xref: /openbmc/linux/net/core/sock.c (revision febf2aaf)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Generic socket support routines. Memory allocators, socket lock/release
8  *		handler for protocols to use and generic option handler.
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  */
85 
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87 
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
117 #include <linux/mroute.h>
118 #include <linux/mroute6.h>
119 #include <linux/icmpv6.h>
120 
121 #include <linux/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135 
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
138 #include <net/bpf_sk_storage.h>
139 
140 #include <trace/events/sock.h>
141 
142 #include <net/tcp.h>
143 #include <net/busy_poll.h>
144 #include <net/phonet/phonet.h>
145 
146 #include <linux/ethtool.h>
147 
148 #include "dev.h"
149 
150 static DEFINE_MUTEX(proto_list_mutex);
151 static LIST_HEAD(proto_list);
152 
153 static void sock_def_write_space_wfree(struct sock *sk);
154 static void sock_def_write_space(struct sock *sk);
155 
156 /**
157  * sk_ns_capable - General socket capability test
158  * @sk: Socket to use a capability on or through
159  * @user_ns: The user namespace of the capability to use
160  * @cap: The capability to use
161  *
162  * Test to see if the opener of the socket had when the socket was
163  * created and the current process has the capability @cap in the user
164  * namespace @user_ns.
165  */
166 bool sk_ns_capable(const struct sock *sk,
167 		   struct user_namespace *user_ns, int cap)
168 {
169 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
170 		ns_capable(user_ns, cap);
171 }
172 EXPORT_SYMBOL(sk_ns_capable);
173 
174 /**
175  * sk_capable - Socket global capability test
176  * @sk: Socket to use a capability on or through
177  * @cap: The global capability to use
178  *
179  * Test to see if the opener of the socket had when the socket was
180  * created and the current process has the capability @cap in all user
181  * namespaces.
182  */
183 bool sk_capable(const struct sock *sk, int cap)
184 {
185 	return sk_ns_capable(sk, &init_user_ns, cap);
186 }
187 EXPORT_SYMBOL(sk_capable);
188 
189 /**
190  * sk_net_capable - Network namespace socket capability test
191  * @sk: Socket to use a capability on or through
192  * @cap: The capability to use
193  *
194  * Test to see if the opener of the socket had when the socket was created
195  * and the current process has the capability @cap over the network namespace
196  * the socket is a member of.
197  */
198 bool sk_net_capable(const struct sock *sk, int cap)
199 {
200 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
201 }
202 EXPORT_SYMBOL(sk_net_capable);
203 
204 /*
205  * Each address family might have different locking rules, so we have
206  * one slock key per address family and separate keys for internal and
207  * userspace sockets.
208  */
209 static struct lock_class_key af_family_keys[AF_MAX];
210 static struct lock_class_key af_family_kern_keys[AF_MAX];
211 static struct lock_class_key af_family_slock_keys[AF_MAX];
212 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
213 
214 /*
215  * Make lock validator output more readable. (we pre-construct these
216  * strings build-time, so that runtime initialization of socket
217  * locks is fast):
218  */
219 
220 #define _sock_locks(x)						  \
221   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
222   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
223   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
224   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
225   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
226   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
227   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
228   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
229   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
230   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
231   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
232   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
233   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
234   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
235   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
236   x "AF_MCTP"  , \
237   x "AF_MAX"
238 
239 static const char *const af_family_key_strings[AF_MAX+1] = {
240 	_sock_locks("sk_lock-")
241 };
242 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
243 	_sock_locks("slock-")
244 };
245 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
246 	_sock_locks("clock-")
247 };
248 
249 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
250 	_sock_locks("k-sk_lock-")
251 };
252 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
253 	_sock_locks("k-slock-")
254 };
255 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
256 	_sock_locks("k-clock-")
257 };
258 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
259 	_sock_locks("rlock-")
260 };
261 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
262 	_sock_locks("wlock-")
263 };
264 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
265 	_sock_locks("elock-")
266 };
267 
268 /*
269  * sk_callback_lock and sk queues locking rules are per-address-family,
270  * so split the lock classes by using a per-AF key:
271  */
272 static struct lock_class_key af_callback_keys[AF_MAX];
273 static struct lock_class_key af_rlock_keys[AF_MAX];
274 static struct lock_class_key af_wlock_keys[AF_MAX];
275 static struct lock_class_key af_elock_keys[AF_MAX];
276 static struct lock_class_key af_kern_callback_keys[AF_MAX];
277 
278 /* Run time adjustable parameters. */
279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
280 EXPORT_SYMBOL(sysctl_wmem_max);
281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
282 EXPORT_SYMBOL(sysctl_rmem_max);
283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
285 
286 /* Maximal space eaten by iovec or ancillary data plus some space */
287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
288 EXPORT_SYMBOL(sysctl_optmem_max);
289 
290 int sysctl_tstamp_allow_data __read_mostly = 1;
291 
292 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
293 EXPORT_SYMBOL_GPL(memalloc_socks_key);
294 
295 /**
296  * sk_set_memalloc - sets %SOCK_MEMALLOC
297  * @sk: socket to set it on
298  *
299  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
300  * It's the responsibility of the admin to adjust min_free_kbytes
301  * to meet the requirements
302  */
303 void sk_set_memalloc(struct sock *sk)
304 {
305 	sock_set_flag(sk, SOCK_MEMALLOC);
306 	sk->sk_allocation |= __GFP_MEMALLOC;
307 	static_branch_inc(&memalloc_socks_key);
308 }
309 EXPORT_SYMBOL_GPL(sk_set_memalloc);
310 
311 void sk_clear_memalloc(struct sock *sk)
312 {
313 	sock_reset_flag(sk, SOCK_MEMALLOC);
314 	sk->sk_allocation &= ~__GFP_MEMALLOC;
315 	static_branch_dec(&memalloc_socks_key);
316 
317 	/*
318 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
319 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
320 	 * it has rmem allocations due to the last swapfile being deactivated
321 	 * but there is a risk that the socket is unusable due to exceeding
322 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
323 	 */
324 	sk_mem_reclaim(sk);
325 }
326 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
327 
328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
329 {
330 	int ret;
331 	unsigned int noreclaim_flag;
332 
333 	/* these should have been dropped before queueing */
334 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
335 
336 	noreclaim_flag = memalloc_noreclaim_save();
337 	ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
338 				 tcp_v6_do_rcv,
339 				 tcp_v4_do_rcv,
340 				 sk, skb);
341 	memalloc_noreclaim_restore(noreclaim_flag);
342 
343 	return ret;
344 }
345 EXPORT_SYMBOL(__sk_backlog_rcv);
346 
347 void sk_error_report(struct sock *sk)
348 {
349 	sk->sk_error_report(sk);
350 
351 	switch (sk->sk_family) {
352 	case AF_INET:
353 		fallthrough;
354 	case AF_INET6:
355 		trace_inet_sk_error_report(sk);
356 		break;
357 	default:
358 		break;
359 	}
360 }
361 EXPORT_SYMBOL(sk_error_report);
362 
363 int sock_get_timeout(long timeo, void *optval, bool old_timeval)
364 {
365 	struct __kernel_sock_timeval tv;
366 
367 	if (timeo == MAX_SCHEDULE_TIMEOUT) {
368 		tv.tv_sec = 0;
369 		tv.tv_usec = 0;
370 	} else {
371 		tv.tv_sec = timeo / HZ;
372 		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
373 	}
374 
375 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
376 		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
377 		*(struct old_timeval32 *)optval = tv32;
378 		return sizeof(tv32);
379 	}
380 
381 	if (old_timeval) {
382 		struct __kernel_old_timeval old_tv;
383 		old_tv.tv_sec = tv.tv_sec;
384 		old_tv.tv_usec = tv.tv_usec;
385 		*(struct __kernel_old_timeval *)optval = old_tv;
386 		return sizeof(old_tv);
387 	}
388 
389 	*(struct __kernel_sock_timeval *)optval = tv;
390 	return sizeof(tv);
391 }
392 EXPORT_SYMBOL(sock_get_timeout);
393 
394 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
395 			   sockptr_t optval, int optlen, bool old_timeval)
396 {
397 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
398 		struct old_timeval32 tv32;
399 
400 		if (optlen < sizeof(tv32))
401 			return -EINVAL;
402 
403 		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
404 			return -EFAULT;
405 		tv->tv_sec = tv32.tv_sec;
406 		tv->tv_usec = tv32.tv_usec;
407 	} else if (old_timeval) {
408 		struct __kernel_old_timeval old_tv;
409 
410 		if (optlen < sizeof(old_tv))
411 			return -EINVAL;
412 		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
413 			return -EFAULT;
414 		tv->tv_sec = old_tv.tv_sec;
415 		tv->tv_usec = old_tv.tv_usec;
416 	} else {
417 		if (optlen < sizeof(*tv))
418 			return -EINVAL;
419 		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
420 			return -EFAULT;
421 	}
422 
423 	return 0;
424 }
425 EXPORT_SYMBOL(sock_copy_user_timeval);
426 
427 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
428 			    bool old_timeval)
429 {
430 	struct __kernel_sock_timeval tv;
431 	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
432 
433 	if (err)
434 		return err;
435 
436 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
437 		return -EDOM;
438 
439 	if (tv.tv_sec < 0) {
440 		static int warned __read_mostly;
441 
442 		*timeo_p = 0;
443 		if (warned < 10 && net_ratelimit()) {
444 			warned++;
445 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
446 				__func__, current->comm, task_pid_nr(current));
447 		}
448 		return 0;
449 	}
450 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
451 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
452 		return 0;
453 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
454 		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
455 	return 0;
456 }
457 
458 static bool sock_needs_netstamp(const struct sock *sk)
459 {
460 	switch (sk->sk_family) {
461 	case AF_UNSPEC:
462 	case AF_UNIX:
463 		return false;
464 	default:
465 		return true;
466 	}
467 }
468 
469 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
470 {
471 	if (sk->sk_flags & flags) {
472 		sk->sk_flags &= ~flags;
473 		if (sock_needs_netstamp(sk) &&
474 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
475 			net_disable_timestamp();
476 	}
477 }
478 
479 
480 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
481 {
482 	unsigned long flags;
483 	struct sk_buff_head *list = &sk->sk_receive_queue;
484 
485 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
486 		atomic_inc(&sk->sk_drops);
487 		trace_sock_rcvqueue_full(sk, skb);
488 		return -ENOMEM;
489 	}
490 
491 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
492 		atomic_inc(&sk->sk_drops);
493 		return -ENOBUFS;
494 	}
495 
496 	skb->dev = NULL;
497 	skb_set_owner_r(skb, sk);
498 
499 	/* we escape from rcu protected region, make sure we dont leak
500 	 * a norefcounted dst
501 	 */
502 	skb_dst_force(skb);
503 
504 	spin_lock_irqsave(&list->lock, flags);
505 	sock_skb_set_dropcount(sk, skb);
506 	__skb_queue_tail(list, skb);
507 	spin_unlock_irqrestore(&list->lock, flags);
508 
509 	if (!sock_flag(sk, SOCK_DEAD))
510 		sk->sk_data_ready(sk);
511 	return 0;
512 }
513 EXPORT_SYMBOL(__sock_queue_rcv_skb);
514 
515 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
516 			      enum skb_drop_reason *reason)
517 {
518 	enum skb_drop_reason drop_reason;
519 	int err;
520 
521 	err = sk_filter(sk, skb);
522 	if (err) {
523 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
524 		goto out;
525 	}
526 	err = __sock_queue_rcv_skb(sk, skb);
527 	switch (err) {
528 	case -ENOMEM:
529 		drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
530 		break;
531 	case -ENOBUFS:
532 		drop_reason = SKB_DROP_REASON_PROTO_MEM;
533 		break;
534 	default:
535 		drop_reason = SKB_NOT_DROPPED_YET;
536 		break;
537 	}
538 out:
539 	if (reason)
540 		*reason = drop_reason;
541 	return err;
542 }
543 EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
544 
545 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
546 		     const int nested, unsigned int trim_cap, bool refcounted)
547 {
548 	int rc = NET_RX_SUCCESS;
549 
550 	if (sk_filter_trim_cap(sk, skb, trim_cap))
551 		goto discard_and_relse;
552 
553 	skb->dev = NULL;
554 
555 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
556 		atomic_inc(&sk->sk_drops);
557 		goto discard_and_relse;
558 	}
559 	if (nested)
560 		bh_lock_sock_nested(sk);
561 	else
562 		bh_lock_sock(sk);
563 	if (!sock_owned_by_user(sk)) {
564 		/*
565 		 * trylock + unlock semantics:
566 		 */
567 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
568 
569 		rc = sk_backlog_rcv(sk, skb);
570 
571 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
572 	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
573 		bh_unlock_sock(sk);
574 		atomic_inc(&sk->sk_drops);
575 		goto discard_and_relse;
576 	}
577 
578 	bh_unlock_sock(sk);
579 out:
580 	if (refcounted)
581 		sock_put(sk);
582 	return rc;
583 discard_and_relse:
584 	kfree_skb(skb);
585 	goto out;
586 }
587 EXPORT_SYMBOL(__sk_receive_skb);
588 
589 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
590 							  u32));
591 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
592 							   u32));
593 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
594 {
595 	struct dst_entry *dst = __sk_dst_get(sk);
596 
597 	if (dst && dst->obsolete &&
598 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
599 			       dst, cookie) == NULL) {
600 		sk_tx_queue_clear(sk);
601 		sk->sk_dst_pending_confirm = 0;
602 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
603 		dst_release(dst);
604 		return NULL;
605 	}
606 
607 	return dst;
608 }
609 EXPORT_SYMBOL(__sk_dst_check);
610 
611 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
612 {
613 	struct dst_entry *dst = sk_dst_get(sk);
614 
615 	if (dst && dst->obsolete &&
616 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
617 			       dst, cookie) == NULL) {
618 		sk_dst_reset(sk);
619 		dst_release(dst);
620 		return NULL;
621 	}
622 
623 	return dst;
624 }
625 EXPORT_SYMBOL(sk_dst_check);
626 
627 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
628 {
629 	int ret = -ENOPROTOOPT;
630 #ifdef CONFIG_NETDEVICES
631 	struct net *net = sock_net(sk);
632 
633 	/* Sorry... */
634 	ret = -EPERM;
635 	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
636 		goto out;
637 
638 	ret = -EINVAL;
639 	if (ifindex < 0)
640 		goto out;
641 
642 	/* Paired with all READ_ONCE() done locklessly. */
643 	WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
644 
645 	if (sk->sk_prot->rehash)
646 		sk->sk_prot->rehash(sk);
647 	sk_dst_reset(sk);
648 
649 	ret = 0;
650 
651 out:
652 #endif
653 
654 	return ret;
655 }
656 
657 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
658 {
659 	int ret;
660 
661 	if (lock_sk)
662 		lock_sock(sk);
663 	ret = sock_bindtoindex_locked(sk, ifindex);
664 	if (lock_sk)
665 		release_sock(sk);
666 
667 	return ret;
668 }
669 EXPORT_SYMBOL(sock_bindtoindex);
670 
671 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
672 {
673 	int ret = -ENOPROTOOPT;
674 #ifdef CONFIG_NETDEVICES
675 	struct net *net = sock_net(sk);
676 	char devname[IFNAMSIZ];
677 	int index;
678 
679 	ret = -EINVAL;
680 	if (optlen < 0)
681 		goto out;
682 
683 	/* Bind this socket to a particular device like "eth0",
684 	 * as specified in the passed interface name. If the
685 	 * name is "" or the option length is zero the socket
686 	 * is not bound.
