xref: /openbmc/linux/net/core/utils.c (revision b1c3d2be)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Generic address resultion entity
4  *
5  *	Authors:
6  *	net_random Alan Cox
7  *	net_ratelimit Andi Kleen
8  *	in{4,6}_pton YOSHIFUJI Hideaki, Copyright (C)2006 USAGI/WIDE Project
9  *
10  *	Created by Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
11  */
12 
13 #include <linux/module.h>
14 #include <linux/jiffies.h>
15 #include <linux/kernel.h>
16 #include <linux/ctype.h>
17 #include <linux/inet.h>
18 #include <linux/mm.h>
19 #include <linux/net.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/percpu.h>
23 #include <linux/init.h>
24 #include <linux/ratelimit.h>
25 #include <linux/socket.h>
26 
27 #include <net/sock.h>
28 #include <net/net_ratelimit.h>
29 #include <net/ipv6.h>
30 
31 #include <asm/byteorder.h>
32 #include <linux/uaccess.h>
33 
34 DEFINE_RATELIMIT_STATE(net_ratelimit_state, 5 * HZ, 10);
35 /*
36  * All net warning printk()s should be guarded by this function.
37  */
38 int net_ratelimit(void)
39 {
40 	return __ratelimit(&net_ratelimit_state);
41 }
42 EXPORT_SYMBOL(net_ratelimit);
43 
44 /*
45  * Convert an ASCII string to binary IP.
46  * This is outside of net/ipv4/ because various code that uses IP addresses
47  * is otherwise not dependent on the TCP/IP stack.
48  */
49 
50 __be32 in_aton(const char *str)
51 {
52 	unsigned int l;
53 	unsigned int val;
54 	int i;
55 
56 	l = 0;
57 	for (i = 0; i < 4; i++)	{
58 		l <<= 8;
59 		if (*str != '\0') {
60 			val = 0;
61 			while (*str != '\0' && *str != '.' && *str != '\n') {
62 				val *= 10;
63 				val += *str - '0';
64 				str++;
65 			}
66 			l |= val;
67 			if (*str != '\0')
68 				str++;
69 		}
70 	}
71 	return htonl(l);
72 }
73 EXPORT_SYMBOL(in_aton);
74 
75 #define IN6PTON_XDIGIT		0x00010000
76 #define IN6PTON_DIGIT		0x00020000
77 #define IN6PTON_COLON_MASK	0x00700000
78 #define IN6PTON_COLON_1		0x00100000	/* single : requested */
79 #define IN6PTON_COLON_2		0x00200000	/* second : requested */
80 #define IN6PTON_COLON_1_2	0x00400000	/* :: requested */
81 #define IN6PTON_DOT		0x00800000	/* . */
82 #define IN6PTON_DELIM		0x10000000
83 #define IN6PTON_NULL		0x20000000	/* first/tail */
84 #define IN6PTON_UNKNOWN		0x40000000
85 
86 static inline int xdigit2bin(char c, int delim)
87 {
88 	int val;
89 
90 	if (c == delim || c == '\0')
91 		return IN6PTON_DELIM;
92 	if (c == ':')
93 		return IN6PTON_COLON_MASK;
94 	if (c == '.')
95 		return IN6PTON_DOT;
96 
97 	val = hex_to_bin(c);
98 	if (val >= 0)
99 		return val | IN6PTON_XDIGIT | (val < 10 ? IN6PTON_DIGIT : 0);
100 
101 	if (delim == -1)
102 		return IN6PTON_DELIM;
103 	return IN6PTON_UNKNOWN;
104 }
105 
106 /**
107  * in4_pton - convert an IPv4 address from literal to binary representation
108  * @src: the start of the IPv4 address string
109  * @srclen: the length of the string, -1 means strlen(src)
110  * @dst: the binary (u8[4] array) representation of the IPv4 address
111  * @delim: the delimiter of the IPv4 address in @src, -1 means no delimiter
112  * @end: A pointer to the end of the parsed string will be placed here
113  *
114  * Return one on success, return zero when any error occurs
115  * and @end will point to the end of the parsed string.
