1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Generic socket support routines. Memory allocators, socket lock/release 7 * handler for protocols to use and generic option handler. 8 * 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 * 85 * 86 * This program is free software; you can redistribute it and/or 87 * modify it under the terms of the GNU General Public License 88 * as published by the Free Software Foundation; either version 89 * 2 of the License, or (at your option) any later version. 90 */ 91 92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 93 94 #include <linux/capability.h> 95 #include <linux/errno.h> 96 #include <linux/errqueue.h> 97 #include <linux/types.h> 98 #include <linux/socket.h> 99 #include <linux/in.h> 100 #include <linux/kernel.h> 101 #include <linux/module.h> 102 #include <linux/proc_fs.h> 103 #include <linux/seq_file.h> 104 #include <linux/sched.h> 105 #include <linux/timer.h> 106 #include <linux/string.h> 107 #include <linux/sockios.h> 108 #include <linux/net.h> 109 #include <linux/mm.h> 110 #include <linux/slab.h> 111 #include <linux/interrupt.h> 112 #include <linux/poll.h> 113 #include <linux/tcp.h> 114 #include <linux/init.h> 115 #include <linux/highmem.h> 116 #include <linux/user_namespace.h> 117 #include <linux/static_key.h> 118 #include <linux/memcontrol.h> 119 #include <linux/prefetch.h> 120 121 #include <linux/uaccess.h> 122 123 #include <linux/netdevice.h> 124 #include <net/protocol.h> 125 #include <linux/skbuff.h> 126 #include <net/net_namespace.h> 127 #include <net/request_sock.h> 128 #include <net/sock.h> 129 #include <linux/net_tstamp.h> 130 #include <net/xfrm.h> 131 #include <linux/ipsec.h> 132 #include <net/cls_cgroup.h> 133 #include <net/netprio_cgroup.h> 134 #include <linux/sock_diag.h> 135 136 #include <linux/filter.h> 137 #include <net/sock_reuseport.h> 138 139 #include <trace/events/sock.h> 140 141 #ifdef CONFIG_INET 142 #include <net/tcp.h> 143 #endif 144 145 #include <net/busy_poll.h> 146 147 static DEFINE_MUTEX(proto_list_mutex); 148 static LIST_HEAD(proto_list); 149 150 /** 151 * sk_ns_capable - General socket capability test 152 * @sk: Socket to use a capability on or through 153 * @user_ns: The user namespace of the capability to use 154 * @cap: The capability to use 155 * 156 * Test to see if the opener of the socket had when the socket was 157 * created and the current process has the capability @cap in the user 158 * namespace @user_ns. 159 */ 160 bool sk_ns_capable(const struct sock *sk, 161 struct user_namespace *user_ns, int cap) 162 { 163 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 164 ns_capable(user_ns, cap); 165 } 166 EXPORT_SYMBOL(sk_ns_capable); 167 168 /** 169 * sk_capable - Socket global capability test 170 * @sk: Socket to use a capability on or through 171 * @cap: The global capability to use 172 * 173 * Test to see if the opener of the socket had when the socket was 174 * created and the current process has the capability @cap in all user 175 * namespaces. 176 */ 177 bool sk_capable(const struct sock *sk, int cap) 178 { 179 return sk_ns_capable(sk, &init_user_ns, cap); 180 } 181 EXPORT_SYMBOL(sk_capable); 182 183 /** 184 * sk_net_capable - Network namespace socket capability test 185 * @sk: Socket to use a capability on or through 186 * @cap: The capability to use 187 * 188 * Test to see if the opener of the socket had when the socket was created 189 * and the current process has the capability @cap over the network namespace 190 * the socket is a member of. 191 */ 192 bool sk_net_capable(const struct sock *sk, int cap) 193 { 194 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 195 } 196 EXPORT_SYMBOL(sk_net_capable); 197 198 /* 199 * Each address family might have different locking rules, so we have 200 * one slock key per address family: 201 */ 202 static struct lock_class_key af_family_keys[AF_MAX]; 203 static struct lock_class_key af_family_slock_keys[AF_MAX]; 204 205 /* 206 * Make lock validator output more readable. (we pre-construct these 207 * strings build-time, so that runtime initialization of socket 208 * locks is fast): 209 */ 210 static const char *const af_family_key_strings[AF_MAX+1] = { 211 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" , 212 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK", 213 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" , 214 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" , 215 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" , 216 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" , 217 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" , 218 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" , 219 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" , 220 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" , 221 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" , 222 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" , 223 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" , 224 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_KCM" , 225 "sk_lock-AF_QIPCRTR", "sk_lock-AF_MAX" 226 }; 227 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 228 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" , 229 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK", 230 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" , 231 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" , 232 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" , 233 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" , 234 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" , 235 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" , 236 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" , 237 "slock-27" , "slock-28" , "slock-AF_CAN" , 238 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" , 239 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" , 240 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" , 241 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_KCM" , 242 "slock-AF_QIPCRTR", "slock-AF_MAX" 243 }; 244 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 245 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" , 246 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK", 247 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" , 248 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" , 249 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" , 250 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" , 251 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" , 252 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" , 253 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" , 254 "clock-27" , "clock-28" , "clock-AF_CAN" , 255 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" , 256 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" , 257 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" , 258 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_KCM" , 259 "clock-AF_QIPCRTR", "clock-AF_MAX" 260 }; 261 262 /* 263 * sk_callback_lock locking rules are per-address-family, 264 * so split the lock classes by using a per-AF key: 265 */ 266 static struct lock_class_key af_callback_keys[AF_MAX]; 267 268 /* Take into consideration the size of the struct sk_buff overhead in the 269 * determination of these values, since that is non-constant across 270 * platforms. This makes socket queueing behavior and performance 271 * not depend upon such differences. 272 */ 273 #define _SK_MEM_PACKETS 256 274 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 275 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 276 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 277 278 /* Run time adjustable parameters. */ 279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 280 EXPORT_SYMBOL(sysctl_wmem_max); 281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 282 EXPORT_SYMBOL(sysctl_rmem_max); 283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 285 286 /* Maximal space eaten by iovec or ancillary data plus some space */ 287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 288 EXPORT_SYMBOL(sysctl_optmem_max); 289 290 int sysctl_tstamp_allow_data __read_mostly = 1; 291 292 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE; 293 EXPORT_SYMBOL_GPL(memalloc_socks); 294 295 /** 296 * sk_set_memalloc - sets %SOCK_MEMALLOC 297 * @sk: socket to set it on 298 * 299 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 300 * It's the responsibility of the admin to adjust min_free_kbytes 301 * to meet the requirements 302 */ 303 void sk_set_memalloc(struct sock *sk) 304 { 305 sock_set_flag(sk, SOCK_MEMALLOC); 306 sk->sk_allocation |= __GFP_MEMALLOC; 307 static_key_slow_inc(&memalloc_socks); 308 } 309 EXPORT_SYMBOL_GPL(sk_set_memalloc); 310 311 void sk_clear_memalloc(struct sock *sk) 312 { 313 sock_reset_flag(sk, SOCK_MEMALLOC); 314 sk->sk_allocation &= ~__GFP_MEMALLOC; 315 static_key_slow_dec(&memalloc_socks); 316 317 /* 318 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 319 * progress of swapping. SOCK_MEMALLOC may be cleared while 320 * it has rmem allocations due to the last swapfile being deactivated 321 * but there is a risk that the socket is unusable due to exceeding 322 * the rmem limits. Reclaim the reserves and obey rmem limits again. 