xref: /openbmc/linux/net/dsa/dsa.c (revision 32bc7297d855608fcb13af62a95739a079b4f8e2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * DSA topology and switch handling
4  *
5  * Copyright (c) 2008-2009 Marvell Semiconductor
6  * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
7  * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
8  */
9 
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/slab.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/of.h>
18 #include <linux/of_mdio.h>
19 #include <linux/of_net.h>
20 #include <net/dsa_stubs.h>
21 #include <net/sch_generic.h>
22 
23 #include "devlink.h"
24 #include "dsa.h"
25 #include "master.h"
26 #include "netlink.h"
27 #include "port.h"
28 #include "slave.h"
29 #include "switch.h"
30 #include "tag.h"
31 
32 #define DSA_MAX_NUM_OFFLOADING_BRIDGES		BITS_PER_LONG
33 
34 static DEFINE_MUTEX(dsa2_mutex);
35 LIST_HEAD(dsa_tree_list);
36 
37 static struct workqueue_struct *dsa_owq;
38 
39 /* Track the bridges with forwarding offload enabled */
40 static unsigned long dsa_fwd_offloading_bridges;
41 
42 bool dsa_schedule_work(struct work_struct *work)
43 {
44 	return queue_work(dsa_owq, work);
45 }
46 
47 void dsa_flush_workqueue(void)
48 {
49 	flush_workqueue(dsa_owq);
50 }
51 EXPORT_SYMBOL_GPL(dsa_flush_workqueue);
52 
53 /**
54  * dsa_lag_map() - Map LAG structure to a linear LAG array
55  * @dst: Tree in which to record the mapping.
56  * @lag: LAG structure that is to be mapped to the tree's array.
57  *
58  * dsa_lag_id/dsa_lag_by_id can then be used to translate between the
59  * two spaces. The size of the mapping space is determined by the
60  * driver by setting ds->num_lag_ids. It is perfectly legal to leave
61  * it unset if it is not needed, in which case these functions become
62  * no-ops.
63  */
64 void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag)
65 {
66 	unsigned int id;
67 
68 	for (id = 1; id <= dst->lags_len; id++) {
69 		if (!dsa_lag_by_id(dst, id)) {
70 			dst->lags[id - 1] = lag;
71 			lag->id = id;
72 			return;
73 		}
74 	}
75 
76 	/* No IDs left, which is OK. Some drivers do not need it. The
77 	 * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id
78 	 * returns an error for this device when joining the LAG. The
79 	 * driver can then return -EOPNOTSUPP back to DSA, which will
80 	 * fall back to a software LAG.
81 	 */
82 }
83 
84 /**
85  * dsa_lag_unmap() - Remove a LAG ID mapping
86  * @dst: Tree in which the mapping is recorded.
87  * @lag: LAG structure that was mapped.
88  *
89  * As there may be multiple users of the mapping, it is only removed
90  * if there are no other references to it.
91  */
92 void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag)
93 {
94 	unsigned int id;
95 
96 	dsa_lags_foreach_id(id, dst) {
97 		if (dsa_lag_by_id(dst, id) == lag) {
98 			dst->lags[id - 1] = NULL;
99 			lag->id = 0;
100 			break;
101 		}
102 	}
103 }
104 
105 struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst,
106 				  const struct net_device *lag_dev)
107 {
108 	struct dsa_port *dp;
109 
110 	list_for_each_entry(dp, &dst->ports, list)
111 		if (dsa_port_lag_dev_get(dp) == lag_dev)
112 			return dp->lag;
113 
114 	return NULL;
115 }
116 
117 struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst,
118 					const struct net_device *br)
119 {
120 	struct dsa_port *dp;
121 
122 	list_for_each_entry(dp, &dst->ports, list)
123 		if (dsa_port_bridge_dev_get(dp) == br)
124 			return dp->bridge;
125 
126 	return NULL;
127 }
128 
129 static int dsa_bridge_num_find(const struct net_device *bridge_dev)
130 {
131 	struct dsa_switch_tree *dst;
132 
133 	list_for_each_entry(dst, &dsa_tree_list, list) {
134 		struct dsa_bridge *bridge;
135 
136 		bridge = dsa_tree_bridge_find(dst, bridge_dev);
137 		if (bridge)
138 			return bridge->num;
139 	}
140 
141 	return 0;
142 }
143 
144 unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max)
145 {
146 	unsigned int bridge_num = dsa_bridge_num_find(bridge_dev);
147 
148 	/* Switches without FDB isolation support don't get unique
149 	 * bridge numbering
150 	 */
151 	if (!max)
152 		return 0;
153 
154 	if (!bridge_num) {
155 		/* First port that requests FDB isolation or TX forwarding
156 		 * offload for this bridge
157 		 */
158 		bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges,
159 						DSA_MAX_NUM_OFFLOADING_BRIDGES,
160 						1);
161 		if (bridge_num >= max)
162 			return 0;
163 
164 		set_bit(bridge_num, &dsa_fwd_offloading_bridges);
165 	}
166 
167 	return bridge_num;
168 }
169 
170 void dsa_bridge_num_put(const struct net_device *bridge_dev,
171 			unsigned int bridge_num)
172 {
173 	/* Since we refcount bridges, we know that when we call this function
174 	 * it is no longer in use, so we can just go ahead and remove it from
175 	 * the bit mask.