116  *
117  */
118 int in4_pton(const char *src, int srclen,
119 	     u8 *dst,
120 	     int delim, const char **end)
121 {
122 	const char *s;
123 	u8 *d;
124 	u8 dbuf[4];
125 	int ret = 0;
126 	int i;
127 	int w = 0;
128 
129 	if (srclen < 0)
130 		srclen = strlen(src);
131 	s = src;
132 	d = dbuf;
133 	i = 0;
134 	while (1) {
135 		int c;
136 		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
137 		if (!(c & (IN6PTON_DIGIT | IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK))) {
138 			goto out;
139 		}
140 		if (c & (IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
141 			if (w == 0)
142 				goto out;
143 			*d++ = w & 0xff;
144 			w = 0;
145 			i++;
146 			if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
147 				if (i != 4)
148 					goto out;
149 				break;
150 			}
151 			goto cont;
152 		}
153 		w = (w * 10) + c;
154 		if ((w & 0xffff) > 255) {
155 			goto out;
156 		}
157 cont:
158 		if (i >= 4)
159 			goto out;
160 		s++;
161 		srclen--;
162 	}
163 	ret = 1;
164 	memcpy(dst, dbuf, sizeof(dbuf));
165 out:
166 	if (end)
167 		*end = s;
168 	return ret;
169 }
170 EXPORT_SYMBOL(in4_pton);
171 
172 /**
173  * in6_pton - convert an IPv6 address from literal to binary representation
174  * @src: the start of the IPv6 address string
175  * @srclen: the length of the string, -1 means strlen(src)
176  * @dst: the binary (u8[16] array) representation of the IPv6 address
177  * @delim: the delimiter of the IPv6 address in @src, -1 means no delimiter
178  * @end: A pointer to the end of the parsed string will be placed here
179  *
180  * Return one on success, return zero when any error occurs
181  * and @end will point to the end of the parsed string.
182  *
183  */
184 int in6_pton(const char *src, int srclen,
185 	     u8 *dst,
186 	     int delim, const char **end)
187 {
188 	const char *s, *tok = NULL;
189 	u8 *d, *dc = NULL;
190 	u8 dbuf[16];
191 	int ret = 0;
192 	int i;
193 	int state = IN6PTON_COLON_1_2 | IN6PTON_XDIGIT | IN6PTON_NULL;
194 	int w = 0;
195 
196 	memset(dbuf, 0, sizeof(dbuf));
197 
198 	s = src;
199 	d = dbuf;
200 	if (srclen < 0)
201 		srclen = strlen(src);
202 
203 	while (1) {
204 		int c;
205 
206 		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
207 		if (!(c & state))
208 			goto out;
209 		if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
210 			/* process one 16-bit word */
211 			if (!(state & IN6PTON_NULL)) {
212 				*d++ = (w >> 8) & 0xff;
213 				*d++ = w & 0xff;
214 			}
215 			w = 0;
216 			if (c & IN6PTON_DELIM) {
217 				/* We've processed last word */
218 				break;
219 			}
220 			/*
221 			 * COLON_1 => XDIGIT
222 			 * COLON_2 => XDIGIT|DELIM
223 			 * COLON_1_2 => COLON_2
224 			 */
225 			switch (state & IN6PTON_COLON_MASK) {
226 			case IN6PTON_COLON_2:
227 				dc = d;
228 				state = IN6PTON_XDIGIT | IN6PTON_DELIM;
229 				if (dc - dbuf >= sizeof(dbuf))
230 					state |= IN6PTON_NULL;
231 				break;
232 			case IN6PTON_COLON_1|IN6PTON_COLON_1_2:
233 				state = IN6PTON_XDIGIT | IN6PTON_COLON_2;
234 				break;
235 			case IN6PTON_COLON_1:
236 				state = IN6PTON_XDIGIT;
237 				break;
238 			case IN6PTON_COLON_1_2:
239 				state = IN6PTON_COLON_2;
240 				break;
241 			default:
242 				state = 0;
243 			}
244 			tok = s + 1;
245 			goto cont;
246 		}
247 