323 */ 324 sk_mem_reclaim(sk); 325 } 326 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 327 328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 329 { 330 int ret; 331 unsigned long pflags = current->flags; 332 333 /* these should have been dropped before queueing */ 334 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 335 336 current->flags |= PF_MEMALLOC; 337 ret = sk->sk_backlog_rcv(sk, skb); 338 tsk_restore_flags(current, pflags, PF_MEMALLOC); 339 340 return ret; 341 } 342 EXPORT_SYMBOL(__sk_backlog_rcv); 343 344 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) 345 { 346 struct timeval tv; 347 348 if (optlen < sizeof(tv)) 349 return -EINVAL; 350 if (copy_from_user(&tv, optval, sizeof(tv))) 351 return -EFAULT; 352 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 353 return -EDOM; 354 355 if (tv.tv_sec < 0) { 356 static int warned __read_mostly; 357 358 *timeo_p = 0; 359 if (warned < 10 && net_ratelimit()) { 360 warned++; 361 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 362 __func__, current->comm, task_pid_nr(current)); 363 } 364 return 0; 365 } 366 *timeo_p = MAX_SCHEDULE_TIMEOUT; 367 if (tv.tv_sec == 0 && tv.tv_usec == 0) 368 return 0; 369 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) 370 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ); 371 return 0; 372 } 373 374 static void sock_warn_obsolete_bsdism(const char *name) 375 { 376 static int warned; 377 static char warncomm[TASK_COMM_LEN]; 378 if (strcmp(warncomm, current->comm) && warned < 5) { 379 strcpy(warncomm, current->comm); 380 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 381 warncomm, name); 382 warned++; 383 } 384 } 385 386 static bool sock_needs_netstamp(const struct sock *sk) 387 { 388 switch (sk->sk_family) { 389 case AF_UNSPEC: 390 case AF_UNIX: 391 return false; 392 default: 393 return true; 394 } 395 } 396 397 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 398 { 399 if (sk->sk_flags & flags) { 400 sk->sk_flags &= ~flags; 401 if (sock_needs_netstamp(sk) && 402 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 403 net_disable_timestamp(); 404 } 405 } 406 407 408 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 409 { 410 unsigned long flags; 411 struct sk_buff_head *list = &sk->sk_receive_queue; 412 413 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 414 atomic_inc(&sk->sk_drops); 415 trace_sock_rcvqueue_full(sk, skb); 416 return -ENOMEM; 417 } 418 419 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 420 atomic_inc(&sk->sk_drops); 421 return -ENOBUFS; 422 } 423 424 skb->dev = NULL; 425 skb_set_owner_r(skb, sk); 426 427 /* we escape from rcu protected region, make sure we dont leak 428 * a norefcounted dst 429 */ 430 skb_dst_force(skb); 431 432 spin_lock_irqsave(&list->lock, flags); 433 sock_skb_set_dropcount(sk, skb); 434 __skb_queue_tail(list, skb); 435 spin_unlock_irqrestore(&list->lock, flags); 436 437 if (!sock_flag(sk, SOCK_DEAD)) 438 sk->sk_data_ready(sk); 439 return 0; 440 } 441 EXPORT_SYMBOL(__sock_queue_rcv_skb); 442 443 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 444 { 445 int err; 446 447 err = sk_filter(sk, skb); 448 if (err) 449 return err; 450 451 return __sock_queue_rcv_skb(sk, skb); 452 } 453 EXPORT_SYMBOL(sock_queue_rcv_skb); 454 455 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 456 const int nested, unsigned int trim_cap, bool refcounted) 457 { 458 int rc = NET_RX_SUCCESS; 459 460 if (sk_filter_trim_cap(sk, skb, trim_cap)) 461 goto discard_and_relse; 462 463 skb->dev = NULL; 464 465 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 466 atomic_inc(&sk->sk_drops); 467 goto discard_and_relse; 468 } 469 if (nested) 470 bh_lock_sock_nested(sk); 471 else 472 bh_lock_sock(sk); 473 if (!sock_owned_by_user(sk)) { 474 /* 475 * trylock + unlock semantics: 476 */ 477 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 478 479 rc = sk_backlog_rcv(sk, skb); 480 481 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 482 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 483 bh_unlock_sock(sk); 484 atomic_inc(&sk->sk_drops); 485 goto discard_and_relse; 486 } 487 488 bh_unlock_sock(sk); 489 out: 490 if (refcounted) 491 sock_put(sk); 492 return rc; 493 discard_and_relse: 494 kfree_skb(skb); 495 goto out; 496 } 497 EXPORT_SYMBOL(__sk_receive_skb); 498 499 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 500 { 501 struct dst_entry *dst = __sk_dst_get(sk); 502 503 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 504 sk_tx_queue_clear(sk); 505 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 506 dst_release(dst); 507 return NULL; 508 } 509 510 return dst; 511 } 512 EXPORT_SYMBOL(__sk_dst_check); 513 514 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 515 { 516 struct dst_entry *dst = sk_dst_get(sk); 517 518 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 519 sk_dst_reset(sk); 520 dst_release(dst); 521 return NULL; 522 } 523 524 return dst; 525 } 526 EXPORT_SYMBOL(sk_dst_check); 527 528 static int sock_setbindtodevice(struct sock *sk, char __user *optval, 529 int optlen) 530 { 531 int ret = -ENOPROTOOPT; 532 #ifdef CONFIG_NETDEVICES 533 struct net *net = sock_net(sk); 534 char devname[IFNAMSIZ]; 535 int index; 536 537 /* Sorry... */ 538 ret = -EPERM; 539 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 540 goto out; 541 542 ret = -EINVAL; 543 if (optlen < 0) 544 goto out; 545 546 /* Bind this socket to a particular device like "eth0", 547 * as specified in the passed interface name. If the 548 * name is "" or the option length is zero the socket 549 * is not bound. 550 */ 551 if (optlen > IFNAMSIZ - 1) 552 optlen = IFNAMSIZ - 1; 553 memset(devname, 0, sizeof(devname)); 554 555 ret = -EFAULT; 556 if (copy_from_user(devname, optval, optlen)) 557 goto out; 558 559 index = 0; 560 if (devname[0] != '\0') { 561 struct net_device *dev; 562 563 rcu_read_lock(); 564 dev = dev_get_by_name_rcu(net, devname); 565 if (dev) 566 index = dev->ifindex; 567 rcu_read_unlock(); 568 ret = -ENODEV; 569 if (!dev) 570 goto out; 571 } 572 573 lock_sock(sk); 574 sk->sk_bound_dev_if = index; 575 sk_dst_reset(sk); 576 release_sock(sk); 577 578 ret = 0; 579 580 out: 581 #endif 582 583 return ret; 584 } 585 586 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 587 int __user *optlen, int len) 588 { 589 int ret = -ENOPROTOOPT; 590 #ifdef CONFIG_NETDEVICES 591 struct net *net = sock_net(sk); 592 char devname[IFNAMSIZ]; 593 594 if (sk->sk_bound_dev_if == 0) { 595 len = 0; 596 goto zero; 597 } 598 599 ret = -EINVAL; 600 if (len < IFNAMSIZ) 601 goto out; 602 603 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 604 if (ret) 605 goto out; 606 607 len = strlen(devname) + 1; 608 609 ret = -EFAULT; 610 if (copy_to_user(optval, devname, len)) 611 goto out; 612 613 zero: 614 ret = -EFAULT; 615 if (put_user(len, optlen)) 616 goto out; 617 618 ret = 0; 619 620 out: 621 #endif 622 623 return ret; 624 } 625 626 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 627 { 628 if (valbool) 629 sock_set_flag(sk, bit); 630 else 631 sock_reset_flag(sk, bit); 632 } 633 634 bool sk_mc_loop(struct sock *sk) 635 { 636 if (dev_recursion_level()) 637 return false; 638 if (!sk) 639 return true; 640 switch (sk->sk_family) { 641 case AF_INET: 642 return inet_sk(sk)->mc_loop; 643 #if IS_ENABLED(CONFIG_IPV6) 644 case AF_INET6: 645 return inet6_sk(sk)->mc_loop; 646 #endif 647 } 648 WARN_ON(1); 649 return true; 650 } 651 EXPORT_SYMBOL(sk_mc_loop); 652 653 /* 654 * This is meant for all protocols to use and covers goings on 655 * at the socket level. Everything here is generic. 656 */ 657 658 int sock_setsockopt(struct socket *sock, int level, int optname, 659 char __user *optval, unsigned int optlen) 660 { 661 struct sock *sk = sock->sk; 662 int val; 663 int valbool; 664 struct linger ling; 665 int ret = 0; 666 667 /* 668 * Options without arguments 669 */ 670 671 if (optname == SO_BINDTODEVICE) 672 return sock_setbindtodevice(sk, optval, optlen); 673 674 if (optlen < sizeof(int)) 675 return -EINVAL; 676 677 if (get_user(val, (int __user *)optval)) 678 return -EFAULT; 679 680 valbool = val ? 1 : 0; 681 682 lock_sock(sk); 683 684 switch (optname) { 685 case SO_DEBUG: 686 if (val && !capable(CAP_NET_ADMIN)) 687 ret = -EACCES; 688 else 689 sock_valbool_flag(sk, SOCK_DBG, valbool); 690 break; 691 case SO_REUSEADDR: 692 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 693 break; 694 case SO_REUSEPORT: 695 sk->sk_reuseport = valbool; 696 break; 697 case SO_TYPE: 698 case SO_PROTOCOL: 699 case SO_DOMAIN: 700 case SO_ERROR: 701 ret = -ENOPROTOOPT; 702 break; 703 case SO_DONTROUTE: 704 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 705 break; 706 case SO_BROADCAST: 707 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 708 break; 709 case SO_SNDBUF: 710 /* Don't error on this BSD doesn't and if you think 711 * about it this is right. Otherwise apps have to 712 * play 'guess the biggest size' games. RCVBUF/SNDBUF 713 * are treated in BSD as hints 714 */ 715 val = min_t(u32, val, sysctl_wmem_max); 716 set_sndbuf: 717 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 718 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF); 719 /* Wake up sending tasks if we upped the value. */ 720 sk->sk_write_space(sk); 721 break; 722 723 case SO_SNDBUFFORCE: 724 if (!capable(CAP_NET_ADMIN)) { 725 ret = -EPERM; 726 break; 727 } 728 goto set_sndbuf; 729 730 case SO_RCVBUF: 731 /* Don't error on this BSD doesn't and if you think 732 * about it this is right. Otherwise apps have to 733 * play 'guess the biggest size' games. RCVBUF/SNDBUF 734 * are treated in BSD as hints 735 */ 736 val = min_t(u32, val, sysctl_rmem_max); 737 set_rcvbuf: 738 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 739 /* 740 * We double it on the way in to account for 741 * "struct sk_buff" etc. overhead. Applications 742 * assume that the SO_RCVBUF setting they make will 743 * allow that much actual data to be received on that 744 * socket. 745 * 746 * Applications are unaware that "struct sk_buff" and 747 * other overheads allocate from the receive buffer 748 * during socket buffer allocation. 749 * 750 * And after considering the possible alternatives, 751 * returning the value we actually used in getsockopt 752 * is the most desirable behavior. 