xref: /openbmc/linux/net/core/sock.c (revision f66501dc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Generic socket support routines. Memory allocators, socket lock/release
8  *		handler for protocols to use and generic option handler.
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  */
85 
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87 
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 
117 #include <linux/uaccess.h>
118 
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <linux/net_tstamp.h>
126 #include <net/xfrm.h>
127 #include <linux/ipsec.h>
128 #include <net/cls_cgroup.h>
129 #include <net/netprio_cgroup.h>
130 #include <linux/sock_diag.h>
131 
132 #include <linux/filter.h>
133 #include <net/sock_reuseport.h>
134 #include <net/bpf_sk_storage.h>
135 
136 #include <trace/events/sock.h>
137 
138 #include <net/tcp.h>
139 #include <net/busy_poll.h>
140 
141 static DEFINE_MUTEX(proto_list_mutex);
142 static LIST_HEAD(proto_list);
143 
144 static void sock_inuse_add(struct net *net, int val);
145 
146 /**
147  * sk_ns_capable - General socket capability test
148  * @sk: Socket to use a capability on or through
149  * @user_ns: The user namespace of the capability to use
150  * @cap: The capability to use
151  *
152  * Test to see if the opener of the socket had when the socket was
153  * created and the current process has the capability @cap in the user
154  * namespace @user_ns.
155  */
156 bool sk_ns_capable(const struct sock *sk,
157 		   struct user_namespace *user_ns, int cap)
158 {
159 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
160 		ns_capable(user_ns, cap);
161 }
162 EXPORT_SYMBOL(sk_ns_capable);
163 
164 /**
165  * sk_capable - Socket global capability test
166  * @sk: Socket to use a capability on or through
167  * @cap: The global capability to use
168  *
169  * Test to see if the opener of the socket had when the socket was
170  * created and the current process has the capability @cap in all user
171  * namespaces.
172  */
173 bool sk_capable(const struct sock *sk, int cap)
174 {
175 	return sk_ns_capable(sk, &init_user_ns, cap);
176 }
177 EXPORT_SYMBOL(sk_capable);
178 
179 /**
180  * sk_net_capable - Network namespace socket capability test
181  * @sk: Socket to use a capability on or through
182  * @cap: The capability to use
183  *
184  * Test to see if the opener of the socket had when the socket was created
185  * and the current process has the capability @cap over the network namespace
186  * the socket is a member of.
187  */
188 bool sk_net_capable(const struct sock *sk, int cap)
189 {
190 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
191 }
192 EXPORT_SYMBOL(sk_net_capable);
193 
194 /*
195  * Each address family might have different locking rules, so we have
196  * one slock key per address family and separate keys for internal and
197  * userspace sockets.
198  */
199 static struct lock_class_key af_family_keys[AF_MAX];
200 static struct lock_class_key af_family_kern_keys[AF_MAX];
201 static struct lock_class_key af_family_slock_keys[AF_MAX];
202 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
203 
204 /*
205  * Make lock validator output more readable. (we pre-construct these
206  * strings build-time, so that runtime initialization of socket
207  * locks is fast):
208  */
209 
210 #define _sock_locks(x)						  \
211   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
212   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
213   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
214   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
215   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
216   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
217   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
218   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
219   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
220   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
221   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
222   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
223   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
224   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
225   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
226   x "AF_MAX"
227 
228 static const char *const af_family_key_strings[AF_MAX+1] = {
229 	_sock_locks("sk_lock-")
230 };
231 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
232 	_sock_locks("slock-")
233 };
234 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
235 	_sock_locks("clock-")
236 };
237 
238 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
239 	_sock_locks("k-sk_lock-")
240 };
241 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
242 	_sock_locks("k-slock-")
243 };
244 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
245 	_sock_locks("k-clock-")
246 };
247 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
248 	_sock_locks("rlock-")
249 };
250 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
251 	_sock_locks("wlock-")
252 };
253 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
254 	_sock_locks("elock-")
255 };
256 
257 /*
258  * sk_callback_lock and sk queues locking rules are per-address-family,
259  * so split the lock classes by using a per-AF key:
260  */
261 static struct lock_class_key af_callback_keys[AF_MAX];
262 static struct lock_class_key af_rlock_keys[AF_MAX];
263 static struct lock_class_key af_wlock_keys[AF_MAX];
264 static struct lock_class_key af_elock_keys[AF_MAX];
265 static struct lock_class_key af_kern_callback_keys[AF_MAX];
266 
267 /* Run time adjustable parameters. */
268 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
269 EXPORT_SYMBOL(sysctl_wmem_max);
270 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
271 EXPORT_SYMBOL(sysctl_rmem_max);
272 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
273 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
274 
275 /* Maximal space eaten by iovec or ancillary data plus some space */
276 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
277 EXPORT_SYMBOL(sysctl_optmem_max);
278 
279 int sysctl_tstamp_allow_data __read_mostly = 1;
280 
281 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
282 EXPORT_SYMBOL_GPL(memalloc_socks_key);
283 
284 /**
285  * sk_set_memalloc - sets %SOCK_MEMALLOC
286  * @sk: socket to set it on
287  *
288  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
289  * It's the responsibility of the admin to adjust min_free_kbytes
290  * to meet the requirements
291  */
292 void sk_set_memalloc(struct sock *sk)
293 {
294 	sock_set_flag(sk, SOCK_MEMALLOC);
295 	sk->sk_allocation |= __GFP_MEMALLOC;
296 	static_branch_inc(&memalloc_socks_key);
297 }
298 EXPORT_SYMBOL_GPL(sk_set_memalloc);
299 
300 void sk_clear_memalloc(struct sock *sk)
301 {
302 	sock_reset_flag(sk, SOCK_MEMALLOC);
303 	sk->sk_allocation &= ~__GFP_MEMALLOC;
304 	static_branch_dec(&memalloc_socks_key);
305 
306 	/*
307 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
308 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
309 	 * it has rmem allocations due to the last swapfile being deactivated
310 	 * but there is a risk that the socket is unusable due to exceeding
311 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
312 	 */
313 	sk_mem_reclaim(sk);
314 }
315 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
316 
317 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
318 {
319 	int ret;
320 	unsigned int noreclaim_flag;
321 
322 	/* these should have been dropped before queueing */
323 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
324 
325 	noreclaim_flag = memalloc_noreclaim_save();
326 	ret = sk->sk_backlog_rcv(sk, skb);
327 	memalloc_noreclaim_restore(noreclaim_flag);
328 
329 	return ret;
330 }
331 EXPORT_SYMBOL(__sk_backlog_rcv);
332 
333 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
334 {
335 	struct __kernel_sock_timeval tv;
336 	int size;
337 
338 	if (timeo == MAX_SCHEDULE_TIMEOUT) {
339 		tv.tv_sec = 0;
340 		tv.tv_usec = 0;
341 	} else {
342 		tv.tv_sec = timeo / HZ;
343 		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344 	}
345 
346 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347 		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348 		*(struct old_timeval32 *)optval = tv32;
349 		return sizeof(tv32);
350 	}
351 
352 	if (old_timeval) {
353 		struct __kernel_old_timeval old_tv;
354 		old_tv.tv_sec = tv.tv_sec;
355 		old_tv.tv_usec = tv.tv_usec;
356 		*(struct __kernel_old_timeval *)optval = old_tv;
357 		size = sizeof(old_tv);
358 	} else {
359 		*(struct __kernel_sock_timeval *)optval = tv;
360 		size = sizeof(tv);
361 	}
362 
363 	return size;
364 }
365 
366 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval)
367 {
368 	struct __kernel_sock_timeval tv;
369 
370 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
371 		struct old_timeval32 tv32;
372 
373 		if (optlen < sizeof(tv32))
374 			return -EINVAL;
375 
376 		if (copy_from_user(&tv32, optval, sizeof(tv32)))
377 			return -EFAULT;
378 		tv.tv_sec = tv32.tv_sec;
379 		tv.tv_usec = tv32.tv_usec;
380 	} else if (old_timeval) {
381 		struct __kernel_old_timeval old_tv;
382 
383 		if (optlen < sizeof(old_tv))
384 			return -EINVAL;
385 		if (copy_from_user(&old_tv, optval, sizeof(old_tv)))
386 			return -EFAULT;
387 		tv.tv_sec = old_tv.tv_sec;
388 		tv.tv_usec = old_tv.tv_usec;
389 	} else {
390 		if (optlen < sizeof(tv))
391 			return -EINVAL;
392 		if (copy_from_user(&tv, optval, sizeof(tv)))
393 			return -EFAULT;
394 	}
395 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
396 		return -EDOM;
397 
398 	if (tv.tv_sec < 0) {
399 		static int warned __read_mostly;
400 
401 		*timeo_p = 0;
402 		if (warned < 10 && net_ratelimit()) {
403 			warned++;
404 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
405 				__func__, current->comm, task_pid_nr(current));
406 		}
407 		return 0;
408 	}
409 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
410 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
411 		return 0;
412 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
413 		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
414 	return 0;
415 }
416 
417 static void sock_warn_obsolete_bsdism(const char *name)
418 {
419 	static int warned;
420 	static char warncomm[TASK_COMM_LEN];
421 	if (strcmp(warncomm, current->comm) && warned < 5) {
422 		strcpy(warncomm,  current->comm);
423 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
424 			warncomm, name);
425 		warned++;
426 	}
427 }
428 
429 static bool sock_needs_netstamp(const struct sock *sk)
430 {
431 	switch (sk->sk_family) {
432 	case AF_UNSPEC:
433 	case AF_UNIX:
434 		return false;
435 	default:
436 		return true;
437 	}
438 }
439 
440 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
441 {
442 	if (sk->sk_flags & flags) {
443 		sk->sk_flags &= ~flags;
444 		if (sock_needs_netstamp(sk) &&
445 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
446 			net_disable_timestamp();
447 	}
448 }
449 
450 
451 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
452 {
453 	unsigned long flags;
454 	struct sk_buff_head *list = &sk->sk_receive_queue;
455 
456 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
457 		atomic_inc(&sk->sk_drops);
458 		trace_sock_rcvqueue_full(sk, skb);
459 		return -ENOMEM;
460 	}
461 
462 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
463 		atomic_inc(&sk->sk_drops);
464 		return -ENOBUFS;
465 	}
466 
467 	skb->dev = NULL;
468 	skb_set_owner_r(skb, sk);
469 
470 	/* we escape from rcu protected region, make sure we dont leak
471 	 * a norefcounted dst
472 	 */
473 	skb_dst_force(skb);
474 
475 	spin_lock_irqsave(&list->lock, flags);
476 	sock_skb_set_dropcount(sk, skb);
477 	__skb_queue_tail(list, skb);
478 	spin_unlock_irqrestore(&list->lock, flags);
479 
480 	if (!sock_flag(sk, SOCK_DEAD))
481 		sk->sk_data_ready(sk);
482 	return 0;
483 }
484 EXPORT_SYMBOL(__sock_queue_rcv_skb);
485 
486 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
487 {
488 	int err;
489 
490 	err = sk_filter(sk, skb);
491 	if (err)
492 		return err;
493 
494 	return __sock_queue_rcv_skb(sk, skb);
495 }
496 EXPORT_SYMBOL(sock_queue_rcv_skb);
497 
498 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
499 		     const int nested, unsigned int trim_cap, bool refcounted)
500 {
501 	int rc = NET_RX_SUCCESS;
502 
503 	if (sk_filter_trim_cap(sk, skb, trim_cap))
504 		goto discard_and_relse;
505 
506 	skb->dev = NULL;
507 
508 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
509 		atomic_inc(&sk->sk_drops);
510 		goto discard_and_relse;
511 	}
512 	if (nested)
513 		bh_lock_sock_nested(sk);
514 	else
515 		bh_lock_sock(sk);
516 	if (!sock_owned_by_user(sk)) {
517 		/*
518 		 * trylock + unlock semantics:
519 		 */
520 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
521 
522 		rc = sk_backlog_rcv(sk, skb);
523 
524 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
525 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
526 		bh_unlock_sock(sk);
527 		atomic_inc(&sk->sk_drops);
528 		goto discard_and_relse;
529 	}
530 
531 	bh_unlock_sock(sk);
532 out:
533 	if (refcounted)
534 		sock_put(sk);
535 	return rc;
536 discard_and_relse:
537 	kfree_skb(skb);
538 	goto out;
539 }
540 EXPORT_SYMBOL(__sk_receive_skb);
541 
542 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
543 {
544 	struct dst_entry *dst = __sk_dst_get(sk);
545 
546 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
547 		sk_tx_queue_clear(sk);
548 		sk->sk_dst_pending_confirm = 0;
549 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
550 		dst_release(dst);
551 		return NULL;
552 	}
553 
554 	return dst;
555 }
556 EXPORT_SYMBOL(__sk_dst_check);
557 
558 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
559 {
560 	struct dst_entry *dst = sk_dst_get(sk);
561 
562 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
563 		sk_dst_reset(sk);
564 		dst_release(dst);
565 		return NULL;
566 	}
567 
568 	return dst;
569 }
570 EXPORT_SYMBOL(sk_dst_check);
571 
572 static int sock_setbindtodevice_locked(struct sock *sk, int ifindex)
573 {
574 	int ret = -ENOPROTOOPT;
575 #ifdef CONFIG_NETDEVICES
576 	struct net *net = sock_net(sk);
577 
578 	/* Sorry... */
579 	ret = -EPERM;
580 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
581 		goto out;
582 
583 	ret = -EINVAL;
584 	if (ifindex < 0)
585 		goto out;
586 
587 	sk->sk_bound_dev_if = ifindex;
588 	if (sk->sk_prot->rehash)
589 		sk->sk_prot->rehash(sk);
590 	sk_dst_reset(sk);
591 
592 	ret = 0;
593 
594 out:
595 #endif
596 
597 	return ret;
598 }
599 
600 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
601 				int optlen)
602 {
603 	int ret = -ENOPROTOOPT;
604 #ifdef CONFIG_NETDEVICES
605 	struct net *net = sock_net(sk);
606 	char devname[IFNAMSIZ];
607 	int index;
608 
609 	ret = -EINVAL;
610 	if (optlen < 0)
611 		goto out;
612 
613 	/* Bind this socket to a particular device like "eth0",
614 	 * as specified in the passed interface name. If the
615 	 * name is "" or the option length is zero the socket
616 	 * is not bound.
