xref: /openbmc/linux/net/core/sock.c (revision f8a11425)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Generic socket support routines. Memory allocators, socket lock/release
8  *		handler for protocols to use and generic option handler.
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  */
85 
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87 
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
117 
118 #include <linux/uaccess.h>
119 
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
131 #include <linux/sock_diag.h>
132 
133 #include <linux/filter.h>
134 #include <net/sock_reuseport.h>
135 #include <net/bpf_sk_storage.h>
136 
137 #include <trace/events/sock.h>
138 
139 #include <net/tcp.h>
140 #include <net/busy_poll.h>
141 
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
144 
145 static void sock_inuse_add(struct net *net, int val);
146 
147 /**
148  * sk_ns_capable - General socket capability test
149  * @sk: Socket to use a capability on or through
150  * @user_ns: The user namespace of the capability to use
151  * @cap: The capability to use
152  *
153  * Test to see if the opener of the socket had when the socket was
154  * created and the current process has the capability @cap in the user
155  * namespace @user_ns.
156  */
157 bool sk_ns_capable(const struct sock *sk,
158 		   struct user_namespace *user_ns, int cap)
159 {
160 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
161 		ns_capable(user_ns, cap);
162 }
163 EXPORT_SYMBOL(sk_ns_capable);
164 
165 /**
166  * sk_capable - Socket global capability test
167  * @sk: Socket to use a capability on or through
168  * @cap: The global capability to use
169  *
170  * Test to see if the opener of the socket had when the socket was
171  * created and the current process has the capability @cap in all user
172  * namespaces.
173  */
174 bool sk_capable(const struct sock *sk, int cap)
175 {
176 	return sk_ns_capable(sk, &init_user_ns, cap);
177 }
178 EXPORT_SYMBOL(sk_capable);
179 
180 /**
181  * sk_net_capable - Network namespace socket capability test
182  * @sk: Socket to use a capability on or through
183  * @cap: The capability to use
184  *
185  * Test to see if the opener of the socket had when the socket was created
186  * and the current process has the capability @cap over the network namespace
187  * the socket is a member of.
188  */
189 bool sk_net_capable(const struct sock *sk, int cap)
190 {
191 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
192 }
193 EXPORT_SYMBOL(sk_net_capable);
194 
195 /*
196  * Each address family might have different locking rules, so we have
197  * one slock key per address family and separate keys for internal and
198  * userspace sockets.
199  */
200 static struct lock_class_key af_family_keys[AF_MAX];
201 static struct lock_class_key af_family_kern_keys[AF_MAX];
202 static struct lock_class_key af_family_slock_keys[AF_MAX];
203 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
204 
205 /*
206  * Make lock validator output more readable. (we pre-construct these
207  * strings build-time, so that runtime initialization of socket
208  * locks is fast):
209  */
210 
211 #define _sock_locks(x)						  \
212   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
213   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
214   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
215   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
216   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
217   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
218   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
219   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
220   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
221   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
222   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
223   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
224   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
225   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
226   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
227   x "AF_MAX"
228 
229 static const char *const af_family_key_strings[AF_MAX+1] = {
230 	_sock_locks("sk_lock-")
231 };
232 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
233 	_sock_locks("slock-")
234 };
235 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
236 	_sock_locks("clock-")
237 };
238 
239 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
240 	_sock_locks("k-sk_lock-")
241 };
242 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
243 	_sock_locks("k-slock-")
244 };
245 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
246 	_sock_locks("k-clock-")
247 };
248 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
249 	_sock_locks("rlock-")
250 };
251 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
252 	_sock_locks("wlock-")
253 };
254 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
255 	_sock_locks("elock-")
256 };
257 
258 /*
259  * sk_callback_lock and sk queues locking rules are per-address-family,
260  * so split the lock classes by using a per-AF key:
261  */
262 static struct lock_class_key af_callback_keys[AF_MAX];
263 static struct lock_class_key af_rlock_keys[AF_MAX];
264 static struct lock_class_key af_wlock_keys[AF_MAX];
265 static struct lock_class_key af_elock_keys[AF_MAX];
266 static struct lock_class_key af_kern_callback_keys[AF_MAX];
267 
268 /* Run time adjustable parameters. */
269 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
270 EXPORT_SYMBOL(sysctl_wmem_max);
271 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
272 EXPORT_SYMBOL(sysctl_rmem_max);
273 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
274 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
275 
276 /* Maximal space eaten by iovec or ancillary data plus some space */
277 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
278 EXPORT_SYMBOL(sysctl_optmem_max);
279 
280 int sysctl_tstamp_allow_data __read_mostly = 1;
281 
282 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
283 EXPORT_SYMBOL_GPL(memalloc_socks_key);
284 
285 /**
286  * sk_set_memalloc - sets %SOCK_MEMALLOC
287  * @sk: socket to set it on
288  *
289  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
290  * It's the responsibility of the admin to adjust min_free_kbytes
291  * to meet the requirements
292  */
293 void sk_set_memalloc(struct sock *sk)
294 {
295 	sock_set_flag(sk, SOCK_MEMALLOC);
296 	sk->sk_allocation |= __GFP_MEMALLOC;
297 	static_branch_inc(&memalloc_socks_key);
298 }
299 EXPORT_SYMBOL_GPL(sk_set_memalloc);
300 
301 void sk_clear_memalloc(struct sock *sk)
302 {
303 	sock_reset_flag(sk, SOCK_MEMALLOC);
304 	sk->sk_allocation &= ~__GFP_MEMALLOC;
305 	static_branch_dec(&memalloc_socks_key);
306 
307 	/*
308 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
309 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
310 	 * it has rmem allocations due to the last swapfile being deactivated
311 	 * but there is a risk that the socket is unusable due to exceeding
312 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
313 	 */
314 	sk_mem_reclaim(sk);
315 }
316 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
317 
318 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
319 {
320 	int ret;
321 	unsigned int noreclaim_flag;
322 
323 	/* these should have been dropped before queueing */
324 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
325 
326 	noreclaim_flag = memalloc_noreclaim_save();
327 	ret = sk->sk_backlog_rcv(sk, skb);
328 	memalloc_noreclaim_restore(noreclaim_flag);
329 
330 	return ret;
331 }
332 EXPORT_SYMBOL(__sk_backlog_rcv);
333 
334 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
335 {
336 	struct __kernel_sock_timeval tv;
337 
338 	if (timeo == MAX_SCHEDULE_TIMEOUT) {
339 		tv.tv_sec = 0;
340 		tv.tv_usec = 0;
341 	} else {
342 		tv.tv_sec = timeo / HZ;
343 		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344 	}
345 
346 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347 		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348 		*(struct old_timeval32 *)optval = tv32;
349 		return sizeof(tv32);
350 	}
351 
352 	if (old_timeval) {
353 		struct __kernel_old_timeval old_tv;
354 		old_tv.tv_sec = tv.tv_sec;
355 		old_tv.tv_usec = tv.tv_usec;
356 		*(struct __kernel_old_timeval *)optval = old_tv;
357 		return sizeof(old_tv);
358 	}
359 
360 	*(struct __kernel_sock_timeval *)optval = tv;
361 	return sizeof(tv);
362 }
363 
364 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
365 			    bool old_timeval)
366 {
367 	struct __kernel_sock_timeval tv;
368 
369 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
370 		struct old_timeval32 tv32;
371 
372 		if (optlen < sizeof(tv32))
373 			return -EINVAL;
374 
375 		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
376 			return -EFAULT;
377 		tv.tv_sec = tv32.tv_sec;
378 		tv.tv_usec = tv32.tv_usec;
379 	} else if (old_timeval) {
380 		struct __kernel_old_timeval old_tv;
381 
382 		if (optlen < sizeof(old_tv))
383 			return -EINVAL;
384 		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
385 			return -EFAULT;
386 		tv.tv_sec = old_tv.tv_sec;
387 		tv.tv_usec = old_tv.tv_usec;
388 	} else {
389 		if (optlen < sizeof(tv))
390 			return -EINVAL;
391 		if (copy_from_sockptr(&tv, optval, sizeof(tv)))
392 			return -EFAULT;
393 	}
394 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
395 		return -EDOM;
396 
397 	if (tv.tv_sec < 0) {
398 		static int warned __read_mostly;
399 
400 		*timeo_p = 0;
401 		if (warned < 10 && net_ratelimit()) {
402 			warned++;
403 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
404 				__func__, current->comm, task_pid_nr(current));
405 		}
406 		return 0;
407 	}
408 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
409 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
410 		return 0;
411 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
412 		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
413 	return 0;
414 }
415 
416 static bool sock_needs_netstamp(const struct sock *sk)
417 {
418 	switch (sk->sk_family) {
419 	case AF_UNSPEC:
420 	case AF_UNIX:
421 		return false;
422 	default:
423 		return true;
424 	}
425 }
426 
427 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
428 {
429 	if (sk->sk_flags & flags) {
430 		sk->sk_flags &= ~flags;
431 		if (sock_needs_netstamp(sk) &&
432 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
433 			net_disable_timestamp();
434 	}
435 }
436 
437 
438 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
439 {
440 	unsigned long flags;
441 	struct sk_buff_head *list = &sk->sk_receive_queue;
442 
443 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
444 		atomic_inc(&sk->sk_drops);
445 		trace_sock_rcvqueue_full(sk, skb);
446 		return -ENOMEM;
447 	}
448 
449 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
450 		atomic_inc(&sk->sk_drops);
451 		return -ENOBUFS;
452 	}
453 
454 	skb->dev = NULL;
455 	skb_set_owner_r(skb, sk);
456 
457 	/* we escape from rcu protected region, make sure we dont leak
458 	 * a norefcounted dst
459 	 */
460 	skb_dst_force(skb);
461 
462 	spin_lock_irqsave(&list->lock, flags);
463 	sock_skb_set_dropcount(sk, skb);
464 	__skb_queue_tail(list, skb);
465 	spin_unlock_irqrestore(&list->lock, flags);
466 
467 	if (!sock_flag(sk, SOCK_DEAD))
468 		sk->sk_data_ready(sk);
469 	return 0;
470 }
471 EXPORT_SYMBOL(__sock_queue_rcv_skb);
472 
473 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
474 {
475 	int err;
476 
477 	err = sk_filter(sk, skb);
478 	if (err)
479 		return err;
480 
481 	return __sock_queue_rcv_skb(sk, skb);
482 }
483 EXPORT_SYMBOL(sock_queue_rcv_skb);
484 
485 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
486 		     const int nested, unsigned int trim_cap, bool refcounted)
487 {
488 	int rc = NET_RX_SUCCESS;
489 
490 	if (sk_filter_trim_cap(sk, skb, trim_cap))
491 		goto discard_and_relse;
492 
493 	skb->dev = NULL;
494 
495 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
496 		atomic_inc(&sk->sk_drops);
497 		goto discard_and_relse;
498 	}
499 	if (nested)
500 		bh_lock_sock_nested(sk);
501 	else
502 		bh_lock_sock(sk);
503 	if (!sock_owned_by_user(sk)) {
504 		/*
505 		 * trylock + unlock semantics:
506 		 */
507 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
508 
509 		rc = sk_backlog_rcv(sk, skb);
510 
511 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
512 	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
513 		bh_unlock_sock(sk);
514 		atomic_inc(&sk->sk_drops);
515 		goto discard_and_relse;
516 	}
517 
518 	bh_unlock_sock(sk);
519 out:
520 	if (refcounted)
521 		sock_put(sk);
522 	return rc;
523 discard_and_relse:
524 	kfree_skb(skb);
525 	goto out;
526 }
527 EXPORT_SYMBOL(__sk_receive_skb);
528 
529 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
530 							  u32));
531 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
532 							   u32));
533 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
534 {
535 	struct dst_entry *dst = __sk_dst_get(sk);
536 
537 	if (dst && dst->obsolete &&
538 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
539 			       dst, cookie) == NULL) {
540 		sk_tx_queue_clear(sk);
541 		sk->sk_dst_pending_confirm = 0;
542 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
543 		dst_release(dst);
544 		return NULL;
545 	}
546 
547 	return dst;
548 }
549 EXPORT_SYMBOL(__sk_dst_check);
550 
551 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
552 {
553 	struct dst_entry *dst = sk_dst_get(sk);
554 
555 	if (dst && dst->obsolete &&
556 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
557 			       dst, cookie) == NULL) {
558 		sk_dst_reset(sk);
559 		dst_release(dst);
560 		return NULL;
561 	}
562 
563 	return dst;
564 }
565 EXPORT_SYMBOL(sk_dst_check);
566 
567 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
568 {
569 	int ret = -ENOPROTOOPT;
570 #ifdef CONFIG_NETDEVICES
571 	struct net *net = sock_net(sk);
572 
573 	/* Sorry... */
574 	ret = -EPERM;
575 	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
576 		goto out;
577 
578 	ret = -EINVAL;
579 	if (ifindex < 0)
580 		goto out;
581 
582 	sk->sk_bound_dev_if = ifindex;
583 	if (sk->sk_prot->rehash)
584 		sk->sk_prot->rehash(sk);
585 	sk_dst_reset(sk);
586 
587 	ret = 0;
588 
589 out:
590 #endif
591 
592 	return ret;
593 }
594 
595 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
596 {
597 	int ret;
598 
599 	if (lock_sk)
600 		lock_sock(sk);
601 	ret = sock_bindtoindex_locked(sk, ifindex);
602 	if (lock_sk)
603 		release_sock(sk);
604 
605 	return ret;
606 }
607 EXPORT_SYMBOL(sock_bindtoindex);
608 
609 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
610 {
611 	int ret = -ENOPROTOOPT;
612 #ifdef CONFIG_NETDEVICES
613 	struct net *net = sock_net(sk);
614 	char devname[IFNAMSIZ];
615 	int index;
616 
617 	ret = -EINVAL;
618 	if (optlen < 0)
619 		goto out;
620 
621 	/* Bind this socket to a particular device like "eth0",
622 	 * as specified in the passed interface name. If the
623 	 * name is "" or the option length is zero the socket
624 	 * is not bound.
