xref: /openbmc/linux/net/core/utils.c (revision 4cff79e9)
1 /*
2  *	Generic address resultion entity
3  *
4  *	Authors:
5  *	net_random Alan Cox
6  *	net_ratelimit Andi Kleen
7  *	in{4,6}_pton YOSHIFUJI Hideaki, Copyright (C)2006 USAGI/WIDE Project
8  *
9  *	Created by Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
10  *
11  *	This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel.h>
20 #include <linux/ctype.h>
21 #include <linux/inet.h>
22 #include <linux/mm.h>
23 #include <linux/net.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/percpu.h>
27 #include <linux/init.h>
28 #include <linux/ratelimit.h>
29 #include <linux/socket.h>
30 
31 #include <net/sock.h>
32 #include <net/net_ratelimit.h>
33 #include <net/ipv6.h>
34 
35 #include <asm/byteorder.h>
36 #include <linux/uaccess.h>
37 
38 DEFINE_RATELIMIT_STATE(net_ratelimit_state, 5 * HZ, 10);
39 /*
40  * All net warning printk()s should be guarded by this function.
41  */
42 int net_ratelimit(void)
43 {
44 	return __ratelimit(&net_ratelimit_state);
45 }
46 EXPORT_SYMBOL(net_ratelimit);
47 
48 /*
49  * Convert an ASCII string to binary IP.
50  * This is outside of net/ipv4/ because various code that uses IP addresses
51  * is otherwise not dependent on the TCP/IP stack.
52  */
53 
54 __be32 in_aton(const char *str)
55 {
56 	unsigned int l;
57 	unsigned int val;
58 	int i;
59 
60 	l = 0;
61 	for (i = 0; i < 4; i++)	{
62 		l <<= 8;
63 		if (*str != '\0') {
64 			val = 0;
65 			while (*str != '\0' && *str != '.' && *str != '\n') {
66 				val *= 10;
67 				val += *str - '0';
68 				str++;
69 			}
70 			l |= val;
71 			if (*str != '\0')
72 				str++;
73 		}
74 	}
75 	return htonl(l);
76 }
77 EXPORT_SYMBOL(in_aton);
78 
79 #define IN6PTON_XDIGIT		0x00010000
80 #define IN6PTON_DIGIT		0x00020000
81 #define IN6PTON_COLON_MASK	0x00700000
82 #define IN6PTON_COLON_1		0x00100000	/* single : requested */
83 #define IN6PTON_COLON_2		0x00200000	/* second : requested */
84 #define IN6PTON_COLON_1_2	0x00400000	/* :: requested */
85 #define IN6PTON_DOT		0x00800000	/* . */
86 #define IN6PTON_DELIM		0x10000000
87 #define IN6PTON_NULL		0x20000000	/* first/tail */
88 #define IN6PTON_UNKNOWN		0x40000000
89 
90 static inline int xdigit2bin(char c, int delim)
91 {
92 	int val;
93 
94 	if (c == delim || c == '\0')
95 		return IN6PTON_DELIM;
96 	if (c == ':')
97 		return IN6PTON_COLON_MASK;
98 	if (c == '.')
99 		return IN6PTON_DOT;
100 
101 	val = hex_to_bin(c);
102 	if (val >= 0)
103 		return val | IN6PTON_XDIGIT | (val < 10 ? IN6PTON_DIGIT : 0);
104 
105 	if (delim == -1)
106 		return IN6PTON_DELIM;
107 	return IN6PTON_UNKNOWN;
108 }
109 
110 /**
111  * in4_pton - convert an IPv4 address from literal to binary representation
112  * @src: the start of the IPv4 address string
113  * @srclen: the length of the string, -1 means strlen(src)
114  * @dst: the binary (u8[4] array) representation of the IPv4 address
115  * @delim: the delimiter of the IPv4 address in @src, -1 means no delimiter
116  * @end: A pointer to the end of the parsed string will be placed here
117  *
118  * Return one on success, return zero when any error occurs
119  * and @end will point to the end of the parsed string.