617 	 */
618 	if (optlen > IFNAMSIZ - 1)
619 		optlen = IFNAMSIZ - 1;
620 	memset(devname, 0, sizeof(devname));
621 
622 	ret = -EFAULT;
623 	if (copy_from_user(devname, optval, optlen))
624 		goto out;
625 
626 	index = 0;
627 	if (devname[0] != '\0') {
628 		struct net_device *dev;
629 
630 		rcu_read_lock();
631 		dev = dev_get_by_name_rcu(net, devname);
632 		if (dev)
633 			index = dev->ifindex;
634 		rcu_read_unlock();
635 		ret = -ENODEV;
636 		if (!dev)
637 			goto out;
638 	}
639 
640 	lock_sock(sk);
641 	ret = sock_setbindtodevice_locked(sk, index);
642 	release_sock(sk);
643 
644 out:
645 #endif
646 
647 	return ret;
648 }
649 
650 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
651 				int __user *optlen, int len)
652 {
653 	int ret = -ENOPROTOOPT;
654 #ifdef CONFIG_NETDEVICES
655 	struct net *net = sock_net(sk);
656 	char devname[IFNAMSIZ];
657 
658 	if (sk->sk_bound_dev_if == 0) {
659 		len = 0;
660 		goto zero;
661 	}
662 
663 	ret = -EINVAL;
664 	if (len < IFNAMSIZ)
665 		goto out;
666 
667 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
668 	if (ret)
669 		goto out;
670 
671 	len = strlen(devname) + 1;
672 
673 	ret = -EFAULT;
674 	if (copy_to_user(optval, devname, len))
675 		goto out;
676 
677 zero:
678 	ret = -EFAULT;
679 	if (put_user(len, optlen))
680 		goto out;
681 
682 	ret = 0;
683 
684 out:
685 #endif
686 
687 	return ret;
688 }
689 
690 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
691 {
692 	if (valbool)
693 		sock_set_flag(sk, bit);
694 	else
695 		sock_reset_flag(sk, bit);
696 }
697 
698 bool sk_mc_loop(struct sock *sk)
699 {
700 	if (dev_recursion_level())
701 		return false;
702 	if (!sk)
703 		return true;
704 	switch (sk->sk_family) {
705 	case AF_INET:
706 		return inet_sk(sk)->mc_loop;
707 #if IS_ENABLED(CONFIG_IPV6)
708 	case AF_INET6:
709 		return inet6_sk(sk)->mc_loop;
710 #endif
711 	}
712 	WARN_ON(1);
713 	return true;
714 }
715 EXPORT_SYMBOL(sk_mc_loop);
716 
717 /*
718  *	This is meant for all protocols to use and covers goings on
719  *	at the socket level. Everything here is generic.
720  */
721 
722 int sock_setsockopt(struct socket *sock, int level, int optname,
723 		    char __user *optval, unsigned int optlen)
724 {
725 	struct sock_txtime sk_txtime;
726 	struct sock *sk = sock->sk;
727 	int val;
728 	int valbool;
729 	struct linger ling;
730 	int ret = 0;
731 
732 	/*
733 	 *	Options without arguments
734 	 */
735 
736 	if (optname == SO_BINDTODEVICE)
737 		return sock_setbindtodevice(sk, optval, optlen);
738 
739 	if (optlen < sizeof(int))
740 		return -EINVAL;
741 
742 	if (get_user(val, (int __user *)optval))
743 		return -EFAULT;
744 
745 	valbool = val ? 1 : 0;
746 
747 	lock_sock(sk);
748 
749 	switch (optname) {
750 	case SO_DEBUG:
751 		if (val && !capable(CAP_NET_ADMIN))
752 			ret = -EACCES;
753 		else
754 			sock_valbool_flag(sk, SOCK_DBG, valbool);
755 		break;
756 	case SO_REUSEADDR:
757 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
758 		break;
759 	case SO_REUSEPORT:
760 		sk->sk_reuseport = valbool;
761 		break;
762 	case SO_TYPE:
763 	case SO_PROTOCOL:
764 	case SO_DOMAIN:
765 	case SO_ERROR:
766 		ret = -ENOPROTOOPT;
767 		break;
768 	case SO_DONTROUTE:
769 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
770 		sk_dst_reset(sk);
771 		break;
772 	case SO_BROADCAST:
773 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
774 		break;
775 	case SO_SNDBUF:
776 		/* Don't error on this BSD doesn't and if you think
777 		 * about it this is right. Otherwise apps have to
778 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
779 		 * are treated in BSD as hints
780 		 */
781 		val = min_t(u32, val, sysctl_wmem_max);
782 set_sndbuf:
783 		/* Ensure val * 2 fits into an int, to prevent max_t()
784 		 * from treating it as a negative value.
785 		 */
786 		val = min_t(int, val, INT_MAX / 2);
787 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
788 		sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
789 		/* Wake up sending tasks if we upped the value. */
790 		sk->sk_write_space(sk);
791 		break;
792 
793 	case SO_SNDBUFFORCE:
794 		if (!capable(CAP_NET_ADMIN)) {
795 			ret = -EPERM;
796 			break;
797 		}
798 
799 		/* No negative values (to prevent underflow, as val will be
800 		 * multiplied by 2).
801 		 */
802 		if (val < 0)
803 			val = 0;
804 		goto set_sndbuf;
805 
806 	case SO_RCVBUF:
807 		/* Don't error on this BSD doesn't and if you think
808 		 * about it this is right. Otherwise apps have to
809 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
810 		 * are treated in BSD as hints
811 		 */
812 		val = min_t(u32, val, sysctl_rmem_max);
813 set_rcvbuf:
814 		/* Ensure val * 2 fits into an int, to prevent max_t()
815 		 * from treating it as a negative value.
816 		 */
817 		val = min_t(int, val, INT_MAX / 2);
818 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
819 		/*
820 		 * We double it on the way in to account for
821 		 * "struct sk_buff" etc. overhead.   Applications
822 		 * assume that the SO_RCVBUF setting they make will
823 		 * allow that much actual data to be received on that
824 		 * socket.
825 		 *
826 		 * Applications are unaware that "struct sk_buff" and
827 		 * other overheads allocate from the receive buffer
828 		 * during socket buffer allocation.
829 		 *
830 		 * And after considering the possible alternatives,
831 		 * returning the value we actually used in getsockopt
832 		 * is the most desirable behavior.
833 		 */
834 		sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
835 		break;
836 
837 	case SO_RCVBUFFORCE:
838 		if (!capable(CAP_NET_ADMIN)) {
839 			ret = -EPERM;
840 			break;
841 		}
842 
843 		/* No negative values (to prevent underflow, as val will be
844 		 * multiplied by 2).
845 		 */
846 		if (val < 0)
847 			val = 0;
848 		goto set_rcvbuf;
849 
850 	case SO_KEEPALIVE:
851 		if (sk->sk_prot->keepalive)
852 			sk->sk_prot->keepalive(sk, valbool);
853 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
854 		break;
855 
856 	case SO_OOBINLINE:
857 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
858 		break;
859 
860 	case SO_NO_CHECK:
861 		sk->sk_no_check_tx = valbool;
862 		break;
863 
864 	case SO_PRIORITY:
865 		if ((val >= 0 && val <= 6) ||
866 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
867 			sk->sk_priority = val;
868 		else
869 			ret = -EPERM;
870 		break;
871 
872 	case SO_LINGER:
873 		if (optlen < sizeof(ling)) {
874 			ret = -EINVAL;	/* 1003.1g */
875 			break;
876 		}
877 		if (copy_from_user(&ling, optval, sizeof(ling))) {
878 			ret = -EFAULT;
879 			break;
880 		}
881 		if (!ling.l_onoff)
882 			sock_reset_flag(sk, SOCK_LINGER);
883 		else {
884 #if (BITS_PER_LONG == 32)
885 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
886 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
887 			else
888 #endif
889 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
890 			sock_set_flag(sk, SOCK_LINGER);
891 		}
892 		break;
893 
894 	case SO_BSDCOMPAT:
895 		sock_warn_obsolete_bsdism("setsockopt");
896 		break;
897 
898 	case SO_PASSCRED:
899 		if (valbool)
900 			set_bit(SOCK_PASSCRED, &sock->flags);
901 		else
902 			clear_bit(SOCK_PASSCRED, &sock->flags);
903 		break;
904 
905 	case SO_TIMESTAMP_OLD:
906 	case SO_TIMESTAMP_NEW:
907 	case SO_TIMESTAMPNS_OLD:
908 	case SO_TIMESTAMPNS_NEW:
909 		if (valbool)  {
910 			if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW)
911 				sock_set_flag(sk, SOCK_TSTAMP_NEW);
912 			else
913 				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
914 
915 			if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW)
916 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
917 			else
918 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
919 			sock_set_flag(sk, SOCK_RCVTSTAMP);
920 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
921 		} else {
922 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
923 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
924 			sock_reset_flag(sk, SOCK_TSTAMP_NEW);
925 		}
926 		break;
927 
928 	case SO_TIMESTAMPING_NEW:
929 		sock_set_flag(sk, SOCK_TSTAMP_NEW);
930 		/* fall through */
931 	case SO_TIMESTAMPING_OLD:
932 		if (val & ~SOF_TIMESTAMPING_MASK) {
933 			ret = -EINVAL;
934 			break;
935 		}
936 
937 		if (val & SOF_TIMESTAMPING_OPT_ID &&
938 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
939 			if (sk->sk_protocol == IPPROTO_TCP &&
940 			    sk->sk_type == SOCK_STREAM) {
941 				if ((1 << sk->sk_state) &
942 				    (TCPF_CLOSE | TCPF_LISTEN)) {
943 					ret = -EINVAL;
944 					break;
945 				}
946 				sk->sk_tskey = tcp_sk(sk)->snd_una;
947 			} else {
948 				sk->sk_tskey = 0;
949 			}
950 		}
951 
952 		if (val & SOF_TIMESTAMPING_OPT_STATS &&
953 		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
954 			ret = -EINVAL;
955 			break;
956 		}
957 
958 		sk->sk_tsflags = val;
959 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
960 			sock_enable_timestamp(sk,
961 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
962 		else {
963 			if (optname == SO_TIMESTAMPING_NEW)
964 				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
965 
966 			sock_disable_timestamp(sk,
967 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
968 		}
969 		break;
970 
971 	case SO_RCVLOWAT:
972 		if (val < 0)
973 			val = INT_MAX;
974 		if (sock->ops->set_rcvlowat)
975 			ret = sock->ops->set_rcvlowat(sk, val);
976 		else
977 			sk->sk_rcvlowat = val ? : 1;
978 		break;
979 
980 	case SO_RCVTIMEO_OLD:
981 	case SO_RCVTIMEO_NEW:
982 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD);
983 		break;
984 
985 	case SO_SNDTIMEO_OLD:
986 	case SO_SNDTIMEO_NEW:
987 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD);
988 		break;
989 
990 	case SO_ATTACH_FILTER:
991 		ret = -EINVAL;
992 		if (optlen == sizeof(struct sock_fprog)) {
993 			struct sock_fprog fprog;
994 
995 			ret = -EFAULT;
996 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
997 				break;
998 
999 			ret = sk_attach_filter(&fprog, sk);
1000 		}
1001 		break;
1002 
1003 	case SO_ATTACH_BPF:
1004 		ret = -EINVAL;
1005 		if (optlen == sizeof(u32)) {
1006 			u32 ufd;
1007 
1008 			ret = -EFAULT;
1009 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1010 				break;
1011 
1012 			ret = sk_attach_bpf(ufd, sk);
1013 		}
1014 		break;
1015 
1016 	case SO_ATTACH_REUSEPORT_CBPF:
1017 		ret = -EINVAL;
1018 		if (optlen == sizeof(struct sock_fprog)) {
1019 			struct sock_fprog fprog;
1020 
1021 			ret = -EFAULT;
1022 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
1023 				break;
1024 
1025 			ret = sk_reuseport_attach_filter(&fprog, sk);
1026 		}
1027 		break;
1028 
1029 	case SO_ATTACH_REUSEPORT_EBPF:
1030 		ret = -EINVAL;
1031 		if (optlen == sizeof(u32)) {
1032 			u32 ufd;
1033 
1034 			ret = -EFAULT;
1035 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1036 				break;
1037 
1038 			ret = sk_reuseport_attach_bpf(ufd, sk);
1039 		}
1040 		break;
1041 
1042 	case SO_DETACH_FILTER:
1043 		ret = sk_detach_filter(sk);
1044 		break;
1045 
1046 	case SO_LOCK_FILTER:
1047 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1048 			ret = -EPERM;
1049 		else
1050 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1051 		break;
1052 
1053 	case SO_PASSSEC:
1054 		if (valbool)
1055 			set_bit(SOCK_PASSSEC, &sock->flags);
1056 		else
1057 			clear_bit(SOCK_PASSSEC, &sock->flags);
1058 		break;
1059 	case SO_MARK:
1060 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1061 			ret = -EPERM;