625 	 */
626 	if (optlen > IFNAMSIZ - 1)
627 		optlen = IFNAMSIZ - 1;
628 	memset(devname, 0, sizeof(devname));
629 
630 	ret = -EFAULT;
631 	if (copy_from_sockptr(devname, optval, optlen))
632 		goto out;
633 
634 	index = 0;
635 	if (devname[0] != '\0') {
636 		struct net_device *dev;
637 
638 		rcu_read_lock();
639 		dev = dev_get_by_name_rcu(net, devname);
640 		if (dev)
641 			index = dev->ifindex;
642 		rcu_read_unlock();
643 		ret = -ENODEV;
644 		if (!dev)
645 			goto out;
646 	}
647 
648 	return sock_bindtoindex(sk, index, true);
649 out:
650 #endif
651 
652 	return ret;
653 }
654 
655 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
656 				int __user *optlen, int len)
657 {
658 	int ret = -ENOPROTOOPT;
659 #ifdef CONFIG_NETDEVICES
660 	struct net *net = sock_net(sk);
661 	char devname[IFNAMSIZ];
662 
663 	if (sk->sk_bound_dev_if == 0) {
664 		len = 0;
665 		goto zero;
666 	}
667 
668 	ret = -EINVAL;
669 	if (len < IFNAMSIZ)
670 		goto out;
671 
672 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
673 	if (ret)
674 		goto out;
675 
676 	len = strlen(devname) + 1;
677 
678 	ret = -EFAULT;
679 	if (copy_to_user(optval, devname, len))
680 		goto out;
681 
682 zero:
683 	ret = -EFAULT;
684 	if (put_user(len, optlen))
685 		goto out;
686 
687 	ret = 0;
688 
689 out:
690 #endif
691 
692 	return ret;
693 }
694 
695 bool sk_mc_loop(struct sock *sk)
696 {
697 	if (dev_recursion_level())
698 		return false;
699 	if (!sk)
700 		return true;
701 	switch (sk->sk_family) {
702 	case AF_INET:
703 		return inet_sk(sk)->mc_loop;
704 #if IS_ENABLED(CONFIG_IPV6)
705 	case AF_INET6:
706 		return inet6_sk(sk)->mc_loop;
707 #endif
708 	}
709 	WARN_ON_ONCE(1);
710 	return true;
711 }
712 EXPORT_SYMBOL(sk_mc_loop);
713 
714 void sock_set_reuseaddr(struct sock *sk)
715 {
716 	lock_sock(sk);
717 	sk->sk_reuse = SK_CAN_REUSE;
718 	release_sock(sk);
719 }
720 EXPORT_SYMBOL(sock_set_reuseaddr);
721 
722 void sock_set_reuseport(struct sock *sk)
723 {
724 	lock_sock(sk);
725 	sk->sk_reuseport = true;
726 	release_sock(sk);
727 }
728 EXPORT_SYMBOL(sock_set_reuseport);
729 
730 void sock_no_linger(struct sock *sk)
731 {
732 	lock_sock(sk);
733 	sk->sk_lingertime = 0;
734 	sock_set_flag(sk, SOCK_LINGER);
735 	release_sock(sk);
736 }
737 EXPORT_SYMBOL(sock_no_linger);
738 
739 void sock_set_priority(struct sock *sk, u32 priority)
740 {
741 	lock_sock(sk);
742 	sk->sk_priority = priority;
743 	release_sock(sk);
744 }
745 EXPORT_SYMBOL(sock_set_priority);
746 
747 void sock_set_sndtimeo(struct sock *sk, s64 secs)
748 {
749 	lock_sock(sk);
750 	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
751 		sk->sk_sndtimeo = secs * HZ;
752 	else
753 		sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
754 	release_sock(sk);
755 }
756 EXPORT_SYMBOL(sock_set_sndtimeo);
757 
758 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
759 {
760 	if (val)  {
761 		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
762 		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
763 		sock_set_flag(sk, SOCK_RCVTSTAMP);
764 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
765 	} else {
766 		sock_reset_flag(sk, SOCK_RCVTSTAMP);
767 		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
768 	}
769 }
770 
771 void sock_enable_timestamps(struct sock *sk)
772 {
773 	lock_sock(sk);
774 	__sock_set_timestamps(sk, true, false, true);
775 	release_sock(sk);
776 }
777 EXPORT_SYMBOL(sock_enable_timestamps);
778 
779 void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
780 {
781 	switch (optname) {
782 	case SO_TIMESTAMP_OLD:
783 		__sock_set_timestamps(sk, valbool, false, false);
784 		break;
785 	case SO_TIMESTAMP_NEW:
786 		__sock_set_timestamps(sk, valbool, true, false);
787 		break;
788 	case SO_TIMESTAMPNS_OLD:
789 		__sock_set_timestamps(sk, valbool, false, true);
790 		break;
791 	case SO_TIMESTAMPNS_NEW:
792 		__sock_set_timestamps(sk, valbool, true, true);
793 		break;
794 	}
795 }
796 
797 int sock_set_timestamping(struct sock *sk, int optname, int val)
798 {
799 	if (val & ~SOF_TIMESTAMPING_MASK)
800 		return -EINVAL;
801 
802 	if (val & SOF_TIMESTAMPING_OPT_ID &&
803 	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
804 		if (sk->sk_protocol == IPPROTO_TCP &&
805 		    sk->sk_type == SOCK_STREAM) {
806 			if ((1 << sk->sk_state) &
807 			    (TCPF_CLOSE | TCPF_LISTEN))
808 				return -EINVAL;
809 			sk->sk_tskey = tcp_sk(sk)->snd_una;
810 		} else {
811 			sk->sk_tskey = 0;
812 		}
813 	}
814 
815 	if (val & SOF_TIMESTAMPING_OPT_STATS &&
816 	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
817 		return -EINVAL;
818 
819 	sk->sk_tsflags = val;
820 	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
821 
822 	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
823 		sock_enable_timestamp(sk,
824 				      SOCK_TIMESTAMPING_RX_SOFTWARE);
825 	else
826 		sock_disable_timestamp(sk,
827 				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
828 	return 0;
829 }
830 
831 void sock_set_keepalive(struct sock *sk)
832 {
833 	lock_sock(sk);
834 	if (sk->sk_prot->keepalive)
835 		sk->sk_prot->keepalive(sk, true);
836 	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
837 	release_sock(sk);
838 }
839 EXPORT_SYMBOL(sock_set_keepalive);
840 
841 static void __sock_set_rcvbuf(struct sock *sk, int val)
842 {
843 	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
844 	 * as a negative value.
845 	 */
846 	val = min_t(int, val, INT_MAX / 2);
847 	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
848 
849 	/* We double it on the way in to account for "struct sk_buff" etc.
850 	 * overhead.   Applications assume that the SO_RCVBUF setting they make
851 	 * will allow that much actual data to be received on that socket.
852 	 *
853 	 * Applications are unaware that "struct sk_buff" and other overheads
854 	 * allocate from the receive buffer during socket buffer allocation.
855 	 *
856 	 * And after considering the possible alternatives, returning the value
857 	 * we actually used in getsockopt is the most desirable behavior.
858 	 */
859 	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
860 }
861 
862 void sock_set_rcvbuf(struct sock *sk, int val)
863 {
864 	lock_sock(sk);
865 	__sock_set_rcvbuf(sk, val);
866 	release_sock(sk);
867 }
868 EXPORT_SYMBOL(sock_set_rcvbuf);
869 
870 static void __sock_set_mark(struct sock *sk, u32 val)
871 {
872 	if (val != sk->sk_mark) {
873 		sk->sk_mark = val;
874 		sk_dst_reset(sk);
875 	}
876 }
877 
878 void sock_set_mark(struct sock *sk, u32 val)
879 {
880 	lock_sock(sk);
881 	__sock_set_mark(sk, val);
882 	release_sock(sk);
883 }
884 EXPORT_SYMBOL(sock_set_mark);
885 
886 /*
887  *	This is meant for all protocols to use and covers goings on
888  *	at the socket level. Everything here is generic.
889  */
890 
891 int sock_setsockopt(struct socket *sock, int level, int optname,
892 		    sockptr_t optval, unsigned int optlen)
893 {
894 	struct sock_txtime sk_txtime;
895 	struct sock *sk = sock->sk;
896 	int val;
897 	int valbool;
898 	struct linger ling;
899 	int ret = 0;
900 
901 	/*
902 	 *	Options without arguments
903 	 */
904 
905 	if (optname == SO_BINDTODEVICE)
906 		return sock_setbindtodevice(sk, optval, optlen);
907 
908 	if (optlen < sizeof(int))
909 		return -EINVAL;
910 
911 	if (copy_from_sockptr(&val, optval, sizeof(val)))
912 		return -EFAULT;
913 
914 	valbool = val ? 1 : 0;
915 
916 	lock_sock(sk);
917 
918 	switch (optname) {
919 	case SO_DEBUG:
920 		if (val && !capable(CAP_NET_ADMIN))
921 			ret = -EACCES;
922 		else
923 			sock_valbool_flag(sk, SOCK_DBG, valbool);
924 		break;
925 	case SO_REUSEADDR:
926 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
927 		break;
928 	case SO_REUSEPORT:
929 		sk->sk_reuseport = valbool;
930 		break;
931 	case SO_TYPE:
932 	case SO_PROTOCOL:
933 	case SO_DOMAIN:
934 	case SO_ERROR:
935 		ret = -ENOPROTOOPT;
936 		break;
937 	case SO_DONTROUTE:
938 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
939 		sk_dst_reset(sk);
940 		break;
941 	case SO_BROADCAST:
942 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
943 		break;
944 	case SO_SNDBUF:
945 		/* Don't error on this BSD doesn't and if you think
946 		 * about it this is right. Otherwise apps have to
947 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
948 		 * are treated in BSD as hints
949 		 */
950 		val = min_t(u32, val, sysctl_wmem_max);
951 set_sndbuf:
952 		/* Ensure val * 2 fits into an int, to prevent max_t()
953 		 * from treating it as a negative value.
954 		 */
955 		val = min_t(int, val, INT_MAX / 2);
956 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
957 		WRITE_ONCE(sk->sk_sndbuf,
958 			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
959 		/* Wake up sending tasks if we upped the value. */
960 		sk->sk_write_space(sk);
961 		break;
962 
963 	case SO_SNDBUFFORCE:
964 		if (!capable(CAP_NET_ADMIN)) {
965 			ret = -EPERM;
966 			break;
967 		}
968 
969 		/* No negative values (to prevent underflow, as val will be
970 		 * multiplied by 2).
971 		 */
972 		if (val < 0)
973 			val = 0;
974 		goto set_sndbuf;
975 
976 	case SO_RCVBUF:
977 		/* Don't error on this BSD doesn't and if you think
978 		 * about it this is right. Otherwise apps have to
979 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
980 		 * are treated in BSD as hints
981 		 */
982 		__sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
983 		break;
984 
985 	case SO_RCVBUFFORCE:
986 		if (!capable(CAP_NET_ADMIN)) {
987 			ret = -EPERM;
988 			break;
989 		}
990 
991 		/* No negative values (to prevent underflow, as val will be
992 		 * multiplied by 2).