176 	 */
177 	clear_bit(bridge_num, &dsa_fwd_offloading_bridges);
178 }
179 
180 struct dsa_switch *dsa_switch_find(int tree_index, int sw_index)
181 {
182 	struct dsa_switch_tree *dst;
183 	struct dsa_port *dp;
184 
185 	list_for_each_entry(dst, &dsa_tree_list, list) {
186 		if (dst->index != tree_index)
187 			continue;
188 
189 		list_for_each_entry(dp, &dst->ports, list) {
190 			if (dp->ds->index != sw_index)
191 				continue;
192 
193 			return dp->ds;
194 		}
195 	}
196 
197 	return NULL;
198 }
199 EXPORT_SYMBOL_GPL(dsa_switch_find);
200 
201 static struct dsa_switch_tree *dsa_tree_find(int index)
202 {
203 	struct dsa_switch_tree *dst;
204 
205 	list_for_each_entry(dst, &dsa_tree_list, list)
206 		if (dst->index == index)
207 			return dst;
208 
209 	return NULL;
210 }
211 
212 static struct dsa_switch_tree *dsa_tree_alloc(int index)
213 {
214 	struct dsa_switch_tree *dst;
215 
216 	dst = kzalloc(sizeof(*dst), GFP_KERNEL);
217 	if (!dst)
218 		return NULL;
219 
220 	dst->index = index;
221 
222 	INIT_LIST_HEAD(&dst->rtable);
223 
224 	INIT_LIST_HEAD(&dst->ports);
225 
226 	INIT_LIST_HEAD(&dst->list);
227 	list_add_tail(&dst->list, &dsa_tree_list);
228 
229 	kref_init(&dst->refcount);
230 
231 	return dst;
232 }
233 
234 static void dsa_tree_free(struct dsa_switch_tree *dst)
235 {
236 	if (dst->tag_ops)
237 		dsa_tag_driver_put(dst->tag_ops);
238 	list_del(&dst->list);
239 	kfree(dst);
240 }
241 
242 static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
243 {
244 	if (dst)
245 		kref_get(&dst->refcount);
246 
247 	return dst;
248 }
249 
250 static struct dsa_switch_tree *dsa_tree_touch(int index)
251 {
252 	struct dsa_switch_tree *dst;
253 
254 	dst = dsa_tree_find(index);
255 	if (dst)
256 		return dsa_tree_get(dst);
257 	else
258 		return dsa_tree_alloc(index);
259 }
260 
261 static void dsa_tree_release(struct kref *ref)
262 {
263 	struct dsa_switch_tree *dst;
264 
265 	dst = container_of(ref, struct dsa_switch_tree, refcount);
266 
267 	dsa_tree_free(dst);
268 }
269 
270 static void dsa_tree_put(struct dsa_switch_tree *dst)
271 {
272 	if (dst)
273 		kref_put(&dst->refcount, dsa_tree_release);
274 }
275 
276 static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
277 						   struct device_node *dn)
278 {
279 	struct dsa_port *dp;
280 
281 	list_for_each_entry(dp, &dst->ports, list)
282 		if (dp->dn == dn)
283 			return dp;
284 
285 	return NULL;
286 }
287 
288 static struct dsa_link *dsa_link_touch(struct dsa_port *dp,
289 				       struct dsa_port *link_dp)
290 {
291 	struct dsa_switch *ds = dp->ds;
292 	struct dsa_switch_tree *dst;
293 	struct dsa_link *dl;
294 
295 	dst = ds->dst;
296 
297 	list_for_each_entry(dl, &dst->rtable, list)
298 		if (dl->dp == dp && dl->link_dp == link_dp)
299 			return dl;
300 
301 	dl = kzalloc(sizeof(*dl), GFP_KERNEL);
302 	if (!dl)
303 		return NULL;
304 
305 	dl->dp = dp;
306 	dl->link_dp = link_dp;
307 
308 	INIT_LIST_HEAD(&dl->list);
309 	list_add_tail(&dl->list, &dst->rtable);
310 
311 	return dl;
312 }
313 
314 static bool dsa_port_setup_routing_table(struct dsa_port *dp)
315 {
316 	struct dsa_switch *ds = dp->ds;
317 	struct dsa_switch_tree *dst = ds->dst;
318 	struct device_node *dn = dp->dn;
319 	struct of_phandle_iterator it;
320 	struct dsa_port *link_dp;
321 	struct dsa_link *dl;
322 	int err;
323 
324 	of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
325 		link_dp = dsa_tree_find_port_by_node(dst, it.node);
326 		if (!link_dp) {
327 			of_node_put(it.node);
328 			return false;
329 		}
330 
331 		dl = dsa_link_touch(dp, link_dp);
332 		if (!dl) {
333 			of_node_put(it.node);
334 			return false;
335 		}
336 	}
337 
338 	return true;
339 }
340 
341 static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
342 {
343 	bool complete = true;
344 	struct dsa_port *dp;
345 
346 	list_for_each_entry(dp, &dst->ports, list) {
347 		if (dsa_port_is_dsa(dp)) {
348 			complete = dsa_port_setup_routing_table(dp);
349 			if (!complete)
350 				break;
351 		}
352 	}
353 
354 	return complete;
355 }
356 
357 static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
358 {
359 	struct dsa_port *dp;
360 
361 	list_for_each_entry(dp, &dst->ports, list)
362 		if (dsa_port_is_cpu(dp))
363 			return dp;
364 
365 	return NULL;
366 }
367 
368 struct net_device *dsa_tree_find_first_master(struct dsa_switch_tree *dst)
369 {
370 	struct device_node *ethernet;
371 	struct net_device *master;
372 	struct dsa_port *cpu_dp;
373 
374 	cpu_dp = dsa_tree_find_first_cpu(dst);
375 	ethernet = of_parse_phandle(cpu_dp->dn, "ethernet", 0);
376 	master = of_find_net_device_by_node(ethernet);
377 	of_node_put(ethernet);
378 
379 	return master;
380 }
381 
382 /* Assign the default CPU port (the first one in the tree) to all ports of the
383  * fabric which don't already have one as part of their own switch.
384  */
385 static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
386 {
387 	struct dsa_port *cpu_dp, *dp;
388 
389 	cpu_dp = dsa_tree_find_first_cpu(dst);
390 	if (!cpu_dp) {
391 		pr_err("DSA: tree %d has no CPU port\n", dst->index);
392 		return -EINVAL;
393 	}
394 
395 	list_for_each_entry(dp, &dst->ports, list) {
396 		if (dp->cpu_dp)
397 			continue;
398 
399 		if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
400 			dp->cpu_dp = cpu_dp;
401 	}
402 
403 	return 0;
404 }
405 
406 static struct dsa_port *
407 dsa_switch_preferred_default_local_cpu_port(struct dsa_switch *ds)
408 {
409 	struct dsa_port *cpu_dp;
410 
411 	if (!ds->ops->preferred_default_local_cpu_port)
412 		return NULL;
413 
414 	cpu_dp = ds->ops->preferred_default_local_cpu_port(ds);
415 	if (!cpu_dp)
416 		return NULL;
417 
418 	if (WARN_ON(!dsa_port_is_cpu(cpu_dp) || cpu_dp->ds != ds))
419 		return NULL;
420 
421 	return cpu_dp;
422 }
423 
424 /* Perform initial assignment of CPU ports to user ports and DSA links in the
425  * fabric, giving preference to CPU ports local to each switch. Default to
426  * using the first CPU port in the switch tree if the port does not have a CPU
427  * port local to this switch.