687 	 */
688 	if (optlen > IFNAMSIZ - 1)
689 		optlen = IFNAMSIZ - 1;
690 	memset(devname, 0, sizeof(devname));
691 
692 	ret = -EFAULT;
693 	if (copy_from_sockptr(devname, optval, optlen))
694 		goto out;
695 
696 	index = 0;
697 	if (devname[0] != '\0') {
698 		struct net_device *dev;
699 
700 		rcu_read_lock();
701 		dev = dev_get_by_name_rcu(net, devname);
702 		if (dev)
703 			index = dev->ifindex;
704 		rcu_read_unlock();
705 		ret = -ENODEV;
706 		if (!dev)
707 			goto out;
708 	}
709 
710 	sockopt_lock_sock(sk);
711 	ret = sock_bindtoindex_locked(sk, index);
712 	sockopt_release_sock(sk);
713 out:
714 #endif
715 
716 	return ret;
717 }
718 
719 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
720 				sockptr_t optlen, int len)
721 {
722 	int ret = -ENOPROTOOPT;
723 #ifdef CONFIG_NETDEVICES
724 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
725 	struct net *net = sock_net(sk);
726 	char devname[IFNAMSIZ];
727 
728 	if (bound_dev_if == 0) {
729 		len = 0;
730 		goto zero;
731 	}
732 
733 	ret = -EINVAL;
734 	if (len < IFNAMSIZ)
735 		goto out;
736 
737 	ret = netdev_get_name(net, devname, bound_dev_if);
738 	if (ret)
739 		goto out;
740 
741 	len = strlen(devname) + 1;
742 
743 	ret = -EFAULT;
744 	if (copy_to_sockptr(optval, devname, len))
745 		goto out;
746 
747 zero:
748 	ret = -EFAULT;
749 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
750 		goto out;
751 
752 	ret = 0;
753 
754 out:
755 #endif
756 
757 	return ret;
758 }
759 
760 bool sk_mc_loop(struct sock *sk)
761 {
762 	if (dev_recursion_level())
763 		return false;
764 	if (!sk)
765 		return true;
766 	switch (sk->sk_family) {
767 	case AF_INET:
768 		return inet_sk(sk)->mc_loop;
769 #if IS_ENABLED(CONFIG_IPV6)
770 	case AF_INET6:
771 		return inet6_sk(sk)->mc_loop;
772 #endif
773 	}
774 	WARN_ON_ONCE(1);
775 	return true;
776 }
777 EXPORT_SYMBOL(sk_mc_loop);
778 
779 void sock_set_reuseaddr(struct sock *sk)
780 {
781 	lock_sock(sk);
782 	sk->sk_reuse = SK_CAN_REUSE;
783 	release_sock(sk);
784 }
785 EXPORT_SYMBOL(sock_set_reuseaddr);
786 
787 void sock_set_reuseport(struct sock *sk)
788 {
789 	lock_sock(sk);
790 	sk->sk_reuseport = true;
791 	release_sock(sk);
792 }
793 EXPORT_SYMBOL(sock_set_reuseport);
794 
795 void sock_no_linger(struct sock *sk)
796 {
797 	lock_sock(sk);
798 	sk->sk_lingertime = 0;
799 	sock_set_flag(sk, SOCK_LINGER);
800 	release_sock(sk);
801 }
802 EXPORT_SYMBOL(sock_no_linger);
803 
804 void sock_set_priority(struct sock *sk, u32 priority)
805 {
806 	lock_sock(sk);
807 	sk->sk_priority = priority;
808 	release_sock(sk);
809 }
810 EXPORT_SYMBOL(sock_set_priority);
811 
812 void sock_set_sndtimeo(struct sock *sk, s64 secs)
813 {
814 	lock_sock(sk);
815 	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
816 		sk->sk_sndtimeo = secs * HZ;
817 	else
818 		sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
819 	release_sock(sk);
820 }
821 EXPORT_SYMBOL(sock_set_sndtimeo);
822 
823 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
824 {
825 	if (val)  {
826 		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
827 		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
828 		sock_set_flag(sk, SOCK_RCVTSTAMP);
829 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
830 	} else {
831 		sock_reset_flag(sk, SOCK_RCVTSTAMP);
832 		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
833 	}
834 }
835 
836 void sock_enable_timestamps(struct sock *sk)
837 {
838 	lock_sock(sk);
839 	__sock_set_timestamps(sk, true, false, true);
840 	release_sock(sk);
841 }
842 EXPORT_SYMBOL(sock_enable_timestamps);
843 
844 void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
845 {
846 	switch (optname) {
847 	case SO_TIMESTAMP_OLD:
848 		__sock_set_timestamps(sk, valbool, false, false);
849 		break;
850 	case SO_TIMESTAMP_NEW:
851 		__sock_set_timestamps(sk, valbool, true, false);
852 		break;
853 	case SO_TIMESTAMPNS_OLD:
854 		__sock_set_timestamps(sk, valbool, false, true);
855 		break;
856 	case SO_TIMESTAMPNS_NEW:
857 		__sock_set_timestamps(sk, valbool, true, true);
858 		break;
859 	}
860 }
861 
862 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
863 {
864 	struct net *net = sock_net(sk);
865 	struct net_device *dev = NULL;
866 	bool match = false;
867 	int *vclock_index;
868 	int i, num;
869 
870 	if (sk->sk_bound_dev_if)
871 		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
872 
873 	if (!dev) {
874 		pr_err("%s: sock not bind to device\n", __func__);
875 		return -EOPNOTSUPP;
876 	}
877 
878 	num = ethtool_get_phc_vclocks(dev, &vclock_index);
879 	dev_put(dev);
880 
881 	for (i = 0; i < num; i++) {
882 		if (*(vclock_index + i) == phc_index) {
883 			match = true;
884 			break;
885 		}
886 	}
887 
888 	if (num > 0)
889 		kfree(vclock_index);
890 
891 	if (!match)
892 		return -EINVAL;
893 
894 	sk->sk_bind_phc = phc_index;
895 
896 	return 0;
897 }
898 
899 int sock_set_timestamping(struct sock *sk, int optname,
900 			  struct so_timestamping timestamping)
901 {
902 	int val = timestamping.flags;
903 	int ret;
904 
905 	if (val & ~SOF_TIMESTAMPING_MASK)
906 		return -EINVAL;
907 
908 	if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
909 	    !(val & SOF_TIMESTAMPING_OPT_ID))
910 		return -EINVAL;
911 
912 	if (val & SOF_TIMESTAMPING_OPT_ID &&
913 	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
914 		if (sk_is_tcp(sk)) {
915 			if ((1 << sk->sk_state) &
916 			    (TCPF_CLOSE | TCPF_LISTEN))
917 				return -EINVAL;
918 			if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
919 				atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
920 			else
921 				atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
922 		} else {
923 			atomic_set(&sk->sk_tskey, 0);
924 		}
925 	}
926 
927 	if (val & SOF_TIMESTAMPING_OPT_STATS &&
928 	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
929 		return -EINVAL;
930 
931 	if (val & SOF_TIMESTAMPING_BIND_PHC) {
932 		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
933 		if (ret)
934 			return ret;
935 	}
936 
937 	sk->sk_tsflags = val;
938 	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
939 
940 	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
941 		sock_enable_timestamp(sk,
942 				      SOCK_TIMESTAMPING_RX_SOFTWARE);
943 	else
944 		sock_disable_timestamp(sk,
945 				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
946 	return 0;
947 }
948 
949 void sock_set_keepalive(struct sock *sk)
950 {
951 	lock_sock(sk);
952 	if (sk->sk_prot->keepalive)
953 		sk->sk_prot->keepalive(sk, true);
954 	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
955 	release_sock(sk);
956 }
957 EXPORT_SYMBOL(sock_set_keepalive);
958 
959 static void __sock_set_rcvbuf(struct sock *sk, int val)
960 {
961 	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
962 	 * as a negative value.
963 	 */
964 	val = min_t(int, val, INT_MAX / 2);
965 	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
966 
967 	/* We double it on the way in to account for "struct sk_buff" etc.
968 	 * overhead.   Applications assume that the SO_RCVBUF setting they make
969 	 * will allow that much actual data to be received on that socket.
970 	 *
971 	 * Applications are unaware that "struct sk_buff" and other overheads
972 	 * allocate from the receive buffer during socket buffer allocation.
973 	 *
974 	 * And after considering the possible alternatives, returning the value
975 	 * we actually used in getsockopt is the most desirable behavior.
976 	 */
977 	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
978 }
979 
980 void sock_set_rcvbuf(struct sock *sk, int val)
981 {
982 	lock_sock(sk);
983 	__sock_set_rcvbuf(sk, val);
984 	release_sock(sk);
985 }
986 EXPORT_SYMBOL(sock_set_rcvbuf);
987 
988 static void __sock_set_mark(struct sock *sk, u32 val)
989 {
990 	if (val != sk->sk_mark) {
991 		sk->sk_mark = val;
992 		sk_dst_reset(sk);
993 	}
994 }
995 
996 void sock_set_mark(struct sock *sk, u32 val)
997 {
998 	lock_sock(sk);
999 	__sock_set_mark(sk, val);
1000 	release_sock(sk);
1001 }
1002 EXPORT_SYMBOL(sock_set_mark);
1003 
1004 static void sock_release_reserved_memory(struct sock *sk, int bytes)
1005 {
1006 	/* Round down bytes to multiple of pages */
1007 	bytes = round_down(bytes, PAGE_SIZE);
1008 
1009 	WARN_ON(bytes > sk->sk_reserved_mem);
1010 	sk->sk_reserved_mem -= bytes;
1011 	sk_mem_reclaim(sk);
1012 }
1013 
1014 static int sock_reserve_memory(struct sock *sk, int bytes)
1015 {
1016 	long allocated;
1017 	bool charged;
1018 	int pages;
1019 
1020 	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1021 		return -EOPNOTSUPP;
1022 
1023 	if (!bytes)
1024 		return 0;
1025 
1026 	pages = sk_mem_pages(bytes);
1027 
1028 	/* pre-charge to memcg */
1029 	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1030 					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1031 	if (!charged)
1032 		return -ENOMEM;
1033 
1034 	/* pre-charge to forward_alloc */
1035 	sk_memory_allocated_add(sk, pages);
1036 	allocated = sk_memory_allocated(sk);
1037 	/* If the system goes into memory pressure with this
1038 	 * precharge, give up and return error.
1039 	 */
1040 	if (allocated > sk_prot_mem_limits(sk, 1)) {
1041 		sk_memory_allocated_sub(sk, pages);
1042 		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1043 		return -ENOMEM;
1044 	}
1045 	sk->sk_forward_alloc += pages << PAGE_SHIFT;
1046 
1047 	sk->sk_reserved_mem += pages << PAGE_SHIFT;
1048 
1049 	return 0;
1050 }
1051 
1052 void sockopt_lock_sock(struct sock *sk)
1053 {
1054 	/* When current->bpf_ctx is set, the setsockopt is called from
1055 	 * a bpf prog.  bpf has ensured the sk lock has been
1056 	 * acquired before calling setsockopt().
1057 	 */
1058 	if (has_current_bpf_ctx())
1059 		return;
1060 
1061 	lock_sock(sk);
1062 }
1063 EXPORT_SYMBOL(sockopt_lock_sock);
1064 
1065 void sockopt_release_sock(struct sock *sk)
1066 {
1067 	if (has_current_bpf_ctx())
1068 		return;
1069 
1070 	release_sock(sk);
1071 }
1072 EXPORT_SYMBOL(sockopt_release_sock);
1073 
1074 bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1075 {
1076 	return has_current_bpf_ctx() || ns_capable(ns, cap);
1077 }
1078 EXPORT_SYMBOL(sockopt_ns_capable);
1079 
1080 bool sockopt_capable(int cap)
1081 {
1082 	return has_current_bpf_ctx() || capable(cap);
1083 }
1084 EXPORT_SYMBOL(sockopt_capable);
1085 
1086 /*
1087  *	This is meant for all protocols to use and covers goings on
1088  *	at the socket level. Everything here is generic.
1089  */
1090 
1091 int sk_setsockopt(struct sock *sk, int level, int optname,
1092 		  sockptr_t optval, unsigned int optlen)
1093 {
1094 	struct so_timestamping timestamping;
1095 	struct socket *sock = sk->sk_socket;
1096 	struct sock_txtime sk_txtime;
1097 	int val;
1098 	int valbool;
1099 	struct linger ling;
1100 	int ret = 0;
1101 
1102 	/*
1103 	 *	Options without arguments
1104 	 */
1105 
1106 	if (optname == SO_BINDTODEVICE)
1107 		return sock_setbindtodevice(sk, optval, optlen);
1108 
1109 	if (optlen < sizeof(int))
1110 		return -EINVAL;
1111 
1112 	if (copy_from_sockptr(&val, optval, sizeof(val)))
1113 		return -EFAULT;
1114 
1115 	valbool = val ? 1 : 0;
1116 
1117 	sockopt_lock_sock(sk);
1118 
1119 	switch (optname) {
1120 	case SO_DEBUG:
1121 		if (val && !sockopt_capable(CAP_NET_ADMIN))
1122 			ret = -EACCES;
1123 		else
1124 			sock_valbool_flag(sk, SOCK_DBG, valbool);
1125 		break;
1126 	case SO_REUSEADDR:
1127 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1128 		break;
1129 	case SO_REUSEPORT:
1130 		sk->sk_reuseport = valbool;
1131 		break;
1132 	case SO_TYPE:
1133 	case SO_PROTOCOL:
1134 	case SO_DOMAIN:
1135 	case SO_ERROR:
1136 		ret = -ENOPROTOOPT;
1137 		break;
1138 	case SO_DONTROUTE:
1139 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1140 		sk_dst_reset(sk);
1141 		break;
1142 	case SO_BROADCAST:
1143 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1144 		break;
1145 	case SO_SNDBUF:
1146 		/* Don't error on this BSD doesn't and if you think
1147 		 * about it this is right. Otherwise apps have to
1148 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1149 		 * are treated in BSD as hints
1150 		 */
1151 		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1152 set_sndbuf:
1153 		/* Ensure val * 2 fits into an int, to prevent max_t()
1154 		 * from treating it as a negative value.
1155 		 */
1156 		val = min_t(int, val, INT_MAX / 2);
1157 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1158 		WRITE_ONCE(sk->sk_sndbuf,
1159 			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1160 		/* Wake up sending tasks if we upped the value. */
1161 		sk->sk_write_space(sk);
1162 		break;
1163 
1164 	case SO_SNDBUFFORCE:
1165 		if (!sockopt_capable(CAP_NET_ADMIN)) {
1166 			ret = -EPERM;
1167 			break;
1168 		}
1169 
1170 		/* No negative values (to prevent underflow, as val will be
1171 		 * multiplied by 2).
1172 		 */
1173 		if (val < 0)
1174 			val = 0;
1175 		goto set_sndbuf;
1176 
1177 	case SO_RCVBUF:
1178 		/* Don't error on this BSD doesn't and if you think
1179 		 * about it this is right. Otherwise apps have to
1180 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1181 		 * are treated in BSD as hints
1182 		 */
1183 		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1184 		break;
1185 
1186 	case SO_RCVBUFFORCE:
1187 		if (!sockopt_capable(CAP_NET_ADMIN)) {
1188 			ret = -EPERM;
1189 			break;
1190 		}
1191 
1192 		/* No negative values (to prevent underflow, as val will be
1193 		 * multiplied by 2).