993 		 */
994 		__sock_set_rcvbuf(sk, max(val, 0));
995 		break;
996 
997 	case SO_KEEPALIVE:
998 		if (sk->sk_prot->keepalive)
999 			sk->sk_prot->keepalive(sk, valbool);
1000 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1001 		break;
1002 
1003 	case SO_OOBINLINE:
1004 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1005 		break;
1006 
1007 	case SO_NO_CHECK:
1008 		sk->sk_no_check_tx = valbool;
1009 		break;
1010 
1011 	case SO_PRIORITY:
1012 		if ((val >= 0 && val <= 6) ||
1013 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1014 			sk->sk_priority = val;
1015 		else
1016 			ret = -EPERM;
1017 		break;
1018 
1019 	case SO_LINGER:
1020 		if (optlen < sizeof(ling)) {
1021 			ret = -EINVAL;	/* 1003.1g */
1022 			break;
1023 		}
1024 		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1025 			ret = -EFAULT;
1026 			break;
1027 		}
1028 		if (!ling.l_onoff)
1029 			sock_reset_flag(sk, SOCK_LINGER);
1030 		else {
1031 #if (BITS_PER_LONG == 32)
1032 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1033 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1034 			else
1035 #endif
1036 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1037 			sock_set_flag(sk, SOCK_LINGER);
1038 		}
1039 		break;
1040 
1041 	case SO_BSDCOMPAT:
1042 		break;
1043 
1044 	case SO_PASSCRED:
1045 		if (valbool)
1046 			set_bit(SOCK_PASSCRED, &sock->flags);
1047 		else
1048 			clear_bit(SOCK_PASSCRED, &sock->flags);
1049 		break;
1050 
1051 	case SO_TIMESTAMP_OLD:
1052 	case SO_TIMESTAMP_NEW:
1053 	case SO_TIMESTAMPNS_OLD:
1054 	case SO_TIMESTAMPNS_NEW:
1055 		sock_set_timestamp(sk, valbool, optname);
1056 		break;
1057 
1058 	case SO_TIMESTAMPING_NEW:
1059 	case SO_TIMESTAMPING_OLD:
1060 		ret = sock_set_timestamping(sk, optname, val);
1061 		break;
1062 
1063 	case SO_RCVLOWAT:
1064 		if (val < 0)
1065 			val = INT_MAX;
1066 		if (sock->ops->set_rcvlowat)
1067 			ret = sock->ops->set_rcvlowat(sk, val);
1068 		else
1069 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1070 		break;
1071 
1072 	case SO_RCVTIMEO_OLD:
1073 	case SO_RCVTIMEO_NEW:
1074 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1075 				       optlen, optname == SO_RCVTIMEO_OLD);
1076 		break;
1077 
1078 	case SO_SNDTIMEO_OLD:
1079 	case SO_SNDTIMEO_NEW:
1080 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1081 				       optlen, optname == SO_SNDTIMEO_OLD);
1082 		break;
1083 
1084 	case SO_ATTACH_FILTER: {
1085 		struct sock_fprog fprog;
1086 
1087 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1088 		if (!ret)
1089 			ret = sk_attach_filter(&fprog, sk);
1090 		break;
1091 	}
1092 	case SO_ATTACH_BPF:
1093 		ret = -EINVAL;
1094 		if (optlen == sizeof(u32)) {
1095 			u32 ufd;
1096 
1097 			ret = -EFAULT;
1098 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1099 				break;
1100 
1101 			ret = sk_attach_bpf(ufd, sk);
1102 		}
1103 		break;
1104 
1105 	case SO_ATTACH_REUSEPORT_CBPF: {
1106 		struct sock_fprog fprog;
1107 
1108 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1109 		if (!ret)
1110 			ret = sk_reuseport_attach_filter(&fprog, sk);
1111 		break;
1112 	}
1113 	case SO_ATTACH_REUSEPORT_EBPF:
1114 		ret = -EINVAL;
1115 		if (optlen == sizeof(u32)) {
1116 			u32 ufd;
1117 
1118 			ret = -EFAULT;
1119 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1120 				break;
1121 
1122 			ret = sk_reuseport_attach_bpf(ufd, sk);
1123 		}
1124 		break;
1125 
1126 	case SO_DETACH_REUSEPORT_BPF:
1127 		ret = reuseport_detach_prog(sk);
1128 		break;
1129 
1130 	case SO_DETACH_FILTER:
1131 		ret = sk_detach_filter(sk);
1132 		break;
1133 
1134 	case SO_LOCK_FILTER:
1135 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1136 			ret = -EPERM;
1137 		else
1138 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1139 		break;
1140 
1141 	case SO_PASSSEC:
1142 		if (valbool)
1143 			set_bit(SOCK_PASSSEC, &sock->flags);
1144 		else
1145 			clear_bit(SOCK_PASSSEC, &sock->flags);
1146 		break;
1147 	case SO_MARK:
1148 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1149 			ret = -EPERM;
1150 			break;
1151 		}
1152 
1153 		__sock_set_mark(sk, val);
1154 		break;
1155 
1156 	case SO_RXQ_OVFL:
1157 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1158 		break;
1159 
1160 	case SO_WIFI_STATUS:
1161 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1162 		break;
1163 
1164 	case SO_PEEK_OFF:
1165 		if (sock->ops->set_peek_off)
1166 			ret = sock->ops->set_peek_off(sk, val);
1167 		else
1168 			ret = -EOPNOTSUPP;
1169 		break;
1170 
1171 	case SO_NOFCS:
1172 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1173 		break;
1174 
1175 	case SO_SELECT_ERR_QUEUE:
1176 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1177 		break;
1178 
1179 #ifdef CONFIG_NET_RX_BUSY_POLL
1180 	case SO_BUSY_POLL:
1181 		/* allow unprivileged users to decrease the value */
1182 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1183 			ret = -EPERM;
1184 		else {
1185 			if (val < 0)
1186 				ret = -EINVAL;
1187 			else
1188 				sk->sk_ll_usec = val;
1189 		}
1190 		break;
1191 	case SO_PREFER_BUSY_POLL:
1192 		if (valbool && !capable(CAP_NET_ADMIN))
1193 			ret = -EPERM;
1194 		else
1195 			WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1196 		break;
1197 	case SO_BUSY_POLL_BUDGET:
1198 		if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) {
1199 			ret = -EPERM;
1200 		} else {
1201 			if (val < 0 || val > U16_MAX)
1202 				ret = -EINVAL;
1203 			else
1204 				WRITE_ONCE(sk->sk_busy_poll_budget, val);
1205 		}
1206 		break;
1207 #endif
1208 
1209 	case SO_MAX_PACING_RATE:
1210 		{
1211 		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1212 
1213 		if (sizeof(ulval) != sizeof(val) &&
1214 		    optlen >= sizeof(ulval) &&
1215 		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1216 			ret = -EFAULT;
1217 			break;
1218 		}
1219 		if (ulval != ~0UL)
1220 			cmpxchg(&sk->sk_pacing_status,
1221 				SK_PACING_NONE,
1222 				SK_PACING_NEEDED);
1223 		sk->sk_max_pacing_rate = ulval;
1224 		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1225 		break;
1226 		}
1227 	case SO_INCOMING_CPU:
1228 		WRITE_ONCE(sk->sk_incoming_cpu, val);
1229 		break;
1230 
1231 	case SO_CNX_ADVICE:
1232 		if (val == 1)
1233 			dst_negative_advice(sk);
1234 		break;
1235 
1236 	case SO_ZEROCOPY:
1237 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1238 			if (!((sk->sk_type == SOCK_STREAM &&
1239 			       sk->sk_protocol == IPPROTO_TCP) ||
1240 			      (sk->sk_type == SOCK_DGRAM &&
1241 			       sk->sk_protocol == IPPROTO_UDP)))
1242 				ret = -ENOTSUPP;
1243 		} else if (sk->sk_family != PF_RDS) {
1244 			ret = -ENOTSUPP;
1245 		}
1246 		if (!ret) {
1247 			if (val < 0 || val > 1)
1248 				ret = -EINVAL;
1249 			else
1250 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1251 		}
1252 		break;
1253 
1254 	case SO_TXTIME:
1255 		if (optlen != sizeof(struct sock_txtime)) {
1256 			ret = -EINVAL;
1257 			break;
1258 		} else if (copy_from_sockptr(&sk_txtime, optval,
1259 			   sizeof(struct sock_txtime))) {
1260 			ret = -EFAULT;
1261 			break;
1262 		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1263 			ret = -EINVAL;
1264 			break;
1265 		}
1266 		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1267 		 * scheduler has enough safe guards.
1268 		 */
1269 		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1270 		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1271 			ret = -EPERM;
1272 			break;
1273 		}
1274 		sock_valbool_flag(sk, SOCK_TXTIME, true);
1275 		sk->sk_clockid = sk_txtime.clockid;
1276 		sk->sk_txtime_deadline_mode =
1277 			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1278 		sk->sk_txtime_report_errors =
1279 			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1280 		break;
1281 
1282 	case SO_BINDTOIFINDEX:
1283 		ret = sock_bindtoindex_locked(sk, val);
1284 		break;
1285 
1286 	default:
1287 		ret = -ENOPROTOOPT;
1288 		break;
1289 	}
1290 	release_sock(sk);
1291 	return ret;
1292 }
1293 EXPORT_SYMBOL(sock_setsockopt);
1294 
1295 
1296 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1297 			  struct ucred *ucred)
1298 {
1299 	ucred->pid = pid_vnr(pid);
1300 	ucred->uid = ucred->gid = -1;
1301 	if (cred) {
1302 		struct user_namespace *current_ns = current_user_ns();
1303 
1304 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1305 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1306 	}
1307 }
1308 
1309 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1310 {
1311 	struct user_namespace *user_ns = current_user_ns();
1312 	int i;
1313 
1314 	for (i = 0; i < src->ngroups; i++)
1315 		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1316 			return -EFAULT;
1317 
1318 	return 0;
1319 }
1320 
1321 int sock_getsockopt(struct socket *sock, int level, int optname,
1322 		    char __user *optval, int __user *optlen)
1323 {
1324 	struct sock *sk = sock->sk;
1325 
1326 	union {
1327 		int val;
1328 		u64 val64;
1329 		unsigned long ulval;
1330 		struct linger ling;
1331 		struct old_timeval32 tm32;
1332 		struct __kernel_old_timeval tm;
1333 		struct  __kernel_sock_timeval stm;
1334 		struct sock_txtime txtime;
1335 	} v;
1336 
1337 	int lv = sizeof(int);
1338 	int len;
1339 
1340 	if (get_user(len, optlen))
1341 		return -EFAULT;
1342 	if (len < 0)
1343 		return -EINVAL;
1344 
1345 	memset(&v, 0, sizeof(v));
1346 
1347 	switch (optname) {
1348 	case SO_DEBUG:
1349 		v.val = sock_flag(sk, SOCK_DBG);
1350 		break;
1351 
1352 	case SO_DONTROUTE:
1353 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1354 		break;
1355 
1356 	case SO_BROADCAST:
1357 		v.val = sock_flag(sk, SOCK_BROADCAST);
1358 		break;
1359 
1360 	case SO_SNDBUF:
1361 		v.val = sk->sk_sndbuf;
1362 		break;
1363 
1364 	case SO_RCVBUF:
1365 		v.val = sk->sk_rcvbuf;
1366 		break;
1367 
1368 	case SO_REUSEADDR:
1369 		v.val = sk->sk_reuse;
1370 		break;
1371 
1372 	case SO_REUSEPORT:
1373 		v.val = sk->sk_reuseport;
1374 		break;
1375 
1376 	case SO_KEEPALIVE:
1377 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1378 		break;
1379 
1380 	case SO_TYPE:
1381 		v.val = sk->sk_type;
1382 		break;
1383 
1384 	case SO_PROTOCOL:
1385 		v.val = sk->sk_protocol;
1386 		break;
1387 
1388 	case SO_DOMAIN:
1389 		v.val = sk->sk_family;
1390 		break;
1391 
1392 	case SO_ERROR:
1393 		v.val = -sock_error(sk);
1394 		if (v.val == 0)
1395 			v.val = xchg(&sk->sk_err_soft, 0);
1396 		break;
1397 
1398 	case SO_OOBINLINE:
1399 		v.val = sock_flag(sk, SOCK_URGINLINE);
1400 		break;
1401 
1402 	case SO_NO_CHECK:
1403 		v.val = sk->sk_no_check_tx;
1404 		break;
1405 
1406 	case SO_PRIORITY:
1407 		v.val = sk->sk_priority;
1408 		break;
1409 
1410 	case SO_LINGER:
1411 		lv		= sizeof(v.ling);
1412 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1413 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1414 		break;
1415 
1416 	case SO_BSDCOMPAT:
1417 		break;
1418 
1419 	case SO_TIMESTAMP_OLD:
1420 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1421 				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1422 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1423 		break;
1424 
1425 	case SO_TIMESTAMPNS_OLD:
1426 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1427 		break;
1428 
1429 	case SO_TIMESTAMP_NEW:
1430 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1431 		break;
1432 
1433 	case SO_TIMESTAMPNS_NEW:
1434 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1435 		break;
1436 
1437 	case SO_TIMESTAMPING_OLD:
1438 		v.val = sk->sk_tsflags;
1439 		break;
1440 
1441 	case SO_RCVTIMEO_OLD:
1442 	case SO_RCVTIMEO_NEW:
1443 		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1444 		break;
1445 
1446 	case SO_SNDTIMEO_OLD:
1447 	case SO_SNDTIMEO_NEW:
1448 		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1449 		break;
1450 
1451 	case SO_RCVLOWAT:
1452 		v.val = sk->sk_rcvlowat;
1453 		break;
1454 
1455 	case SO_SNDLOWAT:
1456 		v.val = 1;
1457 		break;
1458 
1459 	case SO_PASSCRED:
1460 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1461 		break;
1462 
1463 	case SO_PEERCRED:
1464 	{
1465 		struct ucred peercred;
1466 		if (len > sizeof(peercred))
1467 			len = sizeof(peercred);
1468 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1469 		if (copy_to_user(optval, &peercred, len))
1470 			return -EFAULT;
1471 		goto lenout;
1472 	}
1473 
1474 	case SO_PEERGROUPS:
1475 	{
1476 		int ret, n;
1477 
1478 		if (!sk->sk_peer_cred)
1479 			return -ENODATA;
1480 
1481 		n = sk->sk_peer_cred->group_info->ngroups;
1482 		if (len < n * sizeof(gid_t)) {
1483 			len = n * sizeof(gid_t);
1484 			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1485 		}
1486 		len = n * sizeof(gid_t);
1487 
1488 		ret = groups_to_user((gid_t __user *)optval,
1489 				     sk->sk_peer_cred->group_info);
1490 		if (ret)
1491 			return ret;
1492 		goto lenout;
1493 	}
1494 
1495 	case SO_PEERNAME:
1496 	{
1497 		char address[128];
1498 
1499 		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1500 		if (lv < 0)
1501 			return -ENOTCONN;
1502 		if (lv < len)
1503 			return -EINVAL;
1504 		if (copy_to_user(optval, address, len))
1505 			return -EFAULT;
1506 		goto lenout;
1507 	}
1508 
1509 	/* Dubious BSD thing... Probably nobody even uses it, but
1510 	 * the UNIX standard wants it for whatever reason... -DaveM
1511 	 */
1512 	case SO_ACCEPTCONN:
1513 		v.val = sk->sk_state == TCP_LISTEN;
1514 		break;
1515 
1516 	case SO_PASSSEC:
1517 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1518 		break;
1519 
1520 	case SO_PEERSEC:
1521 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1522 
1523 	case SO_MARK:
1524 		v.val = sk->sk_mark;
1525 		break;
1526 
1527 	case SO_RXQ_OVFL:
1528 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1529 		break;
1530 
1531 	case SO_WIFI_STATUS:
1532 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1533 		break;
1534 
1535 	case SO_PEEK_OFF:
1536 		if (!sock->ops->set_peek_off)
1537 			return -EOPNOTSUPP;
1538 
1539 		v.val = sk->sk_peek_off;
1540 		break;
1541 	case SO_NOFCS:
1542 		v.val = sock_flag(sk, SOCK_NOFCS);
1543 		break;
1544 
1545 	case SO_BINDTODEVICE:
1546 		return sock_getbindtodevice(sk, optval, optlen, len);
1547 
1548 	case SO_GET_FILTER:
1549 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1550 		if (len < 0)
1551 			return len;
1552 
1553 		goto lenout;
1554 
1555 	case SO_LOCK_FILTER:
1556 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1557 		break;
1558 
1559 	case SO_BPF_EXTENSIONS:
1560 		v.val = bpf_tell_extensions();
1561 		break;
1562 
1563 	case SO_SELECT_ERR_QUEUE:
1564 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1565 		break;
1566 
1567 #ifdef CONFIG_NET_RX_BUSY_POLL
1568 	case SO_BUSY_POLL:
1569 		v.val = sk->sk_ll_usec;
1570 		break;
1571 	case SO_PREFER_BUSY_POLL:
1572 		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1573 		break;
1574 #endif
1575 
1576 	case SO_MAX_PACING_RATE:
1577 		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1578 			lv = sizeof(v.ulval);
1579 			v.ulval = sk->sk_max_pacing_rate;
1580 		} else {
1581 			/* 32bit version */
1582 			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1583 		}
1584 		break;
1585 
1586 	case SO_INCOMING_CPU:
1587 		v.val = READ_ONCE(sk->sk_incoming_cpu);
1588 		break;
1589 
1590 	case SO_MEMINFO:
1591 	{
1592 		u32 meminfo[SK_MEMINFO_VARS];
1593 
1594 		sk_get_meminfo(sk, meminfo);
1595 
1596 		len = min_t(unsigned int, len, sizeof(meminfo));
1597 		if (copy_to_user(optval, &meminfo, len))
1598 			return -EFAULT;
1599 
1600 		goto lenout;
1601 	}
1602 
1603 #ifdef CONFIG_NET_RX_BUSY_POLL
1604 	case SO_INCOMING_NAPI_ID:
1605 		v.val = READ_ONCE(sk->sk_napi_id);
1606 
1607 		/* aggregate non-NAPI IDs down to 0 */
1608 		if (v.val < MIN_NAPI_ID)
1609 			v.val = 0;
1610 
1611 		break;
1612 #endif
1613 
1614 	case SO_COOKIE:
1615 		lv = sizeof(u64);
1616 		if (len < lv)
1617 			return -EINVAL;
1618 		v.val64 = sock_gen_cookie(sk);
1619 		break;
1620 
1621 	case SO_ZEROCOPY:
1622 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1623 		break;
1624 
1625 	case SO_TXTIME:
1626 		lv = sizeof(v.txtime);
1627 		v.txtime.clockid = sk->sk_clockid;
1628 		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1629 				  SOF_TXTIME_DEADLINE_MODE : 0;
1630 		v.txtime.flags |= sk->sk_txtime_report_errors ?