428  */
429 static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst)
430 {
431 	struct dsa_port *preferred_cpu_dp, *cpu_dp, *dp;
432 
433 	list_for_each_entry(cpu_dp, &dst->ports, list) {
434 		if (!dsa_port_is_cpu(cpu_dp))
435 			continue;
436 
437 		preferred_cpu_dp = dsa_switch_preferred_default_local_cpu_port(cpu_dp->ds);
438 		if (preferred_cpu_dp && preferred_cpu_dp != cpu_dp)
439 			continue;
440 
441 		/* Prefer a local CPU port */
442 		dsa_switch_for_each_port(dp, cpu_dp->ds) {
443 			/* Prefer the first local CPU port found */
444 			if (dp->cpu_dp)
445 				continue;
446 
447 			if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
448 				dp->cpu_dp = cpu_dp;
449 		}
450 	}
451 
452 	return dsa_tree_setup_default_cpu(dst);
453 }
454 
455 static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst)
456 {
457 	struct dsa_port *dp;
458 
459 	list_for_each_entry(dp, &dst->ports, list)
460 		if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
461 			dp->cpu_dp = NULL;
462 }
463 
464 static int dsa_port_setup(struct dsa_port *dp)
465 {
466 	bool dsa_port_link_registered = false;
467 	struct dsa_switch *ds = dp->ds;
468 	bool dsa_port_enabled = false;
469 	int err = 0;
470 
471 	if (dp->setup)
472 		return 0;
473 
474 	err = dsa_port_devlink_setup(dp);
475 	if (err)
476 		return err;
477 
478 	switch (dp->type) {
479 	case DSA_PORT_TYPE_UNUSED:
480 		dsa_port_disable(dp);
481 		break;
482 	case DSA_PORT_TYPE_CPU:
483 		if (dp->dn) {
484 			err = dsa_shared_port_link_register_of(dp);
485 			if (err)
486 				break;
487 			dsa_port_link_registered = true;
488 		} else {
489 			dev_warn(ds->dev,
490 				 "skipping link registration for CPU port %d\n",
491 				 dp->index);
492 		}
493 
494 		err = dsa_port_enable(dp, NULL);
495 		if (err)
496 			break;
497 		dsa_port_enabled = true;
498 
499 		break;
500 	case DSA_PORT_TYPE_DSA:
501 		if (dp->dn) {
502 			err = dsa_shared_port_link_register_of(dp);
503 			if (err)
504 				break;
505 			dsa_port_link_registered = true;
506 		} else {
507 			dev_warn(ds->dev,
508 				 "skipping link registration for DSA port %d\n",
509 				 dp->index);
510 		}
511 
512 		err = dsa_port_enable(dp, NULL);
513 		if (err)
514 			break;
515 		dsa_port_enabled = true;
516 
517 		break;
518 	case DSA_PORT_TYPE_USER:
519 		of_get_mac_address(dp->dn, dp->mac);
520 		err = dsa_slave_create(dp);
521 		break;
522 	}
523 
524 	if (err && dsa_port_enabled)
525 		dsa_port_disable(dp);
526 	if (err && dsa_port_link_registered)
527 		dsa_shared_port_link_unregister_of(dp);
528 	if (err) {
529 		dsa_port_devlink_teardown(dp);
530 		return err;
531 	}
532 
533 	dp->setup = true;
534 
535 	return 0;
536 }
537 
538 static void dsa_port_teardown(struct dsa_port *dp)
539 {
540 	if (!dp->setup)
541 		return;
542 
543 	switch (dp->type) {
544 	case DSA_PORT_TYPE_UNUSED:
545 		break;
546 	case DSA_PORT_TYPE_CPU:
547 		dsa_port_disable(dp);
548 		if (dp->dn)
549 			dsa_shared_port_link_unregister_of(dp);
550 		break;
551 	case DSA_PORT_TYPE_DSA:
552 		dsa_port_disable(dp);
553 		if (dp->dn)
554 			dsa_shared_port_link_unregister_of(dp);
555 		break;
556 	case DSA_PORT_TYPE_USER:
557 		if (dp->slave) {
558 			dsa_slave_destroy(dp->slave);
559 			dp->slave = NULL;
560 		}
561 		break;
562 	}
563 
564 	dsa_port_devlink_teardown(dp);
565 
566 	dp->setup = false;
567 }
568 
569 static int dsa_port_setup_as_unused(struct dsa_port *dp)
570 {
571 	dp->type = DSA_PORT_TYPE_UNUSED;
572 	return dsa_port_setup(dp);
573 }
574 
575 static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds)
576 {
577 	const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
578 	struct dsa_switch_tree *dst = ds->dst;
579 	int err;
580 
581 	if (tag_ops->proto == dst->default_proto)
582 		goto connect;
583 
584 	rtnl_lock();
585 	err = ds->ops->change_tag_protocol(ds, tag_ops->proto);
586 	rtnl_unlock();
587 	if (err) {
588 		dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n",
589 			tag_ops->name, ERR_PTR(err));
590 		return err;
591 	}
592 
593 connect:
594 	if (tag_ops->connect) {
595 		err = tag_ops->connect(ds);
596 		if (err)
597 			return err;
598 	}
599 
600 	if (ds->ops->connect_tag_protocol) {
601 		err = ds->ops->connect_tag_protocol(ds, tag_ops->proto);
602 		if (err) {
603 			dev_err(ds->dev,
604 				"Unable to connect to tag protocol \"%s\": %pe\n",
605 				tag_ops->name, ERR_PTR(err));
606 			goto disconnect;
607 		}
608 	}
609 
610 	return 0;
611 
612 disconnect:
613 	if (tag_ops->disconnect)
614 		tag_ops->disconnect(ds);
615 
616 	return err;
617 }
618 
619 static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds)
620 {
621 	const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
622 
623 	if (tag_ops->disconnect)
624 		tag_ops->disconnect(ds);
625 }
626 
627 static int dsa_switch_setup(struct dsa_switch *ds)
628 {
629 	struct device_node *dn;
630 	int err;
631 
632 	if (ds->setup)
633 		return 0;
634 
635 	/* Initialize ds->phys_mii_mask before registering the slave MDIO bus
636 	 * driver and before ops->setup() has run, since the switch drivers and
637 	 * the slave MDIO bus driver rely on these values for probing PHY
638 	 * devices or not
639 	 */
640 	ds->phys_mii_mask |= dsa_user_ports(ds);
641 
642 	err = dsa_switch_devlink_alloc(ds);
643 	if (err)
644 		return err;
645 
646 	err = dsa_switch_register_notifier(ds);
647 	if (err)
648 		goto devlink_free;
649 
650 	ds->configure_vlan_while_not_filtering = true;
651 
652 	err = ds->ops->setup(ds);
653 	if (err < 0)
654 		goto unregister_notifier;
655 
656 	err = dsa_switch_setup_tag_protocol(ds);
657 	if (err)
658 		goto teardown;
659 
660 	if (!ds->slave_mii_bus && ds->ops->phy_read) {
661 		ds->slave_mii_bus = mdiobus_alloc();
662 		if (!ds->slave_mii_bus) {
663 			err = -ENOMEM;
664 			goto teardown;
665 		}
666 
667 		dsa_slave_mii_bus_init(ds);
668 
669 		dn = of_get_child_by_name(ds->dev->of_node, "mdio");
670 
671 		err = of_mdiobus_register(ds->slave_mii_bus, dn);
672 		of_node_put(dn);
673 		if (err < 0)
674 			goto free_slave_mii_bus;
675 	}
676 
677 	dsa_switch_devlink_register(ds);
678 
679 	ds->setup = true;
680 	return 0;
681 
682 free_slave_mii_bus:
683 	if (ds->slave_mii_bus && ds->ops->phy_read)
684 		mdiobus_free(ds->slave_mii_bus);
685 teardown:
686 	if (ds->ops->teardown)
687 		ds->ops->teardown(ds);
688 unregister_notifier:
689 	dsa_switch_unregister_notifier(ds);
690 devlink_free:
691 	dsa_switch_devlink_free(ds);
692 	return err;
693 }
694 
695 static void dsa_switch_teardown(struct dsa_switch *ds)
696 {
697 	if (!ds->setup)
698 		return;
699 
700 	dsa_switch_devlink_unregister(ds);
701 
702 	if (ds->slave_mii_bus && ds->ops->phy_read) {
703 		mdiobus_unregister(ds->slave_mii_bus);
704 		mdiobus_free(ds->slave_mii_bus);
705 		ds->slave_mii_bus = NULL;
706 	}
707 
708 	dsa_switch_teardown_tag_protocol(ds);
709 
710 	if (ds->ops->teardown)
711 		ds->ops->teardown(ds);
712 
713 	dsa_switch_unregister_notifier(ds);
714 
715 	dsa_switch_devlink_free(ds);
716 
717 	ds->setup = false;
718 }
719 
720 /* First tear down the non-shared, then the shared ports. This ensures that
721  * all work items scheduled by our switchdev handlers for user ports have
722  * completed before we destroy the refcounting kept on the shared ports.
