xref: /openbmc/linux/net/core/utils.c (revision db181ce0)
1 /*
2  *	Generic address resultion entity
3  *
4  *	Authors:
5  *	net_random Alan Cox
6  *	net_ratelimit Andi Kleen
7  *	in{4,6}_pton YOSHIFUJI Hideaki, Copyright (C)2006 USAGI/WIDE Project
8  *
9  *	Created by Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
10  *
11  *	This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel.h>
20 #include <linux/ctype.h>
21 #include <linux/inet.h>
22 #include <linux/mm.h>
23 #include <linux/net.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/percpu.h>
27 #include <linux/init.h>
28 #include <linux/ratelimit.h>
29 
30 #include <net/sock.h>
31 #include <net/net_ratelimit.h>
32 
33 #include <asm/byteorder.h>
34 #include <asm/uaccess.h>
35 
36 int net_msg_warn __read_mostly = 1;
37 EXPORT_SYMBOL(net_msg_warn);
38 
39 DEFINE_RATELIMIT_STATE(net_ratelimit_state, 5 * HZ, 10);
40 /*
41  * All net warning printk()s should be guarded by this function.
42  */
43 int net_ratelimit(void)
44 {
45 	return __ratelimit(&net_ratelimit_state);
46 }
47 EXPORT_SYMBOL(net_ratelimit);
48 
49 /*
50  * Convert an ASCII string to binary IP.
51  * This is outside of net/ipv4/ because various code that uses IP addresses
52  * is otherwise not dependent on the TCP/IP stack.
53  */
54 
55 __be32 in_aton(const char *str)
56 {
57 	unsigned long l;
58 	unsigned int val;
59 	int i;
60 
61 	l = 0;
62 	for (i = 0; i < 4; i++)	{
63 		l <<= 8;
64 		if (*str != '\0') {
65 			val = 0;
66 			while (*str != '\0' && *str != '.' && *str != '\n') {
67 				val *= 10;
68 				val += *str - '0';
69 				str++;
70 			}
71 			l |= val;
72 			if (*str != '\0')
73 				str++;
74 		}
75 	}
76 	return htonl(l);
77 }
78 EXPORT_SYMBOL(in_aton);
79 
80 #define IN6PTON_XDIGIT		0x00010000
81 #define IN6PTON_DIGIT		0x00020000
82 #define IN6PTON_COLON_MASK	0x00700000
83 #define IN6PTON_COLON_1		0x00100000	/* single : requested */
84 #define IN6PTON_COLON_2		0x00200000	/* second : requested */
85 #define IN6PTON_COLON_1_2	0x00400000	/* :: requested */
86 #define IN6PTON_DOT		0x00800000	/* . */
87 #define IN6PTON_DELIM		0x10000000
88 #define IN6PTON_NULL		0x20000000	/* first/tail */
89 #define IN6PTON_UNKNOWN		0x40000000
90 
91 static inline int xdigit2bin(char c, int delim)
92 {
93 	int val;
94 
95 	if (c == delim || c == '\0')
96 		return IN6PTON_DELIM;
97 	if (c == ':')
98 		return IN6PTON_COLON_MASK;
99 	if (c == '.')
100 		return IN6PTON_DOT;
101 
102 	val = hex_to_bin(c);
103 	if (val >= 0)
104 		return val | IN6PTON_XDIGIT | (val < 10 ? IN6PTON_DIGIT : 0);
105 
106 	if (delim == -1)
107 		return IN6PTON_DELIM;
108 	return IN6PTON_UNKNOWN;
109 }
110 
111 /**
112  * in4_pton - convert an IPv4 address from literal to binary representation
113  * @src: the start of the IPv4 address string
114  * @srclen: the length of the string, -1 means strlen(src)
115  * @dst: the binary (u8[4] array) representation of the IPv4 address
116  * @delim: the delimiter of the IPv4 address in @src, -1 means no delimiter
117  * @end: A pointer to the end of the parsed string will be placed here
118  *
119  * Return one on success, return zero when any error occurs
120  * and @end will point to the end of the parsed string.