1631 				  SOF_TXTIME_REPORT_ERRORS : 0;
1632 		break;
1633 
1634 	case SO_BINDTOIFINDEX:
1635 		v.val = sk->sk_bound_dev_if;
1636 		break;
1637 
1638 	default:
1639 		/* We implement the SO_SNDLOWAT etc to not be settable
1640 		 * (1003.1g 7).
1641 		 */
1642 		return -ENOPROTOOPT;
1643 	}
1644 
1645 	if (len > lv)
1646 		len = lv;
1647 	if (copy_to_user(optval, &v, len))
1648 		return -EFAULT;
1649 lenout:
1650 	if (put_user(len, optlen))
1651 		return -EFAULT;
1652 	return 0;
1653 }
1654 
1655 /*
1656  * Initialize an sk_lock.
1657  *
1658  * (We also register the sk_lock with the lock validator.)
1659  */
1660 static inline void sock_lock_init(struct sock *sk)
1661 {
1662 	if (sk->sk_kern_sock)
1663 		sock_lock_init_class_and_name(
1664 			sk,
1665 			af_family_kern_slock_key_strings[sk->sk_family],
1666 			af_family_kern_slock_keys + sk->sk_family,
1667 			af_family_kern_key_strings[sk->sk_family],
1668 			af_family_kern_keys + sk->sk_family);
1669 	else
1670 		sock_lock_init_class_and_name(
1671 			sk,
1672 			af_family_slock_key_strings[sk->sk_family],
1673 			af_family_slock_keys + sk->sk_family,
1674 			af_family_key_strings[sk->sk_family],
1675 			af_family_keys + sk->sk_family);
1676 }
1677 
1678 /*
1679  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1680  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1681  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1682  */
1683 static void sock_copy(struct sock *nsk, const struct sock *osk)
1684 {
1685 	const struct proto *prot = READ_ONCE(osk->sk_prot);
1686 #ifdef CONFIG_SECURITY_NETWORK
1687 	void *sptr = nsk->sk_security;
1688 #endif
1689 
1690 	/* If we move sk_tx_queue_mapping out of the private section,
1691 	 * we must check if sk_tx_queue_clear() is called after
1692 	 * sock_copy() in sk_clone_lock().
1693 	 */
1694 	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
1695 		     offsetof(struct sock, sk_dontcopy_begin) ||
1696 		     offsetof(struct sock, sk_tx_queue_mapping) >=
1697 		     offsetof(struct sock, sk_dontcopy_end));
1698 
1699 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1700 
1701 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1702 	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1703 
1704 #ifdef CONFIG_SECURITY_NETWORK
1705 	nsk->sk_security = sptr;
1706 	security_sk_clone(osk, nsk);
1707 #endif
1708 }
1709 
1710 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1711 		int family)
1712 {
1713 	struct sock *sk;
1714 	struct kmem_cache *slab;
1715 
1716 	slab = prot->slab;
1717 	if (slab != NULL) {
1718 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1719 		if (!sk)
1720 			return sk;
1721 		if (want_init_on_alloc(priority))
1722 			sk_prot_clear_nulls(sk, prot->obj_size);
1723 	} else
1724 		sk = kmalloc(prot->obj_size, priority);
1725 
1726 	if (sk != NULL) {
1727 		if (security_sk_alloc(sk, family, priority))
1728 			goto out_free;
1729 
1730 		if (!try_module_get(prot->owner))
1731 			goto out_free_sec;
1732 	}
1733 
1734 	return sk;
1735 
1736 out_free_sec:
1737 	security_sk_free(sk);
1738 out_free:
1739 	if (slab != NULL)
1740 		kmem_cache_free(slab, sk);
1741 	else
1742 		kfree(sk);
1743 	return NULL;
1744 }
1745 
1746 static void sk_prot_free(struct proto *prot, struct sock *sk)
1747 {
1748 	struct kmem_cache *slab;
1749 	struct module *owner;
1750 
1751 	owner = prot->owner;
1752 	slab = prot->slab;
1753 
1754 	cgroup_sk_free(&sk->sk_cgrp_data);
1755 	mem_cgroup_sk_free(sk);
1756 	security_sk_free(sk);
1757 	if (slab != NULL)
1758 		kmem_cache_free(slab, sk);
1759 	else
1760 		kfree(sk);
1761 	module_put(owner);
1762 }
1763 
1764 /**
1765  *	sk_alloc - All socket objects are allocated here
1766  *	@net: the applicable net namespace
1767  *	@family: protocol family
1768  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1769  *	@prot: struct proto associated with this new sock instance
1770  *	@kern: is this to be a kernel socket?
1771  */
1772 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1773 		      struct proto *prot, int kern)
1774 {
1775 	struct sock *sk;
1776 
1777 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1778 	if (sk) {
1779 		sk->sk_family = family;
1780 		/*
1781 		 * See comment in struct sock definition to understand
1782 		 * why we need sk_prot_creator -acme
1783 		 */
1784 		sk->sk_prot = sk->sk_prot_creator = prot;
1785 		sk->sk_kern_sock = kern;
1786 		sock_lock_init(sk);
1787 		sk->sk_net_refcnt = kern ? 0 : 1;
1788 		if (likely(sk->sk_net_refcnt)) {
1789 			get_net(net);
1790 			sock_inuse_add(net, 1);
1791 		}
1792 
1793 		sock_net_set(sk, net);
1794 		refcount_set(&sk->sk_wmem_alloc, 1);
1795 
1796 		mem_cgroup_sk_alloc(sk);
1797 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1798 		sock_update_classid(&sk->sk_cgrp_data);
1799 		sock_update_netprioidx(&sk->sk_cgrp_data);
1800 		sk_tx_queue_clear(sk);
1801 	}
1802 
1803 	return sk;
1804 }
1805 EXPORT_SYMBOL(sk_alloc);
1806 
1807 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1808  * grace period. This is the case for UDP sockets and TCP listeners.
1809  */
1810 static void __sk_destruct(struct rcu_head *head)
1811 {
1812 	struct sock *sk = container_of(head, struct sock, sk_rcu);
1813 	struct sk_filter *filter;
1814 
1815 	if (sk->sk_destruct)
1816 		sk->sk_destruct(sk);
1817 
1818 	filter = rcu_dereference_check(sk->sk_filter,
1819 				       refcount_read(&sk->sk_wmem_alloc) == 0);
1820 	if (filter) {
1821 		sk_filter_uncharge(sk, filter);
1822 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1823 	}
1824 
1825 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1826 
1827 #ifdef CONFIG_BPF_SYSCALL
1828 	bpf_sk_storage_free(sk);
1829 #endif
1830 
1831 	if (atomic_read(&sk->sk_omem_alloc))
1832 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1833 			 __func__, atomic_read(&sk->sk_omem_alloc));
1834 
1835 	if (sk->sk_frag.page) {
1836 		put_page(sk->sk_frag.page);
1837 		sk->sk_frag.page = NULL;
1838 	}
1839 
1840 	if (sk->sk_peer_cred)
1841 		put_cred(sk->sk_peer_cred);
1842 	put_pid(sk->sk_peer_pid);
1843 	if (likely(sk->sk_net_refcnt))
1844 		put_net(sock_net(sk));
1845 	sk_prot_free(sk->sk_prot_creator, sk);
1846 }
1847 
1848 void sk_destruct(struct sock *sk)
1849 {
1850 	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1851 
1852 	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1853 		reuseport_detach_sock(sk);
1854 		use_call_rcu = true;
1855 	}
1856 
1857 	if (use_call_rcu)
1858 		call_rcu(&sk->sk_rcu, __sk_destruct);
1859 	else
1860 		__sk_destruct(&sk->sk_rcu);
1861 }
1862 
1863 static void __sk_free(struct sock *sk)
1864 {
1865 	if (likely(sk->sk_net_refcnt))
1866 		sock_inuse_add(sock_net(sk), -1);
1867 
1868 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1869 		sock_diag_broadcast_destroy(sk);
1870 	else
1871 		sk_destruct(sk);
1872 }
1873 
1874 void sk_free(struct sock *sk)
1875 {
1876 	/*
1877 	 * We subtract one from sk_wmem_alloc and can know if
1878 	 * some packets are still in some tx queue.
1879 	 * If not null, sock_wfree() will call __sk_free(sk) later
1880 	 */
1881 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1882 		__sk_free(sk);
1883 }
1884 EXPORT_SYMBOL(sk_free);
1885 
1886 static void sk_init_common(struct sock *sk)
1887 {
1888 	skb_queue_head_init(&sk->sk_receive_queue);
1889 	skb_queue_head_init(&sk->sk_write_queue);
1890 	skb_queue_head_init(&sk->sk_error_queue);
1891 
1892 	rwlock_init(&sk->sk_callback_lock);
1893 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1894 			af_rlock_keys + sk->sk_family,
1895 			af_family_rlock_key_strings[sk->sk_family]);
1896 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1897 			af_wlock_keys + sk->sk_family,
1898 			af_family_wlock_key_strings[sk->sk_family]);
1899 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1900 			af_elock_keys + sk->sk_family,
1901 			af_family_elock_key_strings[sk->sk_family]);
1902 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1903 			af_callback_keys + sk->sk_family,
1904 			af_family_clock_key_strings[sk->sk_family]);
1905 }
1906 
1907 /**
1908  *	sk_clone_lock - clone a socket, and lock its clone
1909  *	@sk: the socket to clone
1910  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1911  *
1912  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1913  */
1914 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1915 {
1916 	struct proto *prot = READ_ONCE(sk->sk_prot);
1917 	struct sk_filter *filter;
1918 	bool is_charged = true;
1919 	struct sock *newsk;
1920 
1921 	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
1922 	if (!newsk)
1923 		goto out;
1924 
1925 	sock_copy(newsk, sk);
1926 
1927 	newsk->sk_prot_creator = prot;
1928 
1929 	/* SANITY */
1930 	if (likely(newsk->sk_net_refcnt))
1931 		get_net(sock_net(newsk));
1932 	sk_node_init(&newsk->sk_node);
1933 	sock_lock_init(newsk);
1934 	bh_lock_sock(newsk);
1935 	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1936 	newsk->sk_backlog.len = 0;
1937 
1938 	atomic_set(&newsk->sk_rmem_alloc, 0);
1939 
1940 	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
1941 	refcount_set(&newsk->sk_wmem_alloc, 1);
1942 
1943 	atomic_set(&newsk->sk_omem_alloc, 0);
1944 	sk_init_common(newsk);
1945 
1946 	newsk->sk_dst_cache	= NULL;
1947 	newsk->sk_dst_pending_confirm = 0;
1948 	newsk->sk_wmem_queued	= 0;
1949 	newsk->sk_forward_alloc = 0;
1950 	atomic_set(&newsk->sk_drops, 0);
1951 	newsk->sk_send_head	= NULL;
1952 	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1953 	atomic_set(&newsk->sk_zckey, 0);
1954 
1955 	sock_reset_flag(newsk, SOCK_DONE);
1956 
1957 	/* sk->sk_memcg will be populated at accept() time */
1958 	newsk->sk_memcg = NULL;
1959 
1960 	cgroup_sk_clone(&newsk->sk_cgrp_data);
1961 
1962 	rcu_read_lock();
1963 	filter = rcu_dereference(sk->sk_filter);
1964 	if (filter != NULL)
1965 		/* though it's an empty new sock, the charging may fail
1966 		 * if sysctl_optmem_max was changed between creation of
1967 		 * original socket and cloning
1968 		 */
1969 		is_charged = sk_filter_charge(newsk, filter);
1970 	RCU_INIT_POINTER(newsk->sk_filter, filter);
1971 	rcu_read_unlock();
1972 
1973 	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1974 		/* We need to make sure that we don't uncharge the new
1975 		 * socket if we couldn't charge it in the first place
1976 		 * as otherwise we uncharge the parent's filter.