1194 		 */
1195 		__sock_set_rcvbuf(sk, max(val, 0));
1196 		break;
1197 
1198 	case SO_KEEPALIVE:
1199 		if (sk->sk_prot->keepalive)
1200 			sk->sk_prot->keepalive(sk, valbool);
1201 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1202 		break;
1203 
1204 	case SO_OOBINLINE:
1205 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1206 		break;
1207 
1208 	case SO_NO_CHECK:
1209 		sk->sk_no_check_tx = valbool;
1210 		break;
1211 
1212 	case SO_PRIORITY:
1213 		if ((val >= 0 && val <= 6) ||
1214 		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1215 		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1216 			sk->sk_priority = val;
1217 		else
1218 			ret = -EPERM;
1219 		break;
1220 
1221 	case SO_LINGER:
1222 		if (optlen < sizeof(ling)) {
1223 			ret = -EINVAL;	/* 1003.1g */
1224 			break;
1225 		}
1226 		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1227 			ret = -EFAULT;
1228 			break;
1229 		}
1230 		if (!ling.l_onoff)
1231 			sock_reset_flag(sk, SOCK_LINGER);
1232 		else {
1233 #if (BITS_PER_LONG == 32)
1234 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1235 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1236 			else
1237 #endif
1238 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1239 			sock_set_flag(sk, SOCK_LINGER);
1240 		}
1241 		break;
1242 
1243 	case SO_BSDCOMPAT:
1244 		break;
1245 
1246 	case SO_PASSCRED:
1247 		if (valbool)
1248 			set_bit(SOCK_PASSCRED, &sock->flags);
1249 		else
1250 			clear_bit(SOCK_PASSCRED, &sock->flags);
1251 		break;
1252 
1253 	case SO_PASSPIDFD:
1254 		if (valbool)
1255 			set_bit(SOCK_PASSPIDFD, &sock->flags);
1256 		else
1257 			clear_bit(SOCK_PASSPIDFD, &sock->flags);
1258 		break;
1259 
1260 	case SO_TIMESTAMP_OLD:
1261 	case SO_TIMESTAMP_NEW:
1262 	case SO_TIMESTAMPNS_OLD:
1263 	case SO_TIMESTAMPNS_NEW:
1264 		sock_set_timestamp(sk, optname, valbool);
1265 		break;
1266 
1267 	case SO_TIMESTAMPING_NEW:
1268 	case SO_TIMESTAMPING_OLD:
1269 		if (optlen == sizeof(timestamping)) {
1270 			if (copy_from_sockptr(&timestamping, optval,
1271 					      sizeof(timestamping))) {
1272 				ret = -EFAULT;
1273 				break;
1274 			}
1275 		} else {
1276 			memset(&timestamping, 0, sizeof(timestamping));
1277 			timestamping.flags = val;
1278 		}
1279 		ret = sock_set_timestamping(sk, optname, timestamping);
1280 		break;
1281 
1282 	case SO_RCVLOWAT:
1283 		if (val < 0)
1284 			val = INT_MAX;
1285 		if (sock && sock->ops->set_rcvlowat)
1286 			ret = sock->ops->set_rcvlowat(sk, val);
1287 		else
1288 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1289 		break;
1290 
1291 	case SO_RCVTIMEO_OLD:
1292 	case SO_RCVTIMEO_NEW:
1293 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1294 				       optlen, optname == SO_RCVTIMEO_OLD);
1295 		break;
1296 
1297 	case SO_SNDTIMEO_OLD:
1298 	case SO_SNDTIMEO_NEW:
1299 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1300 				       optlen, optname == SO_SNDTIMEO_OLD);
1301 		break;
1302 
1303 	case SO_ATTACH_FILTER: {
1304 		struct sock_fprog fprog;
1305 
1306 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1307 		if (!ret)
1308 			ret = sk_attach_filter(&fprog, sk);
1309 		break;
1310 	}
1311 	case SO_ATTACH_BPF:
1312 		ret = -EINVAL;
1313 		if (optlen == sizeof(u32)) {
1314 			u32 ufd;
1315 
1316 			ret = -EFAULT;
1317 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1318 				break;
1319 
1320 			ret = sk_attach_bpf(ufd, sk);
1321 		}
1322 		break;
1323 
1324 	case SO_ATTACH_REUSEPORT_CBPF: {
1325 		struct sock_fprog fprog;
1326 
1327 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1328 		if (!ret)
1329 			ret = sk_reuseport_attach_filter(&fprog, sk);
1330 		break;
1331 	}
1332 	case SO_ATTACH_REUSEPORT_EBPF:
1333 		ret = -EINVAL;
1334 		if (optlen == sizeof(u32)) {
1335 			u32 ufd;
1336 
1337 			ret = -EFAULT;
1338 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1339 				break;
1340 
1341 			ret = sk_reuseport_attach_bpf(ufd, sk);
1342 		}
1343 		break;
1344 
1345 	case SO_DETACH_REUSEPORT_BPF:
1346 		ret = reuseport_detach_prog(sk);
1347 		break;
1348 
1349 	case SO_DETACH_FILTER:
1350 		ret = sk_detach_filter(sk);
1351 		break;
1352 
1353 	case SO_LOCK_FILTER:
1354 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1355 			ret = -EPERM;
1356 		else
1357 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1358 		break;
1359 
1360 	case SO_PASSSEC:
1361 		if (valbool)
1362 			set_bit(SOCK_PASSSEC, &sock->flags);
1363 		else
1364 			clear_bit(SOCK_PASSSEC, &sock->flags);
1365 		break;
1366 	case SO_MARK:
1367 		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1368 		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1369 			ret = -EPERM;
1370 			break;
1371 		}
1372 
1373 		__sock_set_mark(sk, val);
1374 		break;
1375 	case SO_RCVMARK:
1376 		sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1377 		break;
1378 
1379 	case SO_RXQ_OVFL:
1380 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1381 		break;
1382 
1383 	case SO_WIFI_STATUS:
1384 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1385 		break;
1386 
1387 	case SO_PEEK_OFF:
1388 		if (sock->ops->set_peek_off)
1389 			ret = sock->ops->set_peek_off(sk, val);
1390 		else
1391 			ret = -EOPNOTSUPP;
1392 		break;
1393 
1394 	case SO_NOFCS:
1395 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1396 		break;
1397 
1398 	case SO_SELECT_ERR_QUEUE:
1399 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1400 		break;
1401 
1402 #ifdef CONFIG_NET_RX_BUSY_POLL
1403 	case SO_BUSY_POLL:
1404 		if (val < 0)
1405 			ret = -EINVAL;
1406 		else
1407 			WRITE_ONCE(sk->sk_ll_usec, val);
1408 		break;
1409 	case SO_PREFER_BUSY_POLL:
1410 		if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1411 			ret = -EPERM;
1412 		else
1413 			WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1414 		break;
1415 	case SO_BUSY_POLL_BUDGET:
1416 		if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) {
1417 			ret = -EPERM;
1418 		} else {
1419 			if (val < 0 || val > U16_MAX)
1420 				ret = -EINVAL;
1421 			else
1422 				WRITE_ONCE(sk->sk_busy_poll_budget, val);
1423 		}
1424 		break;
1425 #endif
1426 
1427 	case SO_MAX_PACING_RATE:
1428 		{
1429 		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1430 
1431 		if (sizeof(ulval) != sizeof(val) &&
1432 		    optlen >= sizeof(ulval) &&
1433 		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1434 			ret = -EFAULT;
1435 			break;
1436 		}
1437 		if (ulval != ~0UL)
1438 			cmpxchg(&sk->sk_pacing_status,
1439 				SK_PACING_NONE,
1440 				SK_PACING_NEEDED);
1441 		sk->sk_max_pacing_rate = ulval;
1442 		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1443 		break;
1444 		}
1445 	case SO_INCOMING_CPU:
1446 		reuseport_update_incoming_cpu(sk, val);
1447 		break;
1448 
1449 	case SO_CNX_ADVICE:
1450 		if (val == 1)
1451 			dst_negative_advice(sk);
1452 		break;
1453 
1454 	case SO_ZEROCOPY:
1455 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1456 			if (!(sk_is_tcp(sk) ||
1457 			      (sk->sk_type == SOCK_DGRAM &&
1458 			       sk->sk_protocol == IPPROTO_UDP)))
1459 				ret = -EOPNOTSUPP;
1460 		} else if (sk->sk_family != PF_RDS) {
1461 			ret = -EOPNOTSUPP;
1462 		}
1463 		if (!ret) {
1464 			if (val < 0 || val > 1)
1465 				ret = -EINVAL;
1466 			else
1467 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1468 		}
1469 		break;
1470 
1471 	case SO_TXTIME:
1472 		if (optlen != sizeof(struct sock_txtime)) {
1473 			ret = -EINVAL;
1474 			break;
1475 		} else if (copy_from_sockptr(&sk_txtime, optval,
1476 			   sizeof(struct sock_txtime))) {
1477 			ret = -EFAULT;
1478 			break;
1479 		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1480 			ret = -EINVAL;
1481 			break;
1482 		}
1483 		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1484 		 * scheduler has enough safe guards.
1485 		 */
1486 		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1487 		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1488 			ret = -EPERM;
1489 			break;
1490 		}
1491 		sock_valbool_flag(sk, SOCK_TXTIME, true);
1492 		sk->sk_clockid = sk_txtime.clockid;
1493 		sk->sk_txtime_deadline_mode =
1494 			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1495 		sk->sk_txtime_report_errors =
1496 			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1497 		break;
1498 
1499 	case SO_BINDTOIFINDEX:
1500 		ret = sock_bindtoindex_locked(sk, val);
1501 		break;
1502 
1503 	case SO_BUF_LOCK:
1504 		if (val & ~SOCK_BUF_LOCK_MASK) {
1505 			ret = -EINVAL;
1506 			break;
1507 		}
1508 		sk->sk_userlocks = val | (sk->sk_userlocks &
1509 					  ~SOCK_BUF_LOCK_MASK);
1510 		break;
1511 
1512 	case SO_RESERVE_MEM:
1513 	{
1514 		int delta;
1515 
1516 		if (val < 0) {
1517 			ret = -EINVAL;
1518 			break;
1519 		}
1520 
1521 		delta = val - sk->sk_reserved_mem;
1522 		if (delta < 0)
1523 			sock_release_reserved_memory(sk, -delta);
1524 		else
1525 			ret = sock_reserve_memory(sk, delta);
1526 		break;
1527 	}
1528 
1529 	case SO_TXREHASH:
1530 		if (val < -1 || val > 1) {
1531 			ret = -EINVAL;
1532 			break;
1533 		}
1534 		if ((u8)val == SOCK_TXREHASH_DEFAULT)
1535 			val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1536 		/* Paired with READ_ONCE() in tcp_rtx_synack() */
1537 		WRITE_ONCE(sk->sk_txrehash, (u8)val);
1538 		break;
1539 
1540 	default:
1541 		ret = -ENOPROTOOPT;
1542 		break;
1543 	}
1544 	sockopt_release_sock(sk);
1545 	return ret;
1546 }
1547 
1548 int sock_setsockopt(struct socket *sock, int level, int optname,
1549 		    sockptr_t optval, unsigned int optlen)
1550 {
1551 	return sk_setsockopt(sock->sk, level, optname,
1552 			     optval, optlen);
1553 }
1554 EXPORT_SYMBOL(sock_setsockopt);
1555 
1556 static const struct cred *sk_get_peer_cred(struct sock *sk)
1557 {
1558 	const struct cred *cred;
1559 
1560 	spin_lock(&sk->sk_peer_lock);
1561 	cred = get_cred(sk->sk_peer_cred);
1562 	spin_unlock(&sk->sk_peer_lock);
1563 
1564 	return cred;
1565 }
1566 
1567 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1568 			  struct ucred *ucred)
1569 {
1570 	ucred->pid = pid_vnr(pid);
1571 	ucred->uid = ucred->gid = -1;
1572 	if (cred) {
1573 		struct user_namespace *current_ns = current_user_ns();
1574 
1575 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1576 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1577 	}
1578 }
1579 
1580 static int groups_to_user(sockptr_t dst, const struct group_info *src)
1581 {
1582 	struct user_namespace *user_ns = current_user_ns();
1583 	int i;
1584 
1585 	for (i = 0; i < src->ngroups; i++) {
1586 		gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1587 
1588 		if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1589 			return -EFAULT;
1590 	}
1591 
1592 	return 0;
1593 }
1594 
1595 int sk_getsockopt(struct sock *sk, int level, int optname,
1596 		  sockptr_t optval, sockptr_t optlen)
1597 {
1598 	struct socket *sock = sk->sk_socket;
1599 
1600 	union {
1601 		int val;
1602 		u64 val64;
1603 		unsigned long ulval;
1604 		struct linger ling;
1605 		struct old_timeval32 tm32;
1606 		struct __kernel_old_timeval tm;
1607 		struct  __kernel_sock_timeval stm;
1608 		struct sock_txtime txtime;
1609 		struct so_timestamping timestamping;
1610 	} v;
1611 
1612 	int lv = sizeof(int);
1613 	int len;
1614 
1615 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
1616 		return -EFAULT;
1617 	if (len < 0)
1618 		return -EINVAL;
1619 
1620 	memset(&v, 0, sizeof(v));
1621 
1622 	switch (optname) {
1623 	case SO_DEBUG:
1624 		v.val = sock_flag(sk, SOCK_DBG);
1625 		break;
1626 
1627 	case SO_DONTROUTE:
1628 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1629 		break;
1630 
1631 	case SO_BROADCAST:
1632 		v.val = sock_flag(sk, SOCK_BROADCAST);
1633 		break;
1634 
1635 	case SO_SNDBUF:
1636 		v.val = sk->sk_sndbuf;
1637 		break;
1638 
1639 	case SO_RCVBUF:
1640 		v.val = sk->sk_rcvbuf;
1641 		break;
1642 
1643 	case SO_REUSEADDR:
1644 		v.val = sk->sk_reuse;
1645 		break;
1646 
1647 	case SO_REUSEPORT:
1648 		v.val = sk->sk_reuseport;
1649 		break;
1650 
1651 	case SO_KEEPALIVE:
1652 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1653 		break;
1654 
1655 	case SO_TYPE:
1656 		v.val = sk->sk_type;
1657 		break;
1658 
1659 	case SO_PROTOCOL:
1660 		v.val = sk->sk_protocol;
1661 		break;
1662 
1663 	case SO_DOMAIN:
1664 		v.val = sk->sk_family;
1665 		break;
1666 
1667 	case SO_ERROR:
1668 		v.val = -sock_error(sk);
1669 		if (v.val == 0)
1670 			v.val = xchg(&sk->sk_err_soft, 0);
1671 		break;
1672 
1673 	case SO_OOBINLINE:
1674 		v.val = sock_flag(sk, SOCK_URGINLINE);
1675 		break;
1676 
1677 	case SO_NO_CHECK:
1678 		v.val = sk->sk_no_check_tx;
1679 		break;
1680 
1681 	case SO_PRIORITY:
1682 		v.val = sk->sk_priority;
1683 		break;
1684 
1685 	case SO_LINGER:
1686 		lv		= sizeof(v.ling);
1687 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1688 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1689 		break;
1690 
1691 	case SO_BSDCOMPAT:
1692 		break;
1693 
1694 	case SO_TIMESTAMP_OLD:
1695 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1696 				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1697 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1698 		break;
1699 
1700 	case SO_TIMESTAMPNS_OLD:
1701 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1702 		break;
1703 
1704 	case SO_TIMESTAMP_NEW:
1705 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1706 		break;
1707 
1708 	case SO_TIMESTAMPNS_NEW:
1709 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1710 		break;
1711 
1712 	case SO_TIMESTAMPING_OLD:
1713 		lv = sizeof(v.timestamping);
1714 		v.timestamping.flags = sk->sk_tsflags;
1715 		v.timestamping.bind_phc = sk->sk_bind_phc;
1716 		break;
1717 
1718 	case SO_RCVTIMEO_OLD:
1719 	case SO_RCVTIMEO_NEW:
1720 		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1721 		break;
1722 