1062 		} else if (val != sk->sk_mark) {
1063 			sk->sk_mark = val;
1064 			sk_dst_reset(sk);
1065 		}
1066 		break;
1067 
1068 	case SO_RXQ_OVFL:
1069 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1070 		break;
1071 
1072 	case SO_WIFI_STATUS:
1073 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1074 		break;
1075 
1076 	case SO_PEEK_OFF:
1077 		if (sock->ops->set_peek_off)
1078 			ret = sock->ops->set_peek_off(sk, val);
1079 		else
1080 			ret = -EOPNOTSUPP;
1081 		break;
1082 
1083 	case SO_NOFCS:
1084 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1085 		break;
1086 
1087 	case SO_SELECT_ERR_QUEUE:
1088 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1089 		break;
1090 
1091 #ifdef CONFIG_NET_RX_BUSY_POLL
1092 	case SO_BUSY_POLL:
1093 		/* allow unprivileged users to decrease the value */
1094 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1095 			ret = -EPERM;
1096 		else {
1097 			if (val < 0)
1098 				ret = -EINVAL;
1099 			else
1100 				sk->sk_ll_usec = val;
1101 		}
1102 		break;
1103 #endif
1104 
1105 	case SO_MAX_PACING_RATE:
1106 		{
1107 		unsigned long ulval = (val == ~0U) ? ~0UL : val;
1108 
1109 		if (sizeof(ulval) != sizeof(val) &&
1110 		    optlen >= sizeof(ulval) &&
1111 		    get_user(ulval, (unsigned long __user *)optval)) {
1112 			ret = -EFAULT;
1113 			break;
1114 		}
1115 		if (ulval != ~0UL)
1116 			cmpxchg(&sk->sk_pacing_status,
1117 				SK_PACING_NONE,
1118 				SK_PACING_NEEDED);
1119 		sk->sk_max_pacing_rate = ulval;
1120 		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1121 		break;
1122 		}
1123 	case SO_INCOMING_CPU:
1124 		sk->sk_incoming_cpu = val;
1125 		break;
1126 
1127 	case SO_CNX_ADVICE:
1128 		if (val == 1)
1129 			dst_negative_advice(sk);
1130 		break;
1131 
1132 	case SO_ZEROCOPY:
1133 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1134 			if (!((sk->sk_type == SOCK_STREAM &&
1135 			       sk->sk_protocol == IPPROTO_TCP) ||
1136 			      (sk->sk_type == SOCK_DGRAM &&
1137 			       sk->sk_protocol == IPPROTO_UDP)))
1138 				ret = -ENOTSUPP;
1139 		} else if (sk->sk_family != PF_RDS) {
1140 			ret = -ENOTSUPP;
1141 		}
1142 		if (!ret) {
1143 			if (val < 0 || val > 1)
1144 				ret = -EINVAL;
1145 			else
1146 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1147 		}
1148 		break;
1149 
1150 	case SO_TXTIME:
1151 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1152 			ret = -EPERM;
1153 		} else if (optlen != sizeof(struct sock_txtime)) {
1154 			ret = -EINVAL;
1155 		} else if (copy_from_user(&sk_txtime, optval,
1156 			   sizeof(struct sock_txtime))) {
1157 			ret = -EFAULT;
1158 		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1159 			ret = -EINVAL;
1160 		} else {
1161 			sock_valbool_flag(sk, SOCK_TXTIME, true);
1162 			sk->sk_clockid = sk_txtime.clockid;
1163 			sk->sk_txtime_deadline_mode =
1164 				!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1165 			sk->sk_txtime_report_errors =
1166 				!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1167 		}
1168 		break;
1169 
1170 	case SO_BINDTOIFINDEX:
1171 		ret = sock_setbindtodevice_locked(sk, val);
1172 		break;
1173 
1174 	default:
1175 		ret = -ENOPROTOOPT;
1176 		break;
1177 	}
1178 	release_sock(sk);
1179 	return ret;
1180 }
1181 EXPORT_SYMBOL(sock_setsockopt);
1182 
1183 
1184 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1185 			  struct ucred *ucred)
1186 {
1187 	ucred->pid = pid_vnr(pid);
1188 	ucred->uid = ucred->gid = -1;
1189 	if (cred) {
1190 		struct user_namespace *current_ns = current_user_ns();
1191 
1192 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1193 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1194 	}
1195 }
1196 
1197 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1198 {
1199 	struct user_namespace *user_ns = current_user_ns();
1200 	int i;
1201 
1202 	for (i = 0; i < src->ngroups; i++)
1203 		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1204 			return -EFAULT;
1205 
1206 	return 0;
1207 }
1208 
1209 int sock_getsockopt(struct socket *sock, int level, int optname,
1210 		    char __user *optval, int __user *optlen)
1211 {
1212 	struct sock *sk = sock->sk;
1213 
1214 	union {
1215 		int val;
1216 		u64 val64;
1217 		unsigned long ulval;
1218 		struct linger ling;
1219 		struct old_timeval32 tm32;
1220 		struct __kernel_old_timeval tm;
1221 		struct  __kernel_sock_timeval stm;
1222 		struct sock_txtime txtime;
1223 	} v;
1224 
1225 	int lv = sizeof(int);
1226 	int len;
1227 
1228 	if (get_user(len, optlen))
1229 		return -EFAULT;
1230 	if (len < 0)
1231 		return -EINVAL;
1232 
1233 	memset(&v, 0, sizeof(v));
1234 
1235 	switch (optname) {
1236 	case SO_DEBUG:
1237 		v.val = sock_flag(sk, SOCK_DBG);
1238 		break;
1239 
1240 	case SO_DONTROUTE:
1241 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1242 		break;
1243 
1244 	case SO_BROADCAST:
1245 		v.val = sock_flag(sk, SOCK_BROADCAST);
1246 		break;
1247 
1248 	case SO_SNDBUF:
1249 		v.val = sk->sk_sndbuf;
1250 		break;
1251 
1252 	case SO_RCVBUF:
1253 		v.val = sk->sk_rcvbuf;
1254 		break;
1255 
1256 	case SO_REUSEADDR:
1257 		v.val = sk->sk_reuse;
1258 		break;
1259 
1260 	case SO_REUSEPORT:
1261 		v.val = sk->sk_reuseport;
1262 		break;
1263 
1264 	case SO_KEEPALIVE:
1265 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1266 		break;
1267 
1268 	case SO_TYPE:
1269 		v.val = sk->sk_type;
1270 		break;
1271 
1272 	case SO_PROTOCOL:
1273 		v.val = sk->sk_protocol;
1274 		break;
1275 
1276 	case SO_DOMAIN:
1277 		v.val = sk->sk_family;
1278 		break;
1279 
1280 	case SO_ERROR:
1281 		v.val = -sock_error(sk);
1282 		if (v.val == 0)
1283 			v.val = xchg(&sk->sk_err_soft, 0);
1284 		break;
1285 
1286 	case SO_OOBINLINE:
1287 		v.val = sock_flag(sk, SOCK_URGINLINE);
1288 		break;
1289 
1290 	case SO_NO_CHECK:
1291 		v.val = sk->sk_no_check_tx;
1292 		break;
1293 
1294 	case SO_PRIORITY:
1295 		v.val = sk->sk_priority;
1296 		break;
1297 
1298 	case SO_LINGER:
1299 		lv		= sizeof(v.ling);
1300 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1301 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1302 		break;
1303 
1304 	case SO_BSDCOMPAT:
1305 		sock_warn_obsolete_bsdism("getsockopt");
1306 		break;
1307 
1308 	case SO_TIMESTAMP_OLD:
1309 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1310 				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1311 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1312 		break;
1313 
1314 	case SO_TIMESTAMPNS_OLD:
1315 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1316 		break;
1317 
1318 	case SO_TIMESTAMP_NEW:
1319 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1320 		break;
1321 
1322 	case SO_TIMESTAMPNS_NEW:
1323 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1324 		break;
1325 
1326 	case SO_TIMESTAMPING_OLD:
1327 		v.val = sk->sk_tsflags;
1328 		break;
1329 
1330 	case SO_RCVTIMEO_OLD:
1331 	case SO_RCVTIMEO_NEW:
1332 		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1333 		break;
1334 
1335 	case SO_SNDTIMEO_OLD:
1336 	case SO_SNDTIMEO_NEW:
1337 		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1338 		break;
1339 
1340 	case SO_RCVLOWAT:
1341 		v.val = sk->sk_rcvlowat;
1342 		break;
1343 
1344 	case SO_SNDLOWAT:
1345 		v.val = 1;
1346 		break;
1347 
1348 	case SO_PASSCRED:
1349 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1350 		break;
1351 
1352 	case SO_PEERCRED:
1353 	{
1354 		struct ucred peercred;
1355 		if (len > sizeof(peercred))
1356 			len = sizeof(peercred);
1357 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1358 		if (copy_to_user(optval, &peercred, len))
1359 			return -EFAULT;
1360 		goto lenout;
1361 	}
1362 
1363 	case SO_PEERGROUPS:
1364 	{
1365 		int ret, n;
1366 
1367 		if (!sk->sk_peer_cred)
1368 			return -ENODATA;
1369 
1370 		n = sk->sk_peer_cred->group_info->ngroups;
1371 		if (len < n * sizeof(gid_t)) {
1372 			len = n * sizeof(gid_t);
1373 			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1374 		}
1375 		len = n * sizeof(gid_t);
1376 
1377 		ret = groups_to_user((gid_t __user *)optval,
1378 				     sk->sk_peer_cred->group_info);
1379 		if (ret)
1380 			return ret;
1381 		goto lenout;
1382 	}
1383 
1384 	case SO_PEERNAME:
1385 	{
1386 		char address[128];
1387 
1388 		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1389 		if (lv < 0)
1390 			return -ENOTCONN;
1391 		if (lv < len)
1392 			return -EINVAL;
1393 		if (copy_to_user(optval, address, len))
1394 			return -EFAULT;
1395 		goto lenout;
1396 	}
1397 
1398 	/* Dubious BSD thing... Probably nobody even uses it, but
1399 	 * the UNIX standard wants it for whatever reason... -DaveM
1400 	 */
1401 	case SO_ACCEPTCONN:
1402 		v.val = sk->sk_state == TCP_LISTEN;
1403 		break;
1404 
1405 	case SO_PASSSEC:
1406 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1407 		break;
1408 
1409 	case SO_PEERSEC:
1410 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1411 
1412 	case SO_MARK:
1413 		v.val = sk->sk_mark;
1414 		break;
1415 
1416 	case SO_RXQ_OVFL:
1417 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1418 		break;
1419 
1420 	case SO_WIFI_STATUS:
1421 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1422 		break;
1423 
1424 	case SO_PEEK_OFF:
1425 		if (!sock->ops->set_peek_off)
1426 			return -EOPNOTSUPP;
1427 
1428 		v.val = sk->sk_peek_off;
1429 		break;
1430 	case SO_NOFCS:
1431 		v.val = sock_flag(sk, SOCK_NOFCS);
1432 		break;
1433 
1434 	case SO_BINDTODEVICE:
1435 		return sock_getbindtodevice(sk, optval, optlen, len);
1436 
1437 	case SO_GET_FILTER:
1438 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1439 		if (len < 0)
1440 			return len;
1441 
1442 		goto lenout;
1443 
1444 	case SO_LOCK_FILTER:
1445 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1446 		break;
1447 
1448 	case SO_BPF_EXTENSIONS:
1449 		v.val = bpf_tell_extensions();
1450 		break;
1451 
1452 	case SO_SELECT_ERR_QUEUE:
1453 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1454 		break;
1455 
1456 #ifdef CONFIG_NET_RX_BUSY_POLL
1457 	case SO_BUSY_POLL:
1458 		v.val = sk->sk_ll_usec;
1459 		break;
1460 #endif
1461 
1462 	case SO_MAX_PACING_RATE:
1463 		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1464 			lv = sizeof(v.ulval);
1465 			v.ulval = sk->sk_max_pacing_rate;
1466 		} else {
1467 			/* 32bit version */
1468 			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1469 		}
1470 		break;
1471 
1472 	case SO_INCOMING_CPU:
1473 		v.val = sk->sk_incoming_cpu;
1474 		break;
1475 
1476 	case SO_MEMINFO:
1477 	{
1478 		u32 meminfo[SK_MEMINFO_VARS];
1479 
1480 		sk_get_meminfo(sk, meminfo);
1481 
1482 		len = min_t(unsigned int, len, sizeof(meminfo));
1483 		if (copy_to_user(optval, &meminfo, len))
1484 			return -EFAULT;
1485 
1486 		goto lenout;
1487 	}
1488 
1489 #ifdef CONFIG_NET_RX_BUSY_POLL
1490 	case SO_INCOMING_NAPI_ID:
1491 		v.val = READ_ONCE(sk->sk_napi_id);
1492 
1493 		/* aggregate non-NAPI IDs down to 0 */
1494 		if (v.val < MIN_NAPI_ID)
1495 			v.val = 0;
1496 
1497 		break;
1498 #endif
1499 
1500 	case SO_COOKIE:
1501 		lv = sizeof(u64);
1502 		if (len < lv)
1503 			return -EINVAL;
1504 		v.val64 = sock_gen_cookie(sk);
1505 		break;
1506 
1507 	case SO_ZEROCOPY:
1508 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1509 		break;
1510 
1511 	case SO_TXTIME:
1512 		lv = sizeof(v.txtime);
1513 		v.txtime.clockid = sk->sk_clockid;
1514 		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1515 				  SOF_TXTIME_DEADLINE_MODE : 0;
1516 		v.txtime.flags |= sk->sk_txtime_report_errors ?