723  */
724 static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst)
725 {
726 	struct dsa_port *dp;
727 
728 	list_for_each_entry(dp, &dst->ports, list)
729 		if (dsa_port_is_user(dp) || dsa_port_is_unused(dp))
730 			dsa_port_teardown(dp);
731 
732 	dsa_flush_workqueue();
733 
734 	list_for_each_entry(dp, &dst->ports, list)
735 		if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp))
736 			dsa_port_teardown(dp);
737 }
738 
739 static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
740 {
741 	struct dsa_port *dp;
742 
743 	list_for_each_entry(dp, &dst->ports, list)
744 		dsa_switch_teardown(dp->ds);
745 }
746 
747 /* Bring shared ports up first, then non-shared ports */
748 static int dsa_tree_setup_ports(struct dsa_switch_tree *dst)
749 {
750 	struct dsa_port *dp;
751 	int err = 0;
752 
753 	list_for_each_entry(dp, &dst->ports, list) {
754 		if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) {
755 			err = dsa_port_setup(dp);
756 			if (err)
757 				goto teardown;
758 		}
759 	}
760 
761 	list_for_each_entry(dp, &dst->ports, list) {
762 		if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) {
763 			err = dsa_port_setup(dp);
764 			if (err) {
765 				err = dsa_port_setup_as_unused(dp);
766 				if (err)
767 					goto teardown;
768 			}
769 		}
770 	}
771 
772 	return 0;
773 
774 teardown:
775 	dsa_tree_teardown_ports(dst);
776 
777 	return err;
778 }
779 
780 static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
781 {
782 	struct dsa_port *dp;
783 	int err = 0;
784 
785 	list_for_each_entry(dp, &dst->ports, list) {
786 		err = dsa_switch_setup(dp->ds);
787 		if (err) {
788 			dsa_tree_teardown_switches(dst);
789 			break;
790 		}
791 	}
792 
793 	return err;
794 }
795 
796 static int dsa_tree_setup_master(struct dsa_switch_tree *dst)
797 {
798 	struct dsa_port *cpu_dp;
799 	int err = 0;
800 
801 	rtnl_lock();
802 
803 	dsa_tree_for_each_cpu_port(cpu_dp, dst) {
804 		struct net_device *master = cpu_dp->master;
805 		bool admin_up = (master->flags & IFF_UP) &&
806 				!qdisc_tx_is_noop(master);
807 
808 		err = dsa_master_setup(master, cpu_dp);
809 		if (err)
810 			break;
811 
812 		/* Replay master state event */
813 		dsa_tree_master_admin_state_change(dst, master, admin_up);
814 		dsa_tree_master_oper_state_change(dst, master,
815 						  netif_oper_up(master));
816 	}
817 
818 	rtnl_unlock();
819 
820 	return err;
821 }
822 
823 static void dsa_tree_teardown_master(struct dsa_switch_tree *dst)
824 {
825 	struct dsa_port *cpu_dp;
826 
827 	rtnl_lock();
828 
829 	dsa_tree_for_each_cpu_port(cpu_dp, dst) {
830 		struct net_device *master = cpu_dp->master;
831 
832 		/* Synthesizing an "admin down" state is sufficient for
833 		 * the switches to get a notification if the master is
834 		 * currently up and running.
835 		 */
836 		dsa_tree_master_admin_state_change(dst, master, false);
837 
838 		dsa_master_teardown(master);
839 	}
840 
841 	rtnl_unlock();
842 }
843 
844 static int dsa_tree_setup_lags(struct dsa_switch_tree *dst)
845 {
846 	unsigned int len = 0;
847 	struct dsa_port *dp;
848 
849 	list_for_each_entry(dp, &dst->ports, list) {
850 		if (dp->ds->num_lag_ids > len)
851 			len = dp->ds->num_lag_ids;
852 	}
853 
854 	if (!len)
855 		return 0;
856 
857 	dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL);
858 	if (!dst->lags)
859 		return -ENOMEM;
860 
861 	dst->lags_len = len;
862 	return 0;
863 }
864 
865 static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst)
866 {
867 	kfree(dst->lags);
868 }
869 
870 static int dsa_tree_setup(struct dsa_switch_tree *dst)
871 {
872 	bool complete;
873 	int err;
874 
875 	if (dst->setup) {
876 		pr_err("DSA: tree %d already setup! Disjoint trees?\n",
877 		       dst->index);
878 		return -EEXIST;
879 	}
880 
881 	complete = dsa_tree_setup_routing_table(dst);
882 	if (!complete)
883 		return 0;
884 
885 	err = dsa_tree_setup_cpu_ports(dst);
886 	if (err)
887 		return err;
888 
889 	err = dsa_tree_setup_switches(dst);
890 	if (err)
891 		goto teardown_cpu_ports;
892 
893 	err = dsa_tree_setup_ports(dst);
894 	if (err)
895 		goto teardown_switches;
896 
897 	err = dsa_tree_setup_master(dst);
898 	if (err)
899 		goto teardown_ports;
900 
901 	err = dsa_tree_setup_lags(dst);
902 	if (err)
903 		goto teardown_master;
904 
905 	dst->setup = true;
906 
907 	pr_info("DSA: tree %d setup\n", dst->index);
908 
909 	return 0;
910 
911 teardown_master:
912 	dsa_tree_teardown_master(dst);
913 teardown_ports:
914 	dsa_tree_teardown_ports(dst);
915 teardown_switches:
916 	dsa_tree_teardown_switches(dst);
917 teardown_cpu_ports:
918 	dsa_tree_teardown_cpu_ports(dst);
919 
920 	return err;
921 }
922 
923 static void dsa_tree_teardown(struct dsa_switch_tree *dst)
924 {
925 	struct dsa_link *dl, *next;
926 
927 	if (!dst->setup)
928 		return;
929 
930 	dsa_tree_teardown_lags(dst);
931 
932 	dsa_tree_teardown_master(dst);
933 
934 	dsa_tree_teardown_ports(dst);
935 
936 	dsa_tree_teardown_switches(dst);
937 
938 	dsa_tree_teardown_cpu_ports(dst);
939 
940 	list_for_each_entry_safe(dl, next, &dst->rtable, list) {
941 		list_del(&dl->list);
942 		kfree(dl);
943 	}
944 
945 	pr_info("DSA: tree %d torn down\n", dst->index);
946 
947 	dst->setup = false;
948 }
949 
950 static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst,
951 				   const struct dsa_device_ops *tag_ops)
952 {
953 	const struct dsa_device_ops *old_tag_ops = dst->tag_ops;
954 	struct dsa_notifier_tag_proto_info info;
955 	int err;
956 
957 	dst->tag_ops = tag_ops;
958 
959 	/* Notify the switches from this tree about the connection
960 	 * to the new tagger
961 	 */
962 	info.tag_ops = tag_ops;
963 	err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info);
964 	if (err && err != -EOPNOTSUPP)
965 		goto out_disconnect;
966 
967 	/* Notify the old tagger about the disconnection from this tree */
968 	info.tag_ops = old_tag_ops;
969 	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
970 
971 	return 0;
972 
973 out_disconnect:
974 	info.tag_ops = tag_ops;
975 	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
976 	dst->tag_ops = old_tag_ops;
977 
978 	return err;
979 }
980 
981 /* Since the dsa/tagging sysfs device attribute is per master, the assumption
982  * is that all DSA switches within a tree share the same tagger, otherwise
983  * they would have formed disjoint trees (different "dsa,member" values).