1723 	case SO_SNDTIMEO_OLD:
1724 	case SO_SNDTIMEO_NEW:
1725 		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1726 		break;
1727 
1728 	case SO_RCVLOWAT:
1729 		v.val = sk->sk_rcvlowat;
1730 		break;
1731 
1732 	case SO_SNDLOWAT:
1733 		v.val = 1;
1734 		break;
1735 
1736 	case SO_PASSCRED:
1737 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1738 		break;
1739 
1740 	case SO_PASSPIDFD:
1741 		v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags);
1742 		break;
1743 
1744 	case SO_PEERCRED:
1745 	{
1746 		struct ucred peercred;
1747 		if (len > sizeof(peercred))
1748 			len = sizeof(peercred);
1749 
1750 		spin_lock(&sk->sk_peer_lock);
1751 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1752 		spin_unlock(&sk->sk_peer_lock);
1753 
1754 		if (copy_to_sockptr(optval, &peercred, len))
1755 			return -EFAULT;
1756 		goto lenout;
1757 	}
1758 
1759 	case SO_PEERPIDFD:
1760 	{
1761 		struct pid *peer_pid;
1762 		struct file *pidfd_file = NULL;
1763 		int pidfd;
1764 
1765 		if (len > sizeof(pidfd))
1766 			len = sizeof(pidfd);
1767 
1768 		spin_lock(&sk->sk_peer_lock);
1769 		peer_pid = get_pid(sk->sk_peer_pid);
1770 		spin_unlock(&sk->sk_peer_lock);
1771 
1772 		if (!peer_pid)
1773 			return -ESRCH;
1774 
1775 		pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file);
1776 		put_pid(peer_pid);
1777 		if (pidfd < 0)
1778 			return pidfd;
1779 
1780 		if (copy_to_sockptr(optval, &pidfd, len) ||
1781 		    copy_to_sockptr(optlen, &len, sizeof(int))) {
1782 			put_unused_fd(pidfd);
1783 			fput(pidfd_file);
1784 
1785 			return -EFAULT;
1786 		}
1787 
1788 		fd_install(pidfd, pidfd_file);
1789 		return 0;
1790 	}
1791 
1792 	case SO_PEERGROUPS:
1793 	{
1794 		const struct cred *cred;
1795 		int ret, n;
1796 
1797 		cred = sk_get_peer_cred(sk);
1798 		if (!cred)
1799 			return -ENODATA;
1800 
1801 		n = cred->group_info->ngroups;
1802 		if (len < n * sizeof(gid_t)) {
1803 			len = n * sizeof(gid_t);
1804 			put_cred(cred);
1805 			return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1806 		}
1807 		len = n * sizeof(gid_t);
1808 
1809 		ret = groups_to_user(optval, cred->group_info);
1810 		put_cred(cred);
1811 		if (ret)
1812 			return ret;
1813 		goto lenout;
1814 	}
1815 
1816 	case SO_PEERNAME:
1817 	{
1818 		char address[128];
1819 
1820 		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1821 		if (lv < 0)
1822 			return -ENOTCONN;
1823 		if (lv < len)
1824 			return -EINVAL;
1825 		if (copy_to_sockptr(optval, address, len))
1826 			return -EFAULT;
1827 		goto lenout;
1828 	}
1829 
1830 	/* Dubious BSD thing... Probably nobody even uses it, but
1831 	 * the UNIX standard wants it for whatever reason... -DaveM
1832 	 */
1833 	case SO_ACCEPTCONN:
1834 		v.val = sk->sk_state == TCP_LISTEN;
1835 		break;
1836 
1837 	case SO_PASSSEC:
1838 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1839 		break;
1840 
1841 	case SO_PEERSEC:
1842 		return security_socket_getpeersec_stream(sock,
1843 							 optval, optlen, len);
1844 
1845 	case SO_MARK:
1846 		v.val = sk->sk_mark;
1847 		break;
1848 
1849 	case SO_RCVMARK:
1850 		v.val = sock_flag(sk, SOCK_RCVMARK);
1851 		break;
1852 
1853 	case SO_RXQ_OVFL:
1854 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1855 		break;
1856 
1857 	case SO_WIFI_STATUS:
1858 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1859 		break;
1860 
1861 	case SO_PEEK_OFF:
1862 		if (!sock->ops->set_peek_off)
1863 			return -EOPNOTSUPP;
1864 
1865 		v.val = sk->sk_peek_off;
1866 		break;
1867 	case SO_NOFCS:
1868 		v.val = sock_flag(sk, SOCK_NOFCS);
1869 		break;
1870 
1871 	case SO_BINDTODEVICE:
1872 		return sock_getbindtodevice(sk, optval, optlen, len);
1873 
1874 	case SO_GET_FILTER:
1875 		len = sk_get_filter(sk, optval, len);
1876 		if (len < 0)
1877 			return len;
1878 
1879 		goto lenout;
1880 
1881 	case SO_LOCK_FILTER:
1882 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1883 		break;
1884 
1885 	case SO_BPF_EXTENSIONS:
1886 		v.val = bpf_tell_extensions();
1887 		break;
1888 
1889 	case SO_SELECT_ERR_QUEUE:
1890 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1891 		break;
1892 
1893 #ifdef CONFIG_NET_RX_BUSY_POLL
1894 	case SO_BUSY_POLL:
1895 		v.val = sk->sk_ll_usec;
1896 		break;
1897 	case SO_PREFER_BUSY_POLL:
1898 		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1899 		break;
1900 #endif
1901 
1902 	case SO_MAX_PACING_RATE:
1903 		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1904 			lv = sizeof(v.ulval);
1905 			v.ulval = sk->sk_max_pacing_rate;
1906 		} else {
1907 			/* 32bit version */
1908 			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1909 		}
1910 		break;
1911 
1912 	case SO_INCOMING_CPU:
1913 		v.val = READ_ONCE(sk->sk_incoming_cpu);
1914 		break;
1915 
1916 	case SO_MEMINFO:
1917 	{
1918 		u32 meminfo[SK_MEMINFO_VARS];
1919 
1920 		sk_get_meminfo(sk, meminfo);
1921 
1922 		len = min_t(unsigned int, len, sizeof(meminfo));
1923 		if (copy_to_sockptr(optval, &meminfo, len))
1924 			return -EFAULT;
1925 
1926 		goto lenout;
1927 	}
1928 
1929 #ifdef CONFIG_NET_RX_BUSY_POLL
1930 	case SO_INCOMING_NAPI_ID:
1931 		v.val = READ_ONCE(sk->sk_napi_id);
1932 
1933 		/* aggregate non-NAPI IDs down to 0 */
1934 		if (v.val < MIN_NAPI_ID)
1935 			v.val = 0;
1936 
1937 		break;
1938 #endif
1939 
1940 	case SO_COOKIE:
1941 		lv = sizeof(u64);
1942 		if (len < lv)
1943 			return -EINVAL;
1944 		v.val64 = sock_gen_cookie(sk);
1945 		break;
1946 
1947 	case SO_ZEROCOPY:
1948 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1949 		break;
1950 
1951 	case SO_TXTIME:
1952 		lv = sizeof(v.txtime);
1953 		v.txtime.clockid = sk->sk_clockid;
1954 		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1955 				  SOF_TXTIME_DEADLINE_MODE : 0;
1956 		v.txtime.flags |= sk->sk_txtime_report_errors ?
1957 				  SOF_TXTIME_REPORT_ERRORS : 0;
1958 		break;
1959 
1960 	case SO_BINDTOIFINDEX:
1961 		v.val = READ_ONCE(sk->sk_bound_dev_if);
1962 		break;
1963 
1964 	case SO_NETNS_COOKIE:
1965 		lv = sizeof(u64);
1966 		if (len != lv)
1967 			return -EINVAL;
1968 		v.val64 = sock_net(sk)->net_cookie;
1969 		break;
1970 
1971 	case SO_BUF_LOCK:
1972 		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1973 		break;
1974 
1975 	case SO_RESERVE_MEM:
1976 		v.val = sk->sk_reserved_mem;
1977 		break;
1978 
1979 	case SO_TXREHASH:
1980 		v.val = sk->sk_txrehash;
1981 		break;
1982 
1983 	default:
1984 		/* We implement the SO_SNDLOWAT etc to not be settable
1985 		 * (1003.1g 7).
1986 		 */
1987 		return -ENOPROTOOPT;
1988 	}
1989 
1990 	if (len > lv)
1991 		len = lv;
1992 	if (copy_to_sockptr(optval, &v, len))
1993 		return -EFAULT;
1994 lenout:
1995 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
1996 		return -EFAULT;
1997 	return 0;
1998 }
1999 
2000 int sock_getsockopt(struct socket *sock, int level, int optname,
2001 		    char __user *optval, int __user *optlen)
2002 {
2003 	return sk_getsockopt(sock->sk, level, optname,
2004 			     USER_SOCKPTR(optval),
2005 			     USER_SOCKPTR(optlen));
2006 }
2007 
2008 /*
2009  * Initialize an sk_lock.
2010  *
2011  * (We also register the sk_lock with the lock validator.)
2012  */
2013 static inline void sock_lock_init(struct sock *sk)
2014 {
2015 	if (sk->sk_kern_sock)
2016 		sock_lock_init_class_and_name(
2017 			sk,
2018 			af_family_kern_slock_key_strings[sk->sk_family],
2019 			af_family_kern_slock_keys + sk->sk_family,
2020 			af_family_kern_key_strings[sk->sk_family],
2021 			af_family_kern_keys + sk->sk_family);
2022 	else
2023 		sock_lock_init_class_and_name(
2024 			sk,
2025 			af_family_slock_key_strings[sk->sk_family],
2026 			af_family_slock_keys + sk->sk_family,
2027 			af_family_key_strings[sk->sk_family],
2028 			af_family_keys + sk->sk_family);
2029 }
2030 
2031 /*
2032  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
2033  * even temporarly, because of RCU lookups. sk_node should also be left as is.
2034  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
2035  */
2036 static void sock_copy(struct sock *nsk, const struct sock *osk)
2037 {
2038 	const struct proto *prot = READ_ONCE(osk->sk_prot);
2039 #ifdef CONFIG_SECURITY_NETWORK
2040 	void *sptr = nsk->sk_security;
2041 #endif
2042 
2043 	/* If we move sk_tx_queue_mapping out of the private section,
2044 	 * we must check if sk_tx_queue_clear() is called after
2045 	 * sock_copy() in sk_clone_lock().
2046 	 */
2047 	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2048 		     offsetof(struct sock, sk_dontcopy_begin) ||
2049 		     offsetof(struct sock, sk_tx_queue_mapping) >=
2050 		     offsetof(struct sock, sk_dontcopy_end));
2051 
2052 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2053 
2054 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2055 	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
2056 
2057 #ifdef CONFIG_SECURITY_NETWORK
2058 	nsk->sk_security = sptr;
2059 	security_sk_clone(osk, nsk);
2060 #endif
2061 }
2062 
2063 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2064 		int family)
2065 {
2066 	struct sock *sk;
2067 	struct kmem_cache *slab;
2068 
2069 	slab = prot->slab;
2070 	if (slab != NULL) {
2071 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2072 		if (!sk)
2073 			return sk;
2074 		if (want_init_on_alloc(priority))
2075 			sk_prot_clear_nulls(sk, prot->obj_size);
2076 	} else
2077 		sk = kmalloc(prot->obj_size, priority);
2078 
2079 	if (sk != NULL) {
2080 		if (security_sk_alloc(sk, family, priority))
2081 			goto out_free;
2082 
2083 		if (!try_module_get(prot->owner))
2084 			goto out_free_sec;
2085 	}
2086 
2087 	return sk;
2088 
2089 out_free_sec:
2090 	security_sk_free(sk);
2091 out_free:
2092 	if (slab != NULL)
2093 		kmem_cache_free(slab, sk);
2094 	else
2095 		kfree(sk);
2096 	return NULL;
2097 }
2098 
2099 static void sk_prot_free(struct proto *prot, struct sock *sk)
2100 {
2101 	struct kmem_cache *slab;
2102 	struct module *owner;
2103 
2104 	owner = prot->owner;
2105 	slab = prot->slab;
2106 
2107 	cgroup_sk_free(&sk->sk_cgrp_data);
2108 	mem_cgroup_sk_free(sk);
2109 	security_sk_free(sk);
2110 	if (slab != NULL)
2111 		kmem_cache_free(slab, sk);
2112 	else
2113 		kfree(sk);
2114 	module_put(owner);
2115 }
2116 
2117 /**
2118  *	sk_alloc - All socket objects are allocated here
2119  *	@net: the applicable net namespace
2120  *	@family: protocol family
2121  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2122  *	@prot: struct proto associated with this new sock instance
2123  *	@kern: is this to be a kernel socket?
2124  */
2125 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2126 		      struct proto *prot, int kern)
2127 {
2128 	struct sock *sk;
2129 
2130 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2131 	if (sk) {
2132 		sk->sk_family = family;
2133 		/*
2134 		 * See comment in struct sock definition to understand
2135 		 * why we need sk_prot_creator -acme
2136 		 */
2137 		sk->sk_prot = sk->sk_prot_creator = prot;
2138 		sk->sk_kern_sock = kern;
2139 		sock_lock_init(sk);
2140 		sk->sk_net_refcnt = kern ? 0 : 1;
2141 		if (likely(sk->sk_net_refcnt)) {
2142 			get_net_track(net, &sk->ns_tracker, priority);
2143 			sock_inuse_add(net, 1);
2144 		} else {
2145 			__netns_tracker_alloc(net, &sk->ns_tracker,
2146 					      false, priority);
2147 		}
2148 
2149 		sock_net_set(sk, net);
2150 		refcount_set(&sk->sk_wmem_alloc, 1);
2151 
2152 		mem_cgroup_sk_alloc(sk);
2153 		cgroup_sk_alloc(&sk->sk_cgrp_data);
2154 		sock_update_classid(&sk->sk_cgrp_data);
2155 		sock_update_netprioidx(&sk->sk_cgrp_data);
2156 		sk_tx_queue_clear(sk);
2157 	}
2158 
2159 	return sk;
2160 }
2161 EXPORT_SYMBOL(sk_alloc);
2162 
2163 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
2164  * grace period. This is the case for UDP sockets and TCP listeners.
2165  */
2166 static void __sk_destruct(struct rcu_head *head)
2167 {
2168 	struct sock *sk = container_of(head, struct sock, sk_rcu);
2169 	struct sk_filter *filter;
2170 
2171 	if (sk->sk_destruct)
2172 		sk->sk_destruct(sk);
2173 
2174 	filter = rcu_dereference_check(sk->sk_filter,
2175 				       refcount_read(&sk->sk_wmem_alloc) == 0);
2176 	if (filter) {
2177 		sk_filter_uncharge(sk, filter);
2178 		RCU_INIT_POINTER(sk->sk_filter, NULL);
2179 	}
2180 
2181 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2182 
2183 #ifdef CONFIG_BPF_SYSCALL
2184 	bpf_sk_storage_free(sk);
2185 #endif
2186 
2187 	if (atomic_read(&sk->sk_omem_alloc))
2188 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2189 			 __func__, atomic_read(&sk->sk_omem_alloc));
2190 
2191 	if (sk->sk_frag.page) {
2192 		put_page(sk->sk_frag.page);
2193 		sk->sk_frag.page = NULL;
2194 	}
2195 
2196 	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2197 	put_cred(sk->sk_peer_cred);
2198 	put_pid(sk->sk_peer_pid);
2199 
2200 	if (likely(sk->sk_net_refcnt))
2201 		put_net_track(sock_net(sk), &sk->ns_tracker);
2202 	else
2203 		__netns_tracker_free(sock_net(sk), &sk->ns_tracker, false);
2204 
2205 	sk_prot_free(sk->sk_prot_creator, sk);
2206 }
2207 
2208 void sk_destruct(struct sock *sk)
2209 {
2210 	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2211 
2212 	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2213 		reuseport_detach_sock(sk);
2214 		use_call_rcu = true;
2215 	}
2216 
2217 	if (use_call_rcu)
2218 		call_rcu(&sk->sk_rcu, __sk_destruct);
2219 	else
2220 		__sk_destruct(&sk->sk_rcu);
2221 }
2222 
2223 static void __sk_free(struct sock *sk)
2224 {
2225 	if (likely(sk->sk_net_refcnt))
2226 		sock_inuse_add(sock_net(sk), -1);
2227 
2228 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2229 		sock_diag_broadcast_destroy(sk);
2230 	else
2231 		sk_destruct(sk);
2232 }
2233 
2234 void sk_free(struct sock *sk)
2235 {
2236 	/*
2237 	 * We subtract one from sk_wmem_alloc and can know if
2238 	 * some packets are still in some tx queue.
