xref: /openbmc/linux/net/dccp/feat.c (revision e190bfe5)
1 /*
2  *  net/dccp/feat.c
3  *
4  *  Feature negotiation for the DCCP protocol (RFC 4340, section 6)
5  *
6  *  Copyright (c) 2008 Gerrit Renker <gerrit@erg.abdn.ac.uk>
7  *  Rewrote from scratch, some bits from earlier code by
8  *  Copyright (c) 2005 Andrea Bittau <a.bittau@cs.ucl.ac.uk>
9  *
10  *
11  *  ASSUMPTIONS
12  *  -----------
13  *  o Feature negotiation is coordinated with connection setup (as in TCP), wild
14  *    changes of parameters of an established connection are not supported.
15  *  o All currently known SP features have 1-byte quantities. If in the future
16  *    extensions of RFCs 4340..42 define features with item lengths larger than
17  *    one byte, a feature-specific extension of the code will be required.
18  *
19  *  This program is free software; you can redistribute it and/or
20  *  modify it under the terms of the GNU General Public License
21  *  as published by the Free Software Foundation; either version
22  *  2 of the License, or (at your option) any later version.
23  */
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include "ccid.h"
27 #include "feat.h"
28 
29 /* feature-specific sysctls - initialised to the defaults from RFC 4340, 6.4 */
30 unsigned long	sysctl_dccp_sequence_window __read_mostly = 100;
31 int		sysctl_dccp_rx_ccid	    __read_mostly = 2,
32 		sysctl_dccp_tx_ccid	    __read_mostly = 2;
33 
34 /*
35  * Feature activation handlers.
36  *
37  * These all use an u64 argument, to provide enough room for NN/SP features. At
38  * this stage the negotiated values have been checked to be within their range.
39  */
40 static int dccp_hdlr_ccid(struct sock *sk, u64 ccid, bool rx)
41 {
42 	struct dccp_sock *dp = dccp_sk(sk);
43 	struct ccid *new_ccid = ccid_new(ccid, sk, rx);
44 
45 	if (new_ccid == NULL)
46 		return -ENOMEM;
47 
48 	if (rx) {
49 		ccid_hc_rx_delete(dp->dccps_hc_rx_ccid, sk);
50 		dp->dccps_hc_rx_ccid = new_ccid;
51 	} else {
52 		ccid_hc_tx_delete(dp->dccps_hc_tx_ccid, sk);
53 		dp->dccps_hc_tx_ccid = new_ccid;
54 	}
55 	return 0;
56 }
57 
58 static int dccp_hdlr_seq_win(struct sock *sk, u64 seq_win, bool rx)
59 {
60 	struct dccp_sock *dp = dccp_sk(sk);
61 
62 	if (rx) {
63 		dp->dccps_r_seq_win = seq_win;
64 		/* propagate changes to update SWL/SWH */
65 		dccp_update_gsr(sk, dp->dccps_gsr);
66 	} else {
67 		dp->dccps_l_seq_win = seq_win;
68 		/* propagate changes to update AWL */
69 		dccp_update_gss(sk, dp->dccps_gss);
70 	}
71 	return 0;
72 }
73 
74 static int dccp_hdlr_ack_ratio(struct sock *sk, u64 ratio, bool rx)
75 {
76 	if (rx)
77 		dccp_sk(sk)->dccps_r_ack_ratio = ratio;
78 	else
79 		dccp_sk(sk)->dccps_l_ack_ratio = ratio;
80 	return 0;
81 }
82 
83 static int dccp_hdlr_ackvec(struct sock *sk, u64 enable, bool rx)
84 {
85 	struct dccp_sock *dp = dccp_sk(sk);
86 
87 	if (rx) {
88 		if (enable && dp->dccps_hc_rx_ackvec == NULL) {
89 			dp->dccps_hc_rx_ackvec = dccp_ackvec_alloc(gfp_any());
90 			if (dp->dccps_hc_rx_ackvec == NULL)
91 				return -ENOMEM;
92 		} else if (!enable) {
93 			dccp_ackvec_free(dp->dccps_hc_rx_ackvec);
94 			dp->dccps_hc_rx_ackvec = NULL;
95 		}
96 	}
97 	return 0;
98 }
99 
100 static int dccp_hdlr_ndp(struct sock *sk, u64 enable, bool rx)
101 {
102 	if (!rx)
103 		dccp_sk(sk)->dccps_send_ndp_count = (enable > 0);
104 	return 0;
105 }
106 
107 /*
108  * Minimum Checksum Coverage is located at the RX side (9.2.1). This means that
109  * `rx' holds when the sending peer informs about his partial coverage via a
110  * ChangeR() option. In the other case, we are the sender and the receiver
111  * announces its coverage via ChangeL() options. The policy here is to honour
112  * such communication by enabling the corresponding partial coverage - but only
113  * if it has not been set manually before; the warning here means that all
114  * packets will be dropped.
115  */
116 static int dccp_hdlr_min_cscov(struct sock *sk, u64 cscov, bool rx)
117 {
118 	struct dccp_sock *dp = dccp_sk(sk);
119 
120 	if (rx)
121 		dp->dccps_pcrlen = cscov;
122 	else {
123 		if (dp->dccps_pcslen == 0)
124 			dp->dccps_pcslen = cscov;
125 		else if (cscov > dp->dccps_pcslen)
126 			DCCP_WARN("CsCov %u too small, peer requires >= %u\n",
127 				  dp->dccps_pcslen, (u8)cscov);
128 	}
129 	return 0;
130 }
131 
132 static const struct {
133 	u8			feat_num;		/* DCCPF_xxx */
134 	enum dccp_feat_type	rxtx;			/* RX or TX  */
135 	enum dccp_feat_type	reconciliation;		/* SP or NN  */
136 	u8			default_value;		/* as in 6.4 */
137 	int (*activation_hdlr)(struct sock *sk, u64 val, bool rx);
138 /*
139  *    Lookup table for location and type of features (from RFC 4340/4342)
140  *  +--------------------------+----+-----+----+----+---------+-----------+
141  *  | Feature                  | Location | Reconc. | Initial |  Section  |
142  *  |                          | RX | TX  | SP | NN |  Value  | Reference |
143  *  +--------------------------+----+-----+----+----+---------+-----------+
144  *  | DCCPF_CCID               |    |  X  | X  |    |   2     | 10        |
145  *  | DCCPF_SHORT_SEQNOS       |    |  X  | X  |    |   0     |  7.6.1    |
146  *  | DCCPF_SEQUENCE_WINDOW    |    |  X  |    | X  | 100     |  7.5.2    |
147  *  | DCCPF_ECN_INCAPABLE      | X  |     | X  |    |   0     | 12.1      |
148  *  | DCCPF_ACK_RATIO          |    |  X  |    | X  |   2     | 11.3      |
149  *  | DCCPF_SEND_ACK_VECTOR    | X  |     | X  |    |   0     | 11.5      |
150  *  | DCCPF_SEND_NDP_COUNT     |    |  X  | X  |    |   0     |  7.7.2    |
151  *  | DCCPF_MIN_CSUM_COVER     | X  |     | X  |    |   0     |  9.2.1    |
152  *  | DCCPF_DATA_CHECKSUM      | X  |     | X  |    |   0     |  9.3.1    |
153  *  | DCCPF_SEND_LEV_RATE      | X  |     | X  |    |   0     | 4342/8.4  |
154  *  +--------------------------+----+-----+----+----+---------+-----------+
155  */
156 } dccp_feat_table[] = {
157 	{ DCCPF_CCID,		 FEAT_AT_TX, FEAT_SP, 2,   dccp_hdlr_ccid     },
158 	{ DCCPF_SHORT_SEQNOS,	 FEAT_AT_TX, FEAT_SP, 0,   NULL },
159 	{ DCCPF_SEQUENCE_WINDOW, FEAT_AT_TX, FEAT_NN, 100, dccp_hdlr_seq_win  },
160 	{ DCCPF_ECN_INCAPABLE,	 FEAT_AT_RX, FEAT_SP, 0,   NULL },
161 	{ DCCPF_ACK_RATIO,	 FEAT_AT_TX, FEAT_NN, 2,   dccp_hdlr_ack_ratio},
162 	{ DCCPF_SEND_ACK_VECTOR, FEAT_AT_RX, FEAT_SP, 0,   dccp_hdlr_ackvec   },
163 	{ DCCPF_SEND_NDP_COUNT,  FEAT_AT_TX, FEAT_SP, 0,   dccp_hdlr_ndp      },
164 	{ DCCPF_MIN_CSUM_COVER,  FEAT_AT_RX, FEAT_SP, 0,   dccp_hdlr_min_cscov},
165 	{ DCCPF_DATA_CHECKSUM,	 FEAT_AT_RX, FEAT_SP, 0,   NULL },
166 	{ DCCPF_SEND_LEV_RATE,	 FEAT_AT_RX, FEAT_SP, 0,   NULL },
167 };
168 #define DCCP_FEAT_SUPPORTED_MAX		ARRAY_SIZE(dccp_feat_table)
169 
170 /**
171  * dccp_feat_index  -  Hash function to map feature number into array position
172  * Returns consecutive array index or -1 if the feature is not understood.