984  */
985 int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst,
986 			      const struct dsa_device_ops *tag_ops,
987 			      const struct dsa_device_ops *old_tag_ops)
988 {
989 	struct dsa_notifier_tag_proto_info info;
990 	struct dsa_port *dp;
991 	int err = -EBUSY;
992 
993 	if (!rtnl_trylock())
994 		return restart_syscall();
995 
996 	/* At the moment we don't allow changing the tag protocol under
997 	 * traffic. The rtnl_mutex also happens to serialize concurrent
998 	 * attempts to change the tagging protocol. If we ever lift the IFF_UP
999 	 * restriction, there needs to be another mutex which serializes this.
1000 	 */
1001 	dsa_tree_for_each_user_port(dp, dst) {
1002 		if (dsa_port_to_master(dp)->flags & IFF_UP)
1003 			goto out_unlock;
1004 
1005 		if (dp->slave->flags & IFF_UP)
1006 			goto out_unlock;
1007 	}
1008 
1009 	/* Notify the tag protocol change */
1010 	info.tag_ops = tag_ops;
1011 	err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1012 	if (err)
1013 		goto out_unwind_tagger;
1014 
1015 	err = dsa_tree_bind_tag_proto(dst, tag_ops);
1016 	if (err)
1017 		goto out_unwind_tagger;
1018 
1019 	rtnl_unlock();
1020 
1021 	return 0;
1022 
1023 out_unwind_tagger:
1024 	info.tag_ops = old_tag_ops;
1025 	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1026 out_unlock:
1027 	rtnl_unlock();
1028 	return err;
1029 }
1030 
1031 static void dsa_tree_master_state_change(struct dsa_switch_tree *dst,
1032 					 struct net_device *master)
1033 {
1034 	struct dsa_notifier_master_state_info info;
1035 	struct dsa_port *cpu_dp = master->dsa_ptr;
1036 
1037 	info.master = master;
1038 	info.operational = dsa_port_master_is_operational(cpu_dp);
1039 
1040 	dsa_tree_notify(dst, DSA_NOTIFIER_MASTER_STATE_CHANGE, &info);
1041 }
1042 
1043 void dsa_tree_master_admin_state_change(struct dsa_switch_tree *dst,
1044 					struct net_device *master,
1045 					bool up)
1046 {
1047 	struct dsa_port *cpu_dp = master->dsa_ptr;
1048 	bool notify = false;
1049 
1050 	/* Don't keep track of admin state on LAG DSA masters,
1051 	 * but rather just of physical DSA masters
1052 	 */
1053 	if (netif_is_lag_master(master))
1054 		return;
1055 
1056 	if ((dsa_port_master_is_operational(cpu_dp)) !=
1057 	    (up && cpu_dp->master_oper_up))
1058 		notify = true;
1059 
1060 	cpu_dp->master_admin_up = up;
1061 
1062 	if (notify)
1063 		dsa_tree_master_state_change(dst, master);
1064 }
1065 
1066 void dsa_tree_master_oper_state_change(struct dsa_switch_tree *dst,
1067 				       struct net_device *master,
1068 				       bool up)
1069 {
1070 	struct dsa_port *cpu_dp = master->dsa_ptr;
1071 	bool notify = false;
1072 
1073 	/* Don't keep track of oper state on LAG DSA masters,
1074 	 * but rather just of physical DSA masters
1075 	 */
1076 	if (netif_is_lag_master(master))
1077 		return;
1078 
1079 	if ((dsa_port_master_is_operational(cpu_dp)) !=
1080 	    (cpu_dp->master_admin_up && up))
1081 		notify = true;
1082 
1083 	cpu_dp->master_oper_up = up;
1084 
1085 	if (notify)
1086 		dsa_tree_master_state_change(dst, master);
1087 }
1088 
1089 static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index)
1090 {
1091 	struct dsa_switch_tree *dst = ds->dst;
1092 	struct dsa_port *dp;
1093 
1094 	dsa_switch_for_each_port(dp, ds)
1095 		if (dp->index == index)
1096 			return dp;
1097 
1098 	dp = kzalloc(sizeof(*dp), GFP_KERNEL);
1099 	if (!dp)
1100 		return NULL;
1101 
1102 	dp->ds = ds;
1103 	dp->index = index;
1104 
1105 	mutex_init(&dp->addr_lists_lock);
1106 	mutex_init(&dp->vlans_lock);
1107 	INIT_LIST_HEAD(&dp->fdbs);
1108 	INIT_LIST_HEAD(&dp->mdbs);
1109 	INIT_LIST_HEAD(&dp->vlans); /* also initializes &dp->user_vlans */
1110 	INIT_LIST_HEAD(&dp->list);
1111 	list_add_tail(&dp->list, &dst->ports);
1112 
1113 	return dp;
1114 }
1115 
1116 static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
1117 {
1118 	dp->type = DSA_PORT_TYPE_USER;
1119 	dp->name = name;
1120 
1121 	return 0;
1122 }
1123 
1124 static int dsa_port_parse_dsa(struct dsa_port *dp)
1125 {
1126 	dp->type = DSA_PORT_TYPE_DSA;
1127 
1128 	return 0;
1129 }
1130 
1131 static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp,
1132 						  struct net_device *master)
1133 {
1134 	enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE;
1135 	struct dsa_switch *mds, *ds = dp->ds;
1136 	unsigned int mdp_upstream;
1137 	struct dsa_port *mdp;
1138 
1139 	/* It is possible to stack DSA switches onto one another when that
1140 	 * happens the switch driver may want to know if its tagging protocol
1141 	 * is going to work in such a configuration.
1142 	 */
1143 	if (dsa_slave_dev_check(master)) {
1144 		mdp = dsa_slave_to_port(master);
1145 		mds = mdp->ds;
1146 		mdp_upstream = dsa_upstream_port(mds, mdp->index);
1147 		tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream,
1148 							  DSA_TAG_PROTO_NONE);
1149 	}
1150 
1151 	/* If the master device is not itself a DSA slave in a disjoint DSA
1152 	 * tree, then return immediately.