2239 	 * If not null, sock_wfree() will call __sk_free(sk) later
2240 	 */
2241 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2242 		__sk_free(sk);
2243 }
2244 EXPORT_SYMBOL(sk_free);
2245 
2246 static void sk_init_common(struct sock *sk)
2247 {
2248 	skb_queue_head_init(&sk->sk_receive_queue);
2249 	skb_queue_head_init(&sk->sk_write_queue);
2250 	skb_queue_head_init(&sk->sk_error_queue);
2251 
2252 	rwlock_init(&sk->sk_callback_lock);
2253 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2254 			af_rlock_keys + sk->sk_family,
2255 			af_family_rlock_key_strings[sk->sk_family]);
2256 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2257 			af_wlock_keys + sk->sk_family,
2258 			af_family_wlock_key_strings[sk->sk_family]);
2259 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2260 			af_elock_keys + sk->sk_family,
2261 			af_family_elock_key_strings[sk->sk_family]);
2262 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2263 			af_callback_keys + sk->sk_family,
2264 			af_family_clock_key_strings[sk->sk_family]);
2265 }
2266 
2267 /**
2268  *	sk_clone_lock - clone a socket, and lock its clone
2269  *	@sk: the socket to clone
2270  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2271  *
2272  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2273  */
2274 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2275 {
2276 	struct proto *prot = READ_ONCE(sk->sk_prot);
2277 	struct sk_filter *filter;
2278 	bool is_charged = true;
2279 	struct sock *newsk;
2280 
2281 	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2282 	if (!newsk)
2283 		goto out;
2284 
2285 	sock_copy(newsk, sk);
2286 
2287 	newsk->sk_prot_creator = prot;
2288 
2289 	/* SANITY */
2290 	if (likely(newsk->sk_net_refcnt)) {
2291 		get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2292 		sock_inuse_add(sock_net(newsk), 1);
2293 	} else {
2294 		/* Kernel sockets are not elevating the struct net refcount.
2295 		 * Instead, use a tracker to more easily detect if a layer
2296 		 * is not properly dismantling its kernel sockets at netns
2297 		 * destroy time.
2298 		 */
2299 		__netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2300 				      false, priority);
2301 	}
2302 	sk_node_init(&newsk->sk_node);
2303 	sock_lock_init(newsk);
2304 	bh_lock_sock(newsk);
2305 	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2306 	newsk->sk_backlog.len = 0;
2307 
2308 	atomic_set(&newsk->sk_rmem_alloc, 0);
2309 
2310 	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2311 	refcount_set(&newsk->sk_wmem_alloc, 1);
2312 
2313 	atomic_set(&newsk->sk_omem_alloc, 0);
2314 	sk_init_common(newsk);
2315 
2316 	newsk->sk_dst_cache	= NULL;
2317 	newsk->sk_dst_pending_confirm = 0;
2318 	newsk->sk_wmem_queued	= 0;
2319 	newsk->sk_forward_alloc = 0;
2320 	newsk->sk_reserved_mem  = 0;
2321 	atomic_set(&newsk->sk_drops, 0);
2322 	newsk->sk_send_head	= NULL;
2323 	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2324 	atomic_set(&newsk->sk_zckey, 0);
2325 
2326 	sock_reset_flag(newsk, SOCK_DONE);
2327 
2328 	/* sk->sk_memcg will be populated at accept() time */
2329 	newsk->sk_memcg = NULL;
2330 
2331 	cgroup_sk_clone(&newsk->sk_cgrp_data);
2332 
2333 	rcu_read_lock();
2334 	filter = rcu_dereference(sk->sk_filter);
2335 	if (filter != NULL)
2336 		/* though it's an empty new sock, the charging may fail
2337 		 * if sysctl_optmem_max was changed between creation of
2338 		 * original socket and cloning
2339 		 */
2340 		is_charged = sk_filter_charge(newsk, filter);
2341 	RCU_INIT_POINTER(newsk->sk_filter, filter);
2342 	rcu_read_unlock();
2343 
2344 	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2345 		/* We need to make sure that we don't uncharge the new
2346 		 * socket if we couldn't charge it in the first place
2347 		 * as otherwise we uncharge the parent's filter.
2348 		 */
2349 		if (!is_charged)
2350 			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2351 		sk_free_unlock_clone(newsk);
2352 		newsk = NULL;
2353 		goto out;
2354 	}
2355 	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2356 
2357 	if (bpf_sk_storage_clone(sk, newsk)) {
2358 		sk_free_unlock_clone(newsk);
2359 		newsk = NULL;
2360 		goto out;
2361 	}
2362 
2363 	/* Clear sk_user_data if parent had the pointer tagged
2364 	 * as not suitable for copying when cloning.
2365 	 */
2366 	if (sk_user_data_is_nocopy(newsk))
2367 		newsk->sk_user_data = NULL;
2368 
2369 	newsk->sk_err	   = 0;
2370 	newsk->sk_err_soft = 0;
2371 	newsk->sk_priority = 0;
2372 	newsk->sk_incoming_cpu = raw_smp_processor_id();
2373 
2374 	/* Before updating sk_refcnt, we must commit prior changes to memory
2375 	 * (Documentation/RCU/rculist_nulls.rst for details)
2376 	 */
2377 	smp_wmb();
2378 	refcount_set(&newsk->sk_refcnt, 2);
2379 
2380 	sk_set_socket(newsk, NULL);
2381 	sk_tx_queue_clear(newsk);
2382 	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2383 
2384 	if (newsk->sk_prot->sockets_allocated)
2385 		sk_sockets_allocated_inc(newsk);
2386 
2387 	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2388 		net_enable_timestamp();
2389 out:
2390 	return newsk;
2391 }
2392 EXPORT_SYMBOL_GPL(sk_clone_lock);
2393 
2394 void sk_free_unlock_clone(struct sock *sk)
2395 {
2396 	/* It is still raw copy of parent, so invalidate
2397 	 * destructor and make plain sk_free() */
2398 	sk->sk_destruct = NULL;
2399 	bh_unlock_sock(sk);
2400 	sk_free(sk);
2401 }
2402 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2403 
2404 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
2405 {
2406 	bool is_ipv6 = false;
2407 	u32 max_size;
2408 
2409 #if IS_ENABLED(CONFIG_IPV6)
2410 	is_ipv6 = (sk->sk_family == AF_INET6 &&
2411 		   !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr));
2412 #endif
2413 	/* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
2414 	max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) :
2415 			READ_ONCE(dst->dev->gso_ipv4_max_size);
2416 	if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk))
2417 		max_size = GSO_LEGACY_MAX_SIZE;
2418 
2419 	return max_size - (MAX_TCP_HEADER + 1);
2420 }
2421 
2422 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2423 {
2424 	u32 max_segs = 1;
2425 
2426 	sk->sk_route_caps = dst->dev->features;
2427 	if (sk_is_tcp(sk))
2428 		sk->sk_route_caps |= NETIF_F_GSO;
2429 	if (sk->sk_route_caps & NETIF_F_GSO)
2430 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2431 	if (unlikely(sk->sk_gso_disabled))
2432 		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2433 	if (sk_can_gso(sk)) {
2434 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2435 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2436 		} else {
2437 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2438 			sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst);
2439 			/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2440 			max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2441 		}
2442 	}
2443 	sk->sk_gso_max_segs = max_segs;
2444 	sk_dst_set(sk, dst);
2445 }
2446 EXPORT_SYMBOL_GPL(sk_setup_caps);
2447 
2448 /*
2449  *	Simple resource managers for sockets.
2450  */
2451 
2452 
2453 /*
2454  * Write buffer destructor automatically called from kfree_skb.
2455  */
2456 void sock_wfree(struct sk_buff *skb)
2457 {
2458 	struct sock *sk = skb->sk;
2459 	unsigned int len = skb->truesize;
2460 	bool free;
2461 
2462 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2463 		if (sock_flag(sk, SOCK_RCU_FREE) &&
2464 		    sk->sk_write_space == sock_def_write_space) {
2465 			rcu_read_lock();
2466 			free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2467 			sock_def_write_space_wfree(sk);
2468 			rcu_read_unlock();
2469 			if (unlikely(free))
2470 				__sk_free(sk);
2471 			return;
2472 		}
2473 
2474 		/*
2475 		 * Keep a reference on sk_wmem_alloc, this will be released
2476 		 * after sk_write_space() call
2477 		 */
2478 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2479 		sk->sk_write_space(sk);
2480 		len = 1;
2481 	}
2482 	/*
2483 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2484 	 * could not do because of in-flight packets
2485 	 */
2486 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2487 		__sk_free(sk);
2488 }
2489 EXPORT_SYMBOL(sock_wfree);
2490 
2491 /* This variant of sock_wfree() is used by TCP,
2492  * since it sets SOCK_USE_WRITE_QUEUE.
2493  */
2494 void __sock_wfree(struct sk_buff *skb)
2495 {
2496 	struct sock *sk = skb->sk;
2497 
2498 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2499 		__sk_free(sk);
2500 }
2501 
2502 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2503 {
2504 	skb_orphan(skb);
2505 	skb->sk = sk;
2506 #ifdef CONFIG_INET
2507 	if (unlikely(!sk_fullsock(sk))) {
2508 		skb->destructor = sock_edemux;
2509 		sock_hold(sk);
2510 		return;
2511 	}
2512 #endif
2513 	skb->destructor = sock_wfree;
2514 	skb_set_hash_from_sk(skb, sk);
2515 	/*
2516 	 * We used to take a refcount on sk, but following operation
2517 	 * is enough to guarantee sk_free() wont free this sock until
2518 	 * all in-flight packets are completed
2519 	 */
2520 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2521 }
2522 EXPORT_SYMBOL(skb_set_owner_w);
2523 
2524 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2525 {
2526 #ifdef CONFIG_TLS_DEVICE
2527 	/* Drivers depend on in-order delivery for crypto offload,
2528 	 * partial orphan breaks out-of-order-OK logic.
2529 	 */
2530 	if (skb->decrypted)
2531 		return false;
2532 #endif
2533 	return (skb->destructor == sock_wfree ||
2534 		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2535 }
2536 
2537 /* This helper is used by netem, as it can hold packets in its
2538  * delay queue. We want to allow the owner socket to send more
2539  * packets, as if they were already TX completed by a typical driver.
2540  * But we also want to keep skb->sk set because some packet schedulers
2541  * rely on it (sch_fq for example).
2542  */
2543 void skb_orphan_partial(struct sk_buff *skb)
2544 {
2545 	if (skb_is_tcp_pure_ack(skb))
2546 		return;
2547 
2548 	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2549 		return;
2550 
2551 	skb_orphan(skb);
2552 }
2553 EXPORT_SYMBOL(skb_orphan_partial);
2554 
2555 /*
2556  * Read buffer destructor automatically called from kfree_skb.
2557  */
2558 void sock_rfree(struct sk_buff *skb)
2559 {
2560 	struct sock *sk = skb->sk;
2561 	unsigned int len = skb->truesize;
2562 
2563 	atomic_sub(len, &sk->sk_rmem_alloc);
2564 	sk_mem_uncharge(sk, len);
2565 }
2566 EXPORT_SYMBOL(sock_rfree);
2567 
2568 /*
2569  * Buffer destructor for skbs that are not used directly in read or write
2570  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2571  */
2572 void sock_efree(struct sk_buff *skb)
2573 {
2574 	sock_put(skb->sk);
2575 }
2576 EXPORT_SYMBOL(sock_efree);
2577 
2578 /* Buffer destructor for prefetch/receive path where reference count may
2579  * not be held, e.g. for listen sockets.
2580  */
2581 #ifdef CONFIG_INET
2582 void sock_pfree(struct sk_buff *skb)
2583 {
2584 	if (sk_is_refcounted(skb->sk))
2585 		sock_gen_put(skb->sk);
2586 }
2587 EXPORT_SYMBOL(sock_pfree);
2588 #endif /* CONFIG_INET */
2589 
2590 kuid_t sock_i_uid(struct sock *sk)
2591 {
2592 	kuid_t uid;
2593 
2594 	read_lock_bh(&sk->sk_callback_lock);
2595 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2596 	read_unlock_bh(&sk->sk_callback_lock);
2597 	return uid;
2598 }
2599 EXPORT_SYMBOL(sock_i_uid);
2600 
2601 unsigned long sock_i_ino(struct sock *sk)
2602 {
2603 	unsigned long ino;
2604 
2605 	read_lock_bh(&sk->sk_callback_lock);
2606 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2607 	read_unlock_bh(&sk->sk_callback_lock);
2608 	return ino;
2609 }
2610 EXPORT_SYMBOL(sock_i_ino);
2611 
2612 /*
2613  * Allocate a skb from the socket's send buffer.
2614  */
2615 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2616 			     gfp_t priority)
2617 {
2618 	if (force ||
2619 	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2620 		struct sk_buff *skb = alloc_skb(size, priority);
2621 
2622 		if (skb) {
2623 			skb_set_owner_w(skb, sk);
2624 			return skb;
2625 		}
2626 	}
2627 	return NULL;
2628 }
2629 EXPORT_SYMBOL(sock_wmalloc);
2630 
2631 static void sock_ofree(struct sk_buff *skb)
2632 {
2633 	struct sock *sk = skb->sk;
2634 
2635 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2636 }
2637 
2638 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2639 			     gfp_t priority)
2640 {
2641 	struct sk_buff *skb;
2642 
2643 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2644 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2645 	    READ_ONCE(sysctl_optmem_max))
2646 		return NULL;
2647 
2648 	skb = alloc_skb(size, priority);
2649 	if (!skb)
2650 		return NULL;
2651 
2652 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2653 	skb->sk = sk;
2654 	skb->destructor = sock_ofree;
2655 	return skb;
2656 }
2657 
2658 /*
2659  * Allocate a memory block from the socket's option memory buffer.
2660  */
2661 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2662 {
2663 	int optmem_max = READ_ONCE(sysctl_optmem_max);
2664 
2665 	if ((unsigned int)size <= optmem_max &&
2666 	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2667 		void *mem;
2668 		/* First do the add, to avoid the race if kmalloc
2669 		 * might sleep.
2670 		 */
2671 		atomic_add(size, &sk->sk_omem_alloc);
2672 		mem = kmalloc(size, priority);
2673 		if (mem)
2674 			return mem;
2675 		atomic_sub(size, &sk->sk_omem_alloc);
2676 	}
2677 	return NULL;
2678 }
2679 EXPORT_SYMBOL(sock_kmalloc);
2680 
2681 /* Free an option memory block. Note, we actually want the inline
2682  * here as this allows gcc to detect the nullify and fold away the
2683  * condition entirely.
2684  */
2685 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2686 				  const bool nullify)
2687 {
2688 	if (WARN_ON_ONCE(!mem))
2689 		return;
2690 	if (nullify)
2691 		kfree_sensitive(mem);
2692 	else
2693 		kfree(mem);
2694 	atomic_sub(size, &sk->sk_omem_alloc);
2695 }
2696 
2697 void sock_kfree_s(struct sock *sk, void *mem, int size)
2698 {
2699 	__sock_kfree_s(sk, mem, size, false);
2700 }
2701 EXPORT_SYMBOL(sock_kfree_s);
2702 
2703 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2704 {
2705 	__sock_kfree_s(sk, mem, size, true);
2706 }
2707 EXPORT_SYMBOL(sock_kzfree_s);
2708 
2709 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2710    I think, these locks should be removed for datagram sockets.