121  *
122  */
123 int in4_pton(const char *src, int srclen,
124 	     u8 *dst,
125 	     int delim, const char **end)
126 {
127 	const char *s;
128 	u8 *d;
129 	u8 dbuf[4];
130 	int ret = 0;
131 	int i;
132 	int w = 0;
133 
134 	if (srclen < 0)
135 		srclen = strlen(src);
136 	s = src;
137 	d = dbuf;
138 	i = 0;
139 	while(1) {
140 		int c;
141 		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
142 		if (!(c & (IN6PTON_DIGIT | IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK))) {
143 			goto out;
144 		}
145 		if (c & (IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
146 			if (w == 0)
147 				goto out;
148 			*d++ = w & 0xff;
149 			w = 0;
150 			i++;
151 			if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
152 				if (i != 4)
153 					goto out;
154 				break;
155 			}
156 			goto cont;
157 		}
158 		w = (w * 10) + c;
159 		if ((w & 0xffff) > 255) {
160 			goto out;
161 		}
162 cont:
163 		if (i >= 4)
164 			goto out;
165 		s++;
166 		srclen--;
167 	}
168 	ret = 1;
169 	memcpy(dst, dbuf, sizeof(dbuf));
170 out:
171 	if (end)
172 		*end = s;
173 	return ret;
174 }
175 EXPORT_SYMBOL(in4_pton);
176 
177 /**
178  * in6_pton - convert an IPv6 address from literal to binary representation
179  * @src: the start of the IPv6 address string
180  * @srclen: the length of the string, -1 means strlen(src)
181  * @dst: the binary (u8[16] array) representation of the IPv6 address
182  * @delim: the delimiter of the IPv6 address in @src, -1 means no delimiter
183  * @end: A pointer to the end of the parsed string will be placed here
184  *
185  * Return one on success, return zero when any error occurs
186  * and @end will point to the end of the parsed string.
187  *
188  */
189 int in6_pton(const char *src, int srclen,
190 	     u8 *dst,
191 	     int delim, const char **end)
192 {
193 	const char *s, *tok = NULL;
194 	u8 *d, *dc = NULL;
195 	u8 dbuf[16];
196 	int ret = 0;
197 	int i;
198 	int state = IN6PTON_COLON_1_2 | IN6PTON_XDIGIT | IN6PTON_NULL;
199 	int w = 0;
200 
201 	memset(dbuf, 0, sizeof(dbuf));
202 
203 	s = src;
204 	d = dbuf;
205 	if (srclen < 0)
206 		srclen = strlen(src);
207 
208 	while (1) {
209 		int c;
210 
211 		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
212 		if (!(c & state))
213 			goto out;
214 		if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
215 			/* process one 16-bit word */
216 			if (!(state & IN6PTON_NULL)) {
217 				*d++ = (w >> 8) & 0xff;
218 				*d++ = w & 0xff;
219 			}
220 			w = 0;
221 			if (c & IN6PTON_DELIM) {
222 				/* We've processed last word */
223 				break;
224 			}
225 			/*
226 			 * COLON_1 => XDIGIT
227 			 * COLON_2 => XDIGIT|DELIM
228 			 * COLON_1_2 => COLON_2
229 			 */
230 			switch (state & IN6PTON_COLON_MASK) {
231 			case IN6PTON_COLON_2:
232 				dc = d;
233 				state = IN6PTON_XDIGIT | IN6PTON_DELIM;
234 				if (dc - dbuf >= sizeof(dbuf))
235 					state |= IN6PTON_NULL;
236 				break;
237 			case IN6PTON_COLON_1|IN6PTON_COLON_1_2:
238 				state = IN6PTON_XDIGIT | IN6PTON_COLON_2;
239 				break;
240 			case IN6PTON_COLON_1:
241 				state = IN6PTON_XDIGIT;
242 				break;
243 			case IN6PTON_COLON_1_2:
244 				state = IN6PTON_COLON_2;
245 				break;
246 			default:
247 				state = 0;
248 			}
249 			tok = s + 1;
250 			goto cont;
251 		}
252 
253 		if (c & IN6PTON_DOT) {
254 			ret = in4_pton(tok ? tok : s, srclen + (int)(s - tok), d, delim, &s);
255 			if (ret > 0) {
256 				d += 4;
257 				break;
258 			}
259 			goto out;
260 		}
261 
262 		w = (w << 4) | (0xff & c);