173  */
174 static int dccp_feat_index(u8 feat_num)
175 {
176 	/* The first 9 entries are occupied by the types from RFC 4340, 6.4 */
177 	if (feat_num > DCCPF_RESERVED && feat_num <= DCCPF_DATA_CHECKSUM)
178 		return feat_num - 1;
179 
180 	/*
181 	 * Other features: add cases for new feature types here after adding
182 	 * them to the above table.
183 	 */
184 	switch (feat_num) {
185 	case DCCPF_SEND_LEV_RATE:
186 			return DCCP_FEAT_SUPPORTED_MAX - 1;
187 	}
188 	return -1;
189 }
190 
191 static u8 dccp_feat_type(u8 feat_num)
192 {
193 	int idx = dccp_feat_index(feat_num);
194 
195 	if (idx < 0)
196 		return FEAT_UNKNOWN;
197 	return dccp_feat_table[idx].reconciliation;
198 }
199 
200 static int dccp_feat_default_value(u8 feat_num)
201 {
202 	int idx = dccp_feat_index(feat_num);
203 	/*
204 	 * There are no default values for unknown features, so encountering a
205 	 * negative index here indicates a serious problem somewhere else.
206 	 */
207 	DCCP_BUG_ON(idx < 0);
208 
209 	return idx < 0 ? 0 : dccp_feat_table[idx].default_value;
210 }
211 
212 /*
213  *	Debugging and verbose-printing section
214  */
215 static const char *dccp_feat_fname(const u8 feat)
216 {
217 	static const char *const feature_names[] = {
218 		[DCCPF_RESERVED]	= "Reserved",
219 		[DCCPF_CCID]		= "CCID",
220 		[DCCPF_SHORT_SEQNOS]	= "Allow Short Seqnos",
221 		[DCCPF_SEQUENCE_WINDOW]	= "Sequence Window",
222 		[DCCPF_ECN_INCAPABLE]	= "ECN Incapable",
223 		[DCCPF_ACK_RATIO]	= "Ack Ratio",
224 		[DCCPF_SEND_ACK_VECTOR]	= "Send ACK Vector",
225 		[DCCPF_SEND_NDP_COUNT]	= "Send NDP Count",
226 		[DCCPF_MIN_CSUM_COVER]	= "Min. Csum Coverage",
227 		[DCCPF_DATA_CHECKSUM]	= "Send Data Checksum",
228 	};
229 	if (feat > DCCPF_DATA_CHECKSUM && feat < DCCPF_MIN_CCID_SPECIFIC)
230 		return feature_names[DCCPF_RESERVED];
231 
232 	if (feat ==  DCCPF_SEND_LEV_RATE)
233 		return "Send Loss Event Rate";
234 	if (feat >= DCCPF_MIN_CCID_SPECIFIC)
235 		return "CCID-specific";
236 
237 	return feature_names[feat];
238 }
239 
240 static const char *const dccp_feat_sname[] = {
241 	"DEFAULT", "INITIALISING", "CHANGING", "UNSTABLE", "STABLE",
242 };
243 
244 #ifdef CONFIG_IP_DCCP_DEBUG
245 static const char *dccp_feat_oname(const u8 opt)
246 {
247 	switch (opt) {
248 	case DCCPO_CHANGE_L:  return "Change_L";
249 	case DCCPO_CONFIRM_L: return "Confirm_L";
250 	case DCCPO_CHANGE_R:  return "Change_R";
251 	case DCCPO_CONFIRM_R: return "Confirm_R";
252 	}
253 	return NULL;
254 }
255 
256 static void dccp_feat_printval(u8 feat_num, dccp_feat_val const *val)
257 {
258 	u8 i, type = dccp_feat_type(feat_num);
259 
260 	if (val == NULL || (type == FEAT_SP && val->sp.vec == NULL))
261 		dccp_pr_debug_cat("(NULL)");
262 	else if (type == FEAT_SP)
263 		for (i = 0; i < val->sp.len; i++)
264 			dccp_pr_debug_cat("%s%u", i ? " " : "", val->sp.vec[i]);
265 	else if (type == FEAT_NN)
266 		dccp_pr_debug_cat("%llu", (unsigned long long)val->nn);
267 	else
268 		dccp_pr_debug_cat("unknown type %u", type);
269 }
270 
271 static void dccp_feat_printvals(u8 feat_num, u8 *list, u8 len)
272 {
273 	u8 type = dccp_feat_type(feat_num);
274 	dccp_feat_val fval = { .sp.vec = list, .sp.len = len };
275 
276 	if (type == FEAT_NN)
277 		fval.nn = dccp_decode_value_var(list, len);
278 	dccp_feat_printval(feat_num, &fval);
279 }
280 
281 static void dccp_feat_print_entry(struct dccp_feat_entry const *entry)
282 {
283 	dccp_debug("   * %s %s = ", entry->is_local ? "local" : "remote",
284 				    dccp_feat_fname(entry->feat_num));
285 	dccp_feat_printval(entry->feat_num, &entry->val);
286 	dccp_pr_debug_cat(", state=%s %s\n", dccp_feat_sname[entry->state],
287 			  entry->needs_confirm ? "(Confirm pending)" : "");
288 }
289 
290 #define dccp_feat_print_opt(opt, feat, val, len, mandatory)	do {	      \
291 	dccp_pr_debug("%s(%s, ", dccp_feat_oname(opt), dccp_feat_fname(feat));\
292 	dccp_feat_printvals(feat, val, len);				      \
293 	dccp_pr_debug_cat(") %s\n", mandatory ? "!" : "");	} while (0)
294 
295 #define dccp_feat_print_fnlist(fn_list)  {		\
296 	const struct dccp_feat_entry *___entry;		\
297 							\
298 	dccp_pr_debug("List Dump:\n");			\
299 	list_for_each_entry(___entry, fn_list, node)	\
300 		dccp_feat_print_entry(___entry);	\
301 }
302 #else	/* ! CONFIG_IP_DCCP_DEBUG */
303 #define dccp_feat_print_opt(opt, feat, val, len, mandatory)
304 #define dccp_feat_print_fnlist(fn_list)
305 #endif
306 
307 static int __dccp_feat_activate(struct sock *sk, const int idx,
308 				const bool is_local, dccp_feat_val const *fval)
309 {
310 	bool rx;
311 	u64 val;
312 
313 	if (idx < 0 || idx >= DCCP_FEAT_SUPPORTED_MAX)
314 		return -1;
315 	if (dccp_feat_table[idx].activation_hdlr == NULL)
316 		return 0;
317 
318 	if (fval == NULL) {
319 		val = dccp_feat_table[idx].default_value;
320 	} else if (dccp_feat_table[idx].reconciliation == FEAT_SP) {
321 		if (fval->sp.vec == NULL) {
322 			/*
323 			 * This can happen when an empty Confirm is sent
324 			 * for an SP (i.e. known) feature. In this case
325 			 * we would be using the default anyway.