248 		if (c & IN6PTON_DOT) {
249 			ret = in4_pton(tok ? tok : s, srclen + (int)(s - tok), d, delim, &s);
250 			if (ret > 0) {
251 				d += 4;
252 				break;
253 			}
254 			goto out;
255 		}
256 
257 		w = (w << 4) | (0xff & c);
258 		state = IN6PTON_COLON_1 | IN6PTON_DELIM;
259 		if (!(w & 0xf000)) {
260 			state |= IN6PTON_XDIGIT;
261 		}
262 		if (!dc && d + 2 < dbuf + sizeof(dbuf)) {
263 			state |= IN6PTON_COLON_1_2;
264 			state &= ~IN6PTON_DELIM;
265 		}
266 		if (d + 2 >= dbuf + sizeof(dbuf)) {
267 			state &= ~(IN6PTON_COLON_1|IN6PTON_COLON_1_2);
268 		}
269 cont:
270 		if ((dc && d + 4 < dbuf + sizeof(dbuf)) ||
271 		    d + 4 == dbuf + sizeof(dbuf)) {
272 			state |= IN6PTON_DOT;
273 		}
274 		if (d >= dbuf + sizeof(dbuf)) {
275 			state &= ~(IN6PTON_XDIGIT|IN6PTON_COLON_MASK);
276 		}
277 		s++;
278 		srclen--;
279 	}
280 
281 	i = 15; d--;
282 
283 	if (dc) {
284 		while (d >= dc)
285 			dst[i--] = *d--;
286 		while (i >= dc - dbuf)
287 			dst[i--] = 0;
288 		while (i >= 0)
289 			dst[i--] = *d--;
290 	} else
291 		memcpy(dst, dbuf, sizeof(dbuf));
292 
293 	ret = 1;
294 out:
295 	if (end)
296 		*end = s;
297 	return ret;
298 }
299 EXPORT_SYMBOL(in6_pton);
300 
301 static int inet4_pton(const char *src, u16 port_num,
302 		struct sockaddr_storage *addr)
303 {
304 	struct sockaddr_in *addr4 = (struct sockaddr_in *)addr;
305 	size_t srclen = strlen(src);
306 
307 	if (srclen > INET_ADDRSTRLEN)
308 		return -EINVAL;
309 
310 	if (in4_pton(src, srclen, (u8 *)&addr4->sin_addr.s_addr,
311 		     '\n', NULL) == 0)
312 		return -EINVAL;
313 
314 	addr4->sin_family = AF_INET;
315 	addr4->sin_port = htons(port_num);
316 
317 	return 0;
318 }
319 
320 static int inet6_pton(struct net *net, const char *src, u16 port_num,
321 		struct sockaddr_storage *addr)
322 {
323 	struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)addr;
324 	const char *scope_delim;
325 	size_t srclen = strlen(src);
326 
327 	if (srclen > INET6_ADDRSTRLEN)
328 		return -EINVAL;
329 
330 	if (in6_pton(src, srclen, (u8 *)&addr6->sin6_addr.s6_addr,
331 		     '%', &scope_delim) == 0)
332 		return -EINVAL;
333 
334 	if (ipv6_addr_type(&addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL &&
335 	    src + srclen != scope_delim && *scope_delim == '%') {
336 		struct net_device *dev;
337 		char scope_id[16];
338 		size_t scope_len = min_t(size_t, sizeof(scope_id) - 1,
339 					 src + srclen - scope_delim - 1);
340 
341 		memcpy(scope_id, scope_delim + 1, scope_len);
342 		scope_id[scope_len] = '\0';
343 
344 		dev = dev_get_by_name(net, scope_id);
345 		if (dev) {
346 			addr6->sin6_scope_id = dev->ifindex;
347 			dev_put(dev);
348 		} else if (kstrtouint(scope_id, 0, &addr6->sin6_scope_id)) {
349 			return -EINVAL;
350 		}
351 	}
352 
353 	addr6->sin6_family = AF_INET6;
354 	addr6->sin6_port = htons(port_num);
355 
356 	return 0;
357 }
358 
359 /**
360  * inet_pton_with_scope - convert an IPv4/IPv6 and port to socket address
361  * @net: net namespace (used for scope handling)
362  * @af: address family, AF_INET, AF_INET6 or AF_UNSPEC for either
363  * @src: the start of the address string
364  * @port: the start of the port string (or NULL for none)
365  * @addr: output socket address
366  *
367  * Return zero on success, return errno when any error occurs.