2711  */
2712 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2713 {
2714 	DEFINE_WAIT(wait);
2715 
2716 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2717 	for (;;) {
2718 		if (!timeo)
2719 			break;
2720 		if (signal_pending(current))
2721 			break;
2722 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2723 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2724 		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2725 			break;
2726 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2727 			break;
2728 		if (sk->sk_err)
2729 			break;
2730 		timeo = schedule_timeout(timeo);
2731 	}
2732 	finish_wait(sk_sleep(sk), &wait);
2733 	return timeo;
2734 }
2735 
2736 
2737 /*
2738  *	Generic send/receive buffer handlers
2739  */
2740 
2741 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2742 				     unsigned long data_len, int noblock,
2743 				     int *errcode, int max_page_order)
2744 {
2745 	struct sk_buff *skb;
2746 	long timeo;
2747 	int err;
2748 
2749 	timeo = sock_sndtimeo(sk, noblock);
2750 	for (;;) {
2751 		err = sock_error(sk);
2752 		if (err != 0)
2753 			goto failure;
2754 
2755 		err = -EPIPE;
2756 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2757 			goto failure;
2758 
2759 		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2760 			break;
2761 
2762 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2763 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2764 		err = -EAGAIN;
2765 		if (!timeo)
2766 			goto failure;
2767 		if (signal_pending(current))
2768 			goto interrupted;
2769 		timeo = sock_wait_for_wmem(sk, timeo);
2770 	}
2771 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2772 				   errcode, sk->sk_allocation);
2773 	if (skb)
2774 		skb_set_owner_w(skb, sk);
2775 	return skb;
2776 
2777 interrupted:
2778 	err = sock_intr_errno(timeo);
2779 failure:
2780 	*errcode = err;
2781 	return NULL;
2782 }
2783 EXPORT_SYMBOL(sock_alloc_send_pskb);
2784 
2785 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2786 		     struct sockcm_cookie *sockc)
2787 {
2788 	u32 tsflags;
2789 
2790 	switch (cmsg->cmsg_type) {
2791 	case SO_MARK:
2792 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2793 		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2794 			return -EPERM;
2795 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2796 			return -EINVAL;
2797 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2798 		break;
2799 	case SO_TIMESTAMPING_OLD:
2800 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2801 			return -EINVAL;
2802 
2803 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2804 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2805 			return -EINVAL;
2806 
2807 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2808 		sockc->tsflags |= tsflags;
2809 		break;
2810 	case SCM_TXTIME:
2811 		if (!sock_flag(sk, SOCK_TXTIME))
2812 			return -EINVAL;
2813 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2814 			return -EINVAL;
2815 		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2816 		break;
2817 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2818 	case SCM_RIGHTS:
2819 	case SCM_CREDENTIALS:
2820 		break;
2821 	default:
2822 		return -EINVAL;
2823 	}
2824 	return 0;
2825 }
2826 EXPORT_SYMBOL(__sock_cmsg_send);
2827 
2828 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2829 		   struct sockcm_cookie *sockc)
2830 {
2831 	struct cmsghdr *cmsg;
2832 	int ret;
2833 
2834 	for_each_cmsghdr(cmsg, msg) {
2835 		if (!CMSG_OK(msg, cmsg))
2836 			return -EINVAL;
2837 		if (cmsg->cmsg_level != SOL_SOCKET)
2838 			continue;
2839 		ret = __sock_cmsg_send(sk, cmsg, sockc);
2840 		if (ret)
2841 			return ret;
2842 	}
2843 	return 0;
2844 }
2845 EXPORT_SYMBOL(sock_cmsg_send);
2846 
2847 static void sk_enter_memory_pressure(struct sock *sk)
2848 {
2849 	if (!sk->sk_prot->enter_memory_pressure)
2850 		return;
2851 
2852 	sk->sk_prot->enter_memory_pressure(sk);
2853 }
2854 
2855 static void sk_leave_memory_pressure(struct sock *sk)
2856 {
2857 	if (sk->sk_prot->leave_memory_pressure) {
2858 		INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
2859 				     tcp_leave_memory_pressure, sk);
2860 	} else {
2861 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2862 
2863 		if (memory_pressure && READ_ONCE(*memory_pressure))
2864 			WRITE_ONCE(*memory_pressure, 0);
2865 	}
2866 }
2867 
2868 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2869 
2870 /**
2871  * skb_page_frag_refill - check that a page_frag contains enough room
2872  * @sz: minimum size of the fragment we want to get
2873  * @pfrag: pointer to page_frag
2874  * @gfp: priority for memory allocation
2875  *
2876  * Note: While this allocator tries to use high order pages, there is
2877  * no guarantee that allocations succeed. Therefore, @sz MUST be
2878  * less or equal than PAGE_SIZE.
2879  */
2880 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2881 {
2882 	if (pfrag->page) {
2883 		if (page_ref_count(pfrag->page) == 1) {
2884 			pfrag->offset = 0;
2885 			return true;
2886 		}
2887 		if (pfrag->offset + sz <= pfrag->size)
2888 			return true;
2889 		put_page(pfrag->page);
2890 	}
2891 
2892 	pfrag->offset = 0;
2893 	if (SKB_FRAG_PAGE_ORDER &&
2894 	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2895 		/* Avoid direct reclaim but allow kswapd to wake */
2896 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2897 					  __GFP_COMP | __GFP_NOWARN |
2898 					  __GFP_NORETRY,
2899 					  SKB_FRAG_PAGE_ORDER);
2900 		if (likely(pfrag->page)) {
2901 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2902 			return true;
2903 		}
2904 	}
2905 	pfrag->page = alloc_page(gfp);
2906 	if (likely(pfrag->page)) {
2907 		pfrag->size = PAGE_SIZE;
2908 		return true;
2909 	}
2910 	return false;
2911 }
2912 EXPORT_SYMBOL(skb_page_frag_refill);
2913 
2914 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2915 {
2916 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2917 		return true;
2918 
2919 	sk_enter_memory_pressure(sk);
2920 	sk_stream_moderate_sndbuf(sk);
2921 	return false;
2922 }
2923 EXPORT_SYMBOL(sk_page_frag_refill);
2924 
2925 void __lock_sock(struct sock *sk)
2926 	__releases(&sk->sk_lock.slock)
2927 	__acquires(&sk->sk_lock.slock)
2928 {
2929 	DEFINE_WAIT(wait);
2930 
2931 	for (;;) {
2932 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2933 					TASK_UNINTERRUPTIBLE);
2934 		spin_unlock_bh(&sk->sk_lock.slock);
2935 		schedule();
2936 		spin_lock_bh(&sk->sk_lock.slock);
2937 		if (!sock_owned_by_user(sk))
2938 			break;
2939 	}
2940 	finish_wait(&sk->sk_lock.wq, &wait);
2941 }
2942 
2943 void __release_sock(struct sock *sk)
2944 	__releases(&sk->sk_lock.slock)
2945 	__acquires(&sk->sk_lock.slock)
2946 {
2947 	struct sk_buff *skb, *next;
2948 
2949 	while ((skb = sk->sk_backlog.head) != NULL) {
2950 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2951 
2952 		spin_unlock_bh(&sk->sk_lock.slock);
2953 
2954 		do {
2955 			next = skb->next;
2956 			prefetch(next);
2957 			DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
2958 			skb_mark_not_on_list(skb);
2959 			sk_backlog_rcv(sk, skb);
2960 
2961 			cond_resched();
2962 
2963 			skb = next;
2964 		} while (skb != NULL);
2965 
2966 		spin_lock_bh(&sk->sk_lock.slock);
2967 	}
2968 
2969 	/*
2970 	 * Doing the zeroing here guarantee we can not loop forever
2971 	 * while a wild producer attempts to flood us.
2972 	 */
2973 	sk->sk_backlog.len = 0;
2974 }
2975 
2976 void __sk_flush_backlog(struct sock *sk)
2977 {
2978 	spin_lock_bh(&sk->sk_lock.slock);
2979 	__release_sock(sk);
2980 	spin_unlock_bh(&sk->sk_lock.slock);
2981 }
2982 EXPORT_SYMBOL_GPL(__sk_flush_backlog);
2983 
2984 /**
2985  * sk_wait_data - wait for data to arrive at sk_receive_queue
2986  * @sk:    sock to wait on
2987  * @timeo: for how long
2988  * @skb:   last skb seen on sk_receive_queue
2989  *
2990  * Now socket state including sk->sk_err is changed only under lock,
2991  * hence we may omit checks after joining wait queue.
2992  * We check receive queue before schedule() only as optimization;
2993  * it is very likely that release_sock() added new data.
2994  */
2995 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2996 {
2997 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2998 	int rc;
2999 
3000 	add_wait_queue(sk_sleep(sk), &wait);
3001 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3002 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
3003 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3004 	remove_wait_queue(sk_sleep(sk), &wait);
3005 	return rc;
3006 }
3007 EXPORT_SYMBOL(sk_wait_data);
3008 
3009 /**
3010  *	__sk_mem_raise_allocated - increase memory_allocated
3011  *	@sk: socket
3012  *	@size: memory size to allocate
3013  *	@amt: pages to allocate
3014  *	@kind: allocation type
3015  *
3016  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
3017  */
3018 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
3019 {
3020 	bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg;
3021 	struct proto *prot = sk->sk_prot;
3022 	bool charged = true;
3023 	long allocated;
3024 
3025 	sk_memory_allocated_add(sk, amt);
3026 	allocated = sk_memory_allocated(sk);
3027 	if (memcg_charge &&
3028 	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3029 						gfp_memcg_charge())))
3030 		goto suppress_allocation;
3031 
3032 	/* Under limit. */
3033 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
3034 		sk_leave_memory_pressure(sk);
3035 		return 1;
3036 	}
3037 
3038 	/* Under pressure. */
3039 	if (allocated > sk_prot_mem_limits(sk, 1))
3040 		sk_enter_memory_pressure(sk);
3041 
3042 	/* Over hard limit. */
3043 	if (allocated > sk_prot_mem_limits(sk, 2))
3044 		goto suppress_allocation;
3045 
3046 	/* guarantee minimum buffer size under pressure */
3047 	if (kind == SK_MEM_RECV) {
3048 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3049 			return 1;
3050 
3051 	} else { /* SK_MEM_SEND */
3052 		int wmem0 = sk_get_wmem0(sk, prot);
3053 
3054 		if (sk->sk_type == SOCK_STREAM) {
3055 			if (sk->sk_wmem_queued < wmem0)
3056 				return 1;
3057 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3058 				return 1;
3059 		}
3060 	}
3061 
3062 	if (sk_has_memory_pressure(sk)) {
3063 		u64 alloc;
3064 
3065 		if (!sk_under_memory_pressure(sk))
3066 			return 1;
3067 		alloc = sk_sockets_allocated_read_positive(sk);
3068 		if (sk_prot_mem_limits(sk, 2) > alloc *
3069 		    sk_mem_pages(sk->sk_wmem_queued +
3070 				 atomic_read(&sk->sk_rmem_alloc) +
3071 				 sk->sk_forward_alloc))
3072 			return 1;
3073 	}
3074 
3075 suppress_allocation:
3076 
3077 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3078 		sk_stream_moderate_sndbuf(sk);
3079 
3080 		/* Fail only if socket is _under_ its sndbuf.
3081 		 * In this case we cannot block, so that we have to fail.
3082 		 */
3083 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3084 			/* Force charge with __GFP_NOFAIL */
3085 			if (memcg_charge && !charged) {
3086 				mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3087 					gfp_memcg_charge() | __GFP_NOFAIL);
3088 			}
3089 			return 1;
3090 		}
3091 	}
3092 
3093 	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3094 		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3095 
3096 	sk_memory_allocated_sub(sk, amt);
3097 
3098 	if (memcg_charge && charged)
3099 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
3100 
3101 	return 0;
3102 }
3103 
3104 /**
3105  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3106  *	@sk: socket
3107  *	@size: memory size to allocate
3108  *	@kind: allocation type
3109  *
3110  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3111  *	rmem allocation. This function assumes that protocols which have
3112  *	memory_pressure use sk_wmem_queued as write buffer accounting.
3113  */
3114 int __sk_mem_schedule(struct sock *sk, int size, int kind)
3115 {
3116 	int ret, amt = sk_mem_pages(size);
3117 
3118 	sk->sk_forward_alloc += amt << PAGE_SHIFT;
3119 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3120 	if (!ret)
3121 		sk->sk_forward_alloc -= amt << PAGE_SHIFT;
3122 	return ret;
3123 }
3124 EXPORT_SYMBOL(__sk_mem_schedule);
3125 
3126 /**
3127  *	__sk_mem_reduce_allocated - reclaim memory_allocated
3128  *	@sk: socket
3129  *	@amount: number of quanta
3130  *
3131  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3132  */
3133 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3134 {
3135 	sk_memory_allocated_sub(sk, amount);
3136 
3137 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3138 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3139 
3140 	if (sk_under_memory_pressure(sk) &&
3141 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3142 		sk_leave_memory_pressure(sk);
3143 }
3144 
3145 /**
3146  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3147  *	@sk: socket
3148  *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3149  */
3150 void __sk_mem_reclaim(struct sock *sk, int amount)
3151 {
3152 	amount >>= PAGE_SHIFT;
3153 	sk->sk_forward_alloc -= amount << PAGE_SHIFT;
3154 	__sk_mem_reduce_allocated(sk, amount);
3155 }
3156 EXPORT_SYMBOL(__sk_mem_reclaim);
3157 
3158 int sk_set_peek_off(struct sock *sk, int val)
3159 {
3160 	sk->sk_peek_off = val;
3161 	return 0;
3162 }
3163 EXPORT_SYMBOL_GPL(sk_set_peek_off);
3164 
3165 /*
3166  * Set of default routines for initialising struct proto_ops when
3167  * the protocol does not support a particular function. In certain
3168  * cases where it makes no sense for a protocol to have a "do nothing"
3169  * function, some default processing is provided.
3170  */
3171 
3172 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3173 {
3174 	return -EOPNOTSUPP;
3175 }
3176 EXPORT_SYMBOL(sock_no_bind);
3177 
3178 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3179 		    int len, int flags)
3180 {
3181 	return -EOPNOTSUPP;
3182 }
3183 EXPORT_SYMBOL(sock_no_connect);
3184 
3185 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3186 {
3187 	return -EOPNOTSUPP;
3188 }
3189 EXPORT_SYMBOL(sock_no_socketpair);
3190 
3191 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3192 		   bool kern)
3193 {
3194 	return -EOPNOTSUPP;
3195 }
3196 EXPORT_SYMBOL(sock_no_accept);
3197 
3198 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3199 		    int peer)
3200 {
3201 	return -EOPNOTSUPP;
3202 }
3203 EXPORT_SYMBOL(sock_no_getname);
3204 
3205 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3206 {
3207 	return -EOPNOTSUPP;
3208 }
3209 EXPORT_SYMBOL(sock_no_ioctl);
3210 
3211 int sock_no_listen(struct socket *sock, int backlog)
3212 {
3213 	return -EOPNOTSUPP;
3214 }
3215 EXPORT_SYMBOL(sock_no_listen);
3216 
3217 int sock_no_shutdown(struct socket *sock, int how)
3218 {
3219 	return -EOPNOTSUPP;
3220 }
3221 EXPORT_SYMBOL(sock_no_shutdown);
3222 
3223 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3224 {
3225 	return -EOPNOTSUPP;
3226 }
3227 EXPORT_SYMBOL(sock_no_sendmsg);
3228 
3229 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3230 {
3231 	return -EOPNOTSUPP;
3232 }
3233 EXPORT_SYMBOL(sock_no_sendmsg_locked);
3234 
3235 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3236 		    int flags)
3237 {
3238 	return -EOPNOTSUPP;
3239 }
3240 EXPORT_SYMBOL(sock_no_recvmsg);
3241 
3242 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3243 {
3244 	/* Mirror missing mmap method error code */
3245 	return -ENODEV;
3246 }
3247 EXPORT_SYMBOL(sock_no_mmap);
3248 
3249 /*
3250  * When a file is received (via SCM_RIGHTS, etc), we must bump the
3251  * various sock-based usage counts.