326 			 */
327 			DCCP_CRIT("Feature #%d undefined: using default", idx);
328 			val = dccp_feat_table[idx].default_value;
329 		} else {
330 			val = fval->sp.vec[0];
331 		}
332 	} else {
333 		val = fval->nn;
334 	}
335 
336 	/* Location is RX if this is a local-RX or remote-TX feature */
337 	rx = (is_local == (dccp_feat_table[idx].rxtx == FEAT_AT_RX));
338 
339 	dccp_debug("   -> activating %s %s, %sval=%llu\n", rx ? "RX" : "TX",
340 		   dccp_feat_fname(dccp_feat_table[idx].feat_num),
341 		   fval ? "" : "default ",  (unsigned long long)val);
342 
343 	return dccp_feat_table[idx].activation_hdlr(sk, val, rx);
344 }
345 
346 /* Test for "Req'd" feature (RFC 4340, 6.4) */
347 static inline int dccp_feat_must_be_understood(u8 feat_num)
348 {
349 	return	feat_num == DCCPF_CCID || feat_num == DCCPF_SHORT_SEQNOS ||
350 		feat_num == DCCPF_SEQUENCE_WINDOW;
351 }
352 
353 /* copy constructor, fval must not already contain allocated memory */
354 static int dccp_feat_clone_sp_val(dccp_feat_val *fval, u8 const *val, u8 len)
355 {
356 	fval->sp.len = len;
357 	if (fval->sp.len > 0) {
358 		fval->sp.vec = kmemdup(val, len, gfp_any());
359 		if (fval->sp.vec == NULL) {
360 			fval->sp.len = 0;
361 			return -ENOBUFS;
362 		}
363 	}
364 	return 0;
365 }
366 
367 static void dccp_feat_val_destructor(u8 feat_num, dccp_feat_val *val)
368 {
369 	if (unlikely(val == NULL))
370 		return;
371 	if (dccp_feat_type(feat_num) == FEAT_SP)
372 		kfree(val->sp.vec);
373 	memset(val, 0, sizeof(*val));
374 }
375 
376 static struct dccp_feat_entry *
377 	      dccp_feat_clone_entry(struct dccp_feat_entry const *original)
378 {
379 	struct dccp_feat_entry *new;
380 	u8 type = dccp_feat_type(original->feat_num);
381 
382 	if (type == FEAT_UNKNOWN)
383 		return NULL;
384 
385 	new = kmemdup(original, sizeof(struct dccp_feat_entry), gfp_any());
386 	if (new == NULL)
387 		return NULL;
388 
389 	if (type == FEAT_SP && dccp_feat_clone_sp_val(&new->val,
390 						      original->val.sp.vec,
391 						      original->val.sp.len)) {
392 		kfree(new);
393 		return NULL;
394 	}
395 	return new;
396 }
397 
398 static void dccp_feat_entry_destructor(struct dccp_feat_entry *entry)
399 {
400 	if (entry != NULL) {
401 		dccp_feat_val_destructor(entry->feat_num, &entry->val);
402 		kfree(entry);
403 	}
404 }
405 
406 /*
407  * List management functions
408  *
409  * Feature negotiation lists rely on and maintain the following invariants:
410  * - each feat_num in the list is known, i.e. we know its type and default value
411  * - each feat_num/is_local combination is unique (old entries are overwritten)
412  * - SP values are always freshly allocated
413  * - list is sorted in increasing order of feature number (faster lookup)
414  */
415 static struct dccp_feat_entry *dccp_feat_list_lookup(struct list_head *fn_list,
416 						     u8 feat_num, bool is_local)
417 {
418 	struct dccp_feat_entry *entry;
419 
420 	list_for_each_entry(entry, fn_list, node) {
421 		if (entry->feat_num == feat_num && entry->is_local == is_local)
422 			return entry;
423 		else if (entry->feat_num > feat_num)
424 			break;
425 	}
426 	return NULL;
427 }
428 
429 /**
430  * dccp_feat_entry_new  -  Central list update routine (called by all others)
431  * @head:  list to add to
432  * @feat:  feature number
433  * @local: whether the local (1) or remote feature with number @feat is meant
434  * This is the only constructor and serves to ensure the above invariants.
435  */
436 static struct dccp_feat_entry *
437 	      dccp_feat_entry_new(struct list_head *head, u8 feat, bool local)
438 {
439 	struct dccp_feat_entry *entry;
440 
441 	list_for_each_entry(entry, head, node)
442 		if (entry->feat_num == feat && entry->is_local == local) {
443 			dccp_feat_val_destructor(entry->feat_num, &entry->val);
444 			return entry;
445 		} else if (entry->feat_num > feat) {
446 			head = &entry->node;
447 			break;
448 		}
449 
450 	entry = kmalloc(sizeof(*entry), gfp_any());
451 	if (entry != NULL) {
452 		entry->feat_num = feat;
453 		entry->is_local = local;
454 		list_add_tail(&entry->node, head);
455 	}
456 	return entry;
457 }
458 
459 /**
460  * dccp_feat_push_change  -  Add/overwrite a Change option in the list
461  * @fn_list: feature-negotiation list to update
462  * @feat: one of %dccp_feature_numbers
463  * @local: whether local (1) or remote (0) @feat_num is meant
464  * @needs_mandatory: whether to use Mandatory feature negotiation options
465  * @fval: pointer to NN/SP value to be inserted (will be copied)
466  */
467 static int dccp_feat_push_change(struct list_head *fn_list, u8 feat, u8 local,
468 				 u8 mandatory, dccp_feat_val *fval)
469 {
470 	struct dccp_feat_entry *new = dccp_feat_entry_new(fn_list, feat, local);
471 
472 	if (new == NULL)
473 		return -ENOMEM;
474 
475 	new->feat_num	     = feat;
476 	new->is_local	     = local;
477 	new->state	     = FEAT_INITIALISING;
478 	new->needs_confirm   = 0;
479 	new->empty_confirm   = 0;
480 	new->val	     = *fval;
481 	new->needs_mandatory = mandatory;
482 
483 	return 0;
484 }
485 
486 /**
487  * dccp_feat_push_confirm  -  Add a Confirm entry to the FN list
488  * @fn_list: feature-negotiation list to add to
489  * @feat: one of %dccp_feature_numbers
490  * @local: whether local (1) or remote (0) @feat_num is being confirmed
491  * @fval: pointer to NN/SP value to be inserted or NULL
492  * Returns 0 on success, a Reset code for further processing otherwise.