120  *
121  */
122 int in4_pton(const char *src, int srclen,
123 	     u8 *dst,
124 	     int delim, const char **end)
125 {
126 	const char *s;
127 	u8 *d;
128 	u8 dbuf[4];
129 	int ret = 0;
130 	int i;
131 	int w = 0;
132 
133 	if (srclen < 0)
134 		srclen = strlen(src);
135 	s = src;
136 	d = dbuf;
137 	i = 0;
138 	while (1) {
139 		int c;
140 		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
141 		if (!(c & (IN6PTON_DIGIT | IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK))) {
142 			goto out;
143 		}
144 		if (c & (IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
145 			if (w == 0)
146 				goto out;
147 			*d++ = w & 0xff;
148 			w = 0;
149 			i++;
150 			if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
151 				if (i != 4)
152 					goto out;
153 				break;
154 			}
155 			goto cont;
156 		}
157 		w = (w * 10) + c;
158 		if ((w & 0xffff) > 255) {
159 			goto out;
160 		}
161 cont:
162 		if (i >= 4)
163 			goto out;
164 		s++;
165 		srclen--;
166 	}
167 	ret = 1;
168 	memcpy(dst, dbuf, sizeof(dbuf));
169 out:
170 	if (end)
171 		*end = s;
172 	return ret;
173 }
174 EXPORT_SYMBOL(in4_pton);
175 
176 /**
177  * in6_pton - convert an IPv6 address from literal to binary representation
178  * @src: the start of the IPv6 address string
179  * @srclen: the length of the string, -1 means strlen(src)
180  * @dst: the binary (u8[16] array) representation of the IPv6 address
181  * @delim: the delimiter of the IPv6 address in @src, -1 means no delimiter
182  * @end: A pointer to the end of the parsed string will be placed here
183  *
184  * Return one on success, return zero when any error occurs
185  * and @end will point to the end of the parsed string.
186  *
187  */
188 int in6_pton(const char *src, int srclen,
189 	     u8 *dst,
190 	     int delim, const char **end)
191 {
192 	const char *s, *tok = NULL;
193 	u8 *d, *dc = NULL;
194 	u8 dbuf[16];
195 	int ret = 0;
196 	int i;
197 	int state = IN6PTON_COLON_1_2 | IN6PTON_XDIGIT | IN6PTON_NULL;
198 	int w = 0;
199 
200 	memset(dbuf, 0, sizeof(dbuf));
201 
202 	s = src;
203 	d = dbuf;
204 	if (srclen < 0)
205 		srclen = strlen(src);
206 
207 	while (1) {
208 		int c;
209 
210 		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
211 		if (!(c & state))
212 			goto out;
213 		if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
214 			/* process one 16-bit word */
215 			if (!(state & IN6PTON_NULL)) {
216 				*d++ = (w >> 8) & 0xff;
217 				*d++ = w & 0xff;
218 			}
219 			w = 0;
220 			if (c & IN6PTON_DELIM) {
221 				/* We've processed last word */
222 				break;
223 			}
224 			/*
225 			 * COLON_1 => XDIGIT
226 			 * COLON_2 => XDIGIT|DELIM
227 			 * COLON_1_2 => COLON_2
228 			 */
229 			switch (state & IN6PTON_COLON_MASK) {
230 			case IN6PTON_COLON_2:
231 				dc = d;
232 				state = IN6PTON_XDIGIT | IN6PTON_DELIM;
233 				if (dc - dbuf >= sizeof(dbuf))
234 					state |= IN6PTON_NULL;
235 				break;
236 			case IN6PTON_COLON_1|IN6PTON_COLON_1_2:
237 				state = IN6PTON_XDIGIT | IN6PTON_COLON_2;
238 				break;
239 			case IN6PTON_COLON_1:
240 				state = IN6PTON_XDIGIT;
241 				break;
242 			case IN6PTON_COLON_1_2:
243 				state = IN6PTON_COLON_2;
244 				break;
245 			default:
246 				state = 0;
247 			}
248 			tok = s + 1;
249 			goto cont;
250 		}
251 