753 */ 754 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF); 755 break; 756 757 case SO_RCVBUFFORCE: 758 if (!capable(CAP_NET_ADMIN)) { 759 ret = -EPERM; 760 break; 761 } 762 goto set_rcvbuf; 763 764 case SO_KEEPALIVE: 765 #ifdef CONFIG_INET 766 if (sk->sk_protocol == IPPROTO_TCP && 767 sk->sk_type == SOCK_STREAM) 768 tcp_set_keepalive(sk, valbool); 769 #endif 770 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 771 break; 772 773 case SO_OOBINLINE: 774 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 775 break; 776 777 case SO_NO_CHECK: 778 sk->sk_no_check_tx = valbool; 779 break; 780 781 case SO_PRIORITY: 782 if ((val >= 0 && val <= 6) || 783 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 784 sk->sk_priority = val; 785 else 786 ret = -EPERM; 787 break; 788 789 case SO_LINGER: 790 if (optlen < sizeof(ling)) { 791 ret = -EINVAL; /* 1003.1g */ 792 break; 793 } 794 if (copy_from_user(&ling, optval, sizeof(ling))) { 795 ret = -EFAULT; 796 break; 797 } 798 if (!ling.l_onoff) 799 sock_reset_flag(sk, SOCK_LINGER); 800 else { 801 #if (BITS_PER_LONG == 32) 802 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 803 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 804 else 805 #endif 806 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 807 sock_set_flag(sk, SOCK_LINGER); 808 } 809 break; 810 811 case SO_BSDCOMPAT: 812 sock_warn_obsolete_bsdism("setsockopt"); 813 break; 814 815 case SO_PASSCRED: 816 if (valbool) 817 set_bit(SOCK_PASSCRED, &sock->flags); 818 else 819 clear_bit(SOCK_PASSCRED, &sock->flags); 820 break; 821 822 case SO_TIMESTAMP: 823 case SO_TIMESTAMPNS: 824 if (valbool) { 825 if (optname == SO_TIMESTAMP) 826 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 827 else 828 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 829 sock_set_flag(sk, SOCK_RCVTSTAMP); 830 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 831 } else { 832 sock_reset_flag(sk, SOCK_RCVTSTAMP); 833 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 834 } 835 break; 836 837 case SO_TIMESTAMPING: 838 if (val & ~SOF_TIMESTAMPING_MASK) { 839 ret = -EINVAL; 840 break; 841 } 842 843 if (val & SOF_TIMESTAMPING_OPT_ID && 844 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 845 if (sk->sk_protocol == IPPROTO_TCP && 846 sk->sk_type == SOCK_STREAM) { 847 if ((1 << sk->sk_state) & 848 (TCPF_CLOSE | TCPF_LISTEN)) { 849 ret = -EINVAL; 850 break; 851 } 852 sk->sk_tskey = tcp_sk(sk)->snd_una; 853 } else { 854 sk->sk_tskey = 0; 855 } 856 } 857 858 if (val & SOF_TIMESTAMPING_OPT_STATS && 859 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { 860 ret = -EINVAL; 861 break; 862 } 863 864 sk->sk_tsflags = val; 865 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 866 sock_enable_timestamp(sk, 867 SOCK_TIMESTAMPING_RX_SOFTWARE); 868 else 869 sock_disable_timestamp(sk, 870 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 871 break; 872 873 case SO_RCVLOWAT: 874 if (val < 0) 875 val = INT_MAX; 876 sk->sk_rcvlowat = val ? : 1; 877 break; 878 879 case SO_RCVTIMEO: 880 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); 881 break; 882 883 case SO_SNDTIMEO: 884 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); 885 break; 886 887 case SO_ATTACH_FILTER: 888 ret = -EINVAL; 889 if (optlen == sizeof(struct sock_fprog)) { 890 struct sock_fprog fprog; 891 892 ret = -EFAULT; 893 if (copy_from_user(&fprog, optval, sizeof(fprog))) 894 break; 895 896 ret = sk_attach_filter(&fprog, sk); 897 } 898 break; 899 900 case SO_ATTACH_BPF: 901 ret = -EINVAL; 902 if (optlen == sizeof(u32)) { 903 u32 ufd; 904 905 ret = -EFAULT; 906 if (copy_from_user(&ufd, optval, sizeof(ufd))) 907 break; 908 909 ret = sk_attach_bpf(ufd, sk); 910 } 911 break; 912 913 case SO_ATTACH_REUSEPORT_CBPF: 914 ret = -EINVAL; 915 if (optlen == sizeof(struct sock_fprog)) { 916 struct sock_fprog fprog; 917 918 ret = -EFAULT; 919 if (copy_from_user(&fprog, optval, sizeof(fprog))) 920 break; 921 922 ret = sk_reuseport_attach_filter(&fprog, sk); 923 } 924 break; 925 926 case SO_ATTACH_REUSEPORT_EBPF: 927 ret = -EINVAL; 928 if (optlen == sizeof(u32)) { 929 u32 ufd; 930 931 ret = -EFAULT; 932 if (copy_from_user(&ufd, optval, sizeof(ufd))) 933 break; 934 935 ret = sk_reuseport_attach_bpf(ufd, sk); 936 } 937 break; 938 939 case SO_DETACH_FILTER: 940 ret = sk_detach_filter(sk); 941 break; 942 943 case SO_LOCK_FILTER: 944 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 945 ret = -EPERM; 946 else 947 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 948 break; 949 950 case SO_PASSSEC: 951 if (valbool) 952 set_bit(SOCK_PASSSEC, &sock->flags); 953 else 954 clear_bit(SOCK_PASSSEC, &sock->flags); 955 break; 956 case SO_MARK: 957 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 958 ret = -EPERM; 959 else 960 sk->sk_mark = val; 961 break; 962 963 case SO_RXQ_OVFL: 964 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 965 break; 966 967 case SO_WIFI_STATUS: 968 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 969 break; 970 971 case SO_PEEK_OFF: 972 if (sock->ops->set_peek_off) 973 ret = sock->ops->set_peek_off(sk, val); 974 else 975 ret = -EOPNOTSUPP; 976 break; 977 978 case SO_NOFCS: 979 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 980 break; 981 982 case SO_SELECT_ERR_QUEUE: 983 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 984 break; 985 986 #ifdef CONFIG_NET_RX_BUSY_POLL 987 case SO_BUSY_POLL: 988 /* allow unprivileged users to decrease the value */ 989 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 990 ret = -EPERM; 991 else { 992 if (val < 0) 993 ret = -EINVAL; 994 else 995 sk->sk_ll_usec = val; 996 } 997 break; 998 #endif 999 1000 case SO_MAX_PACING_RATE: 1001 sk->sk_max_pacing_rate = val; 1002 sk->sk_pacing_rate = min(sk->sk_pacing_rate, 1003 sk->sk_max_pacing_rate); 1004 break; 1005 1006 case SO_INCOMING_CPU: 1007 sk->sk_incoming_cpu = val; 1008 break; 1009 1010 case SO_CNX_ADVICE: 1011 if (val == 1) 1012 dst_negative_advice(sk); 1013 break; 1014 default: 1015 ret = -ENOPROTOOPT; 1016 break; 1017 } 1018 release_sock(sk); 1019 return ret; 1020 } 1021 EXPORT_SYMBOL(sock_setsockopt); 1022 1023 1024 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1025 struct ucred *ucred) 1026 { 1027 ucred->pid = pid_vnr(pid); 1028 ucred->uid = ucred->gid = -1; 1029 if (cred) { 1030 struct user_namespace *current_ns = current_user_ns(); 1031 1032 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1033 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1034 } 1035 } 1036 1037 int sock_getsockopt(struct socket *sock, int level, int optname, 1038 char __user *optval, int __user *optlen) 1039 { 1040 struct sock *sk = sock->sk; 1041 1042 union { 1043 int val; 1044 struct linger ling; 1045 struct timeval tm; 1046 } v; 1047 1048 int lv = sizeof(int); 1049 int len; 1050 1051 if (get_user(len, optlen)) 1052 return -EFAULT; 1053 if (len < 0) 1054 return -EINVAL; 1055 1056 memset(&v, 0, sizeof(v)); 1057 1058 switch (optname) { 1059 case SO_DEBUG: 1060 v.val = sock_flag(sk, SOCK_DBG); 1061 break; 1062 1063 case SO_DONTROUTE: 1064 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1065 break; 1066 1067 case SO_BROADCAST: 1068 v.val = sock_flag(sk, SOCK_BROADCAST); 1069 break; 1070 1071 case SO_SNDBUF: 1072 v.val = sk->sk_sndbuf; 1073 break; 1074 1075 case SO_RCVBUF: 1076 v.val = sk->sk_rcvbuf; 1077 break; 1078 1079 case SO_REUSEADDR: 1080 v.val = sk->sk_reuse; 1081 break; 1082 1083 case SO_REUSEPORT: 1084 v.val = sk->sk_reuseport; 1085 break; 1086 1087 case SO_KEEPALIVE: 1088 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1089 break; 1090 1091 case SO_TYPE: 1092 v.val = sk->sk_type; 1093 break; 1094 1095 case SO_PROTOCOL: 1096 v.val = sk->sk_protocol; 1097 break; 1098 1099 case SO_DOMAIN: 1100 v.val = sk->sk_family; 1101 break; 1102 1103 case SO_ERROR: 1104 v.val = -sock_error(sk); 1105 if (v.val == 0) 1106 v.val = xchg(&sk->sk_err_soft, 0); 1107 break; 1108 1109 case SO_OOBINLINE: 1110 v.val = sock_flag(sk, SOCK_URGINLINE); 1111 break; 1112 1113 case SO_NO_CHECK: 1114 v.val = sk->sk_no_check_tx; 1115 break; 1116 1117 case SO_PRIORITY: 1118 v.val = sk->sk_priority; 1119 break; 1120 1121 case SO_LINGER: 1122 lv = sizeof(v.ling); 1123 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1124 v.ling.l_linger = sk->sk_lingertime / HZ; 1125 break; 1126 1127 case SO_BSDCOMPAT: 1128 sock_warn_obsolete_bsdism("getsockopt"); 1129 break; 1130 1131 case SO_TIMESTAMP: 1132 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1133 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1134 break; 1135 1136 case SO_TIMESTAMPNS: 1137 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS); 1138 break; 1139 1140 case SO_TIMESTAMPING: 1141 v.val = sk->sk_tsflags; 1142 break; 1143 1144 case SO_RCVTIMEO: 1145 lv = sizeof(struct timeval); 1146 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { 1147 v.tm.tv_sec = 0; 1148 v.tm.tv_usec = 0; 1149 } else { 1150 v.tm.tv_sec = sk->sk_rcvtimeo / HZ; 1151 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ; 1152 } 1153 break; 1154 1155 case SO_SNDTIMEO: 1156 lv = sizeof(struct timeval); 1157 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { 1158 v.tm.tv_sec = 0; 1159 v.tm.tv_usec = 0; 1160 } else { 1161 v.tm.tv_sec = sk->sk_sndtimeo / HZ; 1162 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ; 1163 } 1164 break; 1165 1166 case SO_RCVLOWAT: 1167 v.val = sk->sk_rcvlowat; 1168 break; 1169 1170 case SO_SNDLOWAT: 1171 v.val = 1; 1172 break; 1173 1174 case SO_PASSCRED: 1175 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1176 break; 1177 1178 case SO_PEERCRED: 1179 { 1180 struct ucred peercred; 1181 if (len > sizeof(peercred)) 1182 len = sizeof(peercred); 1183 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1184 if (copy_to_user(optval, &peercred, len)) 1185 return -EFAULT; 1186 goto lenout; 1187 } 1188 1189 case SO_PEERNAME: 1190 { 1191 char address[128]; 1192 1193 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2)) 1194 return -ENOTCONN; 1195 if (lv < len) 1196 return -EINVAL; 1197 if (copy_to_user(optval, address, len)) 1198 return -EFAULT; 1199 goto lenout; 1200 } 1201 1202 /* Dubious BSD thing... Probably nobody even uses it, but 1203 * the UNIX standard wants it for whatever reason... -DaveM 1204 */ 1205 case SO_ACCEPTCONN: 1206 v.val = sk->sk_state == TCP_LISTEN; 1207 break; 1208 1209 case SO_PASSSEC: 1210 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1211 break; 1212 1213 case SO_PEERSEC: 1214 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1215 1216 case SO_MARK: 1217 v.val = sk->sk_mark; 1218 break; 1219 1220 case SO_RXQ_OVFL: 1221 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1222 break; 1223 1224 case SO_WIFI_STATUS: 1225 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1226 break; 1227 1228 case SO_PEEK_OFF: 1229 if (!sock->ops->set_peek_off) 1230 return -EOPNOTSUPP; 1231 1232 v.val = sk->sk_peek_off; 1233 break; 1234 case SO_NOFCS: 1235 v.val = sock_flag(sk, SOCK_NOFCS); 1236 break; 1237 1238 case SO_BINDTODEVICE: 1239 return sock_getbindtodevice(sk, optval, optlen, len); 1240 1241 case SO_GET_FILTER: 1242 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1243 if (len < 0) 1244 return len; 1245 1246 goto lenout; 1247 1248 case SO_LOCK_FILTER: 1249 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1250 break; 1251 1252 case SO_BPF_EXTENSIONS: 1253 v.val = bpf_tell_extensions(); 1254 break; 1255 1256 case SO_SELECT_ERR_QUEUE: 1257 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1258 break; 1259 1260 #ifdef CONFIG_NET_RX_BUSY_POLL 1261 case SO_BUSY_POLL: 1262 v.val = sk->sk_ll_usec; 1263 break; 1264 #endif 1265 1266 case SO_MAX_PACING_RATE: 1267 v.val = sk->sk_max_pacing_rate; 1268 break; 1269 1270 case SO_INCOMING_CPU: 1271 v.val = sk->sk_incoming_cpu; 1272 break; 1273 1274 default: 1275 /* We implement the SO_SNDLOWAT etc to not be settable 1276 * (1003.1g 7). 