1517 				  SOF_TXTIME_REPORT_ERRORS : 0;
1518 		break;
1519 
1520 	case SO_BINDTOIFINDEX:
1521 		v.val = sk->sk_bound_dev_if;
1522 		break;
1523 
1524 	default:
1525 		/* We implement the SO_SNDLOWAT etc to not be settable
1526 		 * (1003.1g 7).
1527 		 */
1528 		return -ENOPROTOOPT;
1529 	}
1530 
1531 	if (len > lv)
1532 		len = lv;
1533 	if (copy_to_user(optval, &v, len))
1534 		return -EFAULT;
1535 lenout:
1536 	if (put_user(len, optlen))
1537 		return -EFAULT;
1538 	return 0;
1539 }
1540 
1541 /*
1542  * Initialize an sk_lock.
1543  *
1544  * (We also register the sk_lock with the lock validator.)
1545  */
1546 static inline void sock_lock_init(struct sock *sk)
1547 {
1548 	if (sk->sk_kern_sock)
1549 		sock_lock_init_class_and_name(
1550 			sk,
1551 			af_family_kern_slock_key_strings[sk->sk_family],
1552 			af_family_kern_slock_keys + sk->sk_family,
1553 			af_family_kern_key_strings[sk->sk_family],
1554 			af_family_kern_keys + sk->sk_family);
1555 	else
1556 		sock_lock_init_class_and_name(
1557 			sk,
1558 			af_family_slock_key_strings[sk->sk_family],
1559 			af_family_slock_keys + sk->sk_family,
1560 			af_family_key_strings[sk->sk_family],
1561 			af_family_keys + sk->sk_family);
1562 }
1563 
1564 /*
1565  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1566  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1567  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1568  */
1569 static void sock_copy(struct sock *nsk, const struct sock *osk)
1570 {
1571 #ifdef CONFIG_SECURITY_NETWORK
1572 	void *sptr = nsk->sk_security;
1573 #endif
1574 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1575 
1576 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1577 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1578 
1579 #ifdef CONFIG_SECURITY_NETWORK
1580 	nsk->sk_security = sptr;
1581 	security_sk_clone(osk, nsk);
1582 #endif
1583 }
1584 
1585 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1586 		int family)
1587 {
1588 	struct sock *sk;
1589 	struct kmem_cache *slab;
1590 
1591 	slab = prot->slab;
1592 	if (slab != NULL) {
1593 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1594 		if (!sk)
1595 			return sk;
1596 		if (priority & __GFP_ZERO)
1597 			sk_prot_clear_nulls(sk, prot->obj_size);
1598 	} else
1599 		sk = kmalloc(prot->obj_size, priority);
1600 
1601 	if (sk != NULL) {
1602 		if (security_sk_alloc(sk, family, priority))
1603 			goto out_free;
1604 
1605 		if (!try_module_get(prot->owner))
1606 			goto out_free_sec;
1607 		sk_tx_queue_clear(sk);
1608 	}
1609 
1610 	return sk;
1611 
1612 out_free_sec:
1613 	security_sk_free(sk);
1614 out_free:
1615 	if (slab != NULL)
1616 		kmem_cache_free(slab, sk);
1617 	else
1618 		kfree(sk);
1619 	return NULL;
1620 }
1621 
1622 static void sk_prot_free(struct proto *prot, struct sock *sk)
1623 {
1624 	struct kmem_cache *slab;
1625 	struct module *owner;
1626 
1627 	owner = prot->owner;
1628 	slab = prot->slab;
1629 
1630 	cgroup_sk_free(&sk->sk_cgrp_data);
1631 	mem_cgroup_sk_free(sk);
1632 	security_sk_free(sk);
1633 	if (slab != NULL)
1634 		kmem_cache_free(slab, sk);
1635 	else
1636 		kfree(sk);
1637 	module_put(owner);
1638 }
1639 
1640 /**
1641  *	sk_alloc - All socket objects are allocated here
1642  *	@net: the applicable net namespace
1643  *	@family: protocol family
1644  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1645  *	@prot: struct proto associated with this new sock instance
1646  *	@kern: is this to be a kernel socket?
1647  */
1648 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1649 		      struct proto *prot, int kern)
1650 {
1651 	struct sock *sk;
1652 
1653 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1654 	if (sk) {
1655 		sk->sk_family = family;
1656 		/*
1657 		 * See comment in struct sock definition to understand
1658 		 * why we need sk_prot_creator -acme
1659 		 */
1660 		sk->sk_prot = sk->sk_prot_creator = prot;
1661 		sk->sk_kern_sock = kern;
1662 		sock_lock_init(sk);
1663 		sk->sk_net_refcnt = kern ? 0 : 1;
1664 		if (likely(sk->sk_net_refcnt)) {
1665 			get_net(net);
1666 			sock_inuse_add(net, 1);
1667 		}
1668 
1669 		sock_net_set(sk, net);
1670 		refcount_set(&sk->sk_wmem_alloc, 1);
1671 
1672 		mem_cgroup_sk_alloc(sk);
1673 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1674 		sock_update_classid(&sk->sk_cgrp_data);
1675 		sock_update_netprioidx(&sk->sk_cgrp_data);
1676 	}
1677 
1678 	return sk;
1679 }
1680 EXPORT_SYMBOL(sk_alloc);
1681 
1682 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1683  * grace period. This is the case for UDP sockets and TCP listeners.
1684  */
1685 static void __sk_destruct(struct rcu_head *head)
1686 {
1687 	struct sock *sk = container_of(head, struct sock, sk_rcu);
1688 	struct sk_filter *filter;
1689 
1690 	if (sk->sk_destruct)
1691 		sk->sk_destruct(sk);
1692 
1693 	filter = rcu_dereference_check(sk->sk_filter,
1694 				       refcount_read(&sk->sk_wmem_alloc) == 0);
1695 	if (filter) {
1696 		sk_filter_uncharge(sk, filter);
1697 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1698 	}
1699 	if (rcu_access_pointer(sk->sk_reuseport_cb))
1700 		reuseport_detach_sock(sk);
1701 
1702 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1703 
1704 #ifdef CONFIG_BPF_SYSCALL
1705 	bpf_sk_storage_free(sk);
1706 #endif
1707 
1708 	if (atomic_read(&sk->sk_omem_alloc))
1709 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1710 			 __func__, atomic_read(&sk->sk_omem_alloc));
1711 
1712 	if (sk->sk_frag.page) {
1713 		put_page(sk->sk_frag.page);
1714 		sk->sk_frag.page = NULL;
1715 	}
1716 
1717 	if (sk->sk_peer_cred)
1718 		put_cred(sk->sk_peer_cred);
1719 	put_pid(sk->sk_peer_pid);
1720 	if (likely(sk->sk_net_refcnt))
1721 		put_net(sock_net(sk));
1722 	sk_prot_free(sk->sk_prot_creator, sk);
1723 }
1724 
1725 void sk_destruct(struct sock *sk)
1726 {
1727 	if (sock_flag(sk, SOCK_RCU_FREE))
1728 		call_rcu(&sk->sk_rcu, __sk_destruct);
1729 	else
1730 		__sk_destruct(&sk->sk_rcu);
1731 }
1732 
1733 static void __sk_free(struct sock *sk)
1734 {
1735 	if (likely(sk->sk_net_refcnt))
1736 		sock_inuse_add(sock_net(sk), -1);
1737 
1738 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1739 		sock_diag_broadcast_destroy(sk);
1740 	else
1741 		sk_destruct(sk);
1742 }
1743 
1744 void sk_free(struct sock *sk)
1745 {
1746 	/*
1747 	 * We subtract one from sk_wmem_alloc and can know if
1748 	 * some packets are still in some tx queue.
1749 	 * If not null, sock_wfree() will call __sk_free(sk) later
1750 	 */
1751 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1752 		__sk_free(sk);
1753 }
1754 EXPORT_SYMBOL(sk_free);
1755 
1756 static void sk_init_common(struct sock *sk)
1757 {
1758 	skb_queue_head_init(&sk->sk_receive_queue);
1759 	skb_queue_head_init(&sk->sk_write_queue);
1760 	skb_queue_head_init(&sk->sk_error_queue);
1761 
1762 	rwlock_init(&sk->sk_callback_lock);
1763 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1764 			af_rlock_keys + sk->sk_family,
1765 			af_family_rlock_key_strings[sk->sk_family]);
1766 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1767 			af_wlock_keys + sk->sk_family,
1768 			af_family_wlock_key_strings[sk->sk_family]);
1769 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1770 			af_elock_keys + sk->sk_family,
1771 			af_family_elock_key_strings[sk->sk_family]);
1772 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1773 			af_callback_keys + sk->sk_family,
1774 			af_family_clock_key_strings[sk->sk_family]);
1775 }
1776 
1777 /**
1778  *	sk_clone_lock - clone a socket, and lock its clone
1779  *	@sk: the socket to clone
1780  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1781  *
1782  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1783  */
1784 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1785 {
1786 	struct sock *newsk;
1787 	bool is_charged = true;
1788 
1789 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1790 	if (newsk != NULL) {
1791 		struct sk_filter *filter;
1792 
1793 		sock_copy(newsk, sk);
1794 
1795 		newsk->sk_prot_creator = sk->sk_prot;
1796 
1797 		/* SANITY */
1798 		if (likely(newsk->sk_net_refcnt))
1799 			get_net(sock_net(newsk));
1800 		sk_node_init(&newsk->sk_node);
1801 		sock_lock_init(newsk);
1802 		bh_lock_sock(newsk);
1803 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1804 		newsk->sk_backlog.len = 0;
1805 
1806 		atomic_set(&newsk->sk_rmem_alloc, 0);
1807 		/*
1808 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1809 		 */
1810 		refcount_set(&newsk->sk_wmem_alloc, 1);
1811 		atomic_set(&newsk->sk_omem_alloc, 0);
1812 		sk_init_common(newsk);
1813 
1814 		newsk->sk_dst_cache	= NULL;
1815 		newsk->sk_dst_pending_confirm = 0;
1816 		newsk->sk_wmem_queued	= 0;
1817 		newsk->sk_forward_alloc = 0;
1818 		atomic_set(&newsk->sk_drops, 0);
1819 		newsk->sk_send_head	= NULL;
1820 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1821 		atomic_set(&newsk->sk_zckey, 0);
1822 
1823 		sock_reset_flag(newsk, SOCK_DONE);
1824 		mem_cgroup_sk_alloc(newsk);
1825 		cgroup_sk_alloc(&newsk->sk_cgrp_data);
1826 
1827 		rcu_read_lock();
1828 		filter = rcu_dereference(sk->sk_filter);
1829 		if (filter != NULL)
1830 			/* though it's an empty new sock, the charging may fail
1831 			 * if sysctl_optmem_max was changed between creation of
1832 			 * original socket and cloning
1833 			 */
1834 			is_charged = sk_filter_charge(newsk, filter);
1835 		RCU_INIT_POINTER(newsk->sk_filter, filter);
1836 		rcu_read_unlock();
1837 
1838 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1839 			/* We need to make sure that we don't uncharge the new
1840 			 * socket if we couldn't charge it in the first place
1841 			 * as otherwise we uncharge the parent's filter.