1977 		 */
1978 		if (!is_charged)
1979 			RCU_INIT_POINTER(newsk->sk_filter, NULL);
1980 		sk_free_unlock_clone(newsk);
1981 		newsk = NULL;
1982 		goto out;
1983 	}
1984 	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1985 
1986 	if (bpf_sk_storage_clone(sk, newsk)) {
1987 		sk_free_unlock_clone(newsk);
1988 		newsk = NULL;
1989 		goto out;
1990 	}
1991 
1992 	/* Clear sk_user_data if parent had the pointer tagged
1993 	 * as not suitable for copying when cloning.
1994 	 */
1995 	if (sk_user_data_is_nocopy(newsk))
1996 		newsk->sk_user_data = NULL;
1997 
1998 	newsk->sk_err	   = 0;
1999 	newsk->sk_err_soft = 0;
2000 	newsk->sk_priority = 0;
2001 	newsk->sk_incoming_cpu = raw_smp_processor_id();
2002 	if (likely(newsk->sk_net_refcnt))
2003 		sock_inuse_add(sock_net(newsk), 1);
2004 
2005 	/* Before updating sk_refcnt, we must commit prior changes to memory
2006 	 * (Documentation/RCU/rculist_nulls.rst for details)
2007 	 */
2008 	smp_wmb();
2009 	refcount_set(&newsk->sk_refcnt, 2);
2010 
2011 	/* Increment the counter in the same struct proto as the master
2012 	 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2013 	 * is the same as sk->sk_prot->socks, as this field was copied
2014 	 * with memcpy).
2015 	 *
2016 	 * This _changes_ the previous behaviour, where
2017 	 * tcp_create_openreq_child always was incrementing the
2018 	 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2019 	 * to be taken into account in all callers. -acme
2020 	 */
2021 	sk_refcnt_debug_inc(newsk);
2022 	sk_set_socket(newsk, NULL);
2023 	sk_tx_queue_clear(newsk);
2024 	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2025 
2026 	if (newsk->sk_prot->sockets_allocated)
2027 		sk_sockets_allocated_inc(newsk);
2028 
2029 	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2030 		net_enable_timestamp();
2031 out:
2032 	return newsk;
2033 }
2034 EXPORT_SYMBOL_GPL(sk_clone_lock);
2035 
2036 void sk_free_unlock_clone(struct sock *sk)
2037 {
2038 	/* It is still raw copy of parent, so invalidate
2039 	 * destructor and make plain sk_free() */
2040 	sk->sk_destruct = NULL;
2041 	bh_unlock_sock(sk);
2042 	sk_free(sk);
2043 }
2044 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2045 
2046 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2047 {
2048 	u32 max_segs = 1;
2049 
2050 	sk_dst_set(sk, dst);
2051 	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2052 	if (sk->sk_route_caps & NETIF_F_GSO)
2053 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2054 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
2055 	if (sk_can_gso(sk)) {
2056 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2057 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2058 		} else {
2059 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2060 			sk->sk_gso_max_size = dst->dev->gso_max_size;
2061 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2062 		}
2063 	}
2064 	sk->sk_gso_max_segs = max_segs;
2065 }
2066 EXPORT_SYMBOL_GPL(sk_setup_caps);
2067 
2068 /*
2069  *	Simple resource managers for sockets.
2070  */
2071 
2072 
2073 /*
2074  * Write buffer destructor automatically called from kfree_skb.
2075  */
2076 void sock_wfree(struct sk_buff *skb)
2077 {
2078 	struct sock *sk = skb->sk;
2079 	unsigned int len = skb->truesize;
2080 
2081 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2082 		/*
2083 		 * Keep a reference on sk_wmem_alloc, this will be released
2084 		 * after sk_write_space() call
2085 		 */
2086 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2087 		sk->sk_write_space(sk);
2088 		len = 1;
2089 	}
2090 	/*
2091 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2092 	 * could not do because of in-flight packets
2093 	 */
2094 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2095 		__sk_free(sk);
2096 }
2097 EXPORT_SYMBOL(sock_wfree);
2098 
2099 /* This variant of sock_wfree() is used by TCP,
2100  * since it sets SOCK_USE_WRITE_QUEUE.
2101  */
2102 void __sock_wfree(struct sk_buff *skb)
2103 {
2104 	struct sock *sk = skb->sk;
2105 
2106 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2107 		__sk_free(sk);
2108 }
2109 
2110 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2111 {
2112 	skb_orphan(skb);
2113 	skb->sk = sk;
2114 #ifdef CONFIG_INET
2115 	if (unlikely(!sk_fullsock(sk))) {
2116 		skb->destructor = sock_edemux;
2117 		sock_hold(sk);
2118 		return;
2119 	}
2120 #endif
2121 	skb->destructor = sock_wfree;
2122 	skb_set_hash_from_sk(skb, sk);
2123 	/*
2124 	 * We used to take a refcount on sk, but following operation
2125 	 * is enough to guarantee sk_free() wont free this sock until
2126 	 * all in-flight packets are completed
2127 	 */
2128 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2129 }
2130 EXPORT_SYMBOL(skb_set_owner_w);
2131 
2132 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2133 {
2134 #ifdef CONFIG_TLS_DEVICE
2135 	/* Drivers depend on in-order delivery for crypto offload,
2136 	 * partial orphan breaks out-of-order-OK logic.
2137 	 */
2138 	if (skb->decrypted)
2139 		return false;
2140 #endif
2141 	return (skb->destructor == sock_wfree ||
2142 		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2143 }
2144 
2145 /* This helper is used by netem, as it can hold packets in its
2146  * delay queue. We want to allow the owner socket to send more
2147  * packets, as if they were already TX completed by a typical driver.
2148  * But we also want to keep skb->sk set because some packet schedulers
2149  * rely on it (sch_fq for example).
2150  */
2151 void skb_orphan_partial(struct sk_buff *skb)
2152 {
2153 	if (skb_is_tcp_pure_ack(skb))
2154 		return;
2155 
2156 	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2157 		return;
2158 
2159 	skb_orphan(skb);
2160 }
2161 EXPORT_SYMBOL(skb_orphan_partial);
2162 
2163 /*
2164  * Read buffer destructor automatically called from kfree_skb.
2165  */
2166 void sock_rfree(struct sk_buff *skb)
2167 {
2168 	struct sock *sk = skb->sk;
2169 	unsigned int len = skb->truesize;
2170 
2171 	atomic_sub(len, &sk->sk_rmem_alloc);
2172 	sk_mem_uncharge(sk, len);
2173 }
2174 EXPORT_SYMBOL(sock_rfree);
2175 
2176 /*
2177  * Buffer destructor for skbs that are not used directly in read or write
2178  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2179  */
2180 void sock_efree(struct sk_buff *skb)
2181 {
2182 	sock_put(skb->sk);
2183 }
2184 EXPORT_SYMBOL(sock_efree);
2185 
2186 /* Buffer destructor for prefetch/receive path where reference count may
2187  * not be held, e.g. for listen sockets.
2188  */
2189 #ifdef CONFIG_INET
2190 void sock_pfree(struct sk_buff *skb)
2191 {
2192 	if (sk_is_refcounted(skb->sk))
2193 		sock_gen_put(skb->sk);
2194 }
2195 EXPORT_SYMBOL(sock_pfree);
2196 #endif /* CONFIG_INET */
2197 
2198 kuid_t sock_i_uid(struct sock *sk)
2199 {
2200 	kuid_t uid;
2201 
2202 	read_lock_bh(&sk->sk_callback_lock);
2203 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2204 	read_unlock_bh(&sk->sk_callback_lock);
2205 	return uid;
2206 }
2207 EXPORT_SYMBOL(sock_i_uid);
2208 
2209 unsigned long sock_i_ino(struct sock *sk)
2210 {
2211 	unsigned long ino;
2212 
2213 	read_lock_bh(&sk->sk_callback_lock);
2214 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2215 	read_unlock_bh(&sk->sk_callback_lock);
2216 	return ino;
2217 }
2218 EXPORT_SYMBOL(sock_i_ino);
2219 
2220 /*
2221  * Allocate a skb from the socket's send buffer.
2222  */
2223 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2224 			     gfp_t priority)
2225 {
2226 	if (force ||
2227 	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2228 		struct sk_buff *skb = alloc_skb(size, priority);
2229 
2230 		if (skb) {
2231 			skb_set_owner_w(skb, sk);
2232 			return skb;
2233 		}
2234 	}
2235 	return NULL;
2236 }
2237 EXPORT_SYMBOL(sock_wmalloc);
2238 
2239 static void sock_ofree(struct sk_buff *skb)
2240 {
2241 	struct sock *sk = skb->sk;
2242 
2243 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2244 }
2245 
2246 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2247 			     gfp_t priority)
2248 {
2249 	struct sk_buff *skb;
2250 
2251 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2252 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2253 	    sysctl_optmem_max)
2254 		return NULL;
2255 
2256 	skb = alloc_skb(size, priority);
2257 	if (!skb)
2258 		return NULL;
2259 
2260 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2261 	skb->sk = sk;
2262 	skb->destructor = sock_ofree;
2263 	return skb;
2264 }
2265 
2266 /*
2267  * Allocate a memory block from the socket's option memory buffer.
2268  */
2269 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2270 {
2271 	if ((unsigned int)size <= sysctl_optmem_max &&
2272 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2273 		void *mem;
2274 		/* First do the add, to avoid the race if kmalloc
2275 		 * might sleep.
2276 		 */
2277 		atomic_add(size, &sk->sk_omem_alloc);
2278 		mem = kmalloc(size, priority);
2279 		if (mem)
2280 			return mem;
2281 		atomic_sub(size, &sk->sk_omem_alloc);
2282 	}
2283 	return NULL;
2284 }
2285 EXPORT_SYMBOL(sock_kmalloc);
2286 
2287 /* Free an option memory block. Note, we actually want the inline
2288  * here as this allows gcc to detect the nullify and fold away the
2289  * condition entirely.
2290  */
2291 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2292 				  const bool nullify)
2293 {
2294 	if (WARN_ON_ONCE(!mem))
2295 		return;
2296 	if (nullify)
2297 		kfree_sensitive(mem);
2298 	else
2299 		kfree(mem);
2300 	atomic_sub(size, &sk->sk_omem_alloc);
2301 }
2302 
2303 void sock_kfree_s(struct sock *sk, void *mem, int size)
2304 {
2305 	__sock_kfree_s(sk, mem, size, false);
2306 }
2307 EXPORT_SYMBOL(sock_kfree_s);
2308 
2309 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2310 {
2311 	__sock_kfree_s(sk, mem, size, true);
2312 }
2313 EXPORT_SYMBOL(sock_kzfree_s);
2314 
2315 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2316    I think, these locks should be removed for datagram sockets.