3252  */
3253 void __receive_sock(struct file *file)
3254 {
3255 	struct socket *sock;
3256 
3257 	sock = sock_from_file(file);
3258 	if (sock) {
3259 		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3260 		sock_update_classid(&sock->sk->sk_cgrp_data);
3261 	}
3262 }
3263 
3264 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
3265 {
3266 	ssize_t res;
3267 	struct msghdr msg = {.msg_flags = flags};
3268 	struct kvec iov;
3269 	char *kaddr = kmap(page);
3270 	iov.iov_base = kaddr + offset;
3271 	iov.iov_len = size;
3272 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
3273 	kunmap(page);
3274 	return res;
3275 }
3276 EXPORT_SYMBOL(sock_no_sendpage);
3277 
3278 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
3279 				int offset, size_t size, int flags)
3280 {
3281 	ssize_t res;
3282 	struct msghdr msg = {.msg_flags = flags};
3283 	struct kvec iov;
3284 	char *kaddr = kmap(page);
3285 
3286 	iov.iov_base = kaddr + offset;
3287 	iov.iov_len = size;
3288 	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
3289 	kunmap(page);
3290 	return res;
3291 }
3292 EXPORT_SYMBOL(sock_no_sendpage_locked);
3293 
3294 /*
3295  *	Default Socket Callbacks
3296  */
3297 
3298 static void sock_def_wakeup(struct sock *sk)
3299 {
3300 	struct socket_wq *wq;
3301 
3302 	rcu_read_lock();
3303 	wq = rcu_dereference(sk->sk_wq);
3304 	if (skwq_has_sleeper(wq))
3305 		wake_up_interruptible_all(&wq->wait);
3306 	rcu_read_unlock();
3307 }
3308 
3309 static void sock_def_error_report(struct sock *sk)
3310 {
3311 	struct socket_wq *wq;
3312 
3313 	rcu_read_lock();
3314 	wq = rcu_dereference(sk->sk_wq);
3315 	if (skwq_has_sleeper(wq))
3316 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3317 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3318 	rcu_read_unlock();
3319 }
3320 
3321 void sock_def_readable(struct sock *sk)
3322 {
3323 	struct socket_wq *wq;
3324 
3325 	trace_sk_data_ready(sk);
3326 
3327 	rcu_read_lock();
3328 	wq = rcu_dereference(sk->sk_wq);
3329 	if (skwq_has_sleeper(wq))
3330 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3331 						EPOLLRDNORM | EPOLLRDBAND);
3332 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3333 	rcu_read_unlock();
3334 }
3335 
3336 static void sock_def_write_space(struct sock *sk)
3337 {
3338 	struct socket_wq *wq;
3339 
3340 	rcu_read_lock();
3341 
3342 	/* Do not wake up a writer until he can make "significant"
3343 	 * progress.  --DaveM
3344 	 */
3345 	if (sock_writeable(sk)) {
3346 		wq = rcu_dereference(sk->sk_wq);
3347 		if (skwq_has_sleeper(wq))
3348 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3349 						EPOLLWRNORM | EPOLLWRBAND);
3350 
3351 		/* Should agree with poll, otherwise some programs break */
3352 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3353 	}
3354 
3355 	rcu_read_unlock();
3356 }
3357 
3358 /* An optimised version of sock_def_write_space(), should only be called
3359  * for SOCK_RCU_FREE sockets under RCU read section and after putting
3360  * ->sk_wmem_alloc.
3361  */
3362 static void sock_def_write_space_wfree(struct sock *sk)
3363 {
3364 	/* Do not wake up a writer until he can make "significant"
3365 	 * progress.  --DaveM
3366 	 */
3367 	if (sock_writeable(sk)) {
3368 		struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3369 
3370 		/* rely on refcount_sub from sock_wfree() */
3371 		smp_mb__after_atomic();
3372 		if (wq && waitqueue_active(&wq->wait))
3373 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3374 						EPOLLWRNORM | EPOLLWRBAND);
3375 
3376 		/* Should agree with poll, otherwise some programs break */
3377 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3378 	}
3379 }
3380 
3381 static void sock_def_destruct(struct sock *sk)
3382 {
3383 }
3384 
3385 void sk_send_sigurg(struct sock *sk)
3386 {
3387 	if (sk->sk_socket && sk->sk_socket->file)
3388 		if (send_sigurg(&sk->sk_socket->file->f_owner))
3389 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3390 }
3391 EXPORT_SYMBOL(sk_send_sigurg);
3392 
3393 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3394 		    unsigned long expires)
3395 {
3396 	if (!mod_timer(timer, expires))
3397 		sock_hold(sk);
3398 }
3399 EXPORT_SYMBOL(sk_reset_timer);
3400 
3401 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3402 {
3403 	if (del_timer(timer))
3404 		__sock_put(sk);
3405 }
3406 EXPORT_SYMBOL(sk_stop_timer);
3407 
3408 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3409 {
3410 	if (del_timer_sync(timer))
3411 		__sock_put(sk);
3412 }
3413 EXPORT_SYMBOL(sk_stop_timer_sync);
3414 
3415 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
3416 {
3417 	sk_init_common(sk);
3418 	sk->sk_send_head	=	NULL;
3419 
3420 	timer_setup(&sk->sk_timer, NULL, 0);
3421 
3422 	sk->sk_allocation	=	GFP_KERNEL;
3423 	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
3424 	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
3425 	sk->sk_state		=	TCP_CLOSE;
3426 	sk->sk_use_task_frag	=	true;
3427 	sk_set_socket(sk, sock);
3428 
3429 	sock_set_flag(sk, SOCK_ZAPPED);
3430 
3431 	if (sock) {
3432 		sk->sk_type	=	sock->type;
3433 		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3434 		sock->sk	=	sk;
3435 	} else {
3436 		RCU_INIT_POINTER(sk->sk_wq, NULL);
3437 	}
3438 	sk->sk_uid	=	uid;
3439 
3440 	rwlock_init(&sk->sk_callback_lock);
3441 	if (sk->sk_kern_sock)
3442 		lockdep_set_class_and_name(
3443 			&sk->sk_callback_lock,
3444 			af_kern_callback_keys + sk->sk_family,
3445 			af_family_kern_clock_key_strings[sk->sk_family]);
3446 	else
3447 		lockdep_set_class_and_name(
3448 			&sk->sk_callback_lock,
3449 			af_callback_keys + sk->sk_family,
3450 			af_family_clock_key_strings[sk->sk_family]);
3451 
3452 	sk->sk_state_change	=	sock_def_wakeup;
3453 	sk->sk_data_ready	=	sock_def_readable;
3454 	sk->sk_write_space	=	sock_def_write_space;
3455 	sk->sk_error_report	=	sock_def_error_report;
3456 	sk->sk_destruct		=	sock_def_destruct;
3457 
3458 	sk->sk_frag.page	=	NULL;
3459 	sk->sk_frag.offset	=	0;
3460 	sk->sk_peek_off		=	-1;
3461 
3462 	sk->sk_peer_pid 	=	NULL;
3463 	sk->sk_peer_cred	=	NULL;
3464 	spin_lock_init(&sk->sk_peer_lock);
3465 
3466 	sk->sk_write_pending	=	0;
3467 	sk->sk_rcvlowat		=	1;
3468 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3469 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3470 
3471 	sk->sk_stamp = SK_DEFAULT_STAMP;
3472 #if BITS_PER_LONG==32
3473 	seqlock_init(&sk->sk_stamp_seq);
3474 #endif
3475 	atomic_set(&sk->sk_zckey, 0);
3476 
3477 #ifdef CONFIG_NET_RX_BUSY_POLL
3478 	sk->sk_napi_id		=	0;
3479 	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3480 #endif
3481 
3482 	sk->sk_max_pacing_rate = ~0UL;
3483 	sk->sk_pacing_rate = ~0UL;
3484 	WRITE_ONCE(sk->sk_pacing_shift, 10);
3485 	sk->sk_incoming_cpu = -1;
3486 
3487 	sk_rx_queue_clear(sk);
3488 	/*
3489 	 * Before updating sk_refcnt, we must commit prior changes to memory
3490 	 * (Documentation/RCU/rculist_nulls.rst for details)
3491 	 */
3492 	smp_wmb();
3493 	refcount_set(&sk->sk_refcnt, 1);
3494 	atomic_set(&sk->sk_drops, 0);
3495 }
3496 EXPORT_SYMBOL(sock_init_data_uid);
3497 
3498 void sock_init_data(struct socket *sock, struct sock *sk)
3499 {
3500 	kuid_t uid = sock ?
3501 		SOCK_INODE(sock)->i_uid :
3502 		make_kuid(sock_net(sk)->user_ns, 0);
3503 
3504 	sock_init_data_uid(sock, sk, uid);
3505 }
3506 EXPORT_SYMBOL(sock_init_data);
3507 
3508 void lock_sock_nested(struct sock *sk, int subclass)
3509 {
3510 	/* The sk_lock has mutex_lock() semantics here. */
3511 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3512 
3513 	might_sleep();
3514 	spin_lock_bh(&sk->sk_lock.slock);
3515 	if (sock_owned_by_user_nocheck(sk))
3516 		__lock_sock(sk);
3517 	sk->sk_lock.owned = 1;
3518 	spin_unlock_bh(&sk->sk_lock.slock);
3519 }
3520 EXPORT_SYMBOL(lock_sock_nested);
3521 
3522 void release_sock(struct sock *sk)
3523 {
3524 	spin_lock_bh(&sk->sk_lock.slock);
3525 	if (sk->sk_backlog.tail)
3526 		__release_sock(sk);
3527 
3528 	/* Warning : release_cb() might need to release sk ownership,
3529 	 * ie call sock_release_ownership(sk) before us.
3530 	 */
3531 	if (sk->sk_prot->release_cb)
3532 		sk->sk_prot->release_cb(sk);
3533 
3534 	sock_release_ownership(sk);
3535 	if (waitqueue_active(&sk->sk_lock.wq))
3536 		wake_up(&sk->sk_lock.wq);
3537 	spin_unlock_bh(&sk->sk_lock.slock);
3538 }
3539 EXPORT_SYMBOL(release_sock);
3540 
3541 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3542 {
3543 	might_sleep();
3544 	spin_lock_bh(&sk->sk_lock.slock);
3545 
3546 	if (!sock_owned_by_user_nocheck(sk)) {
3547 		/*
3548 		 * Fast path return with bottom halves disabled and
3549 		 * sock::sk_lock.slock held.
3550 		 *
3551 		 * The 'mutex' is not contended and holding
3552 		 * sock::sk_lock.slock prevents all other lockers to
3553 		 * proceed so the corresponding unlock_sock_fast() can
3554 		 * avoid the slow path of release_sock() completely and
3555 		 * just release slock.
3556 		 *
3557 		 * From a semantical POV this is equivalent to 'acquiring'
3558 		 * the 'mutex', hence the corresponding lockdep
3559 		 * mutex_release() has to happen in the fast path of
3560 		 * unlock_sock_fast().
3561 		 */
3562 		return false;
3563 	}
3564 
3565 	__lock_sock(sk);
3566 	sk->sk_lock.owned = 1;
3567 	__acquire(&sk->sk_lock.slock);
3568 	spin_unlock_bh(&sk->sk_lock.slock);
3569 	return true;
3570 }
3571 EXPORT_SYMBOL(__lock_sock_fast);
3572 
3573 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3574 		   bool timeval, bool time32)
3575 {
3576 	struct sock *sk = sock->sk;
3577 	struct timespec64 ts;
3578 
3579 	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3580 	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3581 	if (ts.tv_sec == -1)
3582 		return -ENOENT;
3583 	if (ts.tv_sec == 0) {
3584 		ktime_t kt = ktime_get_real();
3585 		sock_write_timestamp(sk, kt);
3586 		ts = ktime_to_timespec64(kt);
3587 	}
3588 
3589 	if (timeval)
3590 		ts.tv_nsec /= 1000;
3591 
3592 #ifdef CONFIG_COMPAT_32BIT_TIME
3593 	if (time32)
3594 		return put_old_timespec32(&ts, userstamp);
3595 #endif
3596 #ifdef CONFIG_SPARC64
3597 	/* beware of padding in sparc64 timeval */
3598 	if (timeval && !in_compat_syscall()) {
3599 		struct __kernel_old_timeval __user tv = {
3600 			.tv_sec = ts.tv_sec,
3601 			.tv_usec = ts.tv_nsec,
3602 		};
3603 		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3604 			return -EFAULT;
3605 		return 0;
3606 	}
3607 #endif
3608 	return put_timespec64(&ts, userstamp);
3609 }
3610 EXPORT_SYMBOL(sock_gettstamp);
3611 
3612 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3613 {
3614 	if (!sock_flag(sk, flag)) {
3615 		unsigned long previous_flags = sk->sk_flags;
3616 
3617 		sock_set_flag(sk, flag);
3618 		/*
3619 		 * we just set one of the two flags which require net
3620 		 * time stamping, but time stamping might have been on
3621 		 * already because of the other one
3622 		 */
3623 		if (sock_needs_netstamp(sk) &&
3624 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3625 			net_enable_timestamp();
3626 	}
3627 }
3628 
3629 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3630 		       int level, int type)
3631 {
3632 	struct sock_exterr_skb *serr;
3633 	struct sk_buff *skb;
3634 	int copied, err;
3635 
3636 	err = -EAGAIN;
3637 	skb = sock_dequeue_err_skb(sk);
3638 	if (skb == NULL)
3639 		goto out;
3640 
3641 	copied = skb->len;
3642 	if (copied > len) {
3643 		msg->msg_flags |= MSG_TRUNC;
3644 		copied = len;
3645 	}
3646 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3647 	if (err)
3648 		goto out_free_skb;
3649 
3650 	sock_recv_timestamp(msg, sk, skb);
3651 
3652 	serr = SKB_EXT_ERR(skb);
3653 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3654 
3655 	msg->msg_flags |= MSG_ERRQUEUE;
3656 	err = copied;
3657 
3658 out_free_skb:
3659 	kfree_skb(skb);
3660 out:
3661 	return err;
3662 }
3663 EXPORT_SYMBOL(sock_recv_errqueue);
3664 
3665 /*
3666  *	Get a socket option on an socket.
3667  *
3668  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3669  *	asynchronous errors should be reported by getsockopt. We assume
3670  *	this means if you specify SO_ERROR (otherwise whats the point of it).
3671  */
3672 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3673 			   char __user *optval, int __user *optlen)
3674 {
3675 	struct sock *sk = sock->sk;
3676 
3677 	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3678 	return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3679 }
3680 EXPORT_SYMBOL(sock_common_getsockopt);
3681 
3682 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3683 			int flags)
3684 {
3685 	struct sock *sk = sock->sk;
3686 	int addr_len = 0;
3687 	int err;
3688 
3689 	err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3690 	if (err >= 0)
3691 		msg->msg_namelen = addr_len;
3692 	return err;
3693 }
3694 EXPORT_SYMBOL(sock_common_recvmsg);
3695 
3696 /*
3697  *	Set socket options on an inet socket.