1842 			 */
1843 			if (!is_charged)
1844 				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1845 			sk_free_unlock_clone(newsk);
1846 			newsk = NULL;
1847 			goto out;
1848 		}
1849 		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1850 #ifdef CONFIG_BPF_SYSCALL
1851 		RCU_INIT_POINTER(newsk->sk_bpf_storage, NULL);
1852 #endif
1853 
1854 		newsk->sk_err	   = 0;
1855 		newsk->sk_err_soft = 0;
1856 		newsk->sk_priority = 0;
1857 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1858 		if (likely(newsk->sk_net_refcnt))
1859 			sock_inuse_add(sock_net(newsk), 1);
1860 
1861 		/*
1862 		 * Before updating sk_refcnt, we must commit prior changes to memory
1863 		 * (Documentation/RCU/rculist_nulls.txt for details)
1864 		 */
1865 		smp_wmb();
1866 		refcount_set(&newsk->sk_refcnt, 2);
1867 
1868 		/*
1869 		 * Increment the counter in the same struct proto as the master
1870 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1871 		 * is the same as sk->sk_prot->socks, as this field was copied
1872 		 * with memcpy).
1873 		 *
1874 		 * This _changes_ the previous behaviour, where
1875 		 * tcp_create_openreq_child always was incrementing the
1876 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1877 		 * to be taken into account in all callers. -acme
1878 		 */
1879 		sk_refcnt_debug_inc(newsk);
1880 		sk_set_socket(newsk, NULL);
1881 		RCU_INIT_POINTER(newsk->sk_wq, NULL);
1882 
1883 		if (newsk->sk_prot->sockets_allocated)
1884 			sk_sockets_allocated_inc(newsk);
1885 
1886 		if (sock_needs_netstamp(sk) &&
1887 		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1888 			net_enable_timestamp();
1889 	}
1890 out:
1891 	return newsk;
1892 }
1893 EXPORT_SYMBOL_GPL(sk_clone_lock);
1894 
1895 void sk_free_unlock_clone(struct sock *sk)
1896 {
1897 	/* It is still raw copy of parent, so invalidate
1898 	 * destructor and make plain sk_free() */
1899 	sk->sk_destruct = NULL;
1900 	bh_unlock_sock(sk);
1901 	sk_free(sk);
1902 }
1903 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1904 
1905 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1906 {
1907 	u32 max_segs = 1;
1908 
1909 	sk_dst_set(sk, dst);
1910 	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1911 	if (sk->sk_route_caps & NETIF_F_GSO)
1912 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1913 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1914 	if (sk_can_gso(sk)) {
1915 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1916 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1917 		} else {
1918 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1919 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1920 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1921 		}
1922 	}
1923 	sk->sk_gso_max_segs = max_segs;
1924 }
1925 EXPORT_SYMBOL_GPL(sk_setup_caps);
1926 
1927 /*
1928  *	Simple resource managers for sockets.
1929  */
1930 
1931 
1932 /*
1933  * Write buffer destructor automatically called from kfree_skb.
1934  */
1935 void sock_wfree(struct sk_buff *skb)
1936 {
1937 	struct sock *sk = skb->sk;
1938 	unsigned int len = skb->truesize;
1939 
1940 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1941 		/*
1942 		 * Keep a reference on sk_wmem_alloc, this will be released
1943 		 * after sk_write_space() call
1944 		 */
1945 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1946 		sk->sk_write_space(sk);
1947 		len = 1;
1948 	}
1949 	/*
1950 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1951 	 * could not do because of in-flight packets
1952 	 */
1953 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1954 		__sk_free(sk);
1955 }
1956 EXPORT_SYMBOL(sock_wfree);
1957 
1958 /* This variant of sock_wfree() is used by TCP,
1959  * since it sets SOCK_USE_WRITE_QUEUE.
1960  */
1961 void __sock_wfree(struct sk_buff *skb)
1962 {
1963 	struct sock *sk = skb->sk;
1964 
1965 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1966 		__sk_free(sk);
1967 }
1968 
1969 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1970 {
1971 	skb_orphan(skb);
1972 	skb->sk = sk;
1973 #ifdef CONFIG_INET
1974 	if (unlikely(!sk_fullsock(sk))) {
1975 		skb->destructor = sock_edemux;
1976 		sock_hold(sk);
1977 		return;
1978 	}
1979 #endif
1980 	skb->destructor = sock_wfree;
1981 	skb_set_hash_from_sk(skb, sk);
1982 	/*
1983 	 * We used to take a refcount on sk, but following operation
1984 	 * is enough to guarantee sk_free() wont free this sock until
1985 	 * all in-flight packets are completed
1986 	 */
1987 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1988 }
1989 EXPORT_SYMBOL(skb_set_owner_w);
1990 
1991 /* This helper is used by netem, as it can hold packets in its
1992  * delay queue. We want to allow the owner socket to send more
1993  * packets, as if they were already TX completed by a typical driver.
1994  * But we also want to keep skb->sk set because some packet schedulers
1995  * rely on it (sch_fq for example).
1996  */
1997 void skb_orphan_partial(struct sk_buff *skb)
1998 {
1999 	if (skb_is_tcp_pure_ack(skb))
2000 		return;
2001 
2002 	if (skb->destructor == sock_wfree
2003 #ifdef CONFIG_INET
2004 	    || skb->destructor == tcp_wfree
2005 #endif
2006 		) {
2007 		struct sock *sk = skb->sk;
2008 
2009 		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2010 			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2011 			skb->destructor = sock_efree;
2012 		}
2013 	} else {
2014 		skb_orphan(skb);
2015 	}
2016 }
2017 EXPORT_SYMBOL(skb_orphan_partial);
2018 
2019 /*
2020  * Read buffer destructor automatically called from kfree_skb.
2021  */
2022 void sock_rfree(struct sk_buff *skb)
2023 {
2024 	struct sock *sk = skb->sk;
2025 	unsigned int len = skb->truesize;
2026 
2027 	atomic_sub(len, &sk->sk_rmem_alloc);
2028 	sk_mem_uncharge(sk, len);
2029 }
2030 EXPORT_SYMBOL(sock_rfree);
2031 
2032 /*
2033  * Buffer destructor for skbs that are not used directly in read or write
2034  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2035  */
2036 void sock_efree(struct sk_buff *skb)
2037 {
2038 	sock_put(skb->sk);
2039 }
2040 EXPORT_SYMBOL(sock_efree);
2041 
2042 kuid_t sock_i_uid(struct sock *sk)
2043 {
2044 	kuid_t uid;
2045 
2046 	read_lock_bh(&sk->sk_callback_lock);
2047 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2048 	read_unlock_bh(&sk->sk_callback_lock);
2049 	return uid;
2050 }
2051 EXPORT_SYMBOL(sock_i_uid);
2052 
2053 unsigned long sock_i_ino(struct sock *sk)
2054 {
2055 	unsigned long ino;
2056 
2057 	read_lock_bh(&sk->sk_callback_lock);
2058 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2059 	read_unlock_bh(&sk->sk_callback_lock);
2060 	return ino;
2061 }
2062 EXPORT_SYMBOL(sock_i_ino);
2063 
2064 /*
2065  * Allocate a skb from the socket's send buffer.
2066  */
2067 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2068 			     gfp_t priority)
2069 {
2070 	if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
2071 		struct sk_buff *skb = alloc_skb(size, priority);
2072 		if (skb) {
2073 			skb_set_owner_w(skb, sk);
2074 			return skb;
2075 		}
2076 	}
2077 	return NULL;
2078 }
2079 EXPORT_SYMBOL(sock_wmalloc);
2080 
2081 static void sock_ofree(struct sk_buff *skb)
2082 {
2083 	struct sock *sk = skb->sk;
2084 
2085 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2086 }
2087 
2088 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2089 			     gfp_t priority)
2090 {
2091 	struct sk_buff *skb;
2092 
2093 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2094 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2095 	    sysctl_optmem_max)
2096 		return NULL;
2097 
2098 	skb = alloc_skb(size, priority);
2099 	if (!skb)
2100 		return NULL;
2101 
2102 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2103 	skb->sk = sk;
2104 	skb->destructor = sock_ofree;
2105 	return skb;
2106 }
2107 
2108 /*
2109  * Allocate a memory block from the socket's option memory buffer.
2110  */
2111 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2112 {
2113 	if ((unsigned int)size <= sysctl_optmem_max &&
2114 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2115 		void *mem;
2116 		/* First do the add, to avoid the race if kmalloc
2117 		 * might sleep.
2118 		 */
2119 		atomic_add(size, &sk->sk_omem_alloc);
2120 		mem = kmalloc(size, priority);
2121 		if (mem)
2122 			return mem;
2123 		atomic_sub(size, &sk->sk_omem_alloc);
2124 	}
2125 	return NULL;
2126 }
2127 EXPORT_SYMBOL(sock_kmalloc);
2128 
2129 /* Free an option memory block. Note, we actually want the inline
2130  * here as this allows gcc to detect the nullify and fold away the
2131  * condition entirely.
2132  */
2133 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2134 				  const bool nullify)
2135 {
2136 	if (WARN_ON_ONCE(!mem))
2137 		return;
2138 	if (nullify)
2139 		kzfree(mem);
2140 	else
2141 		kfree(mem);
2142 	atomic_sub(size, &sk->sk_omem_alloc);
2143 }
2144 
2145 void sock_kfree_s(struct sock *sk, void *mem, int size)
2146 {
2147 	__sock_kfree_s(sk, mem, size, false);
2148 }
2149 EXPORT_SYMBOL(sock_kfree_s);
2150 
2151 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2152 {
2153 	__sock_kfree_s(sk, mem, size, true);
2154 }
2155 EXPORT_SYMBOL(sock_kzfree_s);
2156 
2157 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2158    I think, these locks should be removed for datagram sockets.
2159  */
2160 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2161 {
2162 	DEFINE_WAIT(wait);
2163 
2164 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2165 	for (;;) {
2166 		if (!timeo)
2167 			break;
2168 		if (signal_pending(current))
2169 			break;
2170 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2171 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2172 		if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2173 			break;
2174 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2175 			break;
2176 		if (sk->sk_err)
2177 			break;
2178 		timeo = schedule_timeout(timeo);
2179 	}
2180 	finish_wait(sk_sleep(sk), &wait);
2181 	return timeo;
2182 }
2183 
2184 
2185 /*
2186  *	Generic send/receive buffer handlers
2187  */
2188 
2189 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2190 				     unsigned long data_len, int noblock,
2191 				     int *errcode, int max_page_order)
2192 {
2193 	struct sk_buff *skb;
2194 	long timeo;
2195 	int err;
2196 
2197 	timeo = sock_sndtimeo(sk, noblock);
2198 	for (;;) {
2199 		err = sock_error(sk);
2200 		if (err != 0)
2201 			goto failure;
2202 
2203 		err = -EPIPE;
2204 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2205 			goto failure;
2206 
2207 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2208 			break;
2209 
2210 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2211 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2212 		err = -EAGAIN;
2213 		if (!timeo)
2214 			goto failure;
2215 		if (signal_pending(current))
2216 			goto interrupted;
2217 		timeo = sock_wait_for_wmem(sk, timeo);
2218 	}
2219 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2220 				   errcode, sk->sk_allocation);
2221 	if (skb)
2222 		skb_set_owner_w(skb, sk);
2223 	return skb;
2224 
2225 interrupted:
2226 	err = sock_intr_errno(timeo);
2227 failure:
2228 	*errcode = err;
2229 	return NULL;
2230 }
2231 EXPORT_SYMBOL(sock_alloc_send_pskb);
2232 
2233 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2234 				    int noblock, int *errcode)
2235 {
2236 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2237 }
2238 EXPORT_SYMBOL(sock_alloc_send_skb);
2239 
2240 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2241 		     struct sockcm_cookie *sockc)
2242 {
2243 	u32 tsflags;
2244 
2245 	switch (cmsg->cmsg_type) {
2246 	case SO_MARK:
2247 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2248 			return -EPERM;
2249 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2250 			return -EINVAL;
2251 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2252 		break;
2253 	case SO_TIMESTAMPING_OLD:
2254 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2255 			return -EINVAL;
2256 
2257 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2258 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2259 			return -EINVAL;
2260 
2261 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2262 		sockc->tsflags |= tsflags;
2263 		break;
2264 	case SCM_TXTIME:
2265 		if (!sock_flag(sk, SOCK_TXTIME))
2266 			return -EINVAL;
2267 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2268 			return -EINVAL;
2269 		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2270 		break;
2271 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2272 	case SCM_RIGHTS:
2273 	case SCM_CREDENTIALS:
2274 		break;
2275 	default:
2276 		return -EINVAL;
2277 	}
2278 	return 0;
2279 }
2280 EXPORT_SYMBOL(__sock_cmsg_send);
2281 
2282 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2283 		   struct sockcm_cookie *sockc)
2284 {
2285 	struct cmsghdr *cmsg;
2286 	int ret;
2287 
2288 	for_each_cmsghdr(cmsg, msg) {
2289 		if (!CMSG_OK(msg, cmsg))
2290 			return -EINVAL;
2291 		if (cmsg->cmsg_level != SOL_SOCKET)
2292 			continue;
2293 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2294 		if (ret)
2295 			return ret;
2296 	}
2297 	return 0;
2298 }
2299 EXPORT_SYMBOL(sock_cmsg_send);
2300 
2301 static void sk_enter_memory_pressure(struct sock *sk)
2302 {
2303 	if (!sk->sk_prot->enter_memory_pressure)
2304 		return;
2305 
2306 	sk->sk_prot->enter_memory_pressure(sk);
2307 }
2308 
2309 static void sk_leave_memory_pressure(struct sock *sk)
2310 {
2311 	if (sk->sk_prot->leave_memory_pressure) {
2312 		sk->sk_prot->leave_memory_pressure(sk);
2313 	} else {
2314 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2315 
2316 		if (memory_pressure && *memory_pressure)
2317 			*memory_pressure = 0;
2318 	}
2319 }
2320 
2321 /* On 32bit arches, an skb frag is limited to 2^15 */
2322 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2323 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2324 
2325 /**
2326  * skb_page_frag_refill - check that a page_frag contains enough room
2327  * @sz: minimum size of the fragment we want to get
2328  * @pfrag: pointer to page_frag
2329  * @gfp: priority for memory allocation
2330  *
2331  * Note: While this allocator tries to use high order pages, there is
2332  * no guarantee that allocations succeed. Therefore, @sz MUST be
2333  * less or equal than PAGE_SIZE.