2317  */
2318 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2319 {
2320 	DEFINE_WAIT(wait);
2321 
2322 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2323 	for (;;) {
2324 		if (!timeo)
2325 			break;
2326 		if (signal_pending(current))
2327 			break;
2328 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2329 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2330 		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2331 			break;
2332 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2333 			break;
2334 		if (sk->sk_err)
2335 			break;
2336 		timeo = schedule_timeout(timeo);
2337 	}
2338 	finish_wait(sk_sleep(sk), &wait);
2339 	return timeo;
2340 }
2341 
2342 
2343 /*
2344  *	Generic send/receive buffer handlers
2345  */
2346 
2347 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2348 				     unsigned long data_len, int noblock,
2349 				     int *errcode, int max_page_order)
2350 {
2351 	struct sk_buff *skb;
2352 	long timeo;
2353 	int err;
2354 
2355 	timeo = sock_sndtimeo(sk, noblock);
2356 	for (;;) {
2357 		err = sock_error(sk);
2358 		if (err != 0)
2359 			goto failure;
2360 
2361 		err = -EPIPE;
2362 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2363 			goto failure;
2364 
2365 		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2366 			break;
2367 
2368 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2369 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2370 		err = -EAGAIN;
2371 		if (!timeo)
2372 			goto failure;
2373 		if (signal_pending(current))
2374 			goto interrupted;
2375 		timeo = sock_wait_for_wmem(sk, timeo);
2376 	}
2377 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2378 				   errcode, sk->sk_allocation);
2379 	if (skb)
2380 		skb_set_owner_w(skb, sk);
2381 	return skb;
2382 
2383 interrupted:
2384 	err = sock_intr_errno(timeo);
2385 failure:
2386 	*errcode = err;
2387 	return NULL;
2388 }
2389 EXPORT_SYMBOL(sock_alloc_send_pskb);
2390 
2391 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2392 				    int noblock, int *errcode)
2393 {
2394 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2395 }
2396 EXPORT_SYMBOL(sock_alloc_send_skb);
2397 
2398 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2399 		     struct sockcm_cookie *sockc)
2400 {
2401 	u32 tsflags;
2402 
2403 	switch (cmsg->cmsg_type) {
2404 	case SO_MARK:
2405 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2406 			return -EPERM;
2407 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2408 			return -EINVAL;
2409 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2410 		break;
2411 	case SO_TIMESTAMPING_OLD:
2412 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2413 			return -EINVAL;
2414 
2415 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2416 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2417 			return -EINVAL;
2418 
2419 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2420 		sockc->tsflags |= tsflags;
2421 		break;
2422 	case SCM_TXTIME:
2423 		if (!sock_flag(sk, SOCK_TXTIME))
2424 			return -EINVAL;
2425 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2426 			return -EINVAL;
2427 		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2428 		break;
2429 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2430 	case SCM_RIGHTS:
2431 	case SCM_CREDENTIALS:
2432 		break;
2433 	default:
2434 		return -EINVAL;
2435 	}
2436 	return 0;
2437 }
2438 EXPORT_SYMBOL(__sock_cmsg_send);
2439 
2440 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2441 		   struct sockcm_cookie *sockc)
2442 {
2443 	struct cmsghdr *cmsg;
2444 	int ret;
2445 
2446 	for_each_cmsghdr(cmsg, msg) {
2447 		if (!CMSG_OK(msg, cmsg))
2448 			return -EINVAL;
2449 		if (cmsg->cmsg_level != SOL_SOCKET)
2450 			continue;
2451 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2452 		if (ret)
2453 			return ret;
2454 	}
2455 	return 0;
2456 }
2457 EXPORT_SYMBOL(sock_cmsg_send);
2458 
2459 static void sk_enter_memory_pressure(struct sock *sk)
2460 {
2461 	if (!sk->sk_prot->enter_memory_pressure)
2462 		return;
2463 
2464 	sk->sk_prot->enter_memory_pressure(sk);
2465 }
2466 
2467 static void sk_leave_memory_pressure(struct sock *sk)
2468 {
2469 	if (sk->sk_prot->leave_memory_pressure) {
2470 		sk->sk_prot->leave_memory_pressure(sk);
2471 	} else {
2472 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2473 
2474 		if (memory_pressure && READ_ONCE(*memory_pressure))
2475 			WRITE_ONCE(*memory_pressure, 0);
2476 	}
2477 }
2478 
2479 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2480 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2481 
2482 /**
2483  * skb_page_frag_refill - check that a page_frag contains enough room
2484  * @sz: minimum size of the fragment we want to get
2485  * @pfrag: pointer to page_frag
2486  * @gfp: priority for memory allocation
2487  *
2488  * Note: While this allocator tries to use high order pages, there is
2489  * no guarantee that allocations succeed. Therefore, @sz MUST be
2490  * less or equal than PAGE_SIZE.
2491  */
2492 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2493 {
2494 	if (pfrag->page) {
2495 		if (page_ref_count(pfrag->page) == 1) {
2496 			pfrag->offset = 0;
2497 			return true;
2498 		}
2499 		if (pfrag->offset + sz <= pfrag->size)
2500 			return true;
2501 		put_page(pfrag->page);
2502 	}
2503 
2504 	pfrag->offset = 0;
2505 	if (SKB_FRAG_PAGE_ORDER &&
2506 	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2507 		/* Avoid direct reclaim but allow kswapd to wake */
2508 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2509 					  __GFP_COMP | __GFP_NOWARN |
2510 					  __GFP_NORETRY,
2511 					  SKB_FRAG_PAGE_ORDER);
2512 		if (likely(pfrag->page)) {
2513 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2514 			return true;
2515 		}
2516 	}
2517 	pfrag->page = alloc_page(gfp);
2518 	if (likely(pfrag->page)) {
2519 		pfrag->size = PAGE_SIZE;
2520 		return true;
2521 	}
2522 	return false;
2523 }
2524 EXPORT_SYMBOL(skb_page_frag_refill);
2525 
2526 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2527 {
2528 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2529 		return true;
2530 
2531 	sk_enter_memory_pressure(sk);
2532 	sk_stream_moderate_sndbuf(sk);
2533 	return false;
2534 }
2535 EXPORT_SYMBOL(sk_page_frag_refill);
2536 
2537 void __lock_sock(struct sock *sk)
2538 	__releases(&sk->sk_lock.slock)
2539 	__acquires(&sk->sk_lock.slock)
2540 {
2541 	DEFINE_WAIT(wait);
2542 
2543 	for (;;) {
2544 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2545 					TASK_UNINTERRUPTIBLE);
2546 		spin_unlock_bh(&sk->sk_lock.slock);
2547 		schedule();
2548 		spin_lock_bh(&sk->sk_lock.slock);
2549 		if (!sock_owned_by_user(sk))
2550 			break;
2551 	}
2552 	finish_wait(&sk->sk_lock.wq, &wait);
2553 }
2554 
2555 void __release_sock(struct sock *sk)
2556 	__releases(&sk->sk_lock.slock)
2557 	__acquires(&sk->sk_lock.slock)
2558 {
2559 	struct sk_buff *skb, *next;
2560 
2561 	while ((skb = sk->sk_backlog.head) != NULL) {
2562 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2563 
2564 		spin_unlock_bh(&sk->sk_lock.slock);
2565 
2566 		do {
2567 			next = skb->next;
2568 			prefetch(next);
2569 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2570 			skb_mark_not_on_list(skb);
2571 			sk_backlog_rcv(sk, skb);
2572 
2573 			cond_resched();
2574 
2575 			skb = next;
2576 		} while (skb != NULL);
2577 
2578 		spin_lock_bh(&sk->sk_lock.slock);
2579 	}
2580 
2581 	/*
2582 	 * Doing the zeroing here guarantee we can not loop forever
2583 	 * while a wild producer attempts to flood us.
2584 	 */
2585 	sk->sk_backlog.len = 0;
2586 }
2587 
2588 void __sk_flush_backlog(struct sock *sk)
2589 {
2590 	spin_lock_bh(&sk->sk_lock.slock);
2591 	__release_sock(sk);
2592 	spin_unlock_bh(&sk->sk_lock.slock);
2593 }
2594 
2595 /**
2596  * sk_wait_data - wait for data to arrive at sk_receive_queue
2597  * @sk:    sock to wait on
2598  * @timeo: for how long
2599  * @skb:   last skb seen on sk_receive_queue
2600  *
2601  * Now socket state including sk->sk_err is changed only under lock,
2602  * hence we may omit checks after joining wait queue.
2603  * We check receive queue before schedule() only as optimization;
2604  * it is very likely that release_sock() added new data.
2605  */
2606 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2607 {
2608 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2609 	int rc;
2610 
2611 	add_wait_queue(sk_sleep(sk), &wait);
2612 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2613 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2614 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2615 	remove_wait_queue(sk_sleep(sk), &wait);
2616 	return rc;
2617 }
2618 EXPORT_SYMBOL(sk_wait_data);
2619 
2620 /**
2621  *	__sk_mem_raise_allocated - increase memory_allocated
2622  *	@sk: socket
2623  *	@size: memory size to allocate
2624  *	@amt: pages to allocate
2625  *	@kind: allocation type
2626  *
2627  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2628  */
2629 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2630 {
2631 	struct proto *prot = sk->sk_prot;
2632 	long allocated = sk_memory_allocated_add(sk, amt);
2633 	bool charged = true;
2634 
2635 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2636 	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2637 		goto suppress_allocation;
2638 
2639 	/* Under limit. */
2640 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2641 		sk_leave_memory_pressure(sk);
2642 		return 1;
2643 	}
2644 
2645 	/* Under pressure. */
2646 	if (allocated > sk_prot_mem_limits(sk, 1))
2647 		sk_enter_memory_pressure(sk);
2648 
2649 	/* Over hard limit. */
2650 	if (allocated > sk_prot_mem_limits(sk, 2))
2651 		goto suppress_allocation;
2652 
2653 	/* guarantee minimum buffer size under pressure */
2654 	if (kind == SK_MEM_RECV) {
2655 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2656 			return 1;
2657 
2658 	} else { /* SK_MEM_SEND */
2659 		int wmem0 = sk_get_wmem0(sk, prot);
2660 
2661 		if (sk->sk_type == SOCK_STREAM) {
2662 			if (sk->sk_wmem_queued < wmem0)
2663 				return 1;
2664 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2665 				return 1;
2666 		}
2667 	}
2668 
2669 	if (sk_has_memory_pressure(sk)) {
2670 		u64 alloc;
2671 
2672 		if (!sk_under_memory_pressure(sk))
2673 			return 1;
2674 		alloc = sk_sockets_allocated_read_positive(sk);
2675 		if (sk_prot_mem_limits(sk, 2) > alloc *
2676 		    sk_mem_pages(sk->sk_wmem_queued +
2677 				 atomic_read(&sk->sk_rmem_alloc) +
2678 				 sk->sk_forward_alloc))
2679 			return 1;
2680 	}
2681 
2682 suppress_allocation:
2683 
2684 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2685 		sk_stream_moderate_sndbuf(sk);
2686 
2687 		/* Fail only if socket is _under_ its sndbuf.
2688 		 * In this case we cannot block, so that we have to fail.
2689 		 */
2690 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2691 			return 1;
2692 	}
2693 
2694 	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2695 		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2696 
2697 	sk_memory_allocated_sub(sk, amt);
2698 
2699 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2700 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2701 
2702 	return 0;
2703 }
2704 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2705 
2706 /**
2707  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2708  *	@sk: socket
2709  *	@size: memory size to allocate
2710  *	@kind: allocation type
2711  *
2712  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2713  *	rmem allocation. This function assumes that protocols which have
2714  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2715  */
2716 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2717 {
2718 	int ret, amt = sk_mem_pages(size);
2719 
2720 	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2721 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2722 	if (!ret)
2723 		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2724 	return ret;
2725 }
2726 EXPORT_SYMBOL(__sk_mem_schedule);
2727 
2728 /**
2729  *	__sk_mem_reduce_allocated - reclaim memory_allocated
2730  *	@sk: socket
2731  *	@amount: number of quanta
2732  *
2733  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2734  */
2735 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2736 {
2737 	sk_memory_allocated_sub(sk, amount);
2738 
2739 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2740 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2741 
2742 	if (sk_under_memory_pressure(sk) &&
2743 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2744 		sk_leave_memory_pressure(sk);
2745 }
2746 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2747 
2748 /**
2749  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2750  *	@sk: socket
2751  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2752  */
2753 void __sk_mem_reclaim(struct sock *sk, int amount)
2754 {
2755 	amount >>= SK_MEM_QUANTUM_SHIFT;
2756 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2757 	__sk_mem_reduce_allocated(sk, amount);
2758 }
2759 EXPORT_SYMBOL(__sk_mem_reclaim);
2760 
2761 int sk_set_peek_off(struct sock *sk, int val)
2762 {
2763 	sk->sk_peek_off = val;
2764 	return 0;
2765 }
2766 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2767 
2768 /*
2769  * Set of default routines for initialising struct proto_ops when
2770  * the protocol does not support a particular function. In certain
2771  * cases where it makes no sense for a protocol to have a "do nothing"
2772  * function, some default processing is provided.
2773  */
2774 
2775 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2776 {
2777 	return -EOPNOTSUPP;
2778 }
2779 EXPORT_SYMBOL(sock_no_bind);
2780 
2781 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2782 		    int len, int flags)
2783 {
2784 	return -EOPNOTSUPP;
2785 }
2786 EXPORT_SYMBOL(sock_no_connect);
2787 
2788 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2789 {
2790 	return -EOPNOTSUPP;
2791 }
2792 EXPORT_SYMBOL(sock_no_socketpair);
2793 
2794 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2795 		   bool kern)
2796 {
2797 	return -EOPNOTSUPP;
2798 }
2799 EXPORT_SYMBOL(sock_no_accept);
2800 
2801 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2802 		    int peer)
2803 {
2804 	return -EOPNOTSUPP;
2805 }
2806 EXPORT_SYMBOL(sock_no_getname);
2807 
2808 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2809 {
2810 	return -EOPNOTSUPP;
2811 }
2812 EXPORT_SYMBOL(sock_no_ioctl);
2813 
2814 int sock_no_listen(struct socket *sock, int backlog)
2815 {
2816 	return -EOPNOTSUPP;
2817 }
2818 EXPORT_SYMBOL(sock_no_listen);
2819 
2820 int sock_no_shutdown(struct socket *sock, int how)
2821 {
2822 	return -EOPNOTSUPP;
2823 }
2824 EXPORT_SYMBOL(sock_no_shutdown);
2825 
2826 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2827 {
2828 	return -EOPNOTSUPP;
2829 }
2830 EXPORT_SYMBOL(sock_no_sendmsg);
2831 
2832 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2833 {
2834 	return -EOPNOTSUPP;
2835 }
2836 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2837 
2838 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2839 		    int flags)
2840 {
2841 	return -EOPNOTSUPP;
2842 }
2843 EXPORT_SYMBOL(sock_no_recvmsg);
2844 
2845 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2846 {
2847 	/* Mirror missing mmap method error code */
2848 	return -ENODEV;
2849 }
2850 EXPORT_SYMBOL(sock_no_mmap);
2851 
2852 /*
2853  * When a file is received (via SCM_RIGHTS, etc), we must bump the
2854  * various sock-based usage counts.