493  */
494 static int dccp_feat_push_confirm(struct list_head *fn_list, u8 feat, u8 local,
495 				  dccp_feat_val *fval)
496 {
497 	struct dccp_feat_entry *new = dccp_feat_entry_new(fn_list, feat, local);
498 
499 	if (new == NULL)
500 		return DCCP_RESET_CODE_TOO_BUSY;
501 
502 	new->feat_num	     = feat;
503 	new->is_local	     = local;
504 	new->state	     = FEAT_STABLE;	/* transition in 6.6.2 */
505 	new->needs_confirm   = 1;
506 	new->empty_confirm   = (fval == NULL);
507 	new->val.nn	     = 0;		/* zeroes the whole structure */
508 	if (!new->empty_confirm)
509 		new->val     = *fval;
510 	new->needs_mandatory = 0;
511 
512 	return 0;
513 }
514 
515 static int dccp_push_empty_confirm(struct list_head *fn_list, u8 feat, u8 local)
516 {
517 	return dccp_feat_push_confirm(fn_list, feat, local, NULL);
518 }
519 
520 static inline void dccp_feat_list_pop(struct dccp_feat_entry *entry)
521 {
522 	list_del(&entry->node);
523 	dccp_feat_entry_destructor(entry);
524 }
525 
526 void dccp_feat_list_purge(struct list_head *fn_list)
527 {
528 	struct dccp_feat_entry *entry, *next;
529 
530 	list_for_each_entry_safe(entry, next, fn_list, node)
531 		dccp_feat_entry_destructor(entry);
532 	INIT_LIST_HEAD(fn_list);
533 }
534 EXPORT_SYMBOL_GPL(dccp_feat_list_purge);
535 
536 /* generate @to as full clone of @from - @to must not contain any nodes */
537 int dccp_feat_clone_list(struct list_head const *from, struct list_head *to)
538 {
539 	struct dccp_feat_entry *entry, *new;
540 
541 	INIT_LIST_HEAD(to);
542 	list_for_each_entry(entry, from, node) {
543 		new = dccp_feat_clone_entry(entry);
544 		if (new == NULL)
545 			goto cloning_failed;
546 		list_add_tail(&new->node, to);
547 	}
548 	return 0;
549 
550 cloning_failed:
551 	dccp_feat_list_purge(to);
552 	return -ENOMEM;
553 }
554 
555 /**
556  * dccp_feat_valid_nn_length  -  Enforce length constraints on NN options
557  * Length is between 0 and %DCCP_OPTVAL_MAXLEN. Used for outgoing packets only,
558  * incoming options are accepted as long as their values are valid.
559  */
560 static u8 dccp_feat_valid_nn_length(u8 feat_num)
561 {
562 	if (feat_num == DCCPF_ACK_RATIO)	/* RFC 4340, 11.3 and 6.6.8 */
563 		return 2;
564 	if (feat_num == DCCPF_SEQUENCE_WINDOW)	/* RFC 4340, 7.5.2 and 6.5  */
565 		return 6;
566 	return 0;
567 }
568 
569 static u8 dccp_feat_is_valid_nn_val(u8 feat_num, u64 val)
570 {
571 	switch (feat_num) {
572 	case DCCPF_ACK_RATIO:
573 		return val <= DCCPF_ACK_RATIO_MAX;
574 	case DCCPF_SEQUENCE_WINDOW:
575 		return val >= DCCPF_SEQ_WMIN && val <= DCCPF_SEQ_WMAX;
576 	}
577 	return 0;	/* feature unknown - so we can't tell */
578 }
579 
580 /* check that SP values are within the ranges defined in RFC 4340 */
581 static u8 dccp_feat_is_valid_sp_val(u8 feat_num, u8 val)
582 {
583 	switch (feat_num) {
584 	case DCCPF_CCID:
585 		return val == DCCPC_CCID2 || val == DCCPC_CCID3;
586 	/* Type-check Boolean feature values: */
587 	case DCCPF_SHORT_SEQNOS:
588 	case DCCPF_ECN_INCAPABLE:
589 	case DCCPF_SEND_ACK_VECTOR:
590 	case DCCPF_SEND_NDP_COUNT:
591 	case DCCPF_DATA_CHECKSUM:
592 	case DCCPF_SEND_LEV_RATE:
593 		return val < 2;
594 	case DCCPF_MIN_CSUM_COVER:
595 		return val < 16;
596 	}
597 	return 0;			/* feature unknown */
598 }
599 
600 static u8 dccp_feat_sp_list_ok(u8 feat_num, u8 const *sp_list, u8 sp_len)
601 {
602 	if (sp_list == NULL || sp_len < 1)
603 		return 0;
604 	while (sp_len--)
605 		if (!dccp_feat_is_valid_sp_val(feat_num, *sp_list++))
606 			return 0;
607 	return 1;
608 }
609 
610 /**
611  * dccp_feat_insert_opts  -  Generate FN options from current list state
612  * @skb: next sk_buff to be sent to the peer
613  * @dp: for client during handshake and general negotiation
614  * @dreq: used by the server only (all Changes/Confirms in LISTEN/RESPOND)
615  */
616 int dccp_feat_insert_opts(struct dccp_sock *dp, struct dccp_request_sock *dreq,
617 			  struct sk_buff *skb)
618 {
619 	struct list_head *fn = dreq ? &dreq->dreq_featneg : &dp->dccps_featneg;
620 	struct dccp_feat_entry *pos, *next;
621 	u8 opt, type, len, *ptr, nn_in_nbo[DCCP_OPTVAL_MAXLEN];
622 	bool rpt;
623 
624 	/* put entries into @skb in the order they appear in the list */
625 	list_for_each_entry_safe_reverse(pos, next, fn, node) {
626 		opt  = dccp_feat_genopt(pos);
627 		type = dccp_feat_type(pos->feat_num);
628 		rpt  = false;
629 
630 		if (pos->empty_confirm) {
631 			len = 0;
632 			ptr = NULL;
633 		} else {
634 			if (type == FEAT_SP) {
635 				len = pos->val.sp.len;
636 				ptr = pos->val.sp.vec;
637 				rpt = pos->needs_confirm;
638 			} else if (type == FEAT_NN) {
639 				len = dccp_feat_valid_nn_length(pos->feat_num);
640 				ptr = nn_in_nbo;
641 				dccp_encode_value_var(pos->val.nn, ptr, len);
642 			} else {
643 				DCCP_BUG("unknown feature %u", pos->feat_num);
644 				return -1;
645 			}
646 		}
647 		dccp_feat_print_opt(opt, pos->feat_num, ptr, len, 0);
648 
649 		if (dccp_insert_fn_opt(skb, opt, pos->feat_num, ptr, len, rpt))
650 			return -1;
651 		if (pos->needs_mandatory && dccp_insert_option_mandatory(skb))
652 			return -1;
653 		/*
654 		 * Enter CHANGING after transmitting the Change option (6.6.2).
655 		 */
656 		if (pos->state == FEAT_INITIALISING)
657 			pos->state = FEAT_CHANGING;
658 	}
659 	return 0;
660 }
661 
662 /**
663  * __feat_register_nn  -  Register new NN value on socket
664  * @fn: feature-negotiation list to register with
665  * @feat: an NN feature from %dccp_feature_numbers
666  * @mandatory: use Mandatory option if 1
667  * @nn_val: value to register (restricted to 4 bytes)
668  * Note that NN features are local by definition (RFC 4340, 6.3.2).