1277 */ 1278 return -ENOPROTOOPT; 1279 } 1280 1281 if (len > lv) 1282 len = lv; 1283 if (copy_to_user(optval, &v, len)) 1284 return -EFAULT; 1285 lenout: 1286 if (put_user(len, optlen)) 1287 return -EFAULT; 1288 return 0; 1289 } 1290 1291 /* 1292 * Initialize an sk_lock. 1293 * 1294 * (We also register the sk_lock with the lock validator.) 1295 */ 1296 static inline void sock_lock_init(struct sock *sk) 1297 { 1298 sock_lock_init_class_and_name(sk, 1299 af_family_slock_key_strings[sk->sk_family], 1300 af_family_slock_keys + sk->sk_family, 1301 af_family_key_strings[sk->sk_family], 1302 af_family_keys + sk->sk_family); 1303 } 1304 1305 /* 1306 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1307 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1308 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1309 */ 1310 static void sock_copy(struct sock *nsk, const struct sock *osk) 1311 { 1312 #ifdef CONFIG_SECURITY_NETWORK 1313 void *sptr = nsk->sk_security; 1314 #endif 1315 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1316 1317 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1318 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1319 1320 #ifdef CONFIG_SECURITY_NETWORK 1321 nsk->sk_security = sptr; 1322 security_sk_clone(osk, nsk); 1323 #endif 1324 } 1325 1326 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1327 int family) 1328 { 1329 struct sock *sk; 1330 struct kmem_cache *slab; 1331 1332 slab = prot->slab; 1333 if (slab != NULL) { 1334 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1335 if (!sk) 1336 return sk; 1337 if (priority & __GFP_ZERO) 1338 sk_prot_clear_nulls(sk, prot->obj_size); 1339 } else 1340 sk = kmalloc(prot->obj_size, priority); 1341 1342 if (sk != NULL) { 1343 kmemcheck_annotate_bitfield(sk, flags); 1344 1345 if (security_sk_alloc(sk, family, priority)) 1346 goto out_free; 1347 1348 if (!try_module_get(prot->owner)) 1349 goto out_free_sec; 1350 sk_tx_queue_clear(sk); 1351 } 1352 1353 return sk; 1354 1355 out_free_sec: 1356 security_sk_free(sk); 1357 out_free: 1358 if (slab != NULL) 1359 kmem_cache_free(slab, sk); 1360 else 1361 kfree(sk); 1362 return NULL; 1363 } 1364 1365 static void sk_prot_free(struct proto *prot, struct sock *sk) 1366 { 1367 struct kmem_cache *slab; 1368 struct module *owner; 1369 1370 owner = prot->owner; 1371 slab = prot->slab; 1372 1373 cgroup_sk_free(&sk->sk_cgrp_data); 1374 mem_cgroup_sk_free(sk); 1375 security_sk_free(sk); 1376 if (slab != NULL) 1377 kmem_cache_free(slab, sk); 1378 else 1379 kfree(sk); 1380 module_put(owner); 1381 } 1382 1383 /** 1384 * sk_alloc - All socket objects are allocated here 1385 * @net: the applicable net namespace 1386 * @family: protocol family 1387 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1388 * @prot: struct proto associated with this new sock instance 1389 * @kern: is this to be a kernel socket? 1390 */ 1391 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1392 struct proto *prot, int kern) 1393 { 1394 struct sock *sk; 1395 1396 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1397 if (sk) { 1398 sk->sk_family = family; 1399 /* 1400 * See comment in struct sock definition to understand 1401 * why we need sk_prot_creator -acme 1402 */ 1403 sk->sk_prot = sk->sk_prot_creator = prot; 1404 sock_lock_init(sk); 1405 sk->sk_net_refcnt = kern ? 0 : 1; 1406 if (likely(sk->sk_net_refcnt)) 1407 get_net(net); 1408 sock_net_set(sk, net); 1409 atomic_set(&sk->sk_wmem_alloc, 1); 1410 1411 mem_cgroup_sk_alloc(sk); 1412 cgroup_sk_alloc(&sk->sk_cgrp_data); 1413 sock_update_classid(&sk->sk_cgrp_data); 1414 sock_update_netprioidx(&sk->sk_cgrp_data); 1415 } 1416 1417 return sk; 1418 } 1419 EXPORT_SYMBOL(sk_alloc); 1420 1421 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1422 * grace period. This is the case for UDP sockets and TCP listeners. 1423 */ 1424 static void __sk_destruct(struct rcu_head *head) 1425 { 1426 struct sock *sk = container_of(head, struct sock, sk_rcu); 1427 struct sk_filter *filter; 1428 1429 if (sk->sk_destruct) 1430 sk->sk_destruct(sk); 1431 1432 filter = rcu_dereference_check(sk->sk_filter, 1433 atomic_read(&sk->sk_wmem_alloc) == 0); 1434 if (filter) { 1435 sk_filter_uncharge(sk, filter); 1436 RCU_INIT_POINTER(sk->sk_filter, NULL); 1437 } 1438 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1439 reuseport_detach_sock(sk); 1440 1441 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1442 1443 if (atomic_read(&sk->sk_omem_alloc)) 1444 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1445 __func__, atomic_read(&sk->sk_omem_alloc)); 1446 1447 if (sk->sk_peer_cred) 1448 put_cred(sk->sk_peer_cred); 1449 put_pid(sk->sk_peer_pid); 1450 if (likely(sk->sk_net_refcnt)) 1451 put_net(sock_net(sk)); 1452 sk_prot_free(sk->sk_prot_creator, sk); 1453 } 1454 1455 void sk_destruct(struct sock *sk) 1456 { 1457 if (sock_flag(sk, SOCK_RCU_FREE)) 1458 call_rcu(&sk->sk_rcu, __sk_destruct); 1459 else 1460 __sk_destruct(&sk->sk_rcu); 1461 } 1462 1463 static void __sk_free(struct sock *sk) 1464 { 1465 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt)) 1466 sock_diag_broadcast_destroy(sk); 1467 else 1468 sk_destruct(sk); 1469 } 1470 1471 void sk_free(struct sock *sk) 1472 { 1473 /* 1474 * We subtract one from sk_wmem_alloc and can know if 1475 * some packets are still in some tx queue. 1476 * If not null, sock_wfree() will call __sk_free(sk) later 1477 */ 1478 if (atomic_dec_and_test(&sk->sk_wmem_alloc)) 1479 __sk_free(sk); 1480 } 1481 EXPORT_SYMBOL(sk_free); 1482 1483 /** 1484 * sk_clone_lock - clone a socket, and lock its clone 1485 * @sk: the socket to clone 1486 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1487 * 1488 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1489 */ 1490 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1491 { 1492 struct sock *newsk; 1493 bool is_charged = true; 1494 1495 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1496 if (newsk != NULL) { 1497 struct sk_filter *filter; 1498 1499 sock_copy(newsk, sk); 1500 1501 /* SANITY */ 1502 if (likely(newsk->sk_net_refcnt)) 1503 get_net(sock_net(newsk)); 1504 sk_node_init(&newsk->sk_node); 1505 sock_lock_init(newsk); 1506 bh_lock_sock(newsk); 1507 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1508 newsk->sk_backlog.len = 0; 1509 1510 atomic_set(&newsk->sk_rmem_alloc, 0); 1511 /* 1512 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1513 */ 1514 atomic_set(&newsk->sk_wmem_alloc, 1); 1515 atomic_set(&newsk->sk_omem_alloc, 0); 1516 skb_queue_head_init(&newsk->sk_receive_queue); 1517 skb_queue_head_init(&newsk->sk_write_queue); 1518 1519 rwlock_init(&newsk->sk_callback_lock); 1520 lockdep_set_class_and_name(&newsk->sk_callback_lock, 1521 af_callback_keys + newsk->sk_family, 1522 af_family_clock_key_strings[newsk->sk_family]); 1523 1524 newsk->sk_dst_cache = NULL; 1525 newsk->sk_wmem_queued = 0; 1526 newsk->sk_forward_alloc = 0; 1527 atomic_set(&newsk->sk_drops, 0); 1528 newsk->sk_send_head = NULL; 1529 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1530 1531 sock_reset_flag(newsk, SOCK_DONE); 1532 skb_queue_head_init(&newsk->sk_error_queue); 1533 1534 filter = rcu_dereference_protected(newsk->sk_filter, 1); 1535 if (filter != NULL) 1536 /* though it's an empty new sock, the charging may fail 1537 * if sysctl_optmem_max was changed between creation of 1538 * original socket and cloning 1539 */ 1540 is_charged = sk_filter_charge(newsk, filter); 1541 1542 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1543 /* It is still raw copy of parent, so invalidate 1544 * destructor and make plain sk_free() */ 1545 newsk->sk_destruct = NULL; 1546 bh_unlock_sock(newsk); 1547 sk_free(newsk); 1548 newsk = NULL; 1549 goto out; 1550 } 1551 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1552 1553 newsk->sk_err = 0; 1554 newsk->sk_err_soft = 0; 1555 newsk->sk_priority = 0; 1556 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1557 atomic64_set(&newsk->sk_cookie, 0); 1558 1559 mem_cgroup_sk_alloc(newsk); 1560 cgroup_sk_alloc(&newsk->sk_cgrp_data); 1561 1562 /* 1563 * Before updating sk_refcnt, we must commit prior changes to memory 1564 * (Documentation/RCU/rculist_nulls.txt for details) 1565 */ 1566 smp_wmb(); 1567 atomic_set(&newsk->sk_refcnt, 2); 1568 1569 /* 1570 * Increment the counter in the same struct proto as the master 1571 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1572 * is the same as sk->sk_prot->socks, as this field was copied 1573 * with memcpy). 1574 * 1575 * This _changes_ the previous behaviour, where 1576 * tcp_create_openreq_child always was incrementing the 1577 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1578 * to be taken into account in all callers. -acme 1579 */ 1580 sk_refcnt_debug_inc(newsk); 1581 sk_set_socket(newsk, NULL); 1582 newsk->sk_wq = NULL; 1583 1584 if (newsk->sk_prot->sockets_allocated) 1585 sk_sockets_allocated_inc(newsk); 1586 1587 if (sock_needs_netstamp(sk) && 1588 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1589 net_enable_timestamp(); 1590 } 1591 out: 1592 return newsk; 1593 } 1594 EXPORT_SYMBOL_GPL(sk_clone_lock); 1595 1596 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1597 { 1598 u32 max_segs = 1; 1599 1600 sk_dst_set(sk, dst); 1601 sk->sk_route_caps = dst->dev->features; 1602 if (sk->sk_route_caps & NETIF_F_GSO) 1603 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1604 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1605 if (sk_can_gso(sk)) { 1606 if (dst->header_len) { 1607 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1608 } else { 1609 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1610 sk->sk_gso_max_size = dst->dev->gso_max_size; 1611 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 1612 } 1613 } 1614 sk->sk_gso_max_segs = max_segs; 1615 } 1616 EXPORT_SYMBOL_GPL(sk_setup_caps); 1617 1618 /* 1619 * Simple resource managers for sockets. 