xref: /openbmc/linux/net/core/utils.c (revision a8fe58ce)
1 /*
2  *	Generic address resultion entity
3  *
4  *	Authors:
5  *	net_random Alan Cox
6  *	net_ratelimit Andi Kleen
7  *	in{4,6}_pton YOSHIFUJI Hideaki, Copyright (C)2006 USAGI/WIDE Project
8  *
9  *	Created by Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
10  *
11  *	This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel.h>
20 #include <linux/ctype.h>
21 #include <linux/inet.h>
22 #include <linux/mm.h>
23 #include <linux/net.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/percpu.h>
27 #include <linux/init.h>
28 #include <linux/ratelimit.h>
29 
30 #include <net/sock.h>
31 #include <net/net_ratelimit.h>
32 
33 #include <asm/byteorder.h>
34 #include <asm/uaccess.h>
35 
36 DEFINE_RATELIMIT_STATE(net_ratelimit_state, 5 * HZ, 10);
37 /*
38  * All net warning printk()s should be guarded by this function.
39  */
40 int net_ratelimit(void)
41 {
42 	return __ratelimit(&net_ratelimit_state);
43 }
44 EXPORT_SYMBOL(net_ratelimit);
45 
46 /*
47  * Convert an ASCII string to binary IP.
48  * This is outside of net/ipv4/ because various code that uses IP addresses
49  * is otherwise not dependent on the TCP/IP stack.
50  */
51 
52 __be32 in_aton(const char *str)
53 {
54 	unsigned long l;
55 	unsigned int val;
56 	int i;
57 
58 	l = 0;
59 	for (i = 0; i < 4; i++)	{
60 		l <<= 8;
61 		if (*str != '\0') {
62 			val = 0;
63 			while (*str != '\0' && *str != '.' && *str != '\n') {
64 				val *= 10;
65 				val += *str - '0';
66 				str++;
67 			}
68 			l |= val;
69 			if (*str != '\0')
70 				str++;
71 		}
72 	}
73 	return htonl(l);
74 }
75 EXPORT_SYMBOL(in_aton);
76 
77 #define IN6PTON_XDIGIT		0x00010000
78 #define IN6PTON_DIGIT		0x00020000
79 #define IN6PTON_COLON_MASK	0x00700000
80 #define IN6PTON_COLON_1		0x00100000	/* single : requested */
81 #define IN6PTON_COLON_2		0x00200000	/* second : requested */
82 #define IN6PTON_COLON_1_2	0x00400000	/* :: requested */
83 #define IN6PTON_DOT		0x00800000	/* . */
84 #define IN6PTON_DELIM		0x10000000
85 #define IN6PTON_NULL		0x20000000	/* first/tail */
86 #define IN6PTON_UNKNOWN		0x40000000
87 
88 static inline int xdigit2bin(char c, int delim)
89 {
90 	int val;
91 
92 	if (c == delim || c == '\0')
93 		return IN6PTON_DELIM;
94 	if (c == ':')
95 		return IN6PTON_COLON_MASK;
96 	if (c == '.')
97 		return IN6PTON_DOT;
98 
99 	val = hex_to_bin(c);
100 	if (val >= 0)
101 		return val | IN6PTON_XDIGIT | (val < 10 ? IN6PTON_DIGIT : 0);
102 
103 	if (delim == -1)
104 		return IN6PTON_DELIM;
105 	return IN6PTON_UNKNOWN;
106 }
107 
108 /**
109  * in4_pton - convert an IPv4 address from literal to binary representation
110  * @src: the start of the IPv4 address string
111  * @srclen: the length of the string, -1 means strlen(src)
112  * @dst: the binary (u8[4] array) representation of the IPv4 address
113  * @delim: the delimiter of the IPv4 address in @src, -1 means no delimiter
114  * @end: A pointer to the end of the parsed string will be placed here
115  *
116  * Return one on success, return zero when any error occurs
117  * and @end will point to the end of the parsed string.