669  */
670 static int __feat_register_nn(struct list_head *fn, u8 feat,
671 			      u8 mandatory, u64 nn_val)
672 {
673 	dccp_feat_val fval = { .nn = nn_val };
674 
675 	if (dccp_feat_type(feat) != FEAT_NN ||
676 	    !dccp_feat_is_valid_nn_val(feat, nn_val))
677 		return -EINVAL;
678 
679 	/* Don't bother with default values, they will be activated anyway. */
680 	if (nn_val - (u64)dccp_feat_default_value(feat) == 0)
681 		return 0;
682 
683 	return dccp_feat_push_change(fn, feat, 1, mandatory, &fval);
684 }
685 
686 /**
687  * __feat_register_sp  -  Register new SP value/list on socket
688  * @fn: feature-negotiation list to register with
689  * @feat: an SP feature from %dccp_feature_numbers
690  * @is_local: whether the local (1) or the remote (0) @feat is meant
691  * @mandatory: use Mandatory option if 1
692  * @sp_val: SP value followed by optional preference list
693  * @sp_len: length of @sp_val in bytes
694  */
695 static int __feat_register_sp(struct list_head *fn, u8 feat, u8 is_local,
696 			      u8 mandatory, u8 const *sp_val, u8 sp_len)
697 {
698 	dccp_feat_val fval;
699 
700 	if (dccp_feat_type(feat) != FEAT_SP ||
701 	    !dccp_feat_sp_list_ok(feat, sp_val, sp_len))
702 		return -EINVAL;
703 
704 	/* Avoid negotiating alien CCIDs by only advertising supported ones */
705 	if (feat == DCCPF_CCID && !ccid_support_check(sp_val, sp_len))
706 		return -EOPNOTSUPP;
707 
708 	if (dccp_feat_clone_sp_val(&fval, sp_val, sp_len))
709 		return -ENOMEM;
710 
711 	return dccp_feat_push_change(fn, feat, is_local, mandatory, &fval);
712 }
713 
714 /**
715  * dccp_feat_register_sp  -  Register requests to change SP feature values
716  * @sk: client or listening socket
717  * @feat: one of %dccp_feature_numbers
718  * @is_local: whether the local (1) or remote (0) @feat is meant
719  * @list: array of preferred values, in descending order of preference
720  * @len: length of @list in bytes
721  */
722 int dccp_feat_register_sp(struct sock *sk, u8 feat, u8 is_local,
723 			  u8 const *list, u8 len)
724 {	 /* any changes must be registered before establishing the connection */
725 	if (sk->sk_state != DCCP_CLOSED)
726 		return -EISCONN;
727 	if (dccp_feat_type(feat) != FEAT_SP)
728 		return -EINVAL;
729 	return __feat_register_sp(&dccp_sk(sk)->dccps_featneg, feat, is_local,
730 				  0, list, len);
731 }
732 
733 /* Analogous to dccp_feat_register_sp(), but for non-negotiable values */
734 int dccp_feat_register_nn(struct sock *sk, u8 feat, u64 val)
735 {
736 	/* any changes must be registered before establishing the connection */
737 	if (sk->sk_state != DCCP_CLOSED)
738 		return -EISCONN;
739 	if (dccp_feat_type(feat) != FEAT_NN)
740 		return -EINVAL;
741 	return __feat_register_nn(&dccp_sk(sk)->dccps_featneg, feat, 0, val);
742 }
743 
744 /*
745  *	Tracking features whose value depend on the choice of CCID
746  *
747  * This is designed with an extension in mind so that a list walk could be done
748  * before activating any features. However, the existing framework was found to
749  * work satisfactorily up until now, the automatic verification is left open.
750  * When adding new CCIDs, add a corresponding dependency table here.
751  */
752 static const struct ccid_dependency *dccp_feat_ccid_deps(u8 ccid, bool is_local)
753 {
754 	static const struct ccid_dependency ccid2_dependencies[2][2] = {
755 		/*
756 		 * CCID2 mandates Ack Vectors (RFC 4341, 4.): as CCID is a TX
757 		 * feature and Send Ack Vector is an RX feature, `is_local'
758 		 * needs to be reversed.
759 		 */
760 		{	/* Dependencies of the receiver-side (remote) CCID2 */
761 			{
762 				.dependent_feat	= DCCPF_SEND_ACK_VECTOR,
763 				.is_local	= true,
764 				.is_mandatory	= true,
765 				.val		= 1
766 			},
767 			{ 0, 0, 0, 0 }
768 		},
769 		{	/* Dependencies of the sender-side (local) CCID2 */
770 			{
771 				.dependent_feat	= DCCPF_SEND_ACK_VECTOR,
772 				.is_local	= false,
773 				.is_mandatory	= true,
774 				.val		= 1
775 			},
776 			{ 0, 0, 0, 0 }
777 		}
778 	};
779 	static const struct ccid_dependency ccid3_dependencies[2][5] = {
780 		{	/*
781 			 * Dependencies of the receiver-side CCID3
782 			 */
783 			{	/* locally disable Ack Vectors */
784 				.dependent_feat	= DCCPF_SEND_ACK_VECTOR,
785 				.is_local	= true,
786 				.is_mandatory	= false,
787 				.val		= 0
788 			},
789 			{	/* see below why Send Loss Event Rate is on */
790 				.dependent_feat	= DCCPF_SEND_LEV_RATE,
791 				.is_local	= true,
792 				.is_mandatory	= true,
793 				.val		= 1
794 			},
795 			{	/* NDP Count is needed as per RFC 4342, 6.1.1 */
796 				.dependent_feat	= DCCPF_SEND_NDP_COUNT,
797 				.is_local	= false,
798 				.is_mandatory	= true,
799 				.val		= 1
800 			},
801 			{ 0, 0, 0, 0 },
802 		},
803 		{	/*
804 			 * CCID3 at the TX side: we request that the HC-receiver
805 			 * will not send Ack Vectors (they will be ignored, so
806 			 * Mandatory is not set); we enable Send Loss Event Rate
807 			 * (Mandatory since the implementation does not support
808 			 * the Loss Intervals option of RFC 4342, 8.6).
809 			 * The last two options are for peer's information only.
810 			*/
811 			{
812 				.dependent_feat	= DCCPF_SEND_ACK_VECTOR,
813 				.is_local	= false,
814 				.is_mandatory	= false,
815 				.val		= 0
816 			},
817 			{
818 				.dependent_feat	= DCCPF_SEND_LEV_RATE,
819 				.is_local	= false,
820 				.is_mandatory	= true,
821 				.val		= 1
822 			},
823 			{	/* this CCID does not support Ack Ratio */
824 				.dependent_feat	= DCCPF_ACK_RATIO,
825 				.is_local	= true,
826 				.is_mandatory	= false,
827 				.val		= 0
828 			},
829 			{	/* tell receiver we are sending NDP counts */
830 				.dependent_feat	= DCCPF_SEND_NDP_COUNT,
831 				.is_local	= true,
832 				.is_mandatory	= false,
833 				.val		= 1
834 			},
835 			{ 0, 0, 0, 0 }
836 		}
837 	};
838 	switch (ccid) {
839 	case DCCPC_CCID2:
840 		return ccid2_dependencies[is_local];
841 	case DCCPC_CCID3:
842 		return ccid3_dependencies[is_local];
843 	default:
844 		return NULL;
845 	}
846 }
847 
848 /**
849  * dccp_feat_propagate_ccid - Resolve dependencies of features on choice of CCID
850  * @fn: feature-negotiation list to update
851  * @id: CCID number to track
852  * @is_local: whether TX CCID (1) or RX CCID (0) is meant
853  * This function needs to be called after registering all other features.