1620 */ 1621 1622 1623 /* 1624 * Write buffer destructor automatically called from kfree_skb. 1625 */ 1626 void sock_wfree(struct sk_buff *skb) 1627 { 1628 struct sock *sk = skb->sk; 1629 unsigned int len = skb->truesize; 1630 1631 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1632 /* 1633 * Keep a reference on sk_wmem_alloc, this will be released 1634 * after sk_write_space() call 1635 */ 1636 atomic_sub(len - 1, &sk->sk_wmem_alloc); 1637 sk->sk_write_space(sk); 1638 len = 1; 1639 } 1640 /* 1641 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1642 * could not do because of in-flight packets 1643 */ 1644 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc)) 1645 __sk_free(sk); 1646 } 1647 EXPORT_SYMBOL(sock_wfree); 1648 1649 /* This variant of sock_wfree() is used by TCP, 1650 * since it sets SOCK_USE_WRITE_QUEUE. 1651 */ 1652 void __sock_wfree(struct sk_buff *skb) 1653 { 1654 struct sock *sk = skb->sk; 1655 1656 if (atomic_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 1657 __sk_free(sk); 1658 } 1659 1660 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1661 { 1662 skb_orphan(skb); 1663 skb->sk = sk; 1664 #ifdef CONFIG_INET 1665 if (unlikely(!sk_fullsock(sk))) { 1666 skb->destructor = sock_edemux; 1667 sock_hold(sk); 1668 return; 1669 } 1670 #endif 1671 skb->destructor = sock_wfree; 1672 skb_set_hash_from_sk(skb, sk); 1673 /* 1674 * We used to take a refcount on sk, but following operation 1675 * is enough to guarantee sk_free() wont free this sock until 1676 * all in-flight packets are completed 1677 */ 1678 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1679 } 1680 EXPORT_SYMBOL(skb_set_owner_w); 1681 1682 /* This helper is used by netem, as it can hold packets in its 1683 * delay queue. We want to allow the owner socket to send more 1684 * packets, as if they were already TX completed by a typical driver. 1685 * But we also want to keep skb->sk set because some packet schedulers 1686 * rely on it (sch_fq for example). So we set skb->truesize to a small 1687 * amount (1) and decrease sk_wmem_alloc accordingly. 1688 */ 1689 void skb_orphan_partial(struct sk_buff *skb) 1690 { 1691 /* If this skb is a TCP pure ACK or already went here, 1692 * we have nothing to do. 2 is already a very small truesize. 1693 */ 1694 if (skb->truesize <= 2) 1695 return; 1696 1697 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc, 1698 * so we do not completely orphan skb, but transfert all 1699 * accounted bytes but one, to avoid unexpected reorders. 1700 */ 1701 if (skb->destructor == sock_wfree 1702 #ifdef CONFIG_INET 1703 || skb->destructor == tcp_wfree 1704 #endif 1705 ) { 1706 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc); 1707 skb->truesize = 1; 1708 } else { 1709 skb_orphan(skb); 1710 } 1711 } 1712 EXPORT_SYMBOL(skb_orphan_partial); 1713 1714 /* 1715 * Read buffer destructor automatically called from kfree_skb. 1716 */ 1717 void sock_rfree(struct sk_buff *skb) 1718 { 1719 struct sock *sk = skb->sk; 1720 unsigned int len = skb->truesize; 1721 1722 atomic_sub(len, &sk->sk_rmem_alloc); 1723 sk_mem_uncharge(sk, len); 1724 } 1725 EXPORT_SYMBOL(sock_rfree); 1726 1727 /* 1728 * Buffer destructor for skbs that are not used directly in read or write 1729 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 1730 */ 1731 void sock_efree(struct sk_buff *skb) 1732 { 1733 sock_put(skb->sk); 1734 } 1735 EXPORT_SYMBOL(sock_efree); 1736 1737 kuid_t sock_i_uid(struct sock *sk) 1738 { 1739 kuid_t uid; 1740 1741 read_lock_bh(&sk->sk_callback_lock); 1742 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 1743 read_unlock_bh(&sk->sk_callback_lock); 1744 return uid; 1745 } 1746 EXPORT_SYMBOL(sock_i_uid); 1747 1748 unsigned long sock_i_ino(struct sock *sk) 1749 { 1750 unsigned long ino; 1751 1752 read_lock_bh(&sk->sk_callback_lock); 1753 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 1754 read_unlock_bh(&sk->sk_callback_lock); 1755 return ino; 1756 } 1757 EXPORT_SYMBOL(sock_i_ino); 1758 1759 /* 1760 * Allocate a skb from the socket's send buffer. 1761 */ 1762 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1763 gfp_t priority) 1764 { 1765 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1766 struct sk_buff *skb = alloc_skb(size, priority); 1767 if (skb) { 1768 skb_set_owner_w(skb, sk); 1769 return skb; 1770 } 1771 } 1772 return NULL; 1773 } 1774 EXPORT_SYMBOL(sock_wmalloc); 1775 1776 /* 1777 * Allocate a memory block from the socket's option memory buffer. 1778 */ 1779 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 1780 { 1781 if ((unsigned int)size <= sysctl_optmem_max && 1782 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 1783 void *mem; 1784 /* First do the add, to avoid the race if kmalloc 1785 * might sleep. 1786 */ 1787 atomic_add(size, &sk->sk_omem_alloc); 1788 mem = kmalloc(size, priority); 1789 if (mem) 1790 return mem; 1791 atomic_sub(size, &sk->sk_omem_alloc); 1792 } 1793 return NULL; 1794 } 1795 EXPORT_SYMBOL(sock_kmalloc); 1796 1797 /* Free an option memory block. Note, we actually want the inline 1798 * here as this allows gcc to detect the nullify and fold away the 1799 * condition entirely. 1800 */ 1801 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 1802 const bool nullify) 1803 { 1804 if (WARN_ON_ONCE(!mem)) 1805 return; 1806 if (nullify) 1807 kzfree(mem); 1808 else 1809 kfree(mem); 1810 atomic_sub(size, &sk->sk_omem_alloc); 1811 } 1812 1813 void sock_kfree_s(struct sock *sk, void *mem, int size) 1814 { 1815 __sock_kfree_s(sk, mem, size, false); 1816 } 1817 EXPORT_SYMBOL(sock_kfree_s); 1818 1819 void sock_kzfree_s(struct sock *sk, void *mem, int size) 1820 { 1821 __sock_kfree_s(sk, mem, size, true); 1822 } 1823 EXPORT_SYMBOL(sock_kzfree_s); 1824 1825 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 1826 I think, these locks should be removed for datagram sockets. 1827 */ 1828 static long sock_wait_for_wmem(struct sock *sk, long timeo) 1829 { 1830 DEFINE_WAIT(wait); 1831 1832 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1833 for (;;) { 1834 if (!timeo) 1835 break; 1836 if (signal_pending(current)) 1837 break; 1838 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1839 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1840 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 1841 break; 1842 if (sk->sk_shutdown & SEND_SHUTDOWN) 1843 break; 1844 if (sk->sk_err) 1845 break; 1846 timeo = schedule_timeout(timeo); 1847 } 1848 finish_wait(sk_sleep(sk), &wait); 1849 return timeo; 1850 } 1851 1852 1853 /* 1854 * Generic send/receive buffer handlers 1855 */ 1856 1857 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1858 unsigned long data_len, int noblock, 1859 int *errcode, int max_page_order) 1860 { 1861 struct sk_buff *skb; 1862 long timeo; 1863 int err; 1864 1865 timeo = sock_sndtimeo(sk, noblock); 1866 for (;;) { 1867 err = sock_error(sk); 1868 if (err != 0) 1869 goto failure; 1870 1871 err = -EPIPE; 1872 if (sk->sk_shutdown & SEND_SHUTDOWN) 1873 goto failure; 1874 1875 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf) 1876 break; 1877 1878 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1879 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1880 err = -EAGAIN; 1881 if (!timeo) 1882 goto failure; 1883 if (signal_pending(current)) 1884 goto interrupted; 1885 timeo = sock_wait_for_wmem(sk, timeo); 1886 } 1887 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 1888 errcode, sk->sk_allocation); 1889 if (skb) 1890 skb_set_owner_w(skb, sk); 1891 return skb; 1892 1893 interrupted: 1894 err = sock_intr_errno(timeo); 1895 failure: 1896 *errcode = err; 1897 return NULL; 1898 } 1899 EXPORT_SYMBOL(sock_alloc_send_pskb); 1900 1901 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1902 int noblock, int *errcode) 1903 { 1904 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 1905 } 1906 EXPORT_SYMBOL(sock_alloc_send_skb); 1907 1908 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1909 struct sockcm_cookie *sockc) 1910 { 1911 u32 tsflags; 1912 1913 switch (cmsg->cmsg_type) { 1914 case SO_MARK: 1915 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 1916 return -EPERM; 1917 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 1918 return -EINVAL; 1919 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 1920 break; 1921 case SO_TIMESTAMPING: 1922 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 1923 return -EINVAL; 1924 1925 tsflags = *(u32 *)CMSG_DATA(cmsg); 1926 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 1927 return -EINVAL; 1928 1929 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 1930 sockc->tsflags |= tsflags; 1931 break; 1932 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 1933 case SCM_RIGHTS: 1934 case SCM_CREDENTIALS: 1935 break; 1936 default: 1937 return -EINVAL; 1938 } 1939 return 0; 1940 } 1941 EXPORT_SYMBOL(__sock_cmsg_send); 1942 1943 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1944 struct sockcm_cookie *sockc) 1945 { 1946 struct cmsghdr *cmsg; 1947 int ret; 1948 1949 for_each_cmsghdr(cmsg, msg) { 1950 if (!CMSG_OK(msg, cmsg)) 1951 return -EINVAL; 1952 if (cmsg->cmsg_level != SOL_SOCKET) 1953 continue; 1954 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 1955 if (ret) 1956 return ret; 1957 } 1958 return 0; 1959 } 1960 EXPORT_SYMBOL(sock_cmsg_send); 1961 1962 /* On 32bit arches, an skb frag is limited to 2^15 */ 1963 #define SKB_FRAG_PAGE_ORDER get_order(32768) 1964 1965 /** 1966 * skb_page_frag_refill - check that a page_frag contains enough room 1967 * @sz: minimum size of the fragment we want to get 1968 * @pfrag: pointer to page_frag 1969 * @gfp: priority for memory allocation 1970 * 1971 * Note: While this allocator tries to use high order pages, there is 1972 * no guarantee that allocations succeed. Therefore, @sz MUST be 1973 * less or equal than PAGE_SIZE. 1974 */ 1975 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 1976 { 1977 if (pfrag->page) { 1978 if (page_ref_count(pfrag->page) == 1) { 1979 pfrag->offset = 0; 1980 return true; 1981 } 1982 if (pfrag->offset + sz <= pfrag->size) 1983 return true; 1984 put_page(pfrag->page); 1985 } 1986 1987 pfrag->offset = 0; 1988 if (SKB_FRAG_PAGE_ORDER) { 1989 /* Avoid direct reclaim but allow kswapd to wake */ 1990 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 1991 __GFP_COMP | __GFP_NOWARN | 1992 __GFP_NORETRY, 1993 SKB_FRAG_PAGE_ORDER); 1994 if (likely(pfrag->page)) { 1995 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 1996 return true; 1997 } 1998 } 1999 pfrag->page = alloc_page(gfp); 2000 if (likely(pfrag->page)) { 2001 pfrag->size = PAGE_SIZE; 2002 return true; 2003 } 2004 return false; 2005 } 2006 EXPORT_SYMBOL(skb_page_frag_refill); 2007 2008 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2009 { 