1153 	 */
1154 	return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol);
1155 }
1156 
1157 static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *master,
1158 			      const char *user_protocol)
1159 {
1160 	const struct dsa_device_ops *tag_ops = NULL;
1161 	struct dsa_switch *ds = dp->ds;
1162 	struct dsa_switch_tree *dst = ds->dst;
1163 	enum dsa_tag_protocol default_proto;
1164 
1165 	/* Find out which protocol the switch would prefer. */
1166 	default_proto = dsa_get_tag_protocol(dp, master);
1167 	if (dst->default_proto) {
1168 		if (dst->default_proto != default_proto) {
1169 			dev_err(ds->dev,
1170 				"A DSA switch tree can have only one tagging protocol\n");
1171 			return -EINVAL;
1172 		}
1173 	} else {
1174 		dst->default_proto = default_proto;
1175 	}
1176 
1177 	/* See if the user wants to override that preference. */
1178 	if (user_protocol) {
1179 		if (!ds->ops->change_tag_protocol) {
1180 			dev_err(ds->dev, "Tag protocol cannot be modified\n");
1181 			return -EINVAL;
1182 		}
1183 
1184 		tag_ops = dsa_tag_driver_get_by_name(user_protocol);
1185 		if (IS_ERR(tag_ops)) {
1186 			dev_warn(ds->dev,
1187 				 "Failed to find a tagging driver for protocol %s, using default\n",
1188 				 user_protocol);
1189 			tag_ops = NULL;
1190 		}
1191 	}
1192 
1193 	if (!tag_ops)
1194 		tag_ops = dsa_tag_driver_get_by_id(default_proto);
1195 
1196 	if (IS_ERR(tag_ops)) {
1197 		if (PTR_ERR(tag_ops) == -ENOPROTOOPT)
1198 			return -EPROBE_DEFER;
1199 
1200 		dev_warn(ds->dev, "No tagger for this switch\n");
1201 		return PTR_ERR(tag_ops);
1202 	}
1203 
1204 	if (dst->tag_ops) {
1205 		if (dst->tag_ops != tag_ops) {
1206 			dev_err(ds->dev,
1207 				"A DSA switch tree can have only one tagging protocol\n");
1208 
1209 			dsa_tag_driver_put(tag_ops);
1210 			return -EINVAL;
1211 		}
1212 
1213 		/* In the case of multiple CPU ports per switch, the tagging
1214 		 * protocol is still reference-counted only per switch tree.
1215 		 */
1216 		dsa_tag_driver_put(tag_ops);
1217 	} else {
1218 		dst->tag_ops = tag_ops;
1219 	}
1220 
1221 	dp->master = master;
1222 	dp->type = DSA_PORT_TYPE_CPU;
1223 	dsa_port_set_tag_protocol(dp, dst->tag_ops);
1224 	dp->dst = dst;
1225 
1226 	/* At this point, the tree may be configured to use a different
1227 	 * tagger than the one chosen by the switch driver during
1228 	 * .setup, in the case when a user selects a custom protocol
1229 	 * through the DT.
1230 	 *
1231 	 * This is resolved by syncing the driver with the tree in
1232 	 * dsa_switch_setup_tag_protocol once .setup has run and the
1233 	 * driver is ready to accept calls to .change_tag_protocol. If
1234 	 * the driver does not support the custom protocol at that
1235 	 * point, the tree is wholly rejected, thereby ensuring that the
1236 	 * tree and driver are always in agreement on the protocol to
1237 	 * use.
1238 	 */
1239 	return 0;
1240 }
1241 
1242 static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
1243 {
1244 	struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
1245 	const char *name = of_get_property(dn, "label", NULL);
1246 	bool link = of_property_read_bool(dn, "link");
1247 
1248 	dp->dn = dn;
1249 
1250 	if (ethernet) {
1251 		struct net_device *master;
1252 		const char *user_protocol;
1253 
1254 		master = of_find_net_device_by_node(ethernet);
1255 		of_node_put(ethernet);
1256 		if (!master)
1257 			return -EPROBE_DEFER;
1258 
1259 		user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL);
1260 		return dsa_port_parse_cpu(dp, master, user_protocol);
1261 	}
1262 
1263 	if (link)
1264 		return dsa_port_parse_dsa(dp);
1265 
1266 	return dsa_port_parse_user(dp, name);
1267 }
1268 
1269 static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
1270 				     struct device_node *dn)
1271 {
1272 	struct device_node *ports, *port;
1273 	struct dsa_port *dp;
1274 	int err = 0;
1275 	u32 reg;
1276 
1277 	ports = of_get_child_by_name(dn, "ports");
1278 	if (!ports) {
1279 		/* The second possibility is "ethernet-ports" */
1280 		ports = of_get_child_by_name(dn, "ethernet-ports");
1281 		if (!ports) {
1282 			dev_err(ds->dev, "no ports child node found\n");
1283 			return -EINVAL;
1284 		}
1285 	}
1286 
1287 	for_each_available_child_of_node(ports, port) {
1288 		err = of_property_read_u32(port, "reg", &reg);
1289 		if (err) {
1290 			of_node_put(port);
1291 			goto out_put_node;
1292 		}
1293 
1294 		if (reg >= ds->num_ports) {
1295 			dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n",
1296 				port, reg, ds->num_ports);
1297 			of_node_put(port);
1298 			err = -EINVAL;
1299 			goto out_put_node;
1300 		}
1301 
1302 		dp = dsa_to_port(ds, reg);
1303 
1304 		err = dsa_port_parse_of(dp, port);
1305 		if (err) {
1306 			of_node_put(port);
1307 			goto out_put_node;
1308 		}
1309 	}
1310 
1311 out_put_node:
1312 	of_node_put(ports);
1313 	return err;
1314 }
1315 
1316 static int dsa_switch_parse_member_of(struct dsa_switch *ds,
1317 				      struct device_node *dn)
1318 {
1319 	u32 m[2] = { 0, 0 };
1320 	int sz;
1321 
1322 	/* Don't error out if this optional property isn't found */
1323 	sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
1324 	if (sz < 0 && sz != -EINVAL)
1325 		return sz;
1326 
1327 	ds->index = m[1];
1328 
1329 	ds->dst = dsa_tree_touch(m[0]);
1330 	if (!ds->dst)
1331 		return -ENOMEM;
1332 
1333 	if (dsa_switch_find(ds->dst->index, ds->index)) {
1334 		dev_err(ds->dev,
1335 			"A DSA switch with index %d already exists in tree %d\n",
1336 			ds->index, ds->dst->index);
1337 		return -EEXIST;
