1 /*
2  *  net/dccp/packet_history.c
3  *
4  *  Copyright (c) 2007   The University of Aberdeen, Scotland, UK
5  *  Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
6  *
7  *  An implementation of the DCCP protocol
8  *
9  *  This code has been developed by the University of Waikato WAND
10  *  research group. For further information please see http://www.wand.net.nz/
11  *  or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
12  *
13  *  This code also uses code from Lulea University, rereleased as GPL by its
14  *  authors:
15  *  Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
16  *
17  *  Changes to meet Linux coding standards, to make it meet latest ccid3 draft
18  *  and to make it work as a loadable module in the DCCP stack written by
19  *  Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
20  *
21  *  Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
22  *
23  *  This program is free software; you can redistribute it and/or modify
24  *  it under the terms of the GNU General Public License as published by
25  *  the Free Software Foundation; either version 2 of the License, or
26  *  (at your option) any later version.
27  *
28  *  This program is distributed in the hope that it will be useful,
29  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
30  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  *  GNU General Public License for more details.
32  *
33  *  You should have received a copy of the GNU General Public License
34  *  along with this program; if not, write to the Free Software
35  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
36  */
37 
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include "packet_history.h"
41 #include "../../dccp.h"
42 
43 /**
44  *  tfrc_tx_hist_entry  -  Simple singly-linked TX history list
45  *  @next:  next oldest entry (LIFO order)
46  *  @seqno: sequence number of this entry
47  *  @stamp: send time of packet with sequence number @seqno
48  */
49 struct tfrc_tx_hist_entry {
50 	struct tfrc_tx_hist_entry *next;
51 	u64			  seqno;
52 	ktime_t			  stamp;
53 };
54 
55 /*
56  * Transmitter History Routines
57  */
58 static struct kmem_cache *tfrc_tx_hist_slab;
59 
60 int __init tfrc_tx_packet_history_init(void)
61 {
62 	tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist",
63 					      sizeof(struct tfrc_tx_hist_entry),
64 					      0, SLAB_HWCACHE_ALIGN, NULL);
65 	return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0;
66 }
67 
68 void tfrc_tx_packet_history_exit(void)
69 {
70 	if (tfrc_tx_hist_slab != NULL) {
71 		kmem_cache_destroy(tfrc_tx_hist_slab);
72 		tfrc_tx_hist_slab = NULL;
73 	}
74 }
75 
76 static struct tfrc_tx_hist_entry *
77 	tfrc_tx_hist_find_entry(struct tfrc_tx_hist_entry *head, u64 seqno)
78 {
79 	while (head != NULL && head->seqno != seqno)
80 		head = head->next;
81 
82 	return head;
83 }
84 
85 int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno)
86 {
87 	struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any());
88 
89 	if (entry == NULL)
90 		return -ENOBUFS;
91 	entry->seqno = seqno;
92 	entry->stamp = ktime_get_real();
93 	entry->next  = *headp;
94 	*headp	     = entry;
95 	return 0;
96 }
97 EXPORT_SYMBOL_GPL(tfrc_tx_hist_add);
98 
99 void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp)
100 {
101 	struct tfrc_tx_hist_entry *head = *headp;
102 
103 	while (head != NULL) {
104 		struct tfrc_tx_hist_entry *next = head->next;
105 
106 		kmem_cache_free(tfrc_tx_hist_slab, head);
107 		head = next;
108 	}
109 
110 	*headp = NULL;
111 }
112 EXPORT_SYMBOL_GPL(tfrc_tx_hist_purge);
113 
114 u32 tfrc_tx_hist_rtt(struct tfrc_tx_hist_entry *head, const u64 seqno,
115 		     const ktime_t now)
116 {
117 	u32 rtt = 0;
118 	struct tfrc_tx_hist_entry *packet = tfrc_tx_hist_find_entry(head, seqno);
119 
120 	if (packet != NULL) {
121 		rtt = ktime_us_delta(now, packet->stamp);
122 		/*
123 		 * Garbage-collect older (irrelevant) entries:
124 		 */
125 		tfrc_tx_hist_purge(&packet->next);
126 	}
127 
128 	return rtt;
129 }
130 EXPORT_SYMBOL_GPL(tfrc_tx_hist_rtt);
131 
132 
133 /*
134  * 	Receiver History Routines
135  */
136 static struct kmem_cache *tfrc_rx_hist_slab;
137 
138 int __init tfrc_rx_packet_history_init(void)
139 {
140 	tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache",
141 					      sizeof(struct tfrc_rx_hist_entry),
142 					      0, SLAB_HWCACHE_ALIGN, NULL);
143 	return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0;
144 }
145 
146 void tfrc_rx_packet_history_exit(void)
147 {
148 	if (tfrc_rx_hist_slab != NULL) {
149 		kmem_cache_destroy(tfrc_rx_hist_slab);
150 		tfrc_rx_hist_slab = NULL;
151 	}
152 }
153 
154 static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry,
155 					       const struct sk_buff *skb,
156 					       const u32 ndp)
157 {
158 	const struct dccp_hdr *dh = dccp_hdr(skb);
159 
160 	entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq;
161 	entry->tfrchrx_ccval = dh->dccph_ccval;
162 	entry->tfrchrx_type  = dh->dccph_type;
163 	entry->tfrchrx_ndp   = ndp;
164 	entry->tfrchrx_tstamp = ktime_get_real();
165 }
166 
167 void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h,
168 			     const struct sk_buff *skb,
169 			     const u32 ndp)
170 {
171 	struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h);
172 
173 	tfrc_rx_hist_entry_from_skb(entry, skb, ndp);
174 }
175 EXPORT_SYMBOL_GPL(tfrc_rx_hist_add_packet);
176 
177 /* has the packet contained in skb been seen before? */
178 int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb)
179 {
180 	const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq;
181 	int i;
182 
183 	if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0)
184 		return 1;
185 
186 	for (i = 1; i <= h->loss_count; i++)
187 		if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq)
188 			return 1;
189 
190 	return 0;
191 }
192 EXPORT_SYMBOL_GPL(tfrc_rx_hist_duplicate);
193 
194 static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
195 {
196 	const u8 idx_a = tfrc_rx_hist_index(h, a),
197 		 idx_b = tfrc_rx_hist_index(h, b);
198 	struct tfrc_rx_hist_entry *tmp = h->ring[idx_a];
199 
200 	h->ring[idx_a] = h->ring[idx_b];
201 	h->ring[idx_b] = tmp;
202 }
203 
204 /*
205  * Private helper functions for loss detection.
206  *
207  * In the descriptions, `Si' refers to the sequence number of entry number i,
208  * whose NDP count is `Ni' (lower case is used for variables).
209  * Note: All __after_loss functions expect that a test against duplicates has
210  *       been performed already: the seqno of the skb must not be less than the
211  *       seqno of loss_prev; and it must not equal that of any valid hist_entry.
212  */
213 static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2)
214 {
215 	u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
216 	    s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
217 	    s2 = DCCP_SKB_CB(skb)->dccpd_seq;
218 
219 	if (likely(dccp_delta_seqno(s1, s2) > 0)) {	/* S1  <  S2 */
220 		h->loss_count = 2;
221 		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2);
222 		return;
223 	}
224 
225 	/* S0  <  S2  <  S1 */
226 
227 	if (dccp_loss_free(s0, s2, n2)) {
228 		u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
229 
230 		if (dccp_loss_free(s2, s1, n1)) {
231 			/* hole is filled: S0, S2, and S1 are consecutive */
232 			h->loss_count = 0;
233 			h->loss_start = tfrc_rx_hist_index(h, 1);
234 		} else
235 			/* gap between S2 and S1: just update loss_prev */
236 			tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2);
237 
238 	} else {	/* gap between S0 and S2 */
239 		/*
240 		 * Reorder history to insert S2 between S0 and S1
241 		 */
242 		tfrc_rx_hist_swap(h, 0, 3);
243 		h->loss_start = tfrc_rx_hist_index(h, 3);
244 		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2);
245 		h->loss_count = 2;