2855  */
2856 void __receive_sock(struct file *file)
2857 {
2858 	struct socket *sock;
2859 
2860 	sock = sock_from_file(file);
2861 	if (sock) {
2862 		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2863 		sock_update_classid(&sock->sk->sk_cgrp_data);
2864 	}
2865 }
2866 
2867 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2868 {
2869 	ssize_t res;
2870 	struct msghdr msg = {.msg_flags = flags};
2871 	struct kvec iov;
2872 	char *kaddr = kmap(page);
2873 	iov.iov_base = kaddr + offset;
2874 	iov.iov_len = size;
2875 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2876 	kunmap(page);
2877 	return res;
2878 }
2879 EXPORT_SYMBOL(sock_no_sendpage);
2880 
2881 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2882 				int offset, size_t size, int flags)
2883 {
2884 	ssize_t res;
2885 	struct msghdr msg = {.msg_flags = flags};
2886 	struct kvec iov;
2887 	char *kaddr = kmap(page);
2888 
2889 	iov.iov_base = kaddr + offset;
2890 	iov.iov_len = size;
2891 	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2892 	kunmap(page);
2893 	return res;
2894 }
2895 EXPORT_SYMBOL(sock_no_sendpage_locked);
2896 
2897 /*
2898  *	Default Socket Callbacks
2899  */
2900 
2901 static void sock_def_wakeup(struct sock *sk)
2902 {
2903 	struct socket_wq *wq;
2904 
2905 	rcu_read_lock();
2906 	wq = rcu_dereference(sk->sk_wq);
2907 	if (skwq_has_sleeper(wq))
2908 		wake_up_interruptible_all(&wq->wait);
2909 	rcu_read_unlock();
2910 }
2911 
2912 static void sock_def_error_report(struct sock *sk)
2913 {
2914 	struct socket_wq *wq;
2915 
2916 	rcu_read_lock();
2917 	wq = rcu_dereference(sk->sk_wq);
2918 	if (skwq_has_sleeper(wq))
2919 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2920 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2921 	rcu_read_unlock();
2922 }
2923 
2924 void sock_def_readable(struct sock *sk)
2925 {
2926 	struct socket_wq *wq;
2927 
2928 	rcu_read_lock();
2929 	wq = rcu_dereference(sk->sk_wq);
2930 	if (skwq_has_sleeper(wq))
2931 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2932 						EPOLLRDNORM | EPOLLRDBAND);
2933 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2934 	rcu_read_unlock();
2935 }
2936 
2937 static void sock_def_write_space(struct sock *sk)
2938 {
2939 	struct socket_wq *wq;
2940 
2941 	rcu_read_lock();
2942 
2943 	/* Do not wake up a writer until he can make "significant"
2944 	 * progress.  --DaveM
2945 	 */
2946 	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2947 		wq = rcu_dereference(sk->sk_wq);
2948 		if (skwq_has_sleeper(wq))
2949 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2950 						EPOLLWRNORM | EPOLLWRBAND);
2951 
2952 		/* Should agree with poll, otherwise some programs break */
2953 		if (sock_writeable(sk))
2954 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2955 	}
2956 
2957 	rcu_read_unlock();
2958 }
2959 
2960 static void sock_def_destruct(struct sock *sk)
2961 {
2962 }
2963 
2964 void sk_send_sigurg(struct sock *sk)
2965 {
2966 	if (sk->sk_socket && sk->sk_socket->file)
2967 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2968 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2969 }
2970 EXPORT_SYMBOL(sk_send_sigurg);
2971 
2972 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2973 		    unsigned long expires)
2974 {
2975 	if (!mod_timer(timer, expires))
2976 		sock_hold(sk);
2977 }
2978 EXPORT_SYMBOL(sk_reset_timer);
2979 
2980 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2981 {
2982 	if (del_timer(timer))
2983 		__sock_put(sk);
2984 }
2985 EXPORT_SYMBOL(sk_stop_timer);
2986 
2987 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
2988 {
2989 	if (del_timer_sync(timer))
2990 		__sock_put(sk);
2991 }
2992 EXPORT_SYMBOL(sk_stop_timer_sync);
2993 
2994 void sock_init_data(struct socket *sock, struct sock *sk)
2995 {
2996 	sk_init_common(sk);
2997 	sk->sk_send_head	=	NULL;
2998 
2999 	timer_setup(&sk->sk_timer, NULL, 0);
3000 
3001 	sk->sk_allocation	=	GFP_KERNEL;
3002 	sk->sk_rcvbuf		=	sysctl_rmem_default;
3003 	sk->sk_sndbuf		=	sysctl_wmem_default;
3004 	sk->sk_state		=	TCP_CLOSE;
3005 	sk_set_socket(sk, sock);
3006 
3007 	sock_set_flag(sk, SOCK_ZAPPED);
3008 
3009 	if (sock) {
3010 		sk->sk_type	=	sock->type;
3011 		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3012 		sock->sk	=	sk;
3013 		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
3014 	} else {
3015 		RCU_INIT_POINTER(sk->sk_wq, NULL);
3016 		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
3017 	}
3018 
3019 	rwlock_init(&sk->sk_callback_lock);
3020 	if (sk->sk_kern_sock)
3021 		lockdep_set_class_and_name(
3022 			&sk->sk_callback_lock,
3023 			af_kern_callback_keys + sk->sk_family,
3024 			af_family_kern_clock_key_strings[sk->sk_family]);
3025 	else
3026 		lockdep_set_class_and_name(
3027 			&sk->sk_callback_lock,
3028 			af_callback_keys + sk->sk_family,
3029 			af_family_clock_key_strings[sk->sk_family]);
3030 
3031 	sk->sk_state_change	=	sock_def_wakeup;
3032 	sk->sk_data_ready	=	sock_def_readable;
3033 	sk->sk_write_space	=	sock_def_write_space;
3034 	sk->sk_error_report	=	sock_def_error_report;
3035 	sk->sk_destruct		=	sock_def_destruct;
3036 
3037 	sk->sk_frag.page	=	NULL;
3038 	sk->sk_frag.offset	=	0;
3039 	sk->sk_peek_off		=	-1;
3040 
3041 	sk->sk_peer_pid 	=	NULL;
3042 	sk->sk_peer_cred	=	NULL;
3043 	sk->sk_write_pending	=	0;
3044 	sk->sk_rcvlowat		=	1;
3045 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3046 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3047 
3048 	sk->sk_stamp = SK_DEFAULT_STAMP;
3049 #if BITS_PER_LONG==32
3050 	seqlock_init(&sk->sk_stamp_seq);
3051 #endif
3052 	atomic_set(&sk->sk_zckey, 0);
3053 
3054 #ifdef CONFIG_NET_RX_BUSY_POLL
3055 	sk->sk_napi_id		=	0;
3056 	sk->sk_ll_usec		=	sysctl_net_busy_read;
3057 #endif
3058 
3059 	sk->sk_max_pacing_rate = ~0UL;
3060 	sk->sk_pacing_rate = ~0UL;
3061 	WRITE_ONCE(sk->sk_pacing_shift, 10);
3062 	sk->sk_incoming_cpu = -1;
3063 
3064 	sk_rx_queue_clear(sk);
3065 	/*
3066 	 * Before updating sk_refcnt, we must commit prior changes to memory
3067 	 * (Documentation/RCU/rculist_nulls.rst for details)
3068 	 */
3069 	smp_wmb();
3070 	refcount_set(&sk->sk_refcnt, 1);
3071 	atomic_set(&sk->sk_drops, 0);
3072 }
3073 EXPORT_SYMBOL(sock_init_data);
3074 
3075 void lock_sock_nested(struct sock *sk, int subclass)
3076 {
3077 	might_sleep();
3078 	spin_lock_bh(&sk->sk_lock.slock);
3079 	if (sk->sk_lock.owned)
3080 		__lock_sock(sk);
3081 	sk->sk_lock.owned = 1;
3082 	spin_unlock(&sk->sk_lock.slock);
3083 	/*
3084 	 * The sk_lock has mutex_lock() semantics here:
3085 	 */
3086 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3087 	local_bh_enable();
3088 }
3089 EXPORT_SYMBOL(lock_sock_nested);
3090 
3091 void release_sock(struct sock *sk)
3092 {
3093 	spin_lock_bh(&sk->sk_lock.slock);
3094 	if (sk->sk_backlog.tail)
3095 		__release_sock(sk);
3096 
3097 	/* Warning : release_cb() might need to release sk ownership,
3098 	 * ie call sock_release_ownership(sk) before us.
3099 	 */
3100 	if (sk->sk_prot->release_cb)
3101 		sk->sk_prot->release_cb(sk);
3102 
3103 	sock_release_ownership(sk);
3104 	if (waitqueue_active(&sk->sk_lock.wq))
3105 		wake_up(&sk->sk_lock.wq);
3106 	spin_unlock_bh(&sk->sk_lock.slock);
3107 }
3108 EXPORT_SYMBOL(release_sock);
3109 
3110 /**
3111  * lock_sock_fast - fast version of lock_sock
3112  * @sk: socket
3113  *
3114  * This version should be used for very small section, where process wont block
3115  * return false if fast path is taken:
3116  *
3117  *   sk_lock.slock locked, owned = 0, BH disabled
3118  *
3119  * return true if slow path is taken:
3120  *
3121  *   sk_lock.slock unlocked, owned = 1, BH enabled
3122  */
3123 bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3124 {
3125 	might_sleep();
3126 	spin_lock_bh(&sk->sk_lock.slock);
3127 
3128 	if (!sk->sk_lock.owned)
3129 		/*
3130 		 * Note : We must disable BH
3131 		 */
3132 		return false;
3133 
3134 	__lock_sock(sk);
3135 	sk->sk_lock.owned = 1;
3136 	spin_unlock(&sk->sk_lock.slock);
3137 	/*
3138 	 * The sk_lock has mutex_lock() semantics here:
3139 	 */
3140 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3141 	__acquire(&sk->sk_lock.slock);
3142 	local_bh_enable();
3143 	return true;
3144 }
3145 EXPORT_SYMBOL(lock_sock_fast);
3146 
3147 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3148 		   bool timeval, bool time32)
3149 {
3150 	struct sock *sk = sock->sk;
3151 	struct timespec64 ts;
3152 
3153 	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3154 	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3155 	if (ts.tv_sec == -1)
3156 		return -ENOENT;
3157 	if (ts.tv_sec == 0) {
3158 		ktime_t kt = ktime_get_real();
3159 		sock_write_timestamp(sk, kt);
3160 		ts = ktime_to_timespec64(kt);
3161 	}
3162 
3163 	if (timeval)
3164 		ts.tv_nsec /= 1000;
3165 
3166 #ifdef CONFIG_COMPAT_32BIT_TIME
3167 	if (time32)
3168 		return put_old_timespec32(&ts, userstamp);
3169 #endif
3170 #ifdef CONFIG_SPARC64
3171 	/* beware of padding in sparc64 timeval */
3172 	if (timeval && !in_compat_syscall()) {
3173 		struct __kernel_old_timeval __user tv = {
3174 			.tv_sec = ts.tv_sec,
3175 			.tv_usec = ts.tv_nsec,
3176 		};
3177 		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3178 			return -EFAULT;
3179 		return 0;
3180 	}
3181 #endif
3182 	return put_timespec64(&ts, userstamp);
3183 }
3184 EXPORT_SYMBOL(sock_gettstamp);
3185 
3186 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3187 {
3188 	if (!sock_flag(sk, flag)) {
3189 		unsigned long previous_flags = sk->sk_flags;
3190 
3191 		sock_set_flag(sk, flag);
3192 		/*
3193 		 * we just set one of the two flags which require net
3194 		 * time stamping, but time stamping might have been on
3195 		 * already because of the other one
3196 		 */
3197 		if (sock_needs_netstamp(sk) &&
3198 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3199 			net_enable_timestamp();
3200 	}
3201 }
3202 
3203 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3204 		       int level, int type)
3205 {
3206 	struct sock_exterr_skb *serr;
3207 	struct sk_buff *skb;
3208 	int copied, err;
3209 
3210 	err = -EAGAIN;
3211 	skb = sock_dequeue_err_skb(sk);
3212 	if (skb == NULL)
3213 		goto out;
3214 
3215 	copied = skb->len;
3216 	if (copied > len) {
3217 		msg->msg_flags |= MSG_TRUNC;
3218 		copied = len;
3219 	}
3220 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3221 	if (err)
3222 		goto out_free_skb;
3223 
3224 	sock_recv_timestamp(msg, sk, skb);
3225 
3226 	serr = SKB_EXT_ERR(skb);
3227 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3228 
3229 	msg->msg_flags |= MSG_ERRQUEUE;
3230 	err = copied;
3231 
3232 out_free_skb:
3233 	kfree_skb(skb);
3234 out:
3235 	return err;
3236 }
3237 EXPORT_SYMBOL(sock_recv_errqueue);
3238 
3239 /*
3240  *	Get a socket option on an socket.
3241  *
3242  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3243  *	asynchronous errors should be reported by getsockopt. We assume
3244  *	this means if you specify SO_ERROR (otherwise whats the point of it).
3245  */
3246 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3247 			   char __user *optval, int __user *optlen)
3248 {
3249 	struct sock *sk = sock->sk;
3250 
3251 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3252 }
3253 EXPORT_SYMBOL(sock_common_getsockopt);
3254 
3255 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3256 			int flags)
3257 {
3258 	struct sock *sk = sock->sk;
3259 	int addr_len = 0;
3260 	int err;
3261 
3262 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3263 				   flags & ~MSG_DONTWAIT, &addr_len);
3264 	if (err >= 0)
3265 		msg->msg_namelen = addr_len;
3266 	return err;
3267 }
3268 EXPORT_SYMBOL(sock_common_recvmsg);
3269 
3270 /*
3271  *	Set socket options on an inet socket.
3272  */
3273 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3274 			   sockptr_t optval, unsigned int optlen)
3275 {
3276 	struct sock *sk = sock->sk;
3277 
3278 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3279 }
3280 EXPORT_SYMBOL(sock_common_setsockopt);
3281 
3282 void sk_common_release(struct sock *sk)
3283 {
3284 	if (sk->sk_prot->destroy)
3285 		sk->sk_prot->destroy(sk);
3286 
3287 	/*
3288 	 * Observation: when sk_common_release is called, processes have
3289 	 * no access to socket. But net still has.
3290 	 * Step one, detach it from networking:
3291 	 *
3292 	 * A. Remove from hash tables.