2010 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2011 return true; 2012 2013 sk_enter_memory_pressure(sk); 2014 sk_stream_moderate_sndbuf(sk); 2015 return false; 2016 } 2017 EXPORT_SYMBOL(sk_page_frag_refill); 2018 2019 static void __lock_sock(struct sock *sk) 2020 __releases(&sk->sk_lock.slock) 2021 __acquires(&sk->sk_lock.slock) 2022 { 2023 DEFINE_WAIT(wait); 2024 2025 for (;;) { 2026 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2027 TASK_UNINTERRUPTIBLE); 2028 spin_unlock_bh(&sk->sk_lock.slock); 2029 schedule(); 2030 spin_lock_bh(&sk->sk_lock.slock); 2031 if (!sock_owned_by_user(sk)) 2032 break; 2033 } 2034 finish_wait(&sk->sk_lock.wq, &wait); 2035 } 2036 2037 static void __release_sock(struct sock *sk) 2038 __releases(&sk->sk_lock.slock) 2039 __acquires(&sk->sk_lock.slock) 2040 { 2041 struct sk_buff *skb, *next; 2042 2043 while ((skb = sk->sk_backlog.head) != NULL) { 2044 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2045 2046 spin_unlock_bh(&sk->sk_lock.slock); 2047 2048 do { 2049 next = skb->next; 2050 prefetch(next); 2051 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2052 skb->next = NULL; 2053 sk_backlog_rcv(sk, skb); 2054 2055 cond_resched(); 2056 2057 skb = next; 2058 } while (skb != NULL); 2059 2060 spin_lock_bh(&sk->sk_lock.slock); 2061 } 2062 2063 /* 2064 * Doing the zeroing here guarantee we can not loop forever 2065 * while a wild producer attempts to flood us. 2066 */ 2067 sk->sk_backlog.len = 0; 2068 } 2069 2070 void __sk_flush_backlog(struct sock *sk) 2071 { 2072 spin_lock_bh(&sk->sk_lock.slock); 2073 __release_sock(sk); 2074 spin_unlock_bh(&sk->sk_lock.slock); 2075 } 2076 2077 /** 2078 * sk_wait_data - wait for data to arrive at sk_receive_queue 2079 * @sk: sock to wait on 2080 * @timeo: for how long 2081 * @skb: last skb seen on sk_receive_queue 2082 * 2083 * Now socket state including sk->sk_err is changed only under lock, 2084 * hence we may omit checks after joining wait queue. 2085 * We check receive queue before schedule() only as optimization; 2086 * it is very likely that release_sock() added new data. 2087 */ 2088 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2089 { 2090 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2091 int rc; 2092 2093 add_wait_queue(sk_sleep(sk), &wait); 2094 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2095 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2096 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2097 remove_wait_queue(sk_sleep(sk), &wait); 2098 return rc; 2099 } 2100 EXPORT_SYMBOL(sk_wait_data); 2101 2102 /** 2103 * __sk_mem_raise_allocated - increase memory_allocated 2104 * @sk: socket 2105 * @size: memory size to allocate 2106 * @amt: pages to allocate 2107 * @kind: allocation type 2108 * 2109 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2110 */ 2111 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2112 { 2113 struct proto *prot = sk->sk_prot; 2114 long allocated = sk_memory_allocated_add(sk, amt); 2115 2116 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2117 !mem_cgroup_charge_skmem(sk->sk_memcg, amt)) 2118 goto suppress_allocation; 2119 2120 /* Under limit. */ 2121 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2122 sk_leave_memory_pressure(sk); 2123 return 1; 2124 } 2125 2126 /* Under pressure. */ 2127 if (allocated > sk_prot_mem_limits(sk, 1)) 2128 sk_enter_memory_pressure(sk); 2129 2130 /* Over hard limit. */ 2131 if (allocated > sk_prot_mem_limits(sk, 2)) 2132 goto suppress_allocation; 2133 2134 /* guarantee minimum buffer size under pressure */ 2135 if (kind == SK_MEM_RECV) { 2136 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0]) 2137 return 1; 2138 2139 } else { /* SK_MEM_SEND */ 2140 if (sk->sk_type == SOCK_STREAM) { 2141 if (sk->sk_wmem_queued < prot->sysctl_wmem[0]) 2142 return 1; 2143 } else if (atomic_read(&sk->sk_wmem_alloc) < 2144 prot->sysctl_wmem[0]) 2145 return 1; 2146 } 2147 2148 if (sk_has_memory_pressure(sk)) { 2149 int alloc; 2150 2151 if (!sk_under_memory_pressure(sk)) 2152 return 1; 2153 alloc = sk_sockets_allocated_read_positive(sk); 2154 if (sk_prot_mem_limits(sk, 2) > alloc * 2155 sk_mem_pages(sk->sk_wmem_queued + 2156 atomic_read(&sk->sk_rmem_alloc) + 2157 sk->sk_forward_alloc)) 2158 return 1; 2159 } 2160 2161 suppress_allocation: 2162 2163 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2164 sk_stream_moderate_sndbuf(sk); 2165 2166 /* Fail only if socket is _under_ its sndbuf. 2167 * In this case we cannot block, so that we have to fail. 2168 */ 2169 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2170 return 1; 2171 } 2172 2173 trace_sock_exceed_buf_limit(sk, prot, allocated); 2174 2175 sk_memory_allocated_sub(sk, amt); 2176 2177 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2178 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2179 2180 return 0; 2181 } 2182 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2183 2184 /** 2185 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2186 * @sk: socket 2187 * @size: memory size to allocate 2188 * @kind: allocation type 2189 * 2190 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2191 * rmem allocation. This function assumes that protocols which have 2192 * memory_pressure use sk_wmem_queued as write buffer accounting. 2193 */ 2194 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2195 { 2196 int ret, amt = sk_mem_pages(size); 2197 2198 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2199 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2200 if (!ret) 2201 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2202 return ret; 2203 } 2204 EXPORT_SYMBOL(__sk_mem_schedule); 2205 2206 /** 2207 * __sk_mem_reduce_allocated - reclaim memory_allocated 2208 * @sk: socket 2209 * @amount: number of quanta 2210 * 2211 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2212 */ 2213 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2214 { 2215 sk_memory_allocated_sub(sk, amount); 2216 2217 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2218 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2219 2220 if (sk_under_memory_pressure(sk) && 2221 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2222 sk_leave_memory_pressure(sk); 2223 } 2224 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2225 2226 /** 2227 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2228 * @sk: socket 2229 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2230 */ 2231 void __sk_mem_reclaim(struct sock *sk, int amount) 2232 { 2233 amount >>= SK_MEM_QUANTUM_SHIFT; 2234 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2235 __sk_mem_reduce_allocated(sk, amount); 2236 } 2237 EXPORT_SYMBOL(__sk_mem_reclaim); 2238 2239 int sk_set_peek_off(struct sock *sk, int val) 2240 { 2241 if (val < 0) 2242 return -EINVAL; 2243 2244 sk->sk_peek_off = val; 2245 return 0; 2246 } 2247 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2248 2249 /* 2250 * Set of default routines for initialising struct proto_ops when 2251 * the protocol does not support a particular function. In certain 2252 * cases where it makes no sense for a protocol to have a "do nothing" 2253 * function, some default processing is provided. 2254 */ 2255 2256 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2257 { 2258 return -EOPNOTSUPP; 2259 } 2260 EXPORT_SYMBOL(sock_no_bind); 2261 2262 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2263 int len, int flags) 2264 { 2265 return -EOPNOTSUPP; 2266 } 2267 EXPORT_SYMBOL(sock_no_connect); 2268 2269 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2270 { 2271 return -EOPNOTSUPP; 2272 } 2273 EXPORT_SYMBOL(sock_no_socketpair); 2274 2275 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags) 2276 { 2277 return -EOPNOTSUPP; 2278 } 2279 EXPORT_SYMBOL(sock_no_accept); 2280 2281 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2282 int *len, int peer) 2283 { 2284 return -EOPNOTSUPP; 2285 } 2286 EXPORT_SYMBOL(sock_no_getname); 2287 2288 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt) 2289 { 2290 return 0; 2291 } 2292 EXPORT_SYMBOL(sock_no_poll); 2293 2294 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2295 { 2296 return -EOPNOTSUPP; 2297 } 2298 EXPORT_SYMBOL(sock_no_ioctl); 2299 2300 int sock_no_listen(struct socket *sock, int backlog) 2301 { 2302 return -EOPNOTSUPP; 2303 } 2304 EXPORT_SYMBOL(sock_no_listen); 2305 2306 int sock_no_shutdown(struct socket *sock, int how) 2307 { 2308 return -EOPNOTSUPP; 2309 } 2310 EXPORT_SYMBOL(sock_no_shutdown); 2311 2312 int sock_no_setsockopt(struct socket *sock, int level, int optname, 2313 char __user *optval, unsigned int optlen) 2314 { 2315 return -EOPNOTSUPP; 2316 } 2317 EXPORT_SYMBOL(sock_no_setsockopt); 2318 2319 int sock_no_getsockopt(struct socket *sock, int level, int optname, 2320 char __user *optval, int __user *optlen) 2321 { 2322 return -EOPNOTSUPP; 2323 } 2324 EXPORT_SYMBOL(sock_no_getsockopt); 2325 2326 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2327 { 2328 return -EOPNOTSUPP; 2329 } 2330 EXPORT_SYMBOL(sock_no_sendmsg); 2331 2332 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2333 int flags) 2334 { 2335 return -EOPNOTSUPP; 2336 } 2337 EXPORT_SYMBOL(sock_no_recvmsg); 2338 2339 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2340 { 2341 /* Mirror missing mmap method error code */ 2342 return -ENODEV; 2343 } 2344 EXPORT_SYMBOL(sock_no_mmap); 2345 2346 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2347 { 2348 ssize_t res; 2349 struct msghdr msg = {.msg_flags = flags}; 2350 struct kvec iov; 2351 char *kaddr = kmap(page); 2352 iov.iov_base = kaddr + offset; 2353 iov.iov_len = size; 2354 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2355 kunmap(page); 2356 return res; 2357 } 2358 EXPORT_SYMBOL(sock_no_sendpage); 2359 2360 /* 2361 * Default Socket Callbacks 2362 */ 2363 2364 static void sock_def_wakeup(struct sock *sk) 2365 { 2366 struct socket_wq *wq; 2367 2368 rcu_read_lock(); 2369 wq = rcu_dereference(sk->sk_wq); 2370 if (skwq_has_sleeper(wq)) 2371 wake_up_interruptible_all(&wq->wait); 2372 rcu_read_unlock(); 2373 } 2374 2375 static void sock_def_error_report(struct sock *sk) 2376 { 2377 struct socket_wq *wq; 2378 2379 rcu_read_lock(); 2380 wq = rcu_dereference(sk->sk_wq); 2381 if (skwq_has_sleeper(wq)) 2382 wake_up_interruptible_poll(&wq->wait, POLLERR); 2383 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2384 rcu_read_unlock(); 2385 } 2386 2387 