246 	}
247 }
248 
249 /* return 1 if a new loss event has been identified */
250 static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3)
251 {
252 	u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
253 	    s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
254 	    s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
255 	    s3 = DCCP_SKB_CB(skb)->dccpd_seq;
256 
257 	if (likely(dccp_delta_seqno(s2, s3) > 0)) {	/* S2  <  S3 */
258 		h->loss_count = 3;
259 		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3);
260 		return 1;
261 	}
262 
263 	/* S3  <  S2 */
264 
265 	if (dccp_delta_seqno(s1, s3) > 0) {		/* S1  <  S3  <  S2 */
266 		/*
267 		 * Reorder history to insert S3 between S1 and S2
268 		 */
269 		tfrc_rx_hist_swap(h, 2, 3);
270 		tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3);
271 		h->loss_count = 3;
272 		return 1;
273 	}
274 
275 	/* S0  <  S3  <  S1 */
276 
277 	if (dccp_loss_free(s0, s3, n3)) {
278 		u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
279 
280 		if (dccp_loss_free(s3, s1, n1)) {
281 			/* hole between S0 and S1 filled by S3 */
282 			u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp;
283 
284 			if (dccp_loss_free(s1, s2, n2)) {
285 				/* entire hole filled by S0, S3, S1, S2 */
286 				h->loss_start = tfrc_rx_hist_index(h, 2);
287 				h->loss_count = 0;
288 			} else {
289 				/* gap remains between S1 and S2 */
290 				h->loss_start = tfrc_rx_hist_index(h, 1);
291 				h->loss_count = 1;
292 			}
293 
294 		} else /* gap exists between S3 and S1, loss_count stays at 2 */
295 			tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3);
296 
297 		return 0;
298 	}
299 
300 	/*
301 	 * The remaining case:  S0  <  S3  <  S1  <  S2;  gap between S0 and S3
302 	 * Reorder history to insert S3 between S0 and S1.
303 	 */
304 	tfrc_rx_hist_swap(h, 0, 3);
305 	h->loss_start = tfrc_rx_hist_index(h, 3);
306 	tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3);
307 	h->loss_count = 3;
308 
309 	return 1;
310 }
311 
312 /* recycle RX history records to continue loss detection if necessary */
313 static void __three_after_loss(struct tfrc_rx_hist *h)
314 {
315 	/*
316 	 * At this stage we know already that there is a gap between S0 and S1
317 	 * (since S0 was the highest sequence number received before detecting
318 	 * the loss). To recycle the loss record, it is	thus only necessary to
319 	 * check for other possible gaps between S1/S2 and between S2/S3.
320 	 */
321 	u64 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
322 	    s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
323 	    s3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_seqno;
324 	u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp,
325 	    n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp;
326 
327 	if (dccp_loss_free(s1, s2, n2)) {
328 
329 		if (dccp_loss_free(s2, s3, n3)) {
330 			/* no gap between S2 and S3: entire hole is filled */
331 			h->loss_start = tfrc_rx_hist_index(h, 3);
332 			h->loss_count = 0;
333 		} else {
334 			/* gap between S2 and S3 */
335 			h->loss_start = tfrc_rx_hist_index(h, 2);
336 			h->loss_count = 1;
337 		}
338 
339 	} else {	/* gap between S1 and S2 */
340 		h->loss_start = tfrc_rx_hist_index(h, 1);
341 		h->loss_count = 2;
342 	}
343 }
344 
345 /**
346  *  tfrc_rx_handle_loss  -  Loss detection and further processing
347  *  @h:		    The non-empty RX history object
348  *  @lh:	    Loss Intervals database to update
349  *  @skb:	    Currently received packet
350  *  @ndp:	    The NDP count belonging to @skb
351  *  @calc_first_li: Caller-dependent computation of first loss interval in @lh
352  *  @sk:	    Used by @calc_first_li (see tfrc_lh_interval_add)
353  *  Chooses action according to pending loss, updates LI database when a new
354  *  loss was detected, and does required post-processing. Returns 1 when caller
355  *  should send feedback, 0 otherwise.