3293 	 */
3294 
3295 	sk->sk_prot->unhash(sk);
3296 
3297 	/*
3298 	 * In this point socket cannot receive new packets, but it is possible
3299 	 * that some packets are in flight because some CPU runs receiver and
3300 	 * did hash table lookup before we unhashed socket. They will achieve
3301 	 * receive queue and will be purged by socket destructor.
3302 	 *
3303 	 * Also we still have packets pending on receive queue and probably,
3304 	 * our own packets waiting in device queues. sock_destroy will drain
3305 	 * receive queue, but transmitted packets will delay socket destruction
3306 	 * until the last reference will be released.
3307 	 */
3308 
3309 	sock_orphan(sk);
3310 
3311 	xfrm_sk_free_policy(sk);
3312 
3313 	sk_refcnt_debug_release(sk);
3314 
3315 	sock_put(sk);
3316 }
3317 EXPORT_SYMBOL(sk_common_release);
3318 
3319 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3320 {
3321 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3322 
3323 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3324 	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3325 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3326 	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3327 	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3328 	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3329 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3330 	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3331 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3332 }
3333 
3334 #ifdef CONFIG_PROC_FS
3335 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
3336 struct prot_inuse {
3337 	int val[PROTO_INUSE_NR];
3338 };
3339 
3340 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3341 
3342 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3343 {
3344 	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3345 }
3346 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3347 
3348 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3349 {
3350 	int cpu, idx = prot->inuse_idx;
3351 	int res = 0;
3352 
3353 	for_each_possible_cpu(cpu)
3354 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3355 
3356 	return res >= 0 ? res : 0;
3357 }
3358 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3359 
3360 static void sock_inuse_add(struct net *net, int val)
3361 {
3362 	this_cpu_add(*net->core.sock_inuse, val);
3363 }
3364 
3365 int sock_inuse_get(struct net *net)
3366 {
3367 	int cpu, res = 0;
3368 
3369 	for_each_possible_cpu(cpu)
3370 		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3371 
3372 	return res;
3373 }
3374 
3375 EXPORT_SYMBOL_GPL(sock_inuse_get);
3376 
3377 static int __net_init sock_inuse_init_net(struct net *net)
3378 {
3379 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3380 	if (net->core.prot_inuse == NULL)
3381 		return -ENOMEM;
3382 
3383 	net->core.sock_inuse = alloc_percpu(int);
3384 	if (net->core.sock_inuse == NULL)
3385 		goto out;
3386 
3387 	return 0;
3388 
3389 out:
3390 	free_percpu(net->core.prot_inuse);
3391 	return -ENOMEM;
3392 }
3393 
3394 static void __net_exit sock_inuse_exit_net(struct net *net)
3395 {
3396 	free_percpu(net->core.prot_inuse);
3397 	free_percpu(net->core.sock_inuse);
3398 }
3399 
3400 static struct pernet_operations net_inuse_ops = {
3401 	.init = sock_inuse_init_net,
3402 	.exit = sock_inuse_exit_net,
3403 };
3404 
3405 static __init int net_inuse_init(void)
3406 {
3407 	if (register_pernet_subsys(&net_inuse_ops))
3408 		panic("Cannot initialize net inuse counters");
3409 
3410 	return 0;
3411 }
3412 
3413 core_initcall(net_inuse_init);
3414 
3415 static int assign_proto_idx(struct proto *prot)
3416 {
3417 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3418 
3419 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3420 		pr_err("PROTO_INUSE_NR exhausted\n");
3421 		return -ENOSPC;
3422 	}
3423 
3424 	set_bit(prot->inuse_idx, proto_inuse_idx);
3425 	return 0;
3426 }
3427 
3428 static void release_proto_idx(struct proto *prot)
3429 {
3430 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3431 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3432 }
3433 #else
3434 static inline int assign_proto_idx(struct proto *prot)
3435 {
3436 	return 0;
3437 }
3438 
3439 static inline void release_proto_idx(struct proto *prot)
3440 {
3441 }
3442 
3443 static void sock_inuse_add(struct net *net, int val)
3444 {
3445 }
3446 #endif
3447 
3448 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3449 {
3450 	if (!twsk_prot)
3451 		return;
3452 	kfree(twsk_prot->twsk_slab_name);
3453 	twsk_prot->twsk_slab_name = NULL;
3454 	kmem_cache_destroy(twsk_prot->twsk_slab);
3455 	twsk_prot->twsk_slab = NULL;
3456 }
3457 
3458 static int tw_prot_init(const struct proto *prot)
3459 {
3460 	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3461 
3462 	if (!twsk_prot)
3463 		return 0;
3464 
3465 	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3466 					      prot->name);
3467 	if (!twsk_prot->twsk_slab_name)
3468 		return -ENOMEM;
3469 
3470 	twsk_prot->twsk_slab =
3471 		kmem_cache_create(twsk_prot->twsk_slab_name,
3472 				  twsk_prot->twsk_obj_size, 0,
3473 				  SLAB_ACCOUNT | prot->slab_flags,
3474 				  NULL);
3475 	if (!twsk_prot->twsk_slab) {
3476 		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3477 			prot->name);
3478 		return -ENOMEM;
3479 	}
3480 
3481 	return 0;
3482 }
3483 
3484 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3485 {
3486 	if (!rsk_prot)
3487 		return;
3488 	kfree(rsk_prot->slab_name);
3489 	rsk_prot->slab_name = NULL;
3490 	kmem_cache_destroy(rsk_prot->slab);
3491 	rsk_prot->slab = NULL;
3492 }
3493 
3494 static int req_prot_init(const struct proto *prot)
3495 {
3496 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3497 
3498 	if (!rsk_prot)
3499 		return 0;
3500 
3501 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3502 					prot->name);
3503 	if (!rsk_prot->slab_name)
3504 		return -ENOMEM;
3505 
3506 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3507 					   rsk_prot->obj_size, 0,
3508 					   SLAB_ACCOUNT | prot->slab_flags,
3509 					   NULL);
3510 
3511 	if (!rsk_prot->slab) {
3512 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3513 			prot->name);
3514 		return -ENOMEM;
3515 	}
3516 	return 0;
3517 }
3518 
3519 int proto_register(struct proto *prot, int alloc_slab)
3520 {
3521 	int ret = -ENOBUFS;
3522 
3523 	if (alloc_slab) {
3524 		prot->slab = kmem_cache_create_usercopy(prot->name,
3525 					prot->obj_size, 0,
3526 					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3527 					prot->slab_flags,
3528 					prot->useroffset, prot->usersize,
3529 					NULL);
3530 
3531 		if (prot->slab == NULL) {
3532 			pr_crit("%s: Can't create sock SLAB cache!\n",
3533 				prot->name);
3534 			goto out;
3535 		}
3536 
3537 		if (req_prot_init(prot))
3538 			goto out_free_request_sock_slab;
3539 
3540 		if (tw_prot_init(prot))
3541 			goto out_free_timewait_sock_slab;
3542 	}
3543 
3544 	mutex_lock(&proto_list_mutex);
3545 	ret = assign_proto_idx(prot);
3546 	if (ret) {
3547 		mutex_unlock(&proto_list_mutex);
3548 		goto out_free_timewait_sock_slab;
3549 	}
3550 	list_add(&prot->node, &proto_list);
3551 	mutex_unlock(&proto_list_mutex);
3552 	return ret;
3553 
3554 out_free_timewait_sock_slab:
3555 	if (alloc_slab)
3556 		tw_prot_cleanup(prot->twsk_prot);
3557 out_free_request_sock_slab:
3558 	if (alloc_slab) {
3559 		req_prot_cleanup(prot->rsk_prot);
3560 
3561 		kmem_cache_destroy(prot->slab);
3562 		prot->slab = NULL;
3563 	}
3564 out:
3565 	return ret;
3566 }
3567 EXPORT_SYMBOL(proto_register);
3568 
3569 void proto_unregister(struct proto *prot)
3570 {
3571 	mutex_lock(&proto_list_mutex);
3572 	release_proto_idx(prot);
3573 	list_del(&prot->node);
3574 	mutex_unlock(&proto_list_mutex);
3575 
3576 	kmem_cache_destroy(prot->slab);
3577 	prot->slab = NULL;
3578 
3579 	req_prot_cleanup(prot->rsk_prot);
3580 	tw_prot_cleanup(prot->twsk_prot);
3581 }
3582 EXPORT_SYMBOL(proto_unregister);
3583 
3584 int sock_load_diag_module(int family, int protocol)
3585 {
3586 	if (!protocol) {
3587 		if (!sock_is_registered(family))
3588 			return -ENOENT;
3589 
3590 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3591 				      NETLINK_SOCK_DIAG, family);
3592 	}
3593 
3594 #ifdef CONFIG_INET
3595 	if (family == AF_INET &&
3596 	    protocol != IPPROTO_RAW &&
3597 	    protocol < MAX_INET_PROTOS &&
3598 	    !rcu_access_pointer(inet_protos[protocol]))
3599 		return -ENOENT;
3600 #endif
3601 
3602 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3603 			      NETLINK_SOCK_DIAG, family, protocol);
3604 }
3605 EXPORT_SYMBOL(sock_load_diag_module);
3606 
3607 #ifdef CONFIG_PROC_FS
3608 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3609 	__acquires(proto_list_mutex)
3610 {
3611 	mutex_lock(&proto_list_mutex);
3612 	return seq_list_start_head(&proto_list, *pos);
3613 }
3614 
3615 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3616 {
3617 	return seq_list_next(v, &proto_list, pos);
3618 }
3619 
3620 static void proto_seq_stop(struct seq_file *seq, void *v)
3621 	__releases(proto_list_mutex)
3622 {
3623 	mutex_unlock(&proto_list_mutex);
3624 }
3625 
3626 static char proto_method_implemented(const void *method)
3627 {
3628 	return method == NULL ? 'n' : 'y';
3629 }
3630 static long sock_prot_memory_allocated(struct proto *proto)
3631 {
3632 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3633 }
3634 
3635 static const char *sock_prot_memory_pressure(struct proto *proto)
3636 {
3637 	return proto->memory_pressure != NULL ?
3638 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3639 }
3640 
3641 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3642 {
3643 
3644 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3645 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3646 		   proto->name,
3647 		   proto->obj_size,
3648 		   sock_prot_inuse_get(seq_file_net(seq), proto),
3649 		   sock_prot_memory_allocated(proto),
3650 		   sock_prot_memory_pressure(proto),
3651 		   proto->max_header,
3652 		   proto->slab == NULL ? "no" : "yes",
3653 		   module_name(proto->owner),
3654 		   proto_method_implemented(proto->close),
3655 		   proto_method_implemented(proto->connect),
3656 		   proto_method_implemented(proto->disconnect),
3657 		   proto_method_implemented(proto->accept),
3658 		   proto_method_implemented(proto->ioctl),
3659 		   proto_method_implemented(proto->init),
3660 		   proto_method_implemented(proto->destroy),
3661 		   proto_method_implemented(proto->shutdown),
3662 		   proto_method_implemented(proto->setsockopt),
3663 		   proto_method_implemented(proto->getsockopt),
3664 		   proto_method_implemented(proto->sendmsg),
3665 		   proto_method_implemented(proto->recvmsg),
3666 		   proto_method_implemented(proto->sendpage),
3667 		   proto_method_implemented(proto->bind),
3668 		   proto_method_implemented(proto->backlog_rcv),
3669 		   proto_method_implemented(proto->hash),
3670 		   proto_method_implemented(proto->unhash),
3671 		   proto_method_implemented(proto->get_port),
3672 		   proto_method_implemented(proto->enter_memory_pressure));
3673 }
3674 
3675 static int proto_seq_show(struct seq_file *seq, void *v)
3676 {
3677 	if (v == &proto_list)
3678 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3679 			   "protocol",
3680 			   "size",
3681 			   "sockets",
3682 			   "memory",
3683 			   "press",
3684 			   "maxhdr",
3685 			   "slab",
3686 			   "module",
3687 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3688 	else
3689 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3690 	return 0;
3691 }
3692 
3693 static const struct seq_operations proto_seq_ops = {
3694 	.start  = proto_seq_start,
3695 	.next   = proto_seq_next,
3696 	.stop   = proto_seq_stop,
3697 	.show   = proto_seq_show,
3698 };
3699 
3700 static __net_init int proto_init_net(struct net *net)
3701 {
3702 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3703 			sizeof(struct seq_net_private)))
3704 		return -ENOMEM;
3705 
3706 	return 0;
3707 }
3708 
3709 static __net_exit void proto_exit_net(struct net *net)
3710 {
3711 	remove_proc_entry("protocols", net->proc_net);
3712 }
3713 
3714 
3715 static __net_initdata struct pernet_operations proto_net_ops = {
3716 	.init = proto_init_net,
3717 	.exit = proto_exit_net,
3718 };
3719 
3720 static int __init proto_init(void)
3721 {
3722 	return register_pernet_subsys(&proto_net_ops);
3723 }
3724 
3725 subsys_initcall(proto_init);
3726 
3727 #endif /* PROC_FS */
3728 
3729 #ifdef CONFIG_NET_RX_BUSY_POLL
3730 bool sk_busy_loop_end(void *p, unsigned long start_time)
3731 {
3732 	struct sock *sk = p;
3733 
3734 	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3735 	       sk_busy_loop_timeout(sk, start_time);
3736 }
3737 EXPORT_SYMBOL(sk_busy_loop_end);
3738 #endif /* CONFIG_NET_RX_BUSY_POLL */
3739 
3740 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3741 {
3742 	if (!sk->sk_prot->bind_add)
3743 		return -EOPNOTSUPP;
3744 	return sk->sk_prot->bind_add(sk, addr, addr_len);
3745 }
3746 EXPORT_SYMBOL(sock_bind_add);
3747