2334  */
2335 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2336 {
2337 	if (pfrag->page) {
2338 		if (page_ref_count(pfrag->page) == 1) {
2339 			pfrag->offset = 0;
2340 			return true;
2341 		}
2342 		if (pfrag->offset + sz <= pfrag->size)
2343 			return true;
2344 		put_page(pfrag->page);
2345 	}
2346 
2347 	pfrag->offset = 0;
2348 	if (SKB_FRAG_PAGE_ORDER &&
2349 	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2350 		/* Avoid direct reclaim but allow kswapd to wake */
2351 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2352 					  __GFP_COMP | __GFP_NOWARN |
2353 					  __GFP_NORETRY,
2354 					  SKB_FRAG_PAGE_ORDER);
2355 		if (likely(pfrag->page)) {
2356 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2357 			return true;
2358 		}
2359 	}
2360 	pfrag->page = alloc_page(gfp);
2361 	if (likely(pfrag->page)) {
2362 		pfrag->size = PAGE_SIZE;
2363 		return true;
2364 	}
2365 	return false;
2366 }
2367 EXPORT_SYMBOL(skb_page_frag_refill);
2368 
2369 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2370 {
2371 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2372 		return true;
2373 
2374 	sk_enter_memory_pressure(sk);
2375 	sk_stream_moderate_sndbuf(sk);
2376 	return false;
2377 }
2378 EXPORT_SYMBOL(sk_page_frag_refill);
2379 
2380 static void __lock_sock(struct sock *sk)
2381 	__releases(&sk->sk_lock.slock)
2382 	__acquires(&sk->sk_lock.slock)
2383 {
2384 	DEFINE_WAIT(wait);
2385 
2386 	for (;;) {
2387 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2388 					TASK_UNINTERRUPTIBLE);
2389 		spin_unlock_bh(&sk->sk_lock.slock);
2390 		schedule();
2391 		spin_lock_bh(&sk->sk_lock.slock);
2392 		if (!sock_owned_by_user(sk))
2393 			break;
2394 	}
2395 	finish_wait(&sk->sk_lock.wq, &wait);
2396 }
2397 
2398 void __release_sock(struct sock *sk)
2399 	__releases(&sk->sk_lock.slock)
2400 	__acquires(&sk->sk_lock.slock)
2401 {
2402 	struct sk_buff *skb, *next;
2403 
2404 	while ((skb = sk->sk_backlog.head) != NULL) {
2405 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2406 
2407 		spin_unlock_bh(&sk->sk_lock.slock);
2408 
2409 		do {
2410 			next = skb->next;
2411 			prefetch(next);
2412 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2413 			skb_mark_not_on_list(skb);
2414 			sk_backlog_rcv(sk, skb);
2415 
2416 			cond_resched();
2417 
2418 			skb = next;
2419 		} while (skb != NULL);
2420 
2421 		spin_lock_bh(&sk->sk_lock.slock);
2422 	}
2423 
2424 	/*
2425 	 * Doing the zeroing here guarantee we can not loop forever
2426 	 * while a wild producer attempts to flood us.
2427 	 */
2428 	sk->sk_backlog.len = 0;
2429 }
2430 
2431 void __sk_flush_backlog(struct sock *sk)
2432 {
2433 	spin_lock_bh(&sk->sk_lock.slock);
2434 	__release_sock(sk);
2435 	spin_unlock_bh(&sk->sk_lock.slock);
2436 }
2437 
2438 /**
2439  * sk_wait_data - wait for data to arrive at sk_receive_queue
2440  * @sk:    sock to wait on
2441  * @timeo: for how long
2442  * @skb:   last skb seen on sk_receive_queue
2443  *
2444  * Now socket state including sk->sk_err is changed only under lock,
2445  * hence we may omit checks after joining wait queue.
2446  * We check receive queue before schedule() only as optimization;
2447  * it is very likely that release_sock() added new data.
2448  */
2449 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2450 {
2451 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2452 	int rc;
2453 
2454 	add_wait_queue(sk_sleep(sk), &wait);
2455 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2456 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2457 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2458 	remove_wait_queue(sk_sleep(sk), &wait);
2459 	return rc;
2460 }
2461 EXPORT_SYMBOL(sk_wait_data);
2462 
2463 /**
2464  *	__sk_mem_raise_allocated - increase memory_allocated
2465  *	@sk: socket
2466  *	@size: memory size to allocate
2467  *	@amt: pages to allocate
2468  *	@kind: allocation type
2469  *
2470  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2471  */
2472 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2473 {
2474 	struct proto *prot = sk->sk_prot;
2475 	long allocated = sk_memory_allocated_add(sk, amt);
2476 	bool charged = true;
2477 
2478 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2479 	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2480 		goto suppress_allocation;
2481 
2482 	/* Under limit. */
2483 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2484 		sk_leave_memory_pressure(sk);
2485 		return 1;
2486 	}
2487 
2488 	/* Under pressure. */
2489 	if (allocated > sk_prot_mem_limits(sk, 1))
2490 		sk_enter_memory_pressure(sk);
2491 
2492 	/* Over hard limit. */
2493 	if (allocated > sk_prot_mem_limits(sk, 2))
2494 		goto suppress_allocation;
2495 
2496 	/* guarantee minimum buffer size under pressure */
2497 	if (kind == SK_MEM_RECV) {
2498 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2499 			return 1;
2500 
2501 	} else { /* SK_MEM_SEND */
2502 		int wmem0 = sk_get_wmem0(sk, prot);
2503 
2504 		if (sk->sk_type == SOCK_STREAM) {
2505 			if (sk->sk_wmem_queued < wmem0)
2506 				return 1;
2507 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2508 				return 1;
2509 		}
2510 	}
2511 
2512 	if (sk_has_memory_pressure(sk)) {
2513 		u64 alloc;
2514 
2515 		if (!sk_under_memory_pressure(sk))
2516 			return 1;
2517 		alloc = sk_sockets_allocated_read_positive(sk);
2518 		if (sk_prot_mem_limits(sk, 2) > alloc *
2519 		    sk_mem_pages(sk->sk_wmem_queued +
2520 				 atomic_read(&sk->sk_rmem_alloc) +
2521 				 sk->sk_forward_alloc))
2522 			return 1;
2523 	}
2524 
2525 suppress_allocation:
2526 
2527 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2528 		sk_stream_moderate_sndbuf(sk);
2529 
2530 		/* Fail only if socket is _under_ its sndbuf.
2531 		 * In this case we cannot block, so that we have to fail.
2532 		 */
2533 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2534 			return 1;
2535 	}
2536 
2537 	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2538 		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2539 
2540 	sk_memory_allocated_sub(sk, amt);
2541 
2542 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2543 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2544 
2545 	return 0;
2546 }
2547 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2548 
2549 /**
2550  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2551  *	@sk: socket
2552  *	@size: memory size to allocate
2553  *	@kind: allocation type
2554  *
2555  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2556  *	rmem allocation. This function assumes that protocols which have
2557  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2558  */
2559 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2560 {
2561 	int ret, amt = sk_mem_pages(size);
2562 
2563 	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2564 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2565 	if (!ret)
2566 		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2567 	return ret;
2568 }
2569 EXPORT_SYMBOL(__sk_mem_schedule);
2570 
2571 /**
2572  *	__sk_mem_reduce_allocated - reclaim memory_allocated
2573  *	@sk: socket
2574  *	@amount: number of quanta
2575  *
2576  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2577  */
2578 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2579 {
2580 	sk_memory_allocated_sub(sk, amount);
2581 
2582 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2583 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2584 
2585 	if (sk_under_memory_pressure(sk) &&
2586 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2587 		sk_leave_memory_pressure(sk);
2588 }
2589 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2590 
2591 /**
2592  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2593  *	@sk: socket
2594  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2595  */
2596 void __sk_mem_reclaim(struct sock *sk, int amount)
2597 {
2598 	amount >>= SK_MEM_QUANTUM_SHIFT;
2599 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2600 	__sk_mem_reduce_allocated(sk, amount);
2601 }
2602 EXPORT_SYMBOL(__sk_mem_reclaim);
2603 
2604 int sk_set_peek_off(struct sock *sk, int val)
2605 {
2606 	sk->sk_peek_off = val;
2607 	return 0;
2608 }
2609 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2610 
2611 /*
2612  * Set of default routines for initialising struct proto_ops when
2613  * the protocol does not support a particular function. In certain
2614  * cases where it makes no sense for a protocol to have a "do nothing"
2615  * function, some default processing is provided.