static void sock_def_readable(struct sock *sk) 2388 { 2389 struct socket_wq *wq; 2390 2391 rcu_read_lock(); 2392 wq = rcu_dereference(sk->sk_wq); 2393 if (skwq_has_sleeper(wq)) 2394 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI | 2395 POLLRDNORM | POLLRDBAND); 2396 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2397 rcu_read_unlock(); 2398 } 2399 2400 static void sock_def_write_space(struct sock *sk) 2401 { 2402 struct socket_wq *wq; 2403 2404 rcu_read_lock(); 2405 2406 /* Do not wake up a writer until he can make "significant" 2407 * progress. --DaveM 2408 */ 2409 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 2410 wq = rcu_dereference(sk->sk_wq); 2411 if (skwq_has_sleeper(wq)) 2412 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT | 2413 POLLWRNORM | POLLWRBAND); 2414 2415 /* Should agree with poll, otherwise some programs break */ 2416 if (sock_writeable(sk)) 2417 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2418 } 2419 2420 rcu_read_unlock(); 2421 } 2422 2423 static void sock_def_destruct(struct sock *sk) 2424 { 2425 } 2426 2427 void sk_send_sigurg(struct sock *sk) 2428 { 2429 if (sk->sk_socket && sk->sk_socket->file) 2430 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2431 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2432 } 2433 EXPORT_SYMBOL(sk_send_sigurg); 2434 2435 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2436 unsigned long expires) 2437 { 2438 if (!mod_timer(timer, expires)) 2439 sock_hold(sk); 2440 } 2441 EXPORT_SYMBOL(sk_reset_timer); 2442 2443 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2444 { 2445 if (del_timer(timer)) 2446 __sock_put(sk); 2447 } 2448 EXPORT_SYMBOL(sk_stop_timer); 2449 2450 void sock_init_data(struct socket *sock, struct sock *sk) 2451 { 2452 skb_queue_head_init(&sk->sk_receive_queue); 2453 skb_queue_head_init(&sk->sk_write_queue); 2454 skb_queue_head_init(&sk->sk_error_queue); 2455 2456 sk->sk_send_head = NULL; 2457 2458 init_timer(&sk->sk_timer); 2459 2460 sk->sk_allocation = GFP_KERNEL; 2461 sk->sk_rcvbuf = sysctl_rmem_default; 2462 sk->sk_sndbuf = sysctl_wmem_default; 2463 sk->sk_state = TCP_CLOSE; 2464 sk_set_socket(sk, sock); 2465 2466 sock_set_flag(sk, SOCK_ZAPPED); 2467 2468 if (sock) { 2469 sk->sk_type = sock->type; 2470 sk->sk_wq = sock->wq; 2471 sock->sk = sk; 2472 sk->sk_uid = SOCK_INODE(sock)->i_uid; 2473 } else { 2474 sk->sk_wq = NULL; 2475 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 2476 } 2477 2478 rwlock_init(&sk->sk_callback_lock); 2479 lockdep_set_class_and_name(&sk->sk_callback_lock, 2480 af_callback_keys + sk->sk_family, 2481 af_family_clock_key_strings[sk->sk_family]); 2482 2483 sk->sk_state_change = sock_def_wakeup; 2484 sk->sk_data_ready = sock_def_readable; 2485 sk->sk_write_space = sock_def_write_space; 2486 sk->sk_error_report = sock_def_error_report; 2487 sk->sk_destruct = sock_def_destruct; 2488 2489 sk->sk_frag.page = NULL; 2490 sk->sk_frag.offset = 0; 2491 sk->sk_peek_off = -1; 2492 2493 sk->sk_peer_pid = NULL; 2494 sk->sk_peer_cred = NULL; 2495 sk->sk_write_pending = 0; 2496 sk->sk_rcvlowat = 1; 2497 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2498 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2499 2500 sk->sk_stamp = ktime_set(-1L, 0); 2501 2502 #ifdef CONFIG_NET_RX_BUSY_POLL 2503 sk->sk_napi_id = 0; 2504 sk->sk_ll_usec = sysctl_net_busy_read; 2505 #endif 2506 2507 sk->sk_max_pacing_rate = ~0U; 2508 sk->sk_pacing_rate = ~0U; 2509 sk->sk_incoming_cpu = -1; 2510 /* 2511 * Before updating sk_refcnt, we must commit prior changes to memory 2512 * (Documentation/RCU/rculist_nulls.txt for details) 2513 */ 2514 smp_wmb(); 2515 atomic_set(&sk->sk_refcnt, 1); 2516 atomic_set(&sk->sk_drops, 0); 2517 } 2518 EXPORT_SYMBOL(sock_init_data); 2519 2520 void lock_sock_nested(struct sock *sk, int subclass) 2521 { 2522 might_sleep(); 2523 spin_lock_bh(&sk->sk_lock.slock); 2524 if (sk->sk_lock.owned) 2525 __lock_sock(sk); 2526 sk->sk_lock.owned = 1; 2527 spin_unlock(&sk->sk_lock.slock); 2528 /* 2529 * The sk_lock has mutex_lock() semantics here: 2530 */ 2531 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2532 local_bh_enable(); 2533 } 2534 EXPORT_SYMBOL(lock_sock_nested); 2535 2536 void release_sock(struct sock *sk) 2537 { 2538 spin_lock_bh(&sk->sk_lock.slock); 2539 if (sk->sk_backlog.tail) 2540 __release_sock(sk); 2541 2542 /* Warning : release_cb() might need to release sk ownership, 2543 * ie call sock_release_ownership(sk) before us. 2544 */ 2545 if (sk->sk_prot->release_cb) 2546 sk->sk_prot->release_cb(sk); 2547 2548 sock_release_ownership(sk); 2549 if (waitqueue_active(&sk->sk_lock.wq)) 2550 wake_up(&sk->sk_lock.wq); 2551 spin_unlock_bh(&sk->sk_lock.slock); 2552 } 2553 EXPORT_SYMBOL(release_sock); 2554 2555 /** 2556 * lock_sock_fast - fast version of lock_sock 2557 * @sk: socket 2558 * 2559 * This version should be used for very small section, where process wont block 2560 * return false if fast path is taken 2561 * sk_lock.slock locked, owned = 0, BH disabled 2562 * return true if slow path is taken 2563 * sk_lock.slock unlocked, owned = 1, BH enabled 2564 */ 2565 bool lock_sock_fast(struct sock *sk) 2566 { 2567 might_sleep(); 2568 spin_lock_bh(&sk->sk_lock.slock); 2569 2570 if (!sk->sk_lock.owned) 2571 /* 2572 * Note : We must disable BH 2573 */ 2574 return false; 2575 2576 __lock_sock(sk); 2577 sk->sk_lock.owned = 1; 2578 spin_unlock(&sk->sk_lock.slock); 2579 /* 2580 * The sk_lock has mutex_lock() semantics here: 2581 */ 2582 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 2583 local_bh_enable(); 2584 return true; 2585 } 2586 EXPORT_SYMBOL(lock_sock_fast); 2587 2588 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) 2589 { 2590 struct timeval tv; 2591 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2592 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2593 tv = ktime_to_timeval(sk->sk_stamp); 2594 if (tv.tv_sec == -1) 2595 return -ENOENT; 2596 if (tv.tv_sec == 0) { 2597 sk->sk_stamp = ktime_get_real(); 2598 tv = ktime_to_timeval(sk->sk_stamp); 2599 } 2600 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0; 2601 } 2602 EXPORT_SYMBOL(sock_get_timestamp); 2603 2604 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp) 2605 { 2606 struct timespec ts; 2607 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2608 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2609 ts = ktime_to_timespec(sk->sk_stamp); 2610 if (ts.tv_sec == -1) 2611 return -ENOENT; 2612 if (ts.tv_sec == 0) { 2613 sk->sk_stamp = ktime_get_real(); 2614 ts = ktime_to_timespec(sk->sk_stamp); 2615 } 2616 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0; 2617 } 2618 EXPORT_SYMBOL(sock_get_timestampns); 2619 2620 void sock_enable_timestamp(struct sock *sk, int flag) 2621 { 2622 if (!sock_flag(sk, flag)) { 2623 unsigned long previous_flags = sk->sk_flags; 2624 2625 sock_set_flag(sk, flag); 2626 /* 2627 * we just set one of the two flags which require net 2628 * time stamping, but time stamping might have been on 2629 * already because of the other one 2630 */ 2631 if (sock_needs_netstamp(sk) && 2632 !(previous_flags & SK_FLAGS_TIMESTAMP)) 2633 net_enable_timestamp(); 2634 } 2635 } 2636 2637 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 2638 int level, int type) 2639 { 2640 struct sock_exterr_skb *serr; 2641 struct sk_buff *skb; 2642 int copied, err; 2643 2644 err = -EAGAIN; 2645 skb = sock_dequeue_err_skb(sk); 2646 if (skb == NULL) 2647 goto out; 2648 2649 copied = skb->len; 2650 if (copied > len) { 2651 msg->msg_flags |= MSG_TRUNC; 2652 copied = len; 2653 } 2654 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2655 if (err) 2656 goto out_free_skb; 2657 2658 sock_recv_timestamp(msg, sk, skb); 2659 2660 serr = SKB_EXT_ERR(skb); 2661 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 2662 2663 msg->msg_flags |= MSG_ERRQUEUE; 2664 err = copied; 2665 2666 out_free_skb: 2667 kfree_skb(skb); 2668 out: 2669 return err; 2670 } 2671 EXPORT_SYMBOL(sock_recv_errqueue); 2672 2673 /* 2674 * Get a socket option on an socket. 2675 * 2676 * FIX: POSIX 1003.1g is very ambiguous here. It states that 2677 * asynchronous errors should be reported by getsockopt. We assume 2678 * this means if you specify SO_ERROR (otherwise whats the point of it). 2679 */ 2680 int sock_common_getsockopt(struct socket *sock, int level, int optname, 2681 char __user *optval, int __user *optlen) 2682 { 2683 struct sock *sk = sock->sk; 2684 2685 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2686 } 2687 EXPORT_SYMBOL(sock_common_getsockopt); 2688 2689 #ifdef CONFIG_COMPAT 2690 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 2691 char __user *optval, int __user *optlen) 2692 { 2693 struct sock *sk = sock->sk; 2694 2695 if (sk->sk_prot->compat_getsockopt != NULL) 2696 return sk->sk_prot->compat_getsockopt(sk, level, optname, 2697 optval, optlen); 2698 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2699 } 2700 EXPORT_SYMBOL(compat_sock_common_getsockopt); 2701 #endif 2702 2703 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2704 int flags) 2705 { 2706 struct sock *sk = sock->sk; 2707 int addr_len = 0; 2708 int err; 2709 2710 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 2711 flags & ~MSG_DONTWAIT, &addr_len); 2712 if (err >= 0) 2713 msg->msg_namelen = addr_len; 2714 return err; 2715 } 2716 EXPORT_SYMBOL(sock_common_recvmsg); 2717 2718 /* 2719 * Set socket options on an inet socket. 2720 */ 2721 int sock_common_setsockopt(struct socket *sock, int level, int optname, 2722 char __user *optval, unsigned int optlen) 2723 { 2724 struct sock *sk = sock->sk; 2725 2726 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2727 } 2728 EXPORT_SYMBOL(sock_common_setsockopt); 2729 2730 #ifdef CONFIG_COMPAT 2731 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 2732 char __user *optval, unsigned int optlen) 2733 { 2734 struct sock *sk = sock->sk; 2735 2736 if (sk->sk_prot->compat_setsockopt != NULL) 2737 return sk->sk_prot->compat_setsockopt(sk, level, optname, 2738 optval, optlen); 2739 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2740 } 2741 EXPORT_SYMBOL(compat_sock_common_setsockopt); 2742 #endif 2743 2744 void sk_common_release(struct sock *sk) 2745 { 2746 if (sk->sk_prot->destroy) 2747 sk->sk_prot->destroy(sk); 2748 2749 /* 2750 * Observation: when sock_common_release is called, processes have 2751 * no access to socket. But net still has. 2752 * Step one, detach it from networking: 2753 * 2754 * A. Remove from hash tables. 