1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 #include <linux/compat.h> 117 118 #include <linux/uaccess.h> 119 120 #include <linux/netdevice.h> 121 #include <net/protocol.h> 122 #include <linux/skbuff.h> 123 #include <net/net_namespace.h> 124 #include <net/request_sock.h> 125 #include <net/sock.h> 126 #include <linux/net_tstamp.h> 127 #include <net/xfrm.h> 128 #include <linux/ipsec.h> 129 #include <net/cls_cgroup.h> 130 #include <net/netprio_cgroup.h> 131 #include <linux/sock_diag.h> 132 133 #include <linux/filter.h> 134 #include <net/sock_reuseport.h> 135 #include <net/bpf_sk_storage.h> 136 137 #include <trace/events/sock.h> 138 139 #include <net/tcp.h> 140 #include <net/busy_poll.h> 141 142 #include <linux/ethtool.h> 143 144 #include "dev.h" 145 146 static DEFINE_MUTEX(proto_list_mutex); 147 static LIST_HEAD(proto_list); 148 149 static void sock_def_write_space_wfree(struct sock *sk); 150 static void sock_def_write_space(struct sock *sk); 151 152 /** 153 * sk_ns_capable - General socket capability test 154 * @sk: Socket to use a capability on or through 155 * @user_ns: The user namespace of the capability to use 156 * @cap: The capability to use 157 * 158 * Test to see if the opener of the socket had when the socket was 159 * created and the current process has the capability @cap in the user 160 * namespace @user_ns. 161 */ 162 bool sk_ns_capable(const struct sock *sk, 163 struct user_namespace *user_ns, int cap) 164 { 165 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 166 ns_capable(user_ns, cap); 167 } 168 EXPORT_SYMBOL(sk_ns_capable); 169 170 /** 171 * sk_capable - Socket global capability test 172 * @sk: Socket to use a capability on or through 173 * @cap: The global capability to use 174 * 175 * Test to see if the opener of the socket had when the socket was 176 * created and the current process has the capability @cap in all user 177 * namespaces. 178 */ 179 bool sk_capable(const struct sock *sk, int cap) 180 { 181 return sk_ns_capable(sk, &init_user_ns, cap); 182 } 183 EXPORT_SYMBOL(sk_capable); 184 185 /** 186 * sk_net_capable - Network namespace socket capability test 187 * @sk: Socket to use a capability on or through 188 * @cap: The capability to use 189 * 190 * Test to see if the opener of the socket had when the socket was created 191 * and the current process has the capability @cap over the network namespace 192 * the socket is a member of. 193 */ 194 bool sk_net_capable(const struct sock *sk, int cap) 195 { 196 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 197 } 198 EXPORT_SYMBOL(sk_net_capable); 199 200 /* 201 * Each address family might have different locking rules, so we have 202 * one slock key per address family and separate keys for internal and 203 * userspace sockets. 204 */ 205 static struct lock_class_key af_family_keys[AF_MAX]; 206 static struct lock_class_key af_family_kern_keys[AF_MAX]; 207 static struct lock_class_key af_family_slock_keys[AF_MAX]; 208 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 209 210 /* 211 * Make lock validator output more readable. (we pre-construct these 212 * strings build-time, so that runtime initialization of socket 213 * locks is fast): 214 */ 215 216 #define _sock_locks(x) \ 217 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 218 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 219 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 220 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 221 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 222 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 223 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 224 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 225 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 226 x "27" , x "28" , x "AF_CAN" , \ 227 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 228 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 229 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 230 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 231 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 232 x "AF_MCTP" , \ 233 x "AF_MAX" 234 235 static const char *const af_family_key_strings[AF_MAX+1] = { 236 _sock_locks("sk_lock-") 237 }; 238 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 239 _sock_locks("slock-") 240 }; 241 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 242 _sock_locks("clock-") 243 }; 244 245 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 246 _sock_locks("k-sk_lock-") 247 }; 248 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 249 _sock_locks("k-slock-") 250 }; 251 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 252 _sock_locks("k-clock-") 253 }; 254 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 255 _sock_locks("rlock-") 256 }; 257 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 258 _sock_locks("wlock-") 259 }; 260 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 261 _sock_locks("elock-") 262 }; 263 264 /* 265 * sk_callback_lock and sk queues locking rules are per-address-family, 266 * so split the lock classes by using a per-AF key: 267 */ 268 static struct lock_class_key af_callback_keys[AF_MAX]; 269 static struct lock_class_key af_rlock_keys[AF_MAX]; 270 static struct lock_class_key af_wlock_keys[AF_MAX]; 271 static struct lock_class_key af_elock_keys[AF_MAX]; 272 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 273 274 /* Run time adjustable parameters. */ 275 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 276 EXPORT_SYMBOL(sysctl_wmem_max); 277 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 278 EXPORT_SYMBOL(sysctl_rmem_max); 279 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 280 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 281 282 /* Maximal space eaten by iovec or ancillary data plus some space */ 283 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 284 EXPORT_SYMBOL(sysctl_optmem_max); 285 286 int sysctl_tstamp_allow_data __read_mostly = 1; 287 288 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 289 EXPORT_SYMBOL_GPL(memalloc_socks_key); 290 291 /** 292 * sk_set_memalloc - sets %SOCK_MEMALLOC 293 * @sk: socket to set it on 294 * 295 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 296 * It's the responsibility of the admin to adjust min_free_kbytes 297 * to meet the requirements 298 */ 299 void sk_set_memalloc(struct sock *sk) 300 { 301 sock_set_flag(sk, SOCK_MEMALLOC); 302 sk->sk_allocation |= __GFP_MEMALLOC; 303 static_branch_inc(&memalloc_socks_key); 304 } 305 EXPORT_SYMBOL_GPL(sk_set_memalloc); 306 307 void sk_clear_memalloc(struct sock *sk) 308 { 309 sock_reset_flag(sk, SOCK_MEMALLOC); 310 sk->sk_allocation &= ~__GFP_MEMALLOC; 311 static_branch_dec(&memalloc_socks_key); 312 313 /* 314 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 315 * progress of swapping. SOCK_MEMALLOC may be cleared while 316 * it has rmem allocations due to the last swapfile being deactivated 317 * but there is a risk that the socket is unusable due to exceeding 318 * the rmem limits. Reclaim the reserves and obey rmem limits again. 319 */ 320 sk_mem_reclaim(sk); 321 } 322 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 323 324 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 325 { 326 int ret; 327 unsigned int noreclaim_flag; 328 329 /* these should have been dropped before queueing */ 330 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 331 332 noreclaim_flag = memalloc_noreclaim_save(); 333 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, 334 tcp_v6_do_rcv, 335 tcp_v4_do_rcv, 336 sk, skb); 337 memalloc_noreclaim_restore(noreclaim_flag); 338 339 return ret; 340 } 341 EXPORT_SYMBOL(__sk_backlog_rcv); 342 343 void sk_error_report(struct sock *sk) 344 { 345 sk->sk_error_report(sk); 346 347 switch (sk->sk_family) { 348 case AF_INET: 349 fallthrough; 350 case AF_INET6: 351 trace_inet_sk_error_report(sk); 352 break; 353 default: 354 break; 355 } 356 } 357 EXPORT_SYMBOL(sk_error_report); 358 359 int sock_get_timeout(long timeo, void *optval, bool old_timeval) 360 { 361 struct __kernel_sock_timeval tv; 362 363 if (timeo == MAX_SCHEDULE_TIMEOUT) { 364 tv.tv_sec = 0; 365 tv.tv_usec = 0; 366 } else { 367 tv.tv_sec = timeo / HZ; 368 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 369 } 370 371 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 372 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 373 *(struct old_timeval32 *)optval = tv32; 374 return sizeof(tv32); 375 } 376 377 if (old_timeval) { 378 struct __kernel_old_timeval old_tv; 379 old_tv.tv_sec = tv.tv_sec; 380 old_tv.tv_usec = tv.tv_usec; 381 *(struct __kernel_old_timeval *)optval = old_tv; 382 return sizeof(old_tv); 383 } 384 385 *(struct __kernel_sock_timeval *)optval = tv; 386 return sizeof(tv); 387 } 388 EXPORT_SYMBOL(sock_get_timeout); 389 390 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 391 sockptr_t optval, int optlen, bool old_timeval) 392 { 393 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 394 struct old_timeval32 tv32; 395 396 if (optlen < sizeof(tv32)) 397 return -EINVAL; 398 399 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 400 return -EFAULT; 401 tv->tv_sec = tv32.tv_sec; 402 tv->tv_usec = tv32.tv_usec; 403 } else if (old_timeval) { 404 struct __kernel_old_timeval old_tv; 405 406 if (optlen < sizeof(old_tv)) 407 return -EINVAL; 408 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 409 return -EFAULT; 410 tv->tv_sec = old_tv.tv_sec; 411 tv->tv_usec = old_tv.tv_usec; 412 } else { 413 if (optlen < sizeof(*tv)) 414 return -EINVAL; 415 if (copy_from_sockptr(tv, optval, sizeof(*tv))) 416 return -EFAULT; 417 } 418 419 return 0; 420 } 421 EXPORT_SYMBOL(sock_copy_user_timeval); 422 423 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 424 bool old_timeval) 425 { 426 struct __kernel_sock_timeval tv; 427 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); 428 429 if (err) 430 return err; 431 432 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 433 return -EDOM; 434 435 if (tv.tv_sec < 0) { 436 static int warned __read_mostly; 437 438 *timeo_p = 0; 439 if (warned < 10 && net_ratelimit()) { 440 warned++; 441 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 442 __func__, current->comm, task_pid_nr(current)); 443 } 444 return 0; 445 } 446 *timeo_p = MAX_SCHEDULE_TIMEOUT; 447 if (tv.tv_sec == 0 && tv.tv_usec == 0) 448 return 0; 449 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 450 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 451 return 0; 452 } 453 454 static bool sock_needs_netstamp(const struct sock *sk) 455 { 456 switch (sk->sk_family) { 457 case AF_UNSPEC: 458 case AF_UNIX: 459 return false; 460 default: 461 return true; 462 } 463 } 464 465 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 466 { 467 if (sk->sk_flags & flags) { 468 sk->sk_flags &= ~flags; 469 if (sock_needs_netstamp(sk) && 470 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 471 net_disable_timestamp(); 472 } 473 } 474 475 476 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 477 { 478 unsigned long flags; 479 struct sk_buff_head *list = &sk->sk_receive_queue; 480 481 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 482 atomic_inc(&sk->sk_drops); 483 trace_sock_rcvqueue_full(sk, skb); 484 return -ENOMEM; 485 } 486 487 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 488 atomic_inc(&sk->sk_drops); 489 return -ENOBUFS; 490 } 491 492 skb->dev = NULL; 493 skb_set_owner_r(skb, sk); 494 495 /* we escape from rcu protected region, make sure we dont leak 496 * a norefcounted dst 497 */ 498 skb_dst_force(skb); 499 500 spin_lock_irqsave(&list->lock, flags); 501 sock_skb_set_dropcount(sk, skb); 502 __skb_queue_tail(list, skb); 503 spin_unlock_irqrestore(&list->lock, flags); 504 505 if (!sock_flag(sk, SOCK_DEAD)) 506 sk->sk_data_ready(sk); 507 return 0; 508 } 509 EXPORT_SYMBOL(__sock_queue_rcv_skb); 510 511 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 512 enum skb_drop_reason *reason) 513 { 514 enum skb_drop_reason drop_reason; 515 int err; 516 517 err = sk_filter(sk, skb); 518 if (err) { 519 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 520 goto out; 521 } 522 err = __sock_queue_rcv_skb(sk, skb); 523 switch (err) { 524 case -ENOMEM: 525 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 526 break; 527 case -ENOBUFS: 528 drop_reason = SKB_DROP_REASON_PROTO_MEM; 529 break; 530 default: 531 drop_reason = SKB_NOT_DROPPED_YET; 532 break; 533 } 534 out: 535 if (reason) 536 *reason = drop_reason; 537 return err; 538 } 539 EXPORT_SYMBOL(sock_queue_rcv_skb_reason); 540 541 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 542 const int nested, unsigned int trim_cap, bool refcounted) 543 { 544 int rc = NET_RX_SUCCESS; 545 546 if (sk_filter_trim_cap(sk, skb, trim_cap)) 547 goto discard_and_relse; 548 549 skb->dev = NULL; 550 551 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 552 atomic_inc(&sk->sk_drops); 553 goto discard_and_relse; 554 } 555 if (nested) 556 bh_lock_sock_nested(sk); 557 else 558 bh_lock_sock(sk); 559 if (!sock_owned_by_user(sk)) { 560 /* 561 * trylock + unlock semantics: 562 */ 563 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 564 565 rc = sk_backlog_rcv(sk, skb); 566 567 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 568 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 569 bh_unlock_sock(sk); 570 atomic_inc(&sk->sk_drops); 571 goto discard_and_relse; 572 } 573 574 bh_unlock_sock(sk); 575 out: 576 if (refcounted) 577 sock_put(sk); 578 return rc; 579 discard_and_relse: 580 kfree_skb(skb); 581 goto out; 582 } 583 EXPORT_SYMBOL(__sk_receive_skb); 584 585 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 586 u32)); 587 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 588 u32)); 589 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 590 { 591 struct dst_entry *dst = __sk_dst_get(sk); 592 593 if (dst && dst->obsolete && 594 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 595 dst, cookie) == NULL) { 596 sk_tx_queue_clear(sk); 597 sk->sk_dst_pending_confirm = 0; 598 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 599 dst_release(dst); 600 return NULL; 601 } 602 603 return dst; 604 } 605 EXPORT_SYMBOL(__sk_dst_check); 606 607 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 608 { 609 struct dst_entry *dst = sk_dst_get(sk); 610 611 if (dst && dst->obsolete && 612 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 613 dst, cookie) == NULL) { 614 sk_dst_reset(sk); 615 dst_release(dst); 616 return NULL; 617 } 618 619 return dst; 620 } 621 EXPORT_SYMBOL(sk_dst_check); 622 623 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 624 { 625 int ret = -ENOPROTOOPT; 626 #ifdef CONFIG_NETDEVICES 627 struct net *net = sock_net(sk); 628 629 /* Sorry... */ 630 ret = -EPERM; 631 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 632 goto out; 633 634 ret = -EINVAL; 635 if (ifindex < 0) 636 goto out; 637 638 /* Paired with all READ_ONCE() done locklessly. */ 639 WRITE_ONCE(sk->sk_bound_dev_if, ifindex); 640 641 if (sk->sk_prot->rehash) 642 sk->sk_prot->rehash(sk); 643 sk_dst_reset(sk); 644 645 ret = 0; 646 647 out: 648 #endif 649 650 return ret; 651 } 652 653 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 654 { 655 int ret; 656 657 if (lock_sk) 658 lock_sock(sk); 659 ret = sock_bindtoindex_locked(