118  *
119  */
120 int in4_pton(const char *src, int srclen,
121 	     u8 *dst,
122 	     int delim, const char **end)
123 {
124 	const char *s;
125 	u8 *d;
126 	u8 dbuf[4];
127 	int ret = 0;
128 	int i;
129 	int w = 0;
130 
131 	if (srclen < 0)
132 		srclen = strlen(src);
133 	s = src;
134 	d = dbuf;
135 	i = 0;
136 	while(1) {
137 		int c;
138 		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
139 		if (!(c & (IN6PTON_DIGIT | IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK))) {
140 			goto out;
141 		}
142 		if (c & (IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
143 			if (w == 0)
144 				goto out;
145 			*d++ = w & 0xff;
146 			w = 0;
147 			i++;
148 			if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
149 				if (i != 4)
150 					goto out;
151 				break;
152 			}
153 			goto cont;
154 		}
155 		w = (w * 10) + c;
156 		if ((w & 0xffff) > 255) {
157 			goto out;
158 		}
159 cont:
160 		if (i >= 4)
161 			goto out;
162 		s++;
163 		srclen--;
164 	}
165 	ret = 1;
166 	memcpy(dst, dbuf, sizeof(dbuf));
167 out:
168 	if (end)
169 		*end = s;
170 	return ret;
171 }
172 EXPORT_SYMBOL(in4_pton);
173 
174 /**
175  * in6_pton - convert an IPv6 address from literal to binary representation
176  * @src: the start of the IPv6 address string
177  * @srclen: the length of the string, -1 means strlen(src)
178  * @dst: the binary (u8[16] array) representation of the IPv6 address
179  * @delim: the delimiter of the IPv6 address in @src, -1 means no delimiter
180  * @end: A pointer to the end of the parsed string will be placed here
181  *
182  * Return one on success, return zero when any error occurs
183  * and @end will point to the end of the parsed string.
184  *
185  */
186 int in6_pton(const char *src, int srclen,
187 	     u8 *dst,
188 	     int delim, const char **end)
189 {
190 	const char *s, *tok = NULL;
191 	u8 *d, *dc = NULL;
192 	u8 dbuf[16];
193 	int ret = 0;
194 	int i;
195 	int state = IN6PTON_COLON_1_2 | IN6PTON_XDIGIT | IN6PTON_NULL;
196 	int w = 0;
197 
198 	memset(dbuf, 0, sizeof(dbuf));
199 
200 	s = src;
201 	d = dbuf;
202 	if (srclen < 0)
203 		srclen = strlen(src);
204 
205 	while (1) {
206 		int c;
207 
208 		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
209 		if (!(c & state))
210 			goto out;
211 		if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
212 			/* process one 16-bit word */
213 			if (!(state & IN6PTON_NULL)) {
214 				*d++ = (w >> 8) & 0xff;
215 				*d++ = w & 0xff;
216 			}
217 			w = 0;
218 			if (c & IN6PTON_DELIM) {
219 				/* We've processed last word */
220 				break;
221 			}
222 			/*
223 			 * COLON_1 => XDIGIT
224 			 * COLON_2 => XDIGIT|DELIM
225 			 * COLON_1_2 => COLON_2
226 			 */
227 			switch (state & IN6PTON_COLON_MASK) {
228 			case IN6PTON_COLON_2:
229 				dc = d;
230 				state = IN6PTON_XDIGIT | IN6PTON_DELIM;
231 				if (dc - dbuf >= sizeof(dbuf))
232 					state |= IN6PTON_NULL;
233 				break;
234 			case IN6PTON_COLON_1|IN6PTON_COLON_1_2:
235 				state = IN6PTON_XDIGIT | IN6PTON_COLON_2;
236 				break;
237 			case IN6PTON_COLON_1:
238 				state = IN6PTON_XDIGIT;
239 				break;
240 			case IN6PTON_COLON_1_2:
241 				state = IN6PTON_COLON_2;