2755 */ 2756 2757 sk->sk_prot->unhash(sk); 2758 2759 /* 2760 * In this point socket cannot receive new packets, but it is possible 2761 * that some packets are in flight because some CPU runs receiver and 2762 * did hash table lookup before we unhashed socket. They will achieve 2763 * receive queue and will be purged by socket destructor. 2764 * 2765 * Also we still have packets pending on receive queue and probably, 2766 * our own packets waiting in device queues. sock_destroy will drain 2767 * receive queue, but transmitted packets will delay socket destruction 2768 * until the last reference will be released. 2769 */ 2770 2771 sock_orphan(sk); 2772 2773 xfrm_sk_free_policy(sk); 2774 2775 sk_refcnt_debug_release(sk); 2776 2777 if (sk->sk_frag.page) { 2778 put_page(sk->sk_frag.page); 2779 sk->sk_frag.page = NULL; 2780 } 2781 2782 sock_put(sk); 2783 } 2784 EXPORT_SYMBOL(sk_common_release); 2785 2786 #ifdef CONFIG_PROC_FS 2787 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 2788 struct prot_inuse { 2789 int val[PROTO_INUSE_NR]; 2790 }; 2791 2792 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 2793 2794 #ifdef CONFIG_NET_NS 2795 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2796 { 2797 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val); 2798 } 2799 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2800 2801 int sock_prot_inuse_get(struct net *net, struct proto *prot) 2802 { 2803 int cpu, idx = prot->inuse_idx; 2804 int res = 0; 2805 2806 for_each_possible_cpu(cpu) 2807 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx]; 2808 2809 return res >= 0 ? res : 0; 2810 } 2811 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2812 2813 static int __net_init sock_inuse_init_net(struct net *net) 2814 { 2815 net->core.inuse = alloc_percpu(struct prot_inuse); 2816 return net->core.inuse ? 0 : -ENOMEM; 2817 } 2818 2819 static void __net_exit sock_inuse_exit_net(struct net *net) 2820 { 2821 free_percpu(net->core.inuse); 2822 } 2823 2824 static struct pernet_operations net_inuse_ops = { 2825 .init = sock_inuse_init_net, 2826 .exit = sock_inuse_exit_net, 2827 }; 2828 2829 static __init int net_inuse_init(void) 2830 { 2831 if (register_pernet_subsys(&net_inuse_ops)) 2832 panic("Cannot initialize net inuse counters"); 2833 2834 return 0; 2835 } 2836 2837 core_initcall(net_inuse_init); 2838 #else 2839 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse); 2840 2841 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2842 { 2843 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val); 2844 } 2845 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2846 2847 int sock_prot_inuse_get(struct net *net, struct proto *prot) 2848 { 2849 int cpu, idx = prot->inuse_idx; 2850 int res = 0; 2851 2852 for_each_possible_cpu(cpu) 2853 res += per_cpu(prot_inuse, cpu).val[idx]; 2854 2855 return res >= 0 ? res : 0; 2856 } 2857 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2858 #endif 2859 2860 static void assign_proto_idx(struct proto *prot) 2861 { 2862 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 2863 2864 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 2865 pr_err("PROTO_INUSE_NR exhausted\n"); 2866 return; 2867 } 2868 2869 set_bit(prot->inuse_idx, proto_inuse_idx); 2870 } 2871 2872 static void release_proto_idx(struct proto *prot) 2873 { 2874 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 2875 clear_bit(prot->inuse_idx, proto_inuse_idx); 2876 } 2877 #else 2878 static inline void assign_proto_idx(struct proto *prot) 2879 { 2880 } 2881 2882 static inline void release_proto_idx(struct proto *prot) 2883 { 2884 } 2885 #endif 2886 2887 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 2888 { 2889 if (!rsk_prot) 2890 return; 2891 kfree(rsk_prot->slab_name); 2892 rsk_prot->slab_name = NULL; 2893 kmem_cache_destroy(rsk_prot->slab); 2894 rsk_prot->slab = NULL; 2895 } 2896 2897 static int req_prot_init(const struct proto *prot) 2898 { 2899 struct request_sock_ops *rsk_prot = prot->rsk_prot; 2900 2901 if (!rsk_prot) 2902 return 0; 2903 2904 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 2905 prot->name); 2906 if (!rsk_prot->slab_name) 2907 return -ENOMEM; 2908 2909 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 2910 rsk_prot->obj_size, 0, 2911 prot->slab_flags, NULL); 2912 2913 if (!rsk_prot->slab) { 2914 pr_crit("%s: Can't create request sock SLAB cache!\n", 2915 prot->name); 2916 return -ENOMEM; 2917 } 2918 return 0; 2919 } 2920 2921 int proto_register(struct proto *prot, int alloc_slab) 2922 { 2923 if (alloc_slab) { 2924 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0, 2925 SLAB_HWCACHE_ALIGN | prot->slab_flags, 2926 NULL); 2927 2928 if (prot->slab == NULL) { 2929 pr_crit("%s: Can't create sock SLAB cache!\n", 2930 prot->name); 2931 goto out; 2932 } 2933 2934 if (req_prot_init(prot)) 2935 goto out_free_request_sock_slab; 2936 2937 if (prot->twsk_prot != NULL) { 2938 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 2939 2940 if (prot->twsk_prot->twsk_slab_name == NULL) 2941 goto out_free_request_sock_slab; 2942 2943 prot->twsk_prot->twsk_slab = 2944 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 2945 prot->twsk_prot->twsk_obj_size, 2946 0, 2947 prot->slab_flags, 2948 NULL); 2949 if (prot->twsk_prot->twsk_slab == NULL) 2950 goto out_free_timewait_sock_slab_name; 2951 } 2952 } 2953 2954 mutex_lock(&proto_list_mutex); 2955 list_add(&prot->node, &proto_list); 2956 assign_proto_idx(prot); 2957 mutex_unlock(&proto_list_mutex); 2958 return 0; 2959 2960 out_free_timewait_sock_slab_name: 2961 kfree(prot->twsk_prot->twsk_slab_name); 2962 out_free_request_sock_slab: 2963 req_prot_cleanup(prot->rsk_prot); 2964 2965 kmem_cache_destroy(prot->slab); 2966 prot->slab = NULL; 2967 out: 2968 return -ENOBUFS; 2969 } 2970 EXPORT_SYMBOL(proto_register); 2971 2972 void proto_unregister(struct proto *prot) 2973 { 2974 mutex_lock(&proto_list_mutex); 2975 release_proto_idx(prot); 2976 list_del(&prot->node); 2977 mutex_unlock(&proto_list_mutex); 2978 2979 kmem_cache_destroy(prot->slab); 2980 prot->slab = NULL; 2981 2982 req_prot_cleanup(prot->rsk_prot); 2983 2984 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 2985 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 2986 kfree(prot->twsk_prot->twsk_slab_name); 2987 prot->twsk_prot->twsk_slab = NULL; 2988 } 2989 } 2990 EXPORT_SYMBOL(proto_unregister); 2991 2992 #ifdef CONFIG_PROC_FS 2993 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 2994 __acquires(proto_list_mutex) 2995 { 2996 mutex_lock(&proto_list_mutex); 2997 return seq_list_start_head(&proto_list, *pos); 2998 } 2999 3000 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3001 { 3002 return seq_list_next(v, &proto_list, pos); 3003 } 3004 3005 static void proto_seq_stop(struct seq_file *seq, void *v) 3006 __releases(proto_list_mutex) 3007 { 3008 mutex_unlock(&proto_list_mutex); 3009 } 3010 3011 static char proto_method_implemented(const void *method) 3012 { 3013 return method == NULL ? 'n' : 'y'; 3014 } 3015 static long sock_prot_memory_allocated(struct proto *proto) 3016 { 3017 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3018 } 3019 3020 static char *sock_prot_memory_pressure(struct proto *proto) 3021 { 3022 return proto->memory_pressure != NULL ? 3023 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3024 } 3025 3026 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3027 { 3028 3029 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3030 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3031 proto->name, 3032 proto->obj_size, 3033 sock_prot_inuse_get(seq_file_net(seq), proto), 3034 sock_prot_memory_allocated(proto), 3035 sock_prot_memory_pressure(proto), 3036 proto->max_header, 3037 proto->slab == NULL ? "no" : "yes", 3038 module_name(proto->owner), 3039 proto_method_implemented(proto->close), 3040 proto_method_implemented(proto->connect), 3041 proto_method_implemented(proto->disconnect), 3042 proto_method_implemented(proto->accept), 3043 proto_method_implemented(proto->ioctl), 3044 proto_method_implemented(proto->init), 3045 proto_method_implemented(proto->destroy), 3046 proto_method_implemented(proto->shutdown), 3047 proto_method_implemented(proto->setsockopt), 3048 proto_method_implemented(proto->getsockopt), 3049 proto_method_implemented(proto->sendmsg), 3050 proto_method_implemented(proto->recvmsg), 3051 proto_method_implemented(proto->sendpage), 3052 proto_method_implemented(proto->bind), 3053 proto_method_implemented(proto->backlog_rcv), 3054 proto_method_implemented(proto->hash), 3055 proto_method_implemented(proto->unhash), 3056 proto_method_implemented(proto->get_port), 3057 proto_method_implemented(proto->enter_memory_pressure)); 3058 } 3059 3060 static int proto_seq_show(struct seq_file *seq, void *v) 3061 { 3062 if (v == &proto_list) 3063 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3064 "protocol", 3065 "size", 3066 "sockets", 3067 "memory", 3068 "press", 3069 "maxhdr", 3070 "slab", 3071 "module", 3072 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3073 else 3074 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3075 return 0; 3076 } 3077 3078 static const struct seq_operations proto_seq_ops = { 3079 .start = proto_seq_start, 3080 .next = proto_seq_next, 3081 .stop = proto_seq_stop, 3082 .show = proto_seq_show, 3083 }; 3084 3085 static int proto_seq_open(struct inode *inode, struct file *file) 3086 { 3087 return seq_open_net(inode, file, &proto_seq_ops, 3088 sizeof(struct seq_net_private)); 3089 } 3090 3091 static const struct file_operations proto_seq_fops = { 3092 .owner = THIS_MODULE, 3093 .open = proto_seq_open, 3094 .read = seq_read, 3095 .llseek = seq_lseek, 3096 .release = seq_release_net, 3097 }; 3098 3099 static __net_init int proto_init_net(struct net *net) 3100 { 3101 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops)) 3102 return -ENOMEM; 3103 3104 return 0; 3105 } 3106 3107 static __net_exit void proto_exit_net(struct net *net) 3108 { 3109 remove_proc_entry("protocols", net->proc_net); 3110 } 3111 3112 3113 static __net_initdata struct pernet_operations proto_net_ops = { 3114 .init = proto_init_net, 3115 .exit = proto_exit_net, 3116 }; 3117 3118 static int __init proto_init(void) 3119 { 3120 return register_pernet_subsys(&proto_net_ops); 3121 } 3122 3123 subsys_initcall(proto_init); 3124 3125 #endif /* PROC_FS */ 3126