3698  */
3699 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3700 			   sockptr_t optval, unsigned int optlen)
3701 {
3702 	struct sock *sk = sock->sk;
3703 
3704 	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3705 	return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3706 }
3707 EXPORT_SYMBOL(sock_common_setsockopt);
3708 
3709 void sk_common_release(struct sock *sk)
3710 {
3711 	if (sk->sk_prot->destroy)
3712 		sk->sk_prot->destroy(sk);
3713 
3714 	/*
3715 	 * Observation: when sk_common_release is called, processes have
3716 	 * no access to socket. But net still has.
3717 	 * Step one, detach it from networking:
3718 	 *
3719 	 * A. Remove from hash tables.
3720 	 */
3721 
3722 	sk->sk_prot->unhash(sk);
3723 
3724 	/*
3725 	 * In this point socket cannot receive new packets, but it is possible
3726 	 * that some packets are in flight because some CPU runs receiver and
3727 	 * did hash table lookup before we unhashed socket. They will achieve
3728 	 * receive queue and will be purged by socket destructor.
3729 	 *
3730 	 * Also we still have packets pending on receive queue and probably,
3731 	 * our own packets waiting in device queues. sock_destroy will drain
3732 	 * receive queue, but transmitted packets will delay socket destruction
3733 	 * until the last reference will be released.
3734 	 */
3735 
3736 	sock_orphan(sk);
3737 
3738 	xfrm_sk_free_policy(sk);
3739 
3740 	sock_put(sk);
3741 }
3742 EXPORT_SYMBOL(sk_common_release);
3743 
3744 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3745 {
3746 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3747 
3748 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3749 	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3750 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3751 	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3752 	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3753 	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3754 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3755 	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3756 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3757 }
3758 
3759 #ifdef CONFIG_PROC_FS
3760 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3761 
3762 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3763 {
3764 	int cpu, idx = prot->inuse_idx;
3765 	int res = 0;
3766 
3767 	for_each_possible_cpu(cpu)
3768 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3769 
3770 	return res >= 0 ? res : 0;
3771 }
3772 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3773 
3774 int sock_inuse_get(struct net *net)
3775 {
3776 	int cpu, res = 0;
3777 
3778 	for_each_possible_cpu(cpu)
3779 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3780 
3781 	return res;
3782 }
3783 
3784 EXPORT_SYMBOL_GPL(sock_inuse_get);
3785 
3786 static int __net_init sock_inuse_init_net(struct net *net)
3787 {
3788 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3789 	if (net->core.prot_inuse == NULL)
3790 		return -ENOMEM;
3791 	return 0;
3792 }
3793 
3794 static void __net_exit sock_inuse_exit_net(struct net *net)
3795 {
3796 	free_percpu(net->core.prot_inuse);
3797 }
3798 
3799 static struct pernet_operations net_inuse_ops = {
3800 	.init = sock_inuse_init_net,
3801 	.exit = sock_inuse_exit_net,
3802 };
3803 
3804 static __init int net_inuse_init(void)
3805 {
3806 	if (register_pernet_subsys(&net_inuse_ops))
3807 		panic("Cannot initialize net inuse counters");
3808 
3809 	return 0;
3810 }
3811 
3812 core_initcall(net_inuse_init);
3813 
3814 static int assign_proto_idx(struct proto *prot)
3815 {
3816 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3817 
3818 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3819 		pr_err("PROTO_INUSE_NR exhausted\n");
3820 		return -ENOSPC;
3821 	}
3822 
3823 	set_bit(prot->inuse_idx, proto_inuse_idx);
3824 	return 0;
3825 }
3826 
3827 static void release_proto_idx(struct proto *prot)
3828 {
3829 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3830 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3831 }
3832 #else
3833 static inline int assign_proto_idx(struct proto *prot)
3834 {
3835 	return 0;
3836 }
3837 
3838 static inline void release_proto_idx(struct proto *prot)
3839 {
3840 }
3841 
3842 #endif
3843 
3844 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3845 {
3846 	if (!twsk_prot)
3847 		return;
3848 	kfree(twsk_prot->twsk_slab_name);
3849 	twsk_prot->twsk_slab_name = NULL;
3850 	kmem_cache_destroy(twsk_prot->twsk_slab);
3851 	twsk_prot->twsk_slab = NULL;
3852 }
3853 
3854 static int tw_prot_init(const struct proto *prot)
3855 {
3856 	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3857 
3858 	if (!twsk_prot)
3859 		return 0;
3860 
3861 	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3862 					      prot->name);
3863 	if (!twsk_prot->twsk_slab_name)
3864 		return -ENOMEM;
3865 
3866 	twsk_prot->twsk_slab =
3867 		kmem_cache_create(twsk_prot->twsk_slab_name,
3868 				  twsk_prot->twsk_obj_size, 0,
3869 				  SLAB_ACCOUNT | prot->slab_flags,
3870 				  NULL);
3871 	if (!twsk_prot->twsk_slab) {
3872 		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3873 			prot->name);
3874 		return -ENOMEM;
3875 	}
3876 
3877 	return 0;
3878 }
3879 
3880 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3881 {
3882 	if (!rsk_prot)
3883 		return;
3884 	kfree(rsk_prot->slab_name);
3885 	rsk_prot->slab_name = NULL;
3886 	kmem_cache_destroy(rsk_prot->slab);
3887 	rsk_prot->slab = NULL;
3888 }
3889 
3890 static int req_prot_init(const struct proto *prot)
3891 {
3892 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3893 
3894 	if (!rsk_prot)
3895 		return 0;
3896 
3897 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3898 					prot->name);
3899 	if (!rsk_prot->slab_name)
3900 		return -ENOMEM;
3901 
3902 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3903 					   rsk_prot->obj_size, 0,
3904 					   SLAB_ACCOUNT | prot->slab_flags,
3905 					   NULL);
3906 
3907 	if (!rsk_prot->slab) {
3908 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3909 			prot->name);
3910 		return -ENOMEM;
3911 	}
3912 	return 0;
3913 }
3914 
3915 int proto_register(struct proto *prot, int alloc_slab)
3916 {
3917 	int ret = -ENOBUFS;
3918 
3919 	if (prot->memory_allocated && !prot->sysctl_mem) {
3920 		pr_err("%s: missing sysctl_mem\n", prot->name);
3921 		return -EINVAL;
3922 	}
3923 	if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3924 		pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3925 		return -EINVAL;
3926 	}
3927 	if (alloc_slab) {
3928 		prot->slab = kmem_cache_create_usercopy(prot->name,
3929 					prot->obj_size, 0,
3930 					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3931 					prot->slab_flags,
3932 					prot->useroffset, prot->usersize,
3933 					NULL);
3934 
3935 		if (prot->slab == NULL) {
3936 			pr_crit("%s: Can't create sock SLAB cache!\n",
3937 				prot->name);
3938 			goto out;
3939 		}
3940 
3941 		if (req_prot_init(prot))
3942 			goto out_free_request_sock_slab;
3943 
3944 		if (tw_prot_init(prot))
3945 			goto out_free_timewait_sock_slab;
3946 	}
3947 
3948 	mutex_lock(&proto_list_mutex);
3949 	ret = assign_proto_idx(prot);
3950 	if (ret) {
3951 		mutex_unlock(&proto_list_mutex);
3952 		goto out_free_timewait_sock_slab;
3953 	}
3954 	list_add(&prot->node, &proto_list);
3955 	mutex_unlock(&proto_list_mutex);
3956 	return ret;
3957 
3958 out_free_timewait_sock_slab:
3959 	if (alloc_slab)
3960 		tw_prot_cleanup(prot->twsk_prot);
3961 out_free_request_sock_slab:
3962 	if (alloc_slab) {
3963 		req_prot_cleanup(prot->rsk_prot);
3964 
3965 		kmem_cache_destroy(prot->slab);
3966 		prot->slab = NULL;
3967 	}
3968 out:
3969 	return ret;
3970 }
3971 EXPORT_SYMBOL(proto_register);
3972 
3973 void proto_unregister(struct proto *prot)
3974 {
3975 	mutex_lock(&proto_list_mutex);
3976 	release_proto_idx(prot);
3977 	list_del(&prot->node);
3978 	mutex_unlock(&proto_list_mutex);
3979 
3980 	kmem_cache_destroy(prot->slab);
3981 	prot->slab = NULL;
3982 
3983 	req_prot_cleanup(prot->rsk_prot);
3984 	tw_prot_cleanup(prot->twsk_prot);
3985 }
3986 EXPORT_SYMBOL(proto_unregister);
3987 
3988 int sock_load_diag_module(int family, int protocol)
3989 {
3990 	if (!protocol) {
3991 		if (!sock_is_registered(family))
3992 			return -ENOENT;
3993 
3994 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3995 				      NETLINK_SOCK_DIAG, family);
3996 	}
3997 
3998 #ifdef CONFIG_INET
3999 	if (family == AF_INET &&
4000 	    protocol != IPPROTO_RAW &&
4001 	    protocol < MAX_INET_PROTOS &&
4002 	    !rcu_access_pointer(inet_protos[protocol]))
4003 		return -ENOENT;
4004 #endif
4005 
4006 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
4007 			      NETLINK_SOCK_DIAG, family, protocol);
4008 }
4009 EXPORT_SYMBOL(sock_load_diag_module);
4010 
4011 #ifdef CONFIG_PROC_FS
4012 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
4013 	__acquires(proto_list_mutex)
4014 {
4015 	mutex_lock(&proto_list_mutex);
4016 	return seq_list_start_head(&proto_list, *pos);
4017 }
4018 
4019 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4020 {
4021 	return seq_list_next(v, &proto_list, pos);
4022 }
4023 
4024 static void proto_seq_stop(struct seq_file *seq, void *v)
4025 	__releases(proto_list_mutex)
4026 {
4027 	mutex_unlock(&proto_list_mutex);
4028 }
4029 
4030 static char proto_method_implemented(const void *method)
4031 {
4032 	return method == NULL ? 'n' : 'y';
4033 }
4034 static long sock_prot_memory_allocated(struct proto *proto)
4035 {
4036 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
4037 }
4038 
4039 static const char *sock_prot_memory_pressure(struct proto *proto)
4040 {
4041 	return proto->memory_pressure != NULL ?
4042 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4043 }
4044 
4045 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4046 {
4047 
4048 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
4049 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4050 		   proto->name,
4051 		   proto->obj_size,
4052 		   sock_prot_inuse_get(seq_file_net(seq), proto),
4053 		   sock_prot_memory_allocated(proto),
4054 		   sock_prot_memory_pressure(proto),
4055 		   proto->max_header,
4056 		   proto->slab == NULL ? "no" : "yes",
4057 		   module_name(proto->owner),
4058 		   proto_method_implemented(proto->close),
4059 		   proto_method_implemented(proto->connect),
4060 		   proto_method_implemented(proto->disconnect),
4061 		   proto_method_implemented(proto->accept),
4062 		   proto_method_implemented(proto->ioctl),
4063 		   proto_method_implemented(proto->init),
4064 		   proto_method_implemented(proto->destroy),
4065 		   proto_method_implemented(proto->shutdown),
4066 		   proto_method_implemented(proto->setsockopt),
4067 		   proto_method_implemented(proto->getsockopt),
4068 		   proto_method_implemented(proto->sendmsg),
4069 		   proto_method_implemented(proto->recvmsg),
4070 		   proto_method_implemented(proto->sendpage),
4071 		   proto_method_implemented(proto->bind),
4072 		   proto_method_implemented(proto->backlog_rcv),
4073 		   proto_method_implemented(proto->hash),
4074 		   proto_method_implemented(proto->unhash),
4075 		   proto_method_implemented(proto->get_port),
4076 		   proto_method_implemented(proto->enter_memory_pressure));
4077 }
4078 
4079 static int proto_seq_show(struct seq_file *seq, void *v)
4080 {
4081 	if (v == &proto_list)
4082 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4083 			   "protocol",
4084 			   "size",
4085 			   "sockets",
4086 			   "memory",
4087 			   "press",
4088 			   "maxhdr",
4089 			   "slab",
4090 			   "module",
4091 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
4092 	else
4093 		proto_seq_printf(seq, list_entry(v, struct proto, node));
4094 	return 0;
4095 }
4096 
4097 static const struct seq_operations proto_seq_ops = {
4098 	.start  = proto_seq_start,
4099 	.next   = proto_seq_next,
4100 	.stop   = proto_seq_stop,
4101 	.show   = proto_seq_show,
4102 };
4103 
4104 static __net_init int proto_init_net(struct net *net)
4105 {
4106 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4107 			sizeof(struct seq_net_private)))
4108 		return -ENOMEM;
4109 
4110 	return 0;
4111 }
4112 
4113 static __net_exit void proto_exit_net(struct net *net)
4114 {
4115 	remove_proc_entry("protocols", net->proc_net);
4116 }
4117 
4118 
4119 static __net_initdata struct pernet_operations proto_net_ops = {
4120 	.init = proto_init_net,
4121 	.exit = proto_exit_net,
4122 };
4123 
4124 static int __init proto_init(void)
4125 {
4126 	return register_pernet_subsys(&proto_net_ops);
4127 }
4128 
4129 subsys_initcall(proto_init);
4130 
4131 #endif /* PROC_FS */
4132 
4133 #ifdef CONFIG_NET_RX_BUSY_POLL
4134 bool sk_busy_loop_end(void *p, unsigned long start_time)
4135 {
4136 	struct sock *sk = p;
4137 
4138 	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
4139 	       sk_busy_loop_timeout(sk, start_time);
4140 }
4141 EXPORT_SYMBOL(sk_busy_loop_end);
4142 #endif /* CONFIG_NET_RX_BUSY_POLL */
4143 
4144 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4145 {
4146 	if (!sk->sk_prot->bind_add)
4147 		return -EOPNOTSUPP;
4148 	return sk->sk_prot->bind_add(sk, addr, addr_len);
4149 }
4150 EXPORT_SYMBOL(sock_bind_add);
4151 
4152 /* Copy 'size' bytes from userspace and return `size` back to userspace */
4153 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
4154 		     void __user *arg, void *karg, size_t size)
4155 {
4156 	int ret;
4157 
4158 	if (copy_from_user(karg, arg, size))
4159 		return -EFAULT;
4160 
4161 	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg);
4162 	if (ret)
4163 		return ret;
4164 
4165 	if (copy_to_user(arg, karg, size))
4166 		return -EFAULT;
4167 
4168 	return 0;
4169 }
4170 EXPORT_SYMBOL(sock_ioctl_inout);
4171 
4172 /* This is the most common ioctl prep function, where the result (4 bytes) is
4173  * copied back to userspace if the ioctl() returns successfully. No input is
4174  * copied from userspace as input argument.
4175  */
4176 static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg)
4177 {
4178 	int ret, karg = 0;
4179 
4180 	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg);
4181 	if (ret)
4182 		return ret;
4183 
4184 	return put_user(karg, (int __user *)arg);
4185 }
4186 
4187 /* A wrapper around sock ioctls, which copies the data from userspace
4188  * (depending on the protocol/ioctl), and copies back the result to userspace.
4189  * The main motivation for this function is to pass kernel memory to the
4190  * protocol ioctl callbacks, instead of userspace memory.
4191  */
4192 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
4193 {
4194 	int rc = 1;
4195 
4196 	if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET)
4197 		rc = ipmr_sk_ioctl(sk, cmd, arg);
4198 	else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6)
4199 		rc = ip6mr_sk_ioctl(sk, cmd, arg);
4200 	else if (sk_is_phonet(sk))
4201 		rc = phonet_sk_ioctl(sk, cmd, arg);
4202 
4203 	/* If ioctl was processed, returns its value */
4204 	if (rc <= 0)
4205 		return rc;
4206 
4207 	/* Otherwise call the default handler */
4208 	return sock_ioctl_out(sk, cmd, arg);
4209 }
4210 EXPORT_SYMBOL(sk_ioctl);
4211