252 		if (c & IN6PTON_DOT) {
253 			ret = in4_pton(tok ? tok : s, srclen + (int)(s - tok), d, delim, &s);
254 			if (ret > 0) {
255 				d += 4;
256 				break;
257 			}
258 			goto out;
259 		}
260 
261 		w = (w << 4) | (0xff & c);
262 		state = IN6PTON_COLON_1 | IN6PTON_DELIM;
263 		if (!(w & 0xf000)) {
264 			state |= IN6PTON_XDIGIT;
265 		}
266 		if (!dc && d + 2 < dbuf + sizeof(dbuf)) {
267 			state |= IN6PTON_COLON_1_2;
268 			state &= ~IN6PTON_DELIM;
269 		}
270 		if (d + 2 >= dbuf + sizeof(dbuf)) {
271 			state &= ~(IN6PTON_COLON_1|IN6PTON_COLON_1_2);
272 		}
273 cont:
274 		if ((dc && d + 4 < dbuf + sizeof(dbuf)) ||
275 		    d + 4 == dbuf + sizeof(dbuf)) {
276 			state |= IN6PTON_DOT;
277 		}
278 		if (d >= dbuf + sizeof(dbuf)) {
279 			state &= ~(IN6PTON_XDIGIT|IN6PTON_COLON_MASK);
280 		}
281 		s++;
282 		srclen--;
283 	}
284 
285 	i = 15; d--;
286 
287 	if (dc) {
288 		while (d >= dc)
289 			dst[i--] = *d--;
290 		while (i >= dc - dbuf)
291 			dst[i--] = 0;
292 		while (i >= 0)
293 			dst[i--] = *d--;
294 	} else
295 		memcpy(dst, dbuf, sizeof(dbuf));
296 
297 	ret = 1;
298 out:
299 	if (end)
300 		*end = s;
301 	return ret;
302 }
303 EXPORT_SYMBOL(in6_pton);
304 
305 static int inet4_pton(const char *src, u16 port_num,
306 		struct sockaddr_storage *addr)
307 {
308 	struct sockaddr_in *addr4 = (struct sockaddr_in *)addr;
309 	int srclen = strlen(src);
310 
311 	if (srclen > INET_ADDRSTRLEN)
312 		return -EINVAL;
313 
314 	if (in4_pton(src, srclen, (u8 *)&addr4->sin_addr.s_addr,
315 		     '\n', NULL) == 0)
316 		return -EINVAL;
317 
318 	addr4->sin_family = AF_INET;
319 	addr4->sin_port = htons(port_num);
320 
321 	return 0;
322 }
323 
324 static int inet6_pton(struct net *net, const char *src, u16 port_num,
325 		struct sockaddr_storage *addr)
326 {
327 	struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)addr;
328 	const char *scope_delim;
329 	int srclen = strlen(src);
330 
331 	if (srclen > INET6_ADDRSTRLEN)
332 		return -EINVAL;
333 
334 	if (in6_pton(src, srclen, (u8 *)&addr6->sin6_addr.s6_addr,
335 		     '%', &scope_delim) == 0)
336 		return -EINVAL;
337 
338 	if (ipv6_addr_type(&addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL &&
339 	    src + srclen != scope_delim && *scope_delim == '%') {
340 		struct net_device *dev;
341 		char scope_id[16];
342 		size_t scope_len = min_t(size_t, sizeof(scope_id) - 1,
343 					 src + srclen - scope_delim - 1);
344 
345 		memcpy(scope_id, scope_delim + 1, scope_len);
346 		scope_id[scope_len] = '\0';
347 
348 		dev = dev_get_by_name(net, scope_id);
349 		if (dev) {
350 			addr6->sin6_scope_id = dev->ifindex;
351 			dev_put(dev);
352 		} else if (kstrtouint(scope_id, 0, &addr6->sin6_scope_id)) {
353 			return -EINVAL;
354 		}
355 	}
356 
357 	addr6->sin6_family = AF_INET6;
358 	addr6->sin6_port = htons(port_num);
359 
360 	return 0;
361 }
362 
363 /**
364  * inet_pton_with_scope - convert an IPv4/IPv6 and port to socket address
365  * @net: net namespace (used for scope handling)
366  * @af: address family, AF_INET, AF_INET6 or AF_UNSPEC for either
367  * @src: the start of the address string
368  * @port: the start of the port string (or NULL for none)
369  * @addr: output socket address
370  *
371  * Return zero on success, return errno when any error occurs.