854  */
855 static int dccp_feat_propagate_ccid(struct list_head *fn, u8 id, bool is_local)
856 {
857 	const struct ccid_dependency *table = dccp_feat_ccid_deps(id, is_local);
858 	int i, rc = (table == NULL);
859 
860 	for (i = 0; rc == 0 && table[i].dependent_feat != DCCPF_RESERVED; i++)
861 		if (dccp_feat_type(table[i].dependent_feat) == FEAT_SP)
862 			rc = __feat_register_sp(fn, table[i].dependent_feat,
863 						    table[i].is_local,
864 						    table[i].is_mandatory,
865 						    &table[i].val, 1);
866 		else
867 			rc = __feat_register_nn(fn, table[i].dependent_feat,
868 						    table[i].is_mandatory,
869 						    table[i].val);
870 	return rc;
871 }
872 
873 /**
874  * dccp_feat_finalise_settings  -  Finalise settings before starting negotiation
875  * @dp: client or listening socket (settings will be inherited)
876  * This is called after all registrations (socket initialisation, sysctls, and
877  * sockopt calls), and before sending the first packet containing Change options
878  * (ie. client-Request or server-Response), to ensure internal consistency.
879  */
880 int dccp_feat_finalise_settings(struct dccp_sock *dp)
881 {
882 	struct list_head *fn = &dp->dccps_featneg;
883 	struct dccp_feat_entry *entry;
884 	int i = 2, ccids[2] = { -1, -1 };
885 
886 	/*
887 	 * Propagating CCIDs:
888 	 * 1) not useful to propagate CCID settings if this host advertises more
889 	 *    than one CCID: the choice of CCID  may still change - if this is
890 	 *    the client, or if this is the server and the client sends
891 	 *    singleton CCID values.
892 	 * 2) since is that propagate_ccid changes the list, we defer changing
893 	 *    the sorted list until after the traversal.
894 	 */
895 	list_for_each_entry(entry, fn, node)
896 		if (entry->feat_num == DCCPF_CCID && entry->val.sp.len == 1)
897 			ccids[entry->is_local] = entry->val.sp.vec[0];
898 	while (i--)
899 		if (ccids[i] > 0 && dccp_feat_propagate_ccid(fn, ccids[i], i))
900 			return -1;
901 	dccp_feat_print_fnlist(fn);
902 	return 0;
903 }
904 
905 /**
906  * dccp_feat_server_ccid_dependencies  -  Resolve CCID-dependent features
907  * It is the server which resolves the dependencies once the CCID has been
908  * fully negotiated. If no CCID has been negotiated, it uses the default CCID.
909  */
910 int dccp_feat_server_ccid_dependencies(struct dccp_request_sock *dreq)
911 {
912 	struct list_head *fn = &dreq->dreq_featneg;
913 	struct dccp_feat_entry *entry;
914 	u8 is_local, ccid;
915 
916 	for (is_local = 0; is_local <= 1; is_local++) {
917 		entry = dccp_feat_list_lookup(fn, DCCPF_CCID, is_local);
918 
919 		if (entry != NULL && !entry->empty_confirm)
920 			ccid = entry->val.sp.vec[0];
921 		else
922 			ccid = dccp_feat_default_value(DCCPF_CCID);
923 
924 		if (dccp_feat_propagate_ccid(fn, ccid, is_local))
925 			return -1;
926 	}
927 	return 0;
928 }
929 
930 /* Select the first entry in @servlist that also occurs in @clilist (6.3.1) */
931 static int dccp_feat_preflist_match(u8 *servlist, u8 slen, u8 *clilist, u8 clen)
932 {
933 	u8 c, s;
934 
935 	for (s = 0; s < slen; s++)
936 		for (c = 0; c < clen; c++)
937 			if (servlist[s] == clilist[c])
938 				return servlist[s];
939 	return -1;
940 }
941 
942 /**
943  * dccp_feat_prefer  -  Move preferred entry to the start of array
944  * Reorder the @array_len elements in @array so that @preferred_value comes
945  * first. Returns >0 to indicate that @preferred_value does occur in @array.
946  */
947 static u8 dccp_feat_prefer(u8 preferred_value, u8 *array, u8 array_len)
948 {
949 	u8 i, does_occur = 0;
950 
951 	if (array != NULL) {
952 		for (i = 0; i < array_len; i++)
953 			if (array[i] == preferred_value) {
954 				array[i] = array[0];
955 				does_occur++;
956 			}
957 		if (does_occur)
958 			array[0] = preferred_value;
959 	}
960 	return does_occur;
961 }
962 
963 /**
964  * dccp_feat_reconcile  -  Reconcile SP preference lists
965  *  @fval: SP list to reconcile into
966  *  @arr: received SP preference list
967  *  @len: length of @arr in bytes
968  *  @is_server: whether this side is the server (and @fv is the server's list)
969  *  @reorder: whether to reorder the list in @fv after reconciling with @arr
970  * When successful, > 0 is returned and the reconciled list is in @fval.
971  * A value of 0 means that negotiation failed (no shared entry).
972  */
973 static int dccp_feat_reconcile(dccp_feat_val *fv, u8 *arr, u8 len,
974 			       bool is_server, bool reorder)
975 {
976 	int rc;
977 
978 	if (!fv->sp.vec || !arr) {
979 		DCCP_CRIT("NULL feature value or array");
980 		return 0;
981 	}
982 
983 	if (is_server)
984 		rc = dccp_feat_preflist_match(fv->sp.vec, fv->sp.len, arr, len);
985 	else
986 		rc = dccp_feat_preflist_match(arr, len, fv->sp.vec, fv->sp.len);
987 
988 	if (!reorder)
989 		return rc;
990 	if (rc < 0)
991 		return 0;
992 
993 	/*
994 	 * Reorder list: used for activating features and in dccp_insert_fn_opt.
995 	 */
996 	return dccp_feat_prefer(rc, fv->sp.vec, fv->sp.len);
997 }
998 
999 /**
1000  * dccp_feat_change_recv  -  Process incoming ChangeL/R options
1001  * @fn: feature-negotiation list to update
1002  * @is_mandatory: whether the Change was preceded by a Mandatory option
1003  * @opt: %DCCPO_CHANGE_L or %DCCPO_CHANGE_R
1004  * @feat: one of %dccp_feature_numbers
1005  * @val: NN value or SP value/preference list
1006  * @len: length of @val in bytes
1007  * @server: whether this node is the server (1) or the client (0)
1008  */
1009 static u8 dccp_feat_change_recv(struct list_head *fn, u8 is_mandatory, u8 opt,
1010 				u8 feat, u8 *val, u8 len, const bool server)
1011 {
1012 	u8 defval, type = dccp_feat_type(feat);
1013 	const bool local = (opt == DCCPO_CHANGE_R);
1014 	struct dccp_feat_entry *entry;
1015 	dccp_feat_val fval;
1016 
1017 	if (len == 0 || type == FEAT_UNKNOWN)		/* 6.1 and 6.6.8 */
1018 		goto unknown_feature_or_value;
1019 
1020 	dccp_feat_print_opt(opt, feat, val, len, is_mandatory);
1021 
1022 	/*
1023 	 *	Negotiation of NN features: Change R is invalid, so there is no
1024 	 *	simultaneous negotiation; hence we do not look up in the list.
1025 	 */
1026 	if (type == FEAT_NN) {
1027 		if (local || len > sizeof(fval.nn))
1028 			goto unknown_feature_or_value;
1029 
1030 		/* 6.3.2: "The feature remote MUST accept any valid value..." */
1031 		fval.nn = dccp_decode_value_var(val, len);
1032 		if (!dccp_feat_is_valid_nn_val(feat, fval.nn))
1033 			goto unknown_feature_or_value;
1034 
1035 		return dccp_feat_push_confirm(fn, feat, local, &fval);
1036 	}
1037 
1038 	/*
1039 	 *	Unidirectional/simultaneous negotiation of SP features (6.3.1)
1040 	 */
1041 	entry = dccp_feat_list_lookup(fn, feat, local);
1042 	if (entry == NULL) {
1043 		/*
1044 		 * No particular preferences have been registered. We deal with
1045 		 * this situation by assuming that all valid values are equally
1046 		 * acceptable, and apply the following checks:
1047 		 * - if the peer's list is a singleton, we accept a valid value;
1048 		 * - if we are the server, we first try to see if the peer (the
1049 		 *   client) advertises the default value. If yes, we use it,
1050 		 *   otherwise we accept the preferred value;
1051 		 * - else if we are the client, we use the first list element.