2616  */
2617 
2618 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2619 {
2620 	return -EOPNOTSUPP;
2621 }
2622 EXPORT_SYMBOL(sock_no_bind);
2623 
2624 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2625 		    int len, int flags)
2626 {
2627 	return -EOPNOTSUPP;
2628 }
2629 EXPORT_SYMBOL(sock_no_connect);
2630 
2631 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2632 {
2633 	return -EOPNOTSUPP;
2634 }
2635 EXPORT_SYMBOL(sock_no_socketpair);
2636 
2637 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2638 		   bool kern)
2639 {
2640 	return -EOPNOTSUPP;
2641 }
2642 EXPORT_SYMBOL(sock_no_accept);
2643 
2644 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2645 		    int peer)
2646 {
2647 	return -EOPNOTSUPP;
2648 }
2649 EXPORT_SYMBOL(sock_no_getname);
2650 
2651 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2652 {
2653 	return -EOPNOTSUPP;
2654 }
2655 EXPORT_SYMBOL(sock_no_ioctl);
2656 
2657 int sock_no_listen(struct socket *sock, int backlog)
2658 {
2659 	return -EOPNOTSUPP;
2660 }
2661 EXPORT_SYMBOL(sock_no_listen);
2662 
2663 int sock_no_shutdown(struct socket *sock, int how)
2664 {
2665 	return -EOPNOTSUPP;
2666 }
2667 EXPORT_SYMBOL(sock_no_shutdown);
2668 
2669 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2670 		    char __user *optval, unsigned int optlen)
2671 {
2672 	return -EOPNOTSUPP;
2673 }
2674 EXPORT_SYMBOL(sock_no_setsockopt);
2675 
2676 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2677 		    char __user *optval, int __user *optlen)
2678 {
2679 	return -EOPNOTSUPP;
2680 }
2681 EXPORT_SYMBOL(sock_no_getsockopt);
2682 
2683 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2684 {
2685 	return -EOPNOTSUPP;
2686 }
2687 EXPORT_SYMBOL(sock_no_sendmsg);
2688 
2689 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2690 {
2691 	return -EOPNOTSUPP;
2692 }
2693 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2694 
2695 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2696 		    int flags)
2697 {
2698 	return -EOPNOTSUPP;
2699 }
2700 EXPORT_SYMBOL(sock_no_recvmsg);
2701 
2702 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2703 {
2704 	/* Mirror missing mmap method error code */
2705 	return -ENODEV;
2706 }
2707 EXPORT_SYMBOL(sock_no_mmap);
2708 
2709 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2710 {
2711 	ssize_t res;
2712 	struct msghdr msg = {.msg_flags = flags};
2713 	struct kvec iov;
2714 	char *kaddr = kmap(page);
2715 	iov.iov_base = kaddr + offset;
2716 	iov.iov_len = size;
2717 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2718 	kunmap(page);
2719 	return res;
2720 }
2721 EXPORT_SYMBOL(sock_no_sendpage);
2722 
2723 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2724 				int offset, size_t size, int flags)
2725 {
2726 	ssize_t res;
2727 	struct msghdr msg = {.msg_flags = flags};
2728 	struct kvec iov;
2729 	char *kaddr = kmap(page);
2730 
2731 	iov.iov_base = kaddr + offset;
2732 	iov.iov_len = size;
2733 	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2734 	kunmap(page);
2735 	return res;
2736 }
2737 EXPORT_SYMBOL(sock_no_sendpage_locked);
2738 
2739 /*
2740  *	Default Socket Callbacks
2741  */
2742 
2743 static void sock_def_wakeup(struct sock *sk)
2744 {
2745 	struct socket_wq *wq;
2746 
2747 	rcu_read_lock();
2748 	wq = rcu_dereference(sk->sk_wq);
2749 	if (skwq_has_sleeper(wq))
2750 		wake_up_interruptible_all(&wq->wait);
2751 	rcu_read_unlock();
2752 }
2753 
2754 static void sock_def_error_report(struct sock *sk)
2755 {
2756 	struct socket_wq *wq;
2757 
2758 	rcu_read_lock();
2759 	wq = rcu_dereference(sk->sk_wq);
2760 	if (skwq_has_sleeper(wq))
2761 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2762 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2763 	rcu_read_unlock();
2764 }
2765 
2766 static void sock_def_readable(struct sock *sk)
2767 {
2768 	struct socket_wq *wq;
2769 
2770 	rcu_read_lock();
2771 	wq = rcu_dereference(sk->sk_wq);
2772 	if (skwq_has_sleeper(wq))
2773 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2774 						EPOLLRDNORM | EPOLLRDBAND);
2775 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2776 	rcu_read_unlock();
2777 }
2778 
2779 static void sock_def_write_space(struct sock *sk)
2780 {
2781 	struct socket_wq *wq;
2782 
2783 	rcu_read_lock();
2784 
2785 	/* Do not wake up a writer until he can make "significant"
2786 	 * progress.  --DaveM
2787 	 */
2788 	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2789 		wq = rcu_dereference(sk->sk_wq);
2790 		if (skwq_has_sleeper(wq))
2791 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2792 						EPOLLWRNORM | EPOLLWRBAND);
2793 
2794 		/* Should agree with poll, otherwise some programs break */
2795 		if (sock_writeable(sk))
2796 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2797 	}
2798 
2799 	rcu_read_unlock();
2800 }
2801 
2802 static void sock_def_destruct(struct sock *sk)
2803 {
2804 }
2805 
2806 void sk_send_sigurg(struct sock *sk)
2807 {
2808 	if (sk->sk_socket && sk->sk_socket->file)
2809 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2810 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2811 }
2812 EXPORT_SYMBOL(sk_send_sigurg);
2813 
2814 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2815 		    unsigned long expires)
2816 {
2817 	if (!mod_timer(timer, expires))
2818 		sock_hold(sk);
2819 }
2820 EXPORT_SYMBOL(sk_reset_timer);
2821 
2822 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2823 {
2824 	if (del_timer(timer))
2825 		__sock_put(sk);
2826 }
2827 EXPORT_SYMBOL(sk_stop_timer);
2828 
2829 void sock_init_data(struct socket *sock, struct sock *sk)
2830 {
2831 	sk_init_common(sk);
2832 	sk->sk_send_head	=	NULL;
2833 
2834 	timer_setup(&sk->sk_timer, NULL, 0);
2835 
2836 	sk->sk_allocation	=	GFP_KERNEL;
2837 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2838 	sk->sk_sndbuf		=	sysctl_wmem_default;
2839 	sk->sk_state		=	TCP_CLOSE;
2840 	sk_set_socket(sk, sock);
2841 
2842 	sock_set_flag(sk, SOCK_ZAPPED);
2843 
2844 	if (sock) {
2845 		sk->sk_type	=	sock->type;
2846 		RCU_INIT_POINTER(sk->sk_wq, sock->wq);
2847 		sock->sk	=	sk;
2848 		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2849 	} else {
2850 		RCU_INIT_POINTER(sk->sk_wq, NULL);
2851 		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2852 	}
2853 
2854 	rwlock_init(&sk->sk_callback_lock);
2855 	if (sk->sk_kern_sock)
2856 		lockdep_set_class_and_name(
2857 			&sk->sk_callback_lock,
2858 			af_kern_callback_keys + sk->sk_family,
2859 			af_family_kern_clock_key_strings[sk->sk_family]);
2860 	else
2861 		lockdep_set_class_and_name(
2862 			&sk->sk_callback_lock,
2863 			af_callback_keys + sk->sk_family,
2864 			af_family_clock_key_strings[sk->sk_family]);
2865 
2866 	sk->sk_state_change	=	sock_def_wakeup;
2867 	sk->sk_data_ready	=	sock_def_readable;
2868 	sk->sk_write_space	=	sock_def_write_space;
2869 	sk->sk_error_report	=	sock_def_error_report;
2870 	sk->sk_destruct		=	sock_def_destruct;
2871 
2872 	sk->sk_frag.page	=	NULL;
2873 	sk->sk_frag.offset	=	0;
2874 	sk->sk_peek_off		=	-1;
2875 
2876 	sk->sk_peer_pid 	=	NULL;
2877 	sk->sk_peer_cred	=	NULL;
2878 	sk->sk_write_pending	=	0;
2879 	sk->sk_rcvlowat		=	1;
2880 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2881 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2882 
2883 	sk->sk_stamp = SK_DEFAULT_STAMP;
2884 #if BITS_PER_LONG==32
2885 	seqlock_init(&sk->sk_stamp_seq);
2886 #endif
2887 	atomic_set(&sk->sk_zckey, 0);
2888 
2889 #ifdef CONFIG_NET_RX_BUSY_POLL
2890 	sk->sk_napi_id		=	0;
2891 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2892 #endif
2893 
2894 	sk->sk_max_pacing_rate = ~0UL;
2895 	sk->sk_pacing_rate = ~0UL;
2896 	sk->sk_pacing_shift = 10;
2897 	sk->sk_incoming_cpu = -1;
2898 
2899 	sk_rx_queue_clear(sk);
2900 	/*
2901 	 * Before updating sk_refcnt, we must commit prior changes to memory
2902 	 * (Documentation/RCU/rculist_nulls.txt for details)
2903 	 */
2904 	smp_wmb();
2905 	refcount_set(&sk->sk_refcnt, 1);
2906 	atomic_set(&sk->sk_drops, 0);
2907 }
2908 EXPORT_SYMBOL(sock_init_data);
2909 
2910 void lock_sock_nested(struct sock *sk, int subclass)
2911 {
2912 	might_sleep();
2913 	spin_lock_bh(&sk->sk_lock.slock);
2914 	if (sk->sk_lock.owned)
2915 		__lock_sock(sk);
2916 	sk->sk_lock.owned = 1;
2917 	spin_unlock(&sk->sk_lock.slock);
2918 	/*
2919 	 * The sk_lock has mutex_lock() semantics here:
2920 	 */
2921 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2922 	local_bh_enable();
2923 }
2924 EXPORT_SYMBOL(lock_sock_nested);
2925 
2926 void release_sock(struct sock *sk)
2927 {
2928 	spin_lock_bh(&sk->sk_lock.slock);
2929 	if (sk->sk_backlog.tail)
2930 		__release_sock(sk);
2931 
2932 	/* Warning : release_cb() might need to release sk ownership,
2933 	 * ie call sock_release_ownership(sk) before us.
2934 	 */
2935 	if (sk->sk_prot->release_cb)
2936 		sk->sk_prot->release_cb(sk);
2937 
2938 	sock_release_ownership(sk);
2939 	if (waitqueue_active(&sk->sk_lock.wq))
2940 		wake_up(&sk->sk_lock.wq);
2941 	spin_unlock_bh(&sk->sk_lock.slock);
2942 }
2943 EXPORT_SYMBOL(release_sock);
2944 
2945 /**
2946  * lock_sock_fast - fast version of lock_sock
2947  * @sk: socket
2948  *
2949  * This version should be used for very small section, where process wont block
2950  * return false if fast path is taken:
2951  *
2952  *   sk_lock.slock locked, owned = 0, BH disabled
2953  *
2954  * return true if slow path is taken:
2955  *
2956  *   sk_lock.slock unlocked, owned = 1, BH enabled
2957  */
2958 bool lock_sock_fast(struct sock *sk)
2959 {
2960 	might_sleep();
2961 	spin_lock_bh(&sk->sk_lock.slock);
2962 
2963 	if (!sk->sk_lock.owned)
2964 		/*
2965 		 * Note : We must disable BH
2966 		 */
2967 		return false;
2968 
2969 	__lock_sock(sk);
2970 	sk->sk_lock.owned = 1;
2971 	spin_unlock(&sk->sk_lock.slock);
2972 	/*
2973 	 * The sk_lock has mutex_lock() semantics here:
2974 	 */
2975 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2976 	local_bh_enable();
2977 	return true;
2978 }
2979 EXPORT_SYMBOL(lock_sock_fast);
2980 
2981 int sock_gettstamp(struct socket *sock, void __user *userstamp,
2982 		   bool timeval, bool time32)
2983 {
2984 	struct sock *sk = sock->sk;
2985 	struct timespec64 ts;
2986 
2987 	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2988 	ts = ktime_to_timespec64(sock_read_timestamp(sk));
2989 	if (ts.tv_sec == -1)
2990 		return -ENOENT;
2991 	if (ts.tv_sec == 0) {
2992 		ktime_t kt = ktime_get_real();
2993 		sock_write_timestamp(sk, kt);;
2994 		ts = ktime_to_timespec64(kt);
2995 	}
2996 
2997 	if (timeval)
2998 		ts.tv_nsec /= 1000;
2999 
3000 #ifdef CONFIG_COMPAT_32BIT_TIME
3001 	if (time32)
3002 		return put_old_timespec32(&ts, userstamp);
3003 #endif
3004 #ifdef CONFIG_SPARC64
3005 	/* beware of padding in sparc64 timeval */
3006 	if (timeval && !in_compat_syscall()) {
3007 		struct __kernel_old_timeval __user tv = {
3008 			.tv_sec = ts.tv_sec,
3009 			.tv_usec = ts.tv_nsec,
3010 		};
3011 		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3012 			return -EFAULT;
3013 		return 0;
3014 	}
3015 #endif
3016 	return put_timespec64(&ts, userstamp);
3017 }
3018 EXPORT_SYMBOL(sock_gettstamp);
3019 
3020 void sock_enable_timestamp(struct sock *sk, int flag)
3021 {
3022 	if (!sock_flag(sk, flag)) {
3023 		unsigned long previous_flags = sk->sk_flags;
3024 
3025 		sock_set_flag(sk, flag);
3026 		/*
3027 		 * we just set one of the two flags which require net
3028 		 * time stamping, but time stamping might have been on
3029 		 * already because of the other one
3030 		 */
3031 		if (sock_needs_netstamp(sk) &&
3032 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3033 			net_enable_timestamp();
3034 	}
3035 }
3036 
3037 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3038 		       int level, int type)
3039 {
3040 	struct sock_exterr_skb *serr;
3041 	struct sk_buff *skb;
3042 	int copied, err;
3043 
3044 	err = -EAGAIN;
3045 	skb = sock_dequeue_err_skb(sk);
3046 	if (skb == NULL)
3047 		goto out;
3048 
3049 	copied = skb->len;
3050 	if (copied > len) {
3051 		msg->msg_flags |= MSG_TRUNC;
3052 		copied = len;
3053 	}
3054 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3055 	if (err)
3056 		goto out_free_skb;
3057 
3058 	sock_recv_timestamp(msg, sk, skb);
3059 
3060 	serr = SKB_EXT_ERR(skb);
3061 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3062 
3063 	msg->msg_flags |= MSG_ERRQUEUE;
3064 	err = copied;
3065 
3066 out_free_skb:
3067 	kfree_skb(skb);
3068 out:
3069 	return err;
3070 }
3071 EXPORT_SYMBOL(sock_recv_errqueue);
3072 
3073 /*
3074  *	Get a socket option on an socket.
3075  *
3076  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3077  *	asynchronous errors should be reported by getsockopt. We assume
3078  *	this means if you specify SO_ERROR (otherwise whats the point of it).
3079  */
3080 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3081 			   char __user *optval, int __user *optlen)
3082 {
3083 	struct sock *sk = sock->sk;
3084 
3085 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3086 }
3087 EXPORT_SYMBOL(sock_common_getsockopt);
3088 
3089 #ifdef CONFIG_COMPAT
3090 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3091 				  char __user *optval, int __user *optlen)
3092 {
3093 	struct sock *sk = sock->sk;
3094 
3095 	if (sk->sk_prot->compat_getsockopt != NULL)
3096 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
3097 						      optval, optlen);
3098 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3099 }
3100 EXPORT_SYMBOL(compat_sock_common_getsockopt);
3101 #endif
3102 
3103 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3104 			int flags)
3105 {
3106 	struct sock *sk = sock->sk;
3107 	int addr_len = 0;
3108 	int err;
3109 
3110 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3111 				   flags & ~MSG_DONTWAIT, &addr_len);
3112 	if (err >= 0)
3113 		msg->msg_namelen = addr_len;
3114 	return err;
3115 }
3116 EXPORT_SYMBOL(sock_common_recvmsg);
3117 
3118 /*
3119  *	Set socket options on an inet socket.
3120  */
3121 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3122 			   char __user *optval, unsigned int optlen)
3123 {
3124 	struct sock *sk = sock->sk;
3125 
3126 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3127 }
3128 EXPORT_SYMBOL(sock_common_setsockopt);
3129 
3130 #ifdef CONFIG_COMPAT
3131 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3132 				  char __user *optval, unsigned int optlen)
3133 {
3134 	struct sock *sk = sock->sk;
3135 
3136 	if (sk->sk_prot->compat_setsockopt != NULL)
3137 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
3138 						      optval, optlen);
3139 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3140 }
3141 EXPORT_SYMBOL(compat_sock_common_setsockopt);
3142 #endif
3143 
3144 void sk_common_release(struct sock *sk)
3145 {
3146 	if (sk->sk_prot->destroy)
3147 		sk->sk_prot->destroy(sk);
3148 
3149 	/*
3150 	 * Observation: when sock_common_release is called, processes have
3151 	 * no access to socket. But net still has.