242 				break;
243 			default:
244 				state = 0;
245 			}
246 			tok = s + 1;
247 			goto cont;
248 		}
249 
250 		if (c & IN6PTON_DOT) {
251 			ret = in4_pton(tok ? tok : s, srclen + (int)(s - tok), d, delim, &s);
252 			if (ret > 0) {
253 				d += 4;
254 				break;
255 			}
256 			goto out;
257 		}
258 
259 		w = (w << 4) | (0xff & c);
260 		state = IN6PTON_COLON_1 | IN6PTON_DELIM;
261 		if (!(w & 0xf000)) {
262 			state |= IN6PTON_XDIGIT;
263 		}
264 		if (!dc && d + 2 < dbuf + sizeof(dbuf)) {
265 			state |= IN6PTON_COLON_1_2;
266 			state &= ~IN6PTON_DELIM;
267 		}
268 		if (d + 2 >= dbuf + sizeof(dbuf)) {
269 			state &= ~(IN6PTON_COLON_1|IN6PTON_COLON_1_2);
270 		}
271 cont:
272 		if ((dc && d + 4 < dbuf + sizeof(dbuf)) ||
273 		    d + 4 == dbuf + sizeof(dbuf)) {
274 			state |= IN6PTON_DOT;
275 		}
276 		if (d >= dbuf + sizeof(dbuf)) {
277 			state &= ~(IN6PTON_XDIGIT|IN6PTON_COLON_MASK);
278 		}
279 		s++;
280 		srclen--;
281 	}
282 
283 	i = 15; d--;
284 
285 	if (dc) {
286 		while(d >= dc)
287 			dst[i--] = *d--;
288 		while(i >= dc - dbuf)
289 			dst[i--] = 0;
290 		while(i >= 0)
291 			dst[i--] = *d--;
292 	} else
293 		memcpy(dst, dbuf, sizeof(dbuf));
294 
295 	ret = 1;
296 out:
297 	if (end)
298 		*end = s;
299 	return ret;
300 }
301 EXPORT_SYMBOL(in6_pton);
302 
303 void inet_proto_csum_replace4(__sum16 *sum, struct sk_buff *skb,
304 			      __be32 from, __be32 to, bool pseudohdr)
305 {
306 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
307 		csum_replace4(sum, from, to);
308 		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
309 			skb->csum = ~csum_add(csum_sub(~(skb->csum),
310 						       (__force __wsum)from),
311 					      (__force __wsum)to);
312 	} else if (pseudohdr)
313 		*sum = ~csum_fold(csum_add(csum_sub(csum_unfold(*sum),
314 						    (__force __wsum)from),
315 					   (__force __wsum)to));
316 }
317 EXPORT_SYMBOL(inet_proto_csum_replace4);
318 
319 void inet_proto_csum_replace16(__sum16 *sum, struct sk_buff *skb,
320 			       const __be32 *from, const __be32 *to,
321 			       bool pseudohdr)
322 {
323 	__be32 diff[] = {
324 		~from[0], ~from[1], ~from[2], ~from[3],
325 		to[0], to[1], to[2], to[3],
326 	};
327 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
328 		*sum = csum_fold(csum_partial(diff, sizeof(diff),
329 				 ~csum_unfold(*sum)));
330 		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
331 			skb->csum = ~csum_partial(diff, sizeof(diff),
332 						  ~skb->csum);
333 	} else if (pseudohdr)
334 		*sum = ~csum_fold(csum_partial(diff, sizeof(diff),
335 				  csum_unfold(*sum)));
336 }
337 EXPORT_SYMBOL(inet_proto_csum_replace16);
338 
339 void inet_proto_csum_replace_by_diff(__sum16 *sum, struct sk_buff *skb,
340 				     __wsum diff, bool pseudohdr)
341 {
342 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
343 		*sum = csum_fold(csum_add(diff, ~csum_unfold(*sum)));
344 		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
345 			skb->csum = ~csum_add(diff, ~skb->csum);
346 	} else if (pseudohdr) {
347 		*sum = ~csum_fold(csum_add(diff, csum_unfold(*sum)));
348 	}
349 }
350 EXPORT_SYMBOL(inet_proto_csum_replace_by_diff);
351