1338 	}
1339 
1340 	if (ds->dst->last_switch < ds->index)
1341 		ds->dst->last_switch = ds->index;
1342 
1343 	return 0;
1344 }
1345 
1346 static int dsa_switch_touch_ports(struct dsa_switch *ds)
1347 {
1348 	struct dsa_port *dp;
1349 	int port;
1350 
1351 	for (port = 0; port < ds->num_ports; port++) {
1352 		dp = dsa_port_touch(ds, port);
1353 		if (!dp)
1354 			return -ENOMEM;
1355 	}
1356 
1357 	return 0;
1358 }
1359 
1360 static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
1361 {
1362 	int err;
1363 
1364 	err = dsa_switch_parse_member_of(ds, dn);
1365 	if (err)
1366 		return err;
1367 
1368 	err = dsa_switch_touch_ports(ds);
1369 	if (err)
1370 		return err;
1371 
1372 	return dsa_switch_parse_ports_of(ds, dn);
1373 }
1374 
1375 static int dev_is_class(struct device *dev, void *class)
1376 {
1377 	if (dev->class != NULL && !strcmp(dev->class->name, class))
1378 		return 1;
1379 
1380 	return 0;
1381 }
1382 
1383 static struct device *dev_find_class(struct device *parent, char *class)
1384 {
1385 	if (dev_is_class(parent, class)) {
1386 		get_device(parent);
1387 		return parent;
1388 	}
1389 
1390 	return device_find_child(parent, class, dev_is_class);
1391 }
1392 
1393 static struct net_device *dsa_dev_to_net_device(struct device *dev)
1394 {
1395 	struct device *d;
1396 
1397 	d = dev_find_class(dev, "net");
1398 	if (d != NULL) {
1399 		struct net_device *nd;
1400 
1401 		nd = to_net_dev(d);
1402 		dev_hold(nd);
1403 		put_device(d);
1404 
1405 		return nd;
1406 	}
1407 
1408 	return NULL;
1409 }
1410 
1411 static int dsa_port_parse(struct dsa_port *dp, const char *name,
1412 			  struct device *dev)
1413 {
1414 	if (!strcmp(name, "cpu")) {
1415 		struct net_device *master;
1416 
1417 		master = dsa_dev_to_net_device(dev);
1418 		if (!master)
1419 			return -EPROBE_DEFER;
1420 
1421 		dev_put(master);
1422 
1423 		return dsa_port_parse_cpu(dp, master, NULL);
1424 	}
1425 
1426 	if (!strcmp(name, "dsa"))
1427 		return dsa_port_parse_dsa(dp);
1428 
1429 	return dsa_port_parse_user(dp, name);
1430 }
1431 
1432 static int dsa_switch_parse_ports(struct dsa_switch *ds,
1433 				  struct dsa_chip_data *cd)
1434 {
1435 	bool valid_name_found = false;
1436 	struct dsa_port *dp;
1437 	struct device *dev;
1438 	const char *name;
1439 	unsigned int i;
1440 	int err;
1441 
1442 	for (i = 0; i < DSA_MAX_PORTS; i++) {
1443 		name = cd->port_names[i];
1444 		dev = cd->netdev[i];
1445 		dp = dsa_to_port(ds, i);
1446 
1447 		if (!name)
1448 			continue;
1449 
1450 		err = dsa_port_parse(dp, name, dev);
1451 		if (err)
1452 			return err;
1453 
1454 		valid_name_found = true;
1455 	}
1456 
1457 	if (!valid_name_found && i == DSA_MAX_PORTS)
1458 		return -EINVAL;
1459 
1460 	return 0;
1461 }
1462 
1463 static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
1464 {
1465 	int err;
1466 
1467 	ds->cd = cd;
1468 
1469 	/* We don't support interconnected switches nor multiple trees via
1470 	 * platform data, so this is the unique switch of the tree.
1471 	 */
1472 	ds->index = 0;
1473 	ds->dst = dsa_tree_touch(0);
1474 	if (!ds->dst)
1475 		return -ENOMEM;
1476 
1477 	err = dsa_switch_touch_ports(ds);
1478 	if (err)
1479 		return err;
1480 
1481 	return dsa_switch_parse_ports(ds, cd);
1482 }
1483 
1484 static void dsa_switch_release_ports(struct dsa_switch *ds)
1485 {
1486 	struct dsa_port *dp, *next;
1487 
1488 	dsa_switch_for_each_port_safe(dp, next, ds) {
1489 		WARN_ON(!list_empty(&dp->fdbs));
1490 		WARN_ON(!list_empty(&dp->mdbs));
1491 		WARN_ON(!list_empty(&dp->vlans));
1492 		list_del(&dp->list);
1493 		kfree(dp);
1494 	}
1495 }
1496 
1497 static int dsa_switch_probe(struct dsa_switch *ds)
1498 {
1499 	struct dsa_switch_tree *dst;
1500 	struct dsa_chip_data *pdata;
1501 	struct device_node *np;
1502 	int err;
1503 
1504 	if (!ds->dev)
1505 		return -ENODEV;
1506 
1507 	pdata = ds->dev->platform_data;
1508 	np = ds->dev->of_node;
1509 
1510 	if (!ds->num_ports)
1511 		return -EINVAL;
1512 
1513 	if (np) {
1514 		err = dsa_switch_parse_of(ds, np);
1515 		if (err)
1516 			dsa_switch_release_ports(ds);
1517 	} else if (pdata) {
1518 		err = dsa_switch_parse(ds, pdata);
1519 		if (err)
1520 			dsa_switch_release_ports(ds);
1521 	} else {
1522 		err = -ENODEV;
1523 	}
1524 
1525 	if (err)
1526 		return err;
1527 
1528 	dst = ds->dst;
1529 	dsa_tree_get(dst);
1530 	err = dsa_tree_setup(dst);
1531 	if (err) {
1532 		dsa_switch_release_ports(ds);
1533 		dsa_tree_put(dst);
1534 	}
1535 
1536 	return err;
1537 }
1538 
1539 int dsa_register_switch(struct dsa_switch *ds)
1540 {
1541 	int err;
1542 
1543 	mutex_lock(&dsa2_mutex);
1544 	err = dsa_switch_probe(ds);
1545 	dsa_tree_put(ds->dst);
1546 	mutex_unlock(&dsa2_mutex);
1547 
1548 	return err;
1549 }
1550 EXPORT_SYMBOL_GPL(dsa_register_switch);
1551 
1552 static void dsa_switch_remove(struct dsa_switch *ds)
1553 {
1554 	struct dsa_switch_tree *dst = ds->dst;
1555 
1556 	dsa_tree_teardown(dst);
1557 	dsa_switch_release_ports(ds);
1558 	dsa_tree_put(dst);
1559 }
1560 
1561 void dsa_unregister_switch(struct dsa_switch *ds)
1562 {
1563 	mutex_lock(&dsa2_mutex);
1564 	dsa_switch_remove(ds);
1565 	mutex_unlock(&dsa2_mutex);
1566 }
1567 EXPORT_SYMBOL_GPL(dsa_unregister_switch);
1568 
1569 /* If the DSA master chooses to unregister its net_device on .shutdown, DSA is
1570  * blocking that operation from completion, due to the dev_hold taken inside
1571  * netdev_upper_dev_link. Unlink the DSA slave interfaces from being uppers of
1572  * the DSA master, so that the system can reboot successfully.
