&dsa2_mutex);
1541 	dsa_switch_remove(ds);
1542 	mutex_unlock(&dsa2_mutex);
1543 }
1544 EXPORT_SYMBOL_GPL(dsa_unregister_switch);
1545 
1546 /* If the DSA master chooses to unregister its net_device on .shutdown, DSA is
1547  * blocking that operation from completion, due to the dev_hold taken inside
1548  * netdev_upper_dev_link. Unlink the DSA slave interfaces from being uppers of
1549  * the DSA master, so that the system can reboot successfully.
1550  */
1551 void dsa_switch_shutdown(struct dsa_switch *ds)
1552 {
1553 	struct net_device *master, *slave_dev;
1554 	struct dsa_port *dp;
1555 
1556 	mutex_lock(&dsa2_mutex);
1557 
1558 	if (!ds->setup)
1559 		goto out;
1560 
1561 	rtnl_lock();
1562 
1563 	dsa_switch_for_each_user_port(dp, ds) {
1564 		master = dsa_port_to_master(dp);
1565 		slave_dev = dp->slave;
1566 
1567 		netdev_upper_dev_unlink(master, slave_dev);
1568 	}
1569 
1570 	/* Disconnect from further netdevice notifiers on the master,
1571 	 * since netdev_uses_dsa() will now return false.
1572 	 */
1573 	dsa_switch_for_each_cpu_port(dp, ds)
1574 		dp->master->dsa_ptr = NULL;
1575 
1576 	rtnl_unlock();
1577 out:
1578 	mutex_unlock(&dsa2_mutex);
1579 }
1580 EXPORT_SYMBOL_GPL(dsa_switch_shutdown);
1581 
1582 #ifdef CONFIG_PM_SLEEP
1583 static bool dsa_port_is_initialized(const struct dsa_port *dp)
1584 {
1585 	return dp->type == DSA_PORT_TYPE_USER && dp->slave;
1586 }
1587 
1588 int dsa_switch_suspend(struct dsa_switch *ds)
1589 {
1590 	struct dsa_port *dp;
1591 	int ret = 0;
1592 
1593 	/* Suspend slave network devices */
1594 	dsa_switch_for_each_port(dp, ds) {
1595 		if (!dsa_port_is_initialized(dp))
1596 			continue;
1597 
1598 		ret = dsa_slave_suspend(dp->slave);
1599 		if (ret)
1600 			return ret;
1601 	}
1602 
1603 	if (ds->ops->suspend)
1604 		ret = ds->ops->suspend(ds);
1605 
1606 	return ret;
1607 }
1608 EXPORT_SYMBOL_GPL(dsa_switch_suspend);
1609 
1610 int dsa_switch_resume(struct dsa_switch *ds)
1611 {
1612 	struct dsa_port *dp;
1613 	int ret = 0;
1614 
1615 	if (ds->ops->resume)
1616 		ret = ds->ops->resume(ds);
1617 
1618 	if (ret)
1619 		return ret;
1620 
1621 	/* Resume slave network devices */
1622 	dsa_switch_for_each_port(dp, ds) {
1623 		if (!dsa_port_is_initialized(dp))
1624 			continue;
1625 
1626 		ret = dsa_slave_resume(dp->slave);
1627 		if (ret)
1628 			return ret;
1629 	}
1630 
1631 	return 0;
1632 }
1633 EXPORT_SYMBOL_GPL(dsa_switch_resume);
1634 #endif
1635 
1636 struct dsa_port *dsa_port_from_netdev(struct net_device *netdev)
1637 {
1638 	if (!netdev || !dsa_slave_dev_check(netdev))
1639 		return ERR_PTR(-ENODEV);
1640 
1641 	return dsa_slave_to_port(netdev);
1642 }
1643 EXPORT_SYMBOL_GPL(dsa_port_from_netdev);
1644 
1645 bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b)
1646 {
1647 	if (a->type != b->type)
1648 		return false;
1649 
1650 	switch (a->type) {
1651 	case DSA_DB_PORT:
1652 		return a->dp == b->dp;
1653 	case DSA_DB_LAG:
1654 		return a->lag.dev == b->lag.dev;
1655 	case DSA_DB_BRIDGE:
1656 		return a->bridge.num == b->bridge.num;
1657 	default:
1658 		WARN_ON(1);
1659 		return false;
1660 	}
1661 }
1662 
1663 bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port,
1664 				 const unsigned char *addr, u16 vid,
1665 				 struct dsa_db db)
1666 {
1667 	struct dsa_port *dp = dsa_to_port(ds, port);
1668 	struct dsa_mac_addr *a;
1669 
1670 	lockdep_assert_held(&dp->addr_lists_lock);
1671 
1672 	list_for_each_entry(a, &dp->fdbs, list) {
1673 		if (!ether_addr_equal(a->addr, addr) || a->vid != vid)
1674 			continue;
1675 
1676 		if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1677 			return true;
1678 	}
1679 
1680 	return false;
1681 }
1682 EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db);
1683 
1684 bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port,
1685 				 const struct switchdev_obj_port_mdb *mdb,
1686 				 struct dsa_db db)
1687 {
1688 	struct dsa_port *dp = dsa_to_port(ds, port);
1689 	struct dsa_mac_addr *a;
1690 
1691 	lockdep_assert_held(&dp->addr_lists_lock);
1692 
1693 	list_for_each_entry(a, &dp->mdbs, list) {
1694 		if (!ether_addr_equal(a->addr, mdb->addr) || a->vid != mdb->vid)
1695 			continue;
1696 
1697 		if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1698 			return true;
1699 	}
1700 
1701 	return false;
1702 }
1703 EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db);
1704 
1705 static int __init dsa_init_module(void)
1706 {
1707 	int rc;
1708 
1709 	dsa_owq = alloc_ordered_workqueue("dsa_ordered",
1710 					  WQ_MEM_RECLAIM);
1711 	if (!dsa_owq)
1712 		return -ENOMEM;
1713 
1714 	rc = dsa_slave_register_notifier();
1715 	if (rc)
1716 		goto register_notifier_fail;
1717 
1718 	dev_add_pack(&dsa_pack_type);
1719 
1720 	rc = rtnl_link_register(&dsa_link_ops);
1721 	if (rc)
1722 		goto netlink_register_fail;
1723 
1724 	return 0;
1725 
1726 netlink_register_fail:
1727 	dsa_slave_unregister_notifier();
1728 	dev_remove_pack(&dsa_pack_type);
1729 register_notifier_fail:
1730 	destroy_workqueue(dsa_owq);
1731 
1732 	return rc;
1733 }
1734 module_init(dsa_init_module);
1735 
1736 static void __exit dsa_cleanup_module(void)
1737 {
1738 	rtnl_link_unregister(&dsa_link_ops);
1739 
1740 	dsa_slave_unregister_notifier();
1741 	dev_remove_pack(&dsa_pack_type);
1742 	destroy_workqueue(dsa_owq);
1743 }
1744 module_exit(dsa_cleanup_module);
1745 
1746 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
1747 MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
1748 MODULE_LICENSE("GPL");
1749 MODULE_ALIAS("platform:dsa");
1750