372  */
373 int inet_pton_with_scope(struct net *net, __kernel_sa_family_t af,
374 		const char *src, const char *port, struct sockaddr_storage *addr)
375 {
376 	u16 port_num;
377 	int ret = -EINVAL;
378 
379 	if (port) {
380 		if (kstrtou16(port, 0, &port_num))
381 			return -EINVAL;
382 	} else {
383 		port_num = 0;
384 	}
385 
386 	switch (af) {
387 	case AF_INET:
388 		ret = inet4_pton(src, port_num, addr);
389 		break;
390 	case AF_INET6:
391 		ret = inet6_pton(net, src, port_num, addr);
392 		break;
393 	case AF_UNSPEC:
394 		ret = inet4_pton(src, port_num, addr);
395 		if (ret)
396 			ret = inet6_pton(net, src, port_num, addr);
397 		break;
398 	default:
399 		pr_err("unexpected address family %d\n", af);
400 	};
401 
402 	return ret;
403 }
404 EXPORT_SYMBOL(inet_pton_with_scope);
405 
406 bool inet_addr_is_any(struct sockaddr *addr)
407 {
408 	if (addr->sa_family == AF_INET6) {
409 		struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)addr;
410 		const struct sockaddr_in6 in6_any =
411 			{ .sin6_addr = IN6ADDR_ANY_INIT };
412 
413 		if (!memcmp(in6->sin6_addr.s6_addr,
414 			    in6_any.sin6_addr.s6_addr, 16))
415 			return true;
416 	} else if (addr->sa_family == AF_INET) {
417 		struct sockaddr_in *in = (struct sockaddr_in *)addr;
418 
419 		if (in->sin_addr.s_addr == htonl(INADDR_ANY))
420 			return true;
421 	} else {
422 		pr_warn("unexpected address family %u\n", addr->sa_family);
423 	}
424 
425 	return false;
426 }
427 EXPORT_SYMBOL(inet_addr_is_any);
428 
429 void inet_proto_csum_replace4(__sum16 *sum, struct sk_buff *skb,
430 			      __be32 from, __be32 to, bool pseudohdr)
431 {
432 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
433 		csum_replace4(sum, from, to);
434 		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
435 			skb->csum = ~csum_add(csum_sub(~(skb->csum),
436 						       (__force __wsum)from),
437 					      (__force __wsum)to);
438 	} else if (pseudohdr)
439 		*sum = ~csum_fold(csum_add(csum_sub(csum_unfold(*sum),
440 						    (__force __wsum)from),
441 					   (__force __wsum)to));
442 }
443 EXPORT_SYMBOL(inet_proto_csum_replace4);
444 
445 void inet_proto_csum_replace16(__sum16 *sum, struct sk_buff *skb,
446 			       const __be32 *from, const __be32 *to,
447 			       bool pseudohdr)
448 {
449 	__be32 diff[] = {
450 		~from[0], ~from[1], ~from[2], ~from[3],
451 		to[0], to[1], to[2], to[3],
452 	};
453 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
454 		*sum = csum_fold(csum_partial(diff, sizeof(diff),
455 				 ~csum_unfold(*sum)));
456 		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
457 			skb->csum = ~csum_partial(diff, sizeof(diff),
458 						  ~skb->csum);
459 	} else if (pseudohdr)
460 		*sum = ~csum_fold(csum_partial(diff, sizeof(diff),
461 				  csum_unfold(*sum)));
462 }
463 EXPORT_SYMBOL(inet_proto_csum_replace16);
464 
465 void inet_proto_csum_replace_by_diff(__sum16 *sum, struct sk_buff *skb,
466 				     __wsum diff, bool pseudohdr)
467 {
468 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
469 		*sum = csum_fold(csum_add(diff, ~csum_unfold(*sum)));
470 		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
471 			skb->csum = ~csum_add(diff, ~skb->csum);
472 	} else if (pseudohdr) {
473 		*sum = ~csum_fold(csum_add(diff, csum_unfold(*sum)));
474 	}
475 }
476 EXPORT_SYMBOL(inet_proto_csum_replace_by_diff);
477