3152 	 * Step one, detach it from networking:
3153 	 *
3154 	 * A. Remove from hash tables.
3155 	 */
3156 
3157 	sk->sk_prot->unhash(sk);
3158 
3159 	/*
3160 	 * In this point socket cannot receive new packets, but it is possible
3161 	 * that some packets are in flight because some CPU runs receiver and
3162 	 * did hash table lookup before we unhashed socket. They will achieve
3163 	 * receive queue and will be purged by socket destructor.
3164 	 *
3165 	 * Also we still have packets pending on receive queue and probably,
3166 	 * our own packets waiting in device queues. sock_destroy will drain
3167 	 * receive queue, but transmitted packets will delay socket destruction
3168 	 * until the last reference will be released.
3169 	 */
3170 
3171 	sock_orphan(sk);
3172 
3173 	xfrm_sk_free_policy(sk);
3174 
3175 	sk_refcnt_debug_release(sk);
3176 
3177 	sock_put(sk);
3178 }
3179 EXPORT_SYMBOL(sk_common_release);
3180 
3181 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3182 {
3183 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3184 
3185 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3186 	mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3187 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3188 	mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3189 	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3190 	mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3191 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3192 	mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3193 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3194 }
3195 
3196 #ifdef CONFIG_PROC_FS
3197 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
3198 struct prot_inuse {
3199 	int val[PROTO_INUSE_NR];
3200 };
3201 
3202 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3203 
3204 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3205 {
3206 	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3207 }
3208 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3209 
3210 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3211 {
3212 	int cpu, idx = prot->inuse_idx;
3213 	int res = 0;
3214 
3215 	for_each_possible_cpu(cpu)
3216 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3217 
3218 	return res >= 0 ? res : 0;
3219 }
3220 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3221 
3222 static void sock_inuse_add(struct net *net, int val)
3223 {
3224 	this_cpu_add(*net->core.sock_inuse, val);
3225 }
3226 
3227 int sock_inuse_get(struct net *net)
3228 {
3229 	int cpu, res = 0;
3230 
3231 	for_each_possible_cpu(cpu)
3232 		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3233 
3234 	return res;
3235 }
3236 
3237 EXPORT_SYMBOL_GPL(sock_inuse_get);
3238 
3239 static int __net_init sock_inuse_init_net(struct net *net)
3240 {
3241 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3242 	if (net->core.prot_inuse == NULL)
3243 		return -ENOMEM;
3244 
3245 	net->core.sock_inuse = alloc_percpu(int);
3246 	if (net->core.sock_inuse == NULL)
3247 		goto out;
3248 
3249 	return 0;
3250 
3251 out:
3252 	free_percpu(net->core.prot_inuse);
3253 	return -ENOMEM;
3254 }
3255 
3256 static void __net_exit sock_inuse_exit_net(struct net *net)
3257 {
3258 	free_percpu(net->core.prot_inuse);
3259 	free_percpu(net->core.sock_inuse);
3260 }
3261 
3262 static struct pernet_operations net_inuse_ops = {
3263 	.init = sock_inuse_init_net,
3264 	.exit = sock_inuse_exit_net,
3265 };
3266 
3267 static __init int net_inuse_init(void)
3268 {
3269 	if (register_pernet_subsys(&net_inuse_ops))
3270 		panic("Cannot initialize net inuse counters");
3271 
3272 	return 0;
3273 }
3274 
3275 core_initcall(net_inuse_init);
3276 
3277 static void assign_proto_idx(struct proto *prot)
3278 {
3279 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3280 
3281 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3282 		pr_err("PROTO_INUSE_NR exhausted\n");
3283 		return;
3284 	}
3285 
3286 	set_bit(prot->inuse_idx, proto_inuse_idx);
3287 }
3288 
3289 static void release_proto_idx(struct proto *prot)
3290 {
3291 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3292 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3293 }
3294 #else
3295 static inline void assign_proto_idx(struct proto *prot)
3296 {
3297 }
3298 
3299 static inline void release_proto_idx(struct proto *prot)
3300 {
3301 }
3302 
3303 static void sock_inuse_add(struct net *net, int val)
3304 {
3305 }
3306 #endif
3307 
3308 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3309 {
3310 	if (!rsk_prot)
3311 		return;
3312 	kfree(rsk_prot->slab_name);
3313 	rsk_prot->slab_name = NULL;
3314 	kmem_cache_destroy(rsk_prot->slab);
3315 	rsk_prot->slab = NULL;
3316 }
3317 
3318 static int req_prot_init(const struct proto *prot)
3319 {
3320 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3321 
3322 	if (!rsk_prot)
3323 		return 0;
3324 
3325 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3326 					prot->name);
3327 	if (!rsk_prot->slab_name)
3328 		return -ENOMEM;
3329 
3330 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3331 					   rsk_prot->obj_size, 0,
3332 					   SLAB_ACCOUNT | prot->slab_flags,
3333 					   NULL);
3334 
3335 	if (!rsk_prot->slab) {
3336 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3337 			prot->name);
3338 		return -ENOMEM;
3339 	}
3340 	return 0;
3341 }
3342 
3343 int proto_register(struct proto *prot, int alloc_slab)
3344 {
3345 	if (alloc_slab) {
3346 		prot->slab = kmem_cache_create_usercopy(prot->name,
3347 					prot->obj_size, 0,
3348 					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3349 					prot->slab_flags,
3350 					prot->useroffset, prot->usersize,
3351 					NULL);
3352 
3353 		if (prot->slab == NULL) {
3354 			pr_crit("%s: Can't create sock SLAB cache!\n",
3355 				prot->name);
3356 			goto out;
3357 		}
3358 
3359 		if (req_prot_init(prot))
3360 			goto out_free_request_sock_slab;
3361 
3362 		if (prot->twsk_prot != NULL) {
3363 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3364 
3365 			if (prot->twsk_prot->twsk_slab_name == NULL)
3366 				goto out_free_request_sock_slab;
3367 
3368 			prot->twsk_prot->twsk_slab =
3369 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3370 						  prot->twsk_prot->twsk_obj_size,
3371 						  0,
3372 						  SLAB_ACCOUNT |
3373 						  prot->slab_flags,
3374 						  NULL);
3375 			if (prot->twsk_prot->twsk_slab == NULL)
3376 				goto out_free_timewait_sock_slab_name;
3377 		}
3378 	}
3379 
3380 	mutex_lock(&proto_list_mutex);
3381 	list_add(&prot->node, &proto_list);
3382 	assign_proto_idx(prot);
3383 	mutex_unlock(&proto_list_mutex);
3384 	return 0;
3385 
3386 out_free_timewait_sock_slab_name:
3387 	kfree(prot->twsk_prot->twsk_slab_name);
3388 out_free_request_sock_slab:
3389 	req_prot_cleanup(prot->rsk_prot);
3390 
3391 	kmem_cache_destroy(prot->slab);
3392 	prot->slab = NULL;
3393 out:
3394 	return -ENOBUFS;
3395 }
3396 EXPORT_SYMBOL(proto_register);
3397 
3398 void proto_unregister(struct proto *prot)
3399 {
3400 	mutex_lock(&proto_list_mutex);
3401 	release_proto_idx(prot);
3402 	list_del(&prot->node);
3403 	mutex_unlock(&proto_list_mutex);
3404 
3405 	kmem_cache_destroy(prot->slab);
3406 	prot->slab = NULL;
3407 
3408 	req_prot_cleanup(prot->rsk_prot);
3409 
3410 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3411 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3412 		kfree(prot->twsk_prot->twsk_slab_name);
3413 		prot->twsk_prot->twsk_slab = NULL;
3414 	}
3415 }
3416 EXPORT_SYMBOL(proto_unregister);
3417 
3418 int sock_load_diag_module(int family, int protocol)
3419 {
3420 	if (!protocol) {
3421 		if (!sock_is_registered(family))
3422 			return -ENOENT;
3423 
3424 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3425 				      NETLINK_SOCK_DIAG, family);
3426 	}
3427 
3428 #ifdef CONFIG_INET
3429 	if (family == AF_INET &&
3430 	    protocol != IPPROTO_RAW &&
3431 	    !rcu_access_pointer(inet_protos[protocol]))
3432 		return -ENOENT;
3433 #endif
3434 
3435 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3436 			      NETLINK_SOCK_DIAG, family, protocol);
3437 }
3438 EXPORT_SYMBOL(sock_load_diag_module);
3439 
3440 #ifdef CONFIG_PROC_FS
3441 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3442 	__acquires(proto_list_mutex)
3443 {
3444 	mutex_lock(&proto_list_mutex);
3445 	return seq_list_start_head(&proto_list, *pos);
3446 }
3447 
3448 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3449 {
3450 	return seq_list_next(v, &proto_list, pos);
3451 }
3452 
3453 static void proto_seq_stop(struct seq_file *seq, void *v)
3454 	__releases(proto_list_mutex)
3455 {
3456 	mutex_unlock(&proto_list_mutex);
3457 }
3458 
3459 static char proto_method_implemented(const void *method)
3460 {
3461 	return method == NULL ? 'n' : 'y';
3462 }
3463 static long sock_prot_memory_allocated(struct proto *proto)
3464 {
3465 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3466 }
3467 
3468 static char *sock_prot_memory_pressure(struct proto *proto)
3469 {
3470 	return proto->memory_pressure != NULL ?
3471 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3472 }
3473 
3474 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3475 {
3476 
3477 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3478 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3479 		   proto->name,
3480 		   proto->obj_size,
3481 		   sock_prot_inuse_get(seq_file_net(seq), proto),
3482 		   sock_prot_memory_allocated(proto),
3483 		   sock_prot_memory_pressure(proto),
3484 		   proto->max_header,
3485 		   proto->slab == NULL ? "no" : "yes",
3486 		   module_name(proto->owner),
3487 		   proto_method_implemented(proto->close),
3488 		   proto_method_implemented(proto->connect),
3489 		   proto_method_implemented(proto->disconnect),
3490 		   proto_method_implemented(proto->accept),
3491 		   proto_method_implemented(proto->ioctl),
3492 		   proto_method_implemented(proto->init),
3493 		   proto_method_implemented(proto->destroy),
3494 		   proto_method_implemented(proto->shutdown),
3495 		   proto_method_implemented(proto->setsockopt),
3496 		   proto_method_implemented(proto->getsockopt),
3497 		   proto_method_implemented(proto->sendmsg),
3498 		   proto_method_implemented(proto->recvmsg),
3499 		   proto_method_implemented(proto->sendpage),
3500 		   proto_method_implemented(proto->bind),
3501 		   proto_method_implemented(proto->backlog_rcv),
3502 		   proto_method_implemented(proto->hash),
3503 		   proto_method_implemented(proto->unhash),
3504 		   proto_method_implemented(proto->get_port),
3505 		   proto_method_implemented(proto->enter_memory_pressure));
3506 }
3507 
3508 static int proto_seq_show(struct seq_file *seq, void *v)
3509 {
3510 	if (v == &proto_list)
3511 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3512 			   "protocol",
3513 			   "size",
3514 			   "sockets",
3515 			   "memory",
3516 			   "press",
3517 			   "maxhdr",
3518 			   "slab",
3519 			   "module",
3520 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3521 	else
3522 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3523 	return 0;
3524 }
3525 
3526 static const struct seq_operations proto_seq_ops = {
3527 	.start  = proto_seq_start,
3528 	.next   = proto_seq_next,
3529 	.stop   = proto_seq_stop,
3530 	.show   = proto_seq_show,
3531 };
3532 
3533 static __net_init int proto_init_net(struct net *net)
3534 {
3535 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3536 			sizeof(struct seq_net_private)))
3537 		return -ENOMEM;
3538 
3539 	return 0;
3540 }
3541 
3542 static __net_exit void proto_exit_net(struct net *net)
3543 {
3544 	remove_proc_entry("protocols", net->proc_net);
3545 }
3546 
3547 
3548 static __net_initdata struct pernet_operations proto_net_ops = {
3549 	.init = proto_init_net,
3550 	.exit = proto_exit_net,
3551 };
3552 
3553 static int __init proto_init(void)
3554 {
3555 	return register_pernet_subsys(&proto_net_ops);
3556 }
3557 
3558 subsys_initcall(proto_init);
3559 
3560 #endif /* PROC_FS */
3561 
3562 #ifdef CONFIG_NET_RX_BUSY_POLL
3563 bool sk_busy_loop_end(void *p, unsigned long start_time)
3564 {
3565 	struct sock *sk = p;
3566 
3567 	return !skb_queue_empty(&sk->sk_receive_queue) ||
3568 	       sk_busy_loop_timeout(sk, start_time);
3569 }
3570 EXPORT_SYMBOL(sk_busy_loop_end);
3571 #endif /* CONFIG_NET_RX_BUSY_POLL */
3572