1573  */
1574 void dsa_switch_shutdown(struct dsa_switch *ds)
1575 {
1576 	struct net_device *master, *slave_dev;
1577 	struct dsa_port *dp;
1578 
1579 	mutex_lock(&dsa2_mutex);
1580 
1581 	if (!ds->setup)
1582 		goto out;
1583 
1584 	rtnl_lock();
1585 
1586 	dsa_switch_for_each_user_port(dp, ds) {
1587 		master = dsa_port_to_master(dp);
1588 		slave_dev = dp->slave;
1589 
1590 		netdev_upper_dev_unlink(master, slave_dev);
1591 	}
1592 
1593 	/* Disconnect from further netdevice notifiers on the master,
1594 	 * since netdev_uses_dsa() will now return false.
1595 	 */
1596 	dsa_switch_for_each_cpu_port(dp, ds)
1597 		dp->master->dsa_ptr = NULL;
1598 
1599 	rtnl_unlock();
1600 out:
1601 	mutex_unlock(&dsa2_mutex);
1602 }
1603 EXPORT_SYMBOL_GPL(dsa_switch_shutdown);
1604 
1605 #ifdef CONFIG_PM_SLEEP
1606 static bool dsa_port_is_initialized(const struct dsa_port *dp)
1607 {
1608 	return dp->type == DSA_PORT_TYPE_USER && dp->slave;
1609 }
1610 
1611 int dsa_switch_suspend(struct dsa_switch *ds)
1612 {
1613 	struct dsa_port *dp;
1614 	int ret = 0;
1615 
1616 	/* Suspend slave network devices */
1617 	dsa_switch_for_each_port(dp, ds) {
1618 		if (!dsa_port_is_initialized(dp))
1619 			continue;
1620 
1621 		ret = dsa_slave_suspend(dp->slave);
1622 		if (ret)
1623 			return ret;
1624 	}
1625 
1626 	if (ds->ops->suspend)
1627 		ret = ds->ops->suspend(ds);
1628 
1629 	return ret;
1630 }
1631 EXPORT_SYMBOL_GPL(dsa_switch_suspend);
1632 
1633 int dsa_switch_resume(struct dsa_switch *ds)
1634 {
1635 	struct dsa_port *dp;
1636 	int ret = 0;
1637 
1638 	if (ds->ops->resume)
1639 		ret = ds->ops->resume(ds);
1640 
1641 	if (ret)
1642 		return ret;
1643 
1644 	/* Resume slave network devices */
1645 	dsa_switch_for_each_port(dp, ds) {
1646 		if (!dsa_port_is_initialized(dp))
1647 			continue;
1648 
1649 		ret = dsa_slave_resume(dp->slave);
1650 		if (ret)
1651 			return ret;
1652 	}
1653 
1654 	return 0;
1655 }
1656 EXPORT_SYMBOL_GPL(dsa_switch_resume);
1657 #endif
1658 
1659 struct dsa_port *dsa_port_from_netdev(struct net_device *netdev)
1660 {
1661 	if (!netdev || !dsa_slave_dev_check(netdev))
1662 		return ERR_PTR(-ENODEV);
1663 
1664 	return dsa_slave_to_port(netdev);
1665 }
1666 EXPORT_SYMBOL_GPL(dsa_port_from_netdev);
1667 
1668 bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b)
1669 {
1670 	if (a->type != b->type)
1671 		return false;
1672 
1673 	switch (a->type) {
1674 	case DSA_DB_PORT:
1675 		return a->dp == b->dp;
1676 	case DSA_DB_LAG:
1677 		return a->lag.dev == b->lag.dev;
1678 	case DSA_DB_BRIDGE:
1679 		return a->bridge.num == b->bridge.num;
1680 	default:
1681 		WARN_ON(1);
1682 		return false;
1683 	}
1684 }
1685 
1686 bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port,
1687 				 const unsigned char *addr, u16 vid,
1688 				 struct dsa_db db)
1689 {
1690 	struct dsa_port *dp = dsa_to_port(ds, port);
1691 	struct dsa_mac_addr *a;
1692 
1693 	lockdep_assert_held(&dp->addr_lists_lock);
1694 
1695 	list_for_each_entry(a, &dp->fdbs, list) {
1696 		if (!ether_addr_equal(a->addr, addr) || a->vid != vid)
1697 			continue;
1698 
1699 		if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1700 			return true;
1701 	}
1702 
1703 	return false;
1704 }
1705 EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db);
1706 
1707 bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port,
1708 				 const struct switchdev_obj_port_mdb *mdb,
1709 				 struct dsa_db db)
1710 {
1711 	struct dsa_port *dp = dsa_to_port(ds, port);
1712 	struct dsa_mac_addr *a;
1713 
1714 	lockdep_assert_held(&dp->addr_lists_lock);
1715 
1716 	list_for_each_entry(a, &dp->mdbs, list) {
1717 		if (!ether_addr_equal(a->addr, mdb->addr) || a->vid != mdb->vid)
1718 			continue;
1719 
1720 		if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1721 			return true;
1722 	}
1723 
1724 	return false;
1725 }
1726 EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db);
1727 
1728 static const struct dsa_stubs __dsa_stubs = {
1729 	.master_hwtstamp_validate = __dsa_master_hwtstamp_validate,
1730 };
1731 
1732 static void dsa_register_stubs(void)
1733 {
1734 	dsa_stubs = &__dsa_stubs;
1735 }
1736 
1737 static void dsa_unregister_stubs(void)
1738 {
1739 	dsa_stubs = NULL;
1740 }
1741 
1742 static int __init dsa_init_module(void)
1743 {
1744 	int rc;
1745 
1746 	dsa_owq = alloc_ordered_workqueue("dsa_ordered",
1747 					  WQ_MEM_RECLAIM);
1748 	if (!dsa_owq)
1749 		return -ENOMEM;
1750 
1751 	rc = dsa_slave_register_notifier();
1752 	if (rc)
1753 		goto register_notifier_fail;
1754 
1755 	dev_add_pack(&dsa_pack_type);
1756 
1757 	rc = rtnl_link_register(&dsa_link_ops);
1758 	if (rc)
1759 		goto netlink_register_fail;
1760 
1761 	dsa_register_stubs();
1762 
1763 	return 0;
1764 
1765 netlink_register_fail:
1766 	dsa_slave_unregister_notifier();
1767 	dev_remove_pack(&dsa_pack_type);
1768 register_notifier_fail:
1769 	destroy_workqueue(dsa_owq);
1770 
1771 	return rc;
1772 }
1773 module_init(dsa_init_module);
1774 
1775 static void __exit dsa_cleanup_module(void)
1776 {
1777 	dsa_unregister_stubs();
1778 
1779 	rtnl_link_unregister(&dsa_link_ops);
1780 
1781 	dsa_slave_unregister_notifier();
1782 	dev_remove_pack(&dsa_pack_type);
1783 	destroy_workqueue(dsa_owq);
1784 }
1785 module_exit(dsa_cleanup_module);
1786 
1787 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
1788 MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
1789 MODULE_LICENSE("GPL");
1790 MODULE_ALIAS("platform:dsa");
1791