368  */
369 int inet_pton_with_scope(struct net *net, __kernel_sa_family_t af,
370 		const char *src, const char *port, struct sockaddr_storage *addr)
371 {
372 	u16 port_num;
373 	int ret = -EINVAL;
374 
375 	if (port) {
376 		if (kstrtou16(port, 0, &port_num))
377 			return -EINVAL;
378 	} else {
379 		port_num = 0;
380 	}
381 
382 	switch (af) {
383 	case AF_INET:
384 		ret = inet4_pton(src, port_num, addr);
385 		break;
386 	case AF_INET6:
387 		ret = inet6_pton(net, src, port_num, addr);
388 		break;
389 	case AF_UNSPEC:
390 		ret = inet4_pton(src, port_num, addr);
391 		if (ret)
392 			ret = inet6_pton(net, src, port_num, addr);
393 		break;
394 	default:
395 		pr_err("unexpected address family %d\n", af);
396 	}
397 
398 	return ret;
399 }
400 EXPORT_SYMBOL(inet_pton_with_scope);
401 
402 bool inet_addr_is_any(struct sockaddr *addr)
403 {
404 	if (addr->sa_family == AF_INET6) {
405 		struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)addr;
406 		const struct sockaddr_in6 in6_any =
407 			{ .sin6_addr = IN6ADDR_ANY_INIT };
408 
409 		if (!memcmp(in6->sin6_addr.s6_addr,
410 			    in6_any.sin6_addr.s6_addr, 16))
411 			return true;
412 	} else if (addr->sa_family == AF_INET) {
413 		struct sockaddr_in *in = (struct sockaddr_in *)addr;
414 
415 		if (in->sin_addr.s_addr == htonl(INADDR_ANY))
416 			return true;
417 	} else {
418 		pr_warn("unexpected address family %u\n", addr->sa_family);
419 	}
420 
421 	return false;
422 }
423 EXPORT_SYMBOL(inet_addr_is_any);
424 
425 void inet_proto_csum_replace4(__sum16 *sum, struct sk_buff *skb,
426 			      __be32 from, __be32 to, bool pseudohdr)
427 {
428 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
429 		csum_replace4(sum, from, to);
430 		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
431 			skb->csum = ~csum_add(csum_sub(~(skb->csum),
432 						       (__force __wsum)from),
433 					      (__force __wsum)to);
434 	} else if (pseudohdr)
435 		*sum = ~csum_fold(csum_add(csum_sub(csum_unfold(*sum),
436 						    (__force __wsum)from),
437 					   (__force __wsum)to));
438 }
439 EXPORT_SYMBOL(inet_proto_csum_replace4);
440 
441 /**
442  * inet_proto_csum_replace16 - update layer 4 header checksum field
443  * @sum: Layer 4 header checksum field
444  * @skb: sk_buff for the packet
445  * @from: old IPv6 address
446  * @to: new IPv6 address
447  * @pseudohdr: True if layer 4 header checksum includes pseudoheader
448  *
449  * Update layer 4 header as per the update in IPv6 src/dst address.
450  *
451  * There is no need to update skb->csum in this function, because update in two
452  * fields a.) IPv6 src/dst address and b.) L4 header checksum cancels each other
453  * for skb->csum calculation. Whereas inet_proto_csum_replace4 function needs to
454  * update skb->csum, because update in 3 fields a.) IPv4 src/dst address,
455  * b.) IPv4 Header checksum and c.) L4 header checksum results in same diff as
456  * L4 Header checksum for skb->csum calculation.
457  */
458 void inet_proto_csum_replace16(__sum16 *sum, struct sk_buff *skb,
459 			       const __be32 *from, const __be32 *to,
460 			       bool pseudohdr)
461 {
462 	__be32 diff[] = {
463 		~from[0], ~from[1], ~from[2], ~from[3],
464 		to[0], to[1], to[2], to[3],
465 	};
466 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
467 		*sum = csum_fold(csum_partial(diff, sizeof(diff),
468 				 ~csum_unfold(*sum)));
469 	} else if (pseudohdr)
470 		*sum = ~csum_fold(csum_partial(diff, sizeof(diff),
471 				  csum_unfold(*sum)));
472 }
473 EXPORT_SYMBOL(inet_proto_csum_replace16);
474 
475 void inet_proto_csum_replace_by_diff(__sum16 *sum, struct sk_buff *skb,
476 				     __wsum diff, bool pseudohdr)
477 {
478 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
479 		csum_replace_by_diff(sum, diff);
480 		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
481 			skb->csum = ~csum_sub(diff, skb->csum);
482 	} else if (pseudohdr) {
483 		*sum = ~csum_fold(csum_add(diff, csum_unfold(*sum)));
484 	}
485 }
486 EXPORT_SYMBOL(inet_proto_csum_replace_by_diff);
487