1052 		 */
1053 		if (dccp_feat_clone_sp_val(&fval, val, 1))
1054 			return DCCP_RESET_CODE_TOO_BUSY;
1055 
1056 		if (len > 1 && server) {
1057 			defval = dccp_feat_default_value(feat);
1058 			if (dccp_feat_preflist_match(&defval, 1, val, len) > -1)
1059 				fval.sp.vec[0] = defval;
1060 		} else if (!dccp_feat_is_valid_sp_val(feat, fval.sp.vec[0])) {
1061 			kfree(fval.sp.vec);
1062 			goto unknown_feature_or_value;
1063 		}
1064 
1065 		/* Treat unsupported CCIDs like invalid values */
1066 		if (feat == DCCPF_CCID && !ccid_support_check(fval.sp.vec, 1)) {
1067 			kfree(fval.sp.vec);
1068 			goto not_valid_or_not_known;
1069 		}
1070 
1071 		return dccp_feat_push_confirm(fn, feat, local, &fval);
1072 
1073 	} else if (entry->state == FEAT_UNSTABLE) {	/* 6.6.2 */
1074 		return 0;
1075 	}
1076 
1077 	if (dccp_feat_reconcile(&entry->val, val, len, server, true)) {
1078 		entry->empty_confirm = 0;
1079 	} else if (is_mandatory) {
1080 		return DCCP_RESET_CODE_MANDATORY_ERROR;
1081 	} else if (entry->state == FEAT_INITIALISING) {
1082 		/*
1083 		 * Failed simultaneous negotiation (server only): try to `save'
1084 		 * the connection by checking whether entry contains the default
1085 		 * value for @feat. If yes, send an empty Confirm to signal that
1086 		 * the received Change was not understood - which implies using
1087 		 * the default value.
1088 		 * If this also fails, we use Reset as the last resort.
1089 		 */
1090 		WARN_ON(!server);
1091 		defval = dccp_feat_default_value(feat);
1092 		if (!dccp_feat_reconcile(&entry->val, &defval, 1, server, true))
1093 			return DCCP_RESET_CODE_OPTION_ERROR;
1094 		entry->empty_confirm = 1;
1095 	}
1096 	entry->needs_confirm   = 1;
1097 	entry->needs_mandatory = 0;
1098 	entry->state	       = FEAT_STABLE;
1099 	return 0;
1100 
1101 unknown_feature_or_value:
1102 	if (!is_mandatory)
1103 		return dccp_push_empty_confirm(fn, feat, local);
1104 
1105 not_valid_or_not_known:
1106 	return is_mandatory ? DCCP_RESET_CODE_MANDATORY_ERROR
1107 			    : DCCP_RESET_CODE_OPTION_ERROR;
1108 }
1109 
1110 /**
1111  * dccp_feat_confirm_recv  -  Process received Confirm options
1112  * @fn: feature-negotiation list to update
1113  * @is_mandatory: whether @opt was preceded by a Mandatory option
1114  * @opt: %DCCPO_CONFIRM_L or %DCCPO_CONFIRM_R
1115  * @feat: one of %dccp_feature_numbers
1116  * @val: NN value or SP value/preference list
1117  * @len: length of @val in bytes
1118  * @server: whether this node is server (1) or client (0)
1119  */
1120 static u8 dccp_feat_confirm_recv(struct list_head *fn, u8 is_mandatory, u8 opt,
1121 				 u8 feat, u8 *val, u8 len, const bool server)
1122 {
1123 	u8 *plist, plen, type = dccp_feat_type(feat);
1124 	const bool local = (opt == DCCPO_CONFIRM_R);
1125 	struct dccp_feat_entry *entry = dccp_feat_list_lookup(fn, feat, local);
1126 
1127 	dccp_feat_print_opt(opt, feat, val, len, is_mandatory);
1128 
1129 	if (entry == NULL) {	/* nothing queued: ignore or handle error */
1130 		if (is_mandatory && type == FEAT_UNKNOWN)
1131 			return DCCP_RESET_CODE_MANDATORY_ERROR;
1132 
1133 		if (!local && type == FEAT_NN)		/* 6.3.2 */
1134 			goto confirmation_failed;
1135 		return 0;
1136 	}
1137 
1138 	if (entry->state != FEAT_CHANGING)		/* 6.6.2 */
1139 		return 0;
1140 
1141 	if (len == 0) {
1142 		if (dccp_feat_must_be_understood(feat))	/* 6.6.7 */
1143 			goto confirmation_failed;
1144 		/*
1145 		 * Empty Confirm during connection setup: this means reverting
1146 		 * to the `old' value, which in this case is the default. Since
1147 		 * we handle default values automatically when no other values
1148 		 * have been set, we revert to the old value by removing this
1149 		 * entry from the list.
1150 		 */
1151 		dccp_feat_list_pop(entry);
1152 		return 0;
1153 	}
1154 
1155 	if (type == FEAT_NN) {
1156 		if (len > sizeof(entry->val.nn))
1157 			goto confirmation_failed;
1158 
1159 		if (entry->val.nn == dccp_decode_value_var(val, len))
1160 			goto confirmation_succeeded;
1161 
1162 		DCCP_WARN("Bogus Confirm for non-existing value\n");
1163 		goto confirmation_failed;
1164 	}
1165 
1166 	/*
1167 	 * Parsing SP Confirms: the first element of @val is the preferred
1168 	 * SP value which the peer confirms, the remainder depends on @len.
1169 	 * Note that only the confirmed value need to be a valid SP value.
1170 	 */
1171 	if (!dccp_feat_is_valid_sp_val(feat, *val))
1172 		goto confirmation_failed;
1173 
1174 	if (len == 1) {		/* peer didn't supply a preference list */
1175 		plist = val;
1176 		plen  = len;
1177 	} else {		/* preferred value + preference list */
1178 		plist = val + 1;
1179 		plen  = len - 1;
1180 	}
1181 
1182 	/* Check whether the peer got the reconciliation right (6.6.8) */
1183 	if (dccp_feat_reconcile(&entry->val, plist, plen, server, 0) != *val) {
1184 		DCCP_WARN("Confirm selected the wrong value %u\n", *val);
1185 		return DCCP_RESET_CODE_OPTION_ERROR;
1186 	}
1187 	entry->val.sp.vec[0] = *val;
1188 
1189 confirmation_succeeded:
1190 	entry->state = FEAT_STABLE;
1191 	return 0;
1192 
1193 confirmation_failed:
1194 	DCCP_WARN("Confirmation failed\n");
1195 	return is_mandatory ? DCCP_RESET_CODE_MANDATORY_ERROR
1196 			    : DCCP_RESET_CODE_OPTION_ERROR;
1197 }
1198 
1199 /**
1200  * dccp_feat_parse_options  -  Process Feature-Negotiation Options
1201  * @sk: for general use and used by the client during connection setup
1202  * @dreq: used by the server during connection setup
1203  * @mandatory: whether @opt was preceded by a Mandatory option
1204  * @opt: %DCCPO_CHANGE_L | %DCCPO_CHANGE_R | %DCCPO_CONFIRM_L | %DCCPO_CONFIRM_R
1205  * @feat: one of %dccp_feature_numbers
1206  * @val: value contents of @opt
1207  * @len: length of @val in bytes
1208  * Returns 0 on success, a Reset code for ending the connection otherwise.