263 		state = IN6PTON_COLON_1 | IN6PTON_DELIM;
264 		if (!(w & 0xf000)) {
265 			state |= IN6PTON_XDIGIT;
266 		}
267 		if (!dc && d + 2 < dbuf + sizeof(dbuf)) {
268 			state |= IN6PTON_COLON_1_2;
269 			state &= ~IN6PTON_DELIM;
270 		}
271 		if (d + 2 >= dbuf + sizeof(dbuf)) {
272 			state &= ~(IN6PTON_COLON_1|IN6PTON_COLON_1_2);
273 		}
274 cont:
275 		if ((dc && d + 4 < dbuf + sizeof(dbuf)) ||
276 		    d + 4 == dbuf + sizeof(dbuf)) {
277 			state |= IN6PTON_DOT;
278 		}
279 		if (d >= dbuf + sizeof(dbuf)) {
280 			state &= ~(IN6PTON_XDIGIT|IN6PTON_COLON_MASK);
281 		}
282 		s++;
283 		srclen--;
284 	}
285 
286 	i = 15; d--;
287 
288 	if (dc) {
289 		while(d >= dc)
290 			dst[i--] = *d--;
291 		while(i >= dc - dbuf)
292 			dst[i--] = 0;
293 		while(i >= 0)
294 			dst[i--] = *d--;
295 	} else
296 		memcpy(dst, dbuf, sizeof(dbuf));
297 
298 	ret = 1;
299 out:
300 	if (end)
301 		*end = s;
302 	return ret;
303 }
304 EXPORT_SYMBOL(in6_pton);
305 
306 void inet_proto_csum_replace4(__sum16 *sum, struct sk_buff *skb,
307 			      __be32 from, __be32 to, int pseudohdr)
308 {
309 	__be32 diff[] = { ~from, to };
310 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
311 		*sum = csum_fold(csum_partial(diff, sizeof(diff),
312 				~csum_unfold(*sum)));
313 		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
314 			skb->csum = ~csum_partial(diff, sizeof(diff),
315 						~skb->csum);
316 	} else if (pseudohdr)
317 		*sum = ~csum_fold(csum_partial(diff, sizeof(diff),
318 				csum_unfold(*sum)));
319 }
320 EXPORT_SYMBOL(inet_proto_csum_replace4);
321 
322 void inet_proto_csum_replace16(__sum16 *sum, struct sk_buff *skb,
323 			       const __be32 *from, const __be32 *to,
324 			       int pseudohdr)
325 {
326 	__be32 diff[] = {
327 		~from[0], ~from[1], ~from[2], ~from[3],
328 		to[0], to[1], to[2], to[3],
329 	};
330 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
331 		*sum = csum_fold(csum_partial(diff, sizeof(diff),
332 				 ~csum_unfold(*sum)));
333 		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
334 			skb->csum = ~csum_partial(diff, sizeof(diff),
335 						  ~skb->csum);
336 	} else if (pseudohdr)
337 		*sum = ~csum_fold(csum_partial(diff, sizeof(diff),
338 				  csum_unfold(*sum)));
339 }
340 EXPORT_SYMBOL(inet_proto_csum_replace16);
341 
342 struct __net_random_once_work {
343 	struct work_struct work;
344 	struct static_key *key;
345 };
346 
347 static void __net_random_once_deferred(struct work_struct *w)
348 {
349 	struct __net_random_once_work *work =
350 		container_of(w, struct __net_random_once_work, work);
351 	BUG_ON(!static_key_enabled(work->key));
352 	static_key_slow_dec(work->key);
353 	kfree(work);
354 }
355 
356 static void __net_random_once_disable_jump(struct static_key *key)
357 {
358 	struct __net_random_once_work *w;
359 
360 	w = kmalloc(sizeof(*w), GFP_ATOMIC);
361 	if (!w)
362 		return;
363 
364 	INIT_WORK(&w->work, __net_random_once_deferred);
365 	w->key = key;
366 	schedule_work(&w->work);
367 }
368 
369 bool __net_get_random_once(void *buf, int nbytes, bool *done,
370 			   struct static_key *once_key)
371 {
372 	static DEFINE_SPINLOCK(lock);
373 	unsigned long flags;
374 
375 	spin_lock_irqsave(&lock, flags);
376 	if (*done) {
377 		spin_unlock_irqrestore(&lock, flags);
378 		return false;
379 	}
380 
381 	get_random_bytes(buf, nbytes);
382 	*done = true;
383 	spin_unlock_irqrestore(&lock, flags);
384 
385 	__net_random_once_disable_jump(once_key);
386 
387 	return true;
388 }
389 EXPORT_SYMBOL(__net_get_random_once);
390