356  */
357 int tfrc_rx_handle_loss(struct tfrc_rx_hist *h,
358 			struct tfrc_loss_hist *lh,
359 			struct sk_buff *skb, u32 ndp,
360 			u32 (*calc_first_li)(struct sock *), struct sock *sk)
361 {
362 	int is_new_loss = 0;
363 
364 	if (h->loss_count == 1) {
365 		__one_after_loss(h, skb, ndp);
366 	} else if (h->loss_count != 2) {
367 		DCCP_BUG("invalid loss_count %d", h->loss_count);
368 	} else if (__two_after_loss(h, skb, ndp)) {
369 		/*
370 		 * Update Loss Interval database and recycle RX records
371 		 */
372 		is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk);
373 		__three_after_loss(h);
374 	}
375 	return is_new_loss;
376 }
377 EXPORT_SYMBOL_GPL(tfrc_rx_handle_loss);
378 
379 int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h)
380 {
381 	int i;
382 
383 	for (i = 0; i <= TFRC_NDUPACK; i++) {
384 		h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC);
385 		if (h->ring[i] == NULL)
386 			goto out_free;
387 	}
388 
389 	h->loss_count = h->loss_start = 0;
390 	return 0;
391 
392 out_free:
393 	while (i-- != 0) {
394 		kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
395 		h->ring[i] = NULL;
396 	}
397 	return -ENOBUFS;
398 }
399 EXPORT_SYMBOL_GPL(tfrc_rx_hist_alloc);
400 
401 void tfrc_rx_hist_purge(struct tfrc_rx_hist *h)
402 {
403 	int i;
404 
405 	for (i = 0; i <= TFRC_NDUPACK; ++i)
406 		if (h->ring[i] != NULL) {
407 			kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
408 			h->ring[i] = NULL;
409 		}
410 }
411 EXPORT_SYMBOL_GPL(tfrc_rx_hist_purge);
412 
413 /**
414  * tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
415  */
416 static inline struct tfrc_rx_hist_entry *
417 			tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h)
418 {
419 	return h->ring[0];
420 }
421 
422 /**
423  * tfrc_rx_hist_rtt_prev_s: previously suitable (wrt rtt_last_s) RTT-sampling entry
424  */
425 static inline struct tfrc_rx_hist_entry *
426 			tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h)
427 {
428 	return h->ring[h->rtt_sample_prev];
429 }
430 
431 /**
432  * tfrc_rx_hist_sample_rtt  -  Sample RTT from timestamp / CCVal
433  * Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
434  * to compute a sample with given data - calling function should check this.
435  */
436 u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb)
437 {
438 	u32 sample = 0,
439 	    delta_v = SUB16(dccp_hdr(skb)->dccph_ccval,
440 			    tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
441 
442 	if (delta_v < 1 || delta_v > 4) {	/* unsuitable CCVal delta */
443 		if (h->rtt_sample_prev == 2) {	/* previous candidate stored */
444 			sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
445 				       tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
446 			if (sample)
447 				sample = 4 / sample *
448 				         ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp,
449 							tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp);
450 			else    /*
451 				 * FIXME: This condition is in principle not
452 				 * possible but occurs when CCID is used for
453 				 * two-way data traffic. I have tried to trace
454 				 * it, but the cause does not seem to be here.
455 				 */
456 				DCCP_BUG("please report to dccp@vger.kernel.org"
457 					 " => prev = %u, last = %u",
458 					 tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
459 					 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
460 		} else if (delta_v < 1) {
461 			h->rtt_sample_prev = 1;
462 			goto keep_ref_for_next_time;
463 		}
464 
465 	} else if (delta_v == 4) /* optimal match */
466 		sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp));
467 	else {			 /* suboptimal match */
468 		h->rtt_sample_prev = 2;
469 		goto keep_ref_for_next_time;
470 	}
471 
472 	if (unlikely(sample > DCCP_SANE_RTT_MAX)) {
473 		DCCP_WARN("RTT sample %u too large, using max\n", sample);
474 		sample = DCCP_SANE_RTT_MAX;
475 	}
476 
477 	h->rtt_sample_prev = 0;	       /* use current entry as next reference */
478 keep_ref_for_next_time:
479 
480 	return sample;
481 }
482 EXPORT_SYMBOL_GPL(tfrc_rx_hist_sample_rtt);
483