1209  */
1210 int dccp_feat_parse_options(struct sock *sk, struct dccp_request_sock *dreq,
1211 			    u8 mandatory, u8 opt, u8 feat, u8 *val, u8 len)
1212 {
1213 	struct dccp_sock *dp = dccp_sk(sk);
1214 	struct list_head *fn = dreq ? &dreq->dreq_featneg : &dp->dccps_featneg;
1215 	bool server = false;
1216 
1217 	switch (sk->sk_state) {
1218 	/*
1219 	 *	Negotiation during connection setup
1220 	 */
1221 	case DCCP_LISTEN:
1222 		server = true;			/* fall through */
1223 	case DCCP_REQUESTING:
1224 		switch (opt) {
1225 		case DCCPO_CHANGE_L:
1226 		case DCCPO_CHANGE_R:
1227 			return dccp_feat_change_recv(fn, mandatory, opt, feat,
1228 						     val, len, server);
1229 		case DCCPO_CONFIRM_R:
1230 		case DCCPO_CONFIRM_L:
1231 			return dccp_feat_confirm_recv(fn, mandatory, opt, feat,
1232 						      val, len, server);
1233 		}
1234 	}
1235 	return 0;	/* ignore FN options in all other states */
1236 }
1237 
1238 /**
1239  * dccp_feat_init  -  Seed feature negotiation with host-specific defaults
1240  * This initialises global defaults, depending on the value of the sysctls.
1241  * These can later be overridden by registering changes via setsockopt calls.
1242  * The last link in the chain is finalise_settings, to make sure that between
1243  * here and the start of actual feature negotiation no inconsistencies enter.
1244  *
1245  * All features not appearing below use either defaults or are otherwise
1246  * later adjusted through dccp_feat_finalise_settings().
1247  */
1248 int dccp_feat_init(struct sock *sk)
1249 {
1250 	struct list_head *fn = &dccp_sk(sk)->dccps_featneg;
1251 	u8 on = 1, off = 0;
1252 	int rc;
1253 	struct {
1254 		u8 *val;
1255 		u8 len;
1256 	} tx, rx;
1257 
1258 	/* Non-negotiable (NN) features */
1259 	rc = __feat_register_nn(fn, DCCPF_SEQUENCE_WINDOW, 0,
1260 				    sysctl_dccp_sequence_window);
1261 	if (rc)
1262 		return rc;
1263 
1264 	/* Server-priority (SP) features */
1265 
1266 	/* Advertise that short seqnos are not supported (7.6.1) */
1267 	rc = __feat_register_sp(fn, DCCPF_SHORT_SEQNOS, true, true, &off, 1);
1268 	if (rc)
1269 		return rc;
1270 
1271 	/* RFC 4340 12.1: "If a DCCP is not ECN capable, ..." */
1272 	rc = __feat_register_sp(fn, DCCPF_ECN_INCAPABLE, true, true, &on, 1);
1273 	if (rc)
1274 		return rc;
1275 
1276 	/*
1277 	 * We advertise the available list of CCIDs and reorder according to
1278 	 * preferences, to avoid failure resulting from negotiating different
1279 	 * singleton values (which always leads to failure).
1280 	 * These settings can still (later) be overridden via sockopts.
1281 	 */
1282 	if (ccid_get_builtin_ccids(&tx.val, &tx.len) ||
1283 	    ccid_get_builtin_ccids(&rx.val, &rx.len))
1284 		return -ENOBUFS;
1285 
1286 	if (!dccp_feat_prefer(sysctl_dccp_tx_ccid, tx.val, tx.len) ||
1287 	    !dccp_feat_prefer(sysctl_dccp_rx_ccid, rx.val, rx.len))
1288 		goto free_ccid_lists;
1289 
1290 	rc = __feat_register_sp(fn, DCCPF_CCID, true, false, tx.val, tx.len);
1291 	if (rc)
1292 		goto free_ccid_lists;
1293 
1294 	rc = __feat_register_sp(fn, DCCPF_CCID, false, false, rx.val, rx.len);
1295 
1296 free_ccid_lists:
1297 	kfree(tx.val);
1298 	kfree(rx.val);
1299 	return rc;
1300 }
1301 
1302 int dccp_feat_activate_values(struct sock *sk, struct list_head *fn_list)
1303 {
1304 	struct dccp_sock *dp = dccp_sk(sk);
1305 	struct dccp_feat_entry *cur, *next;
1306 	int idx;
1307 	dccp_feat_val *fvals[DCCP_FEAT_SUPPORTED_MAX][2] = {
1308 		 [0 ... DCCP_FEAT_SUPPORTED_MAX-1] = { NULL, NULL }
1309 	};
1310 
1311 	list_for_each_entry(cur, fn_list, node) {
1312 		/*
1313 		 * An empty Confirm means that either an unknown feature type
1314 		 * or an invalid value was present. In the first case there is
1315 		 * nothing to activate, in the other the default value is used.
1316 		 */
1317 		if (cur->empty_confirm)
1318 			continue;
1319 
1320 		idx = dccp_feat_index(cur->feat_num);
1321 		if (idx < 0) {
1322 			DCCP_BUG("Unknown feature %u", cur->feat_num);
1323 			goto activation_failed;
1324 		}
1325 		if (cur->state != FEAT_STABLE) {
1326 			DCCP_CRIT("Negotiation of %s %s failed in state %s",
1327 				  cur->is_local ? "local" : "remote",
1328 				  dccp_feat_fname(cur->feat_num),
1329 				  dccp_feat_sname[cur->state]);
1330 			goto activation_failed;
1331 		}
1332 		fvals[idx][cur->is_local] = &cur->val;
1333 	}
1334 
1335 	/*
1336 	 * Activate in decreasing order of index, so that the CCIDs are always
1337 	 * activated as the last feature. This avoids the case where a CCID
1338 	 * relies on the initialisation of one or more features that it depends
1339 	 * on (e.g. Send NDP Count, Send Ack Vector, and Ack Ratio features).
1340 	 */
1341 	for (idx = DCCP_FEAT_SUPPORTED_MAX; --idx >= 0;)
1342 		if (__dccp_feat_activate(sk, idx, 0, fvals[idx][0]) ||
1343 		    __dccp_feat_activate(sk, idx, 1, fvals[idx][1])) {
1344 			DCCP_CRIT("Could not activate %d", idx);
1345 			goto activation_failed;
1346 		}
1347 
1348 	/* Clean up Change options which have been confirmed already */
1349 	list_for_each_entry_safe(cur, next, fn_list, node)
1350 		if (!cur->needs_confirm)
1351 			dccp_feat_list_pop(cur);
1352 
1353 	dccp_pr_debug("Activation OK\n");
1354 	return 0;
1355 
1356 activation_failed:
1357 	/*
1358 	 * We clean up everything that may have been allocated, since
1359 	 * it is difficult to track at which stage negotiation failed.
1360 	 * This is ok, since all allocation functions below are robust
1361 	 * against NULL arguments.
1362 	 */
1363 	ccid_hc_rx_delete(dp->dccps_hc_rx_ccid, sk);
1364 	ccid_hc_tx_delete(dp->dccps_hc_tx_ccid, sk);
1365 	dp->dccps_hc_rx_ccid = dp->dccps_hc_tx_ccid = NULL;
1366 	dccp_ackvec_free(dp->dccps_hc_rx_ackvec);
1367 	dp->dccps_hc_rx_ackvec = NULL;
1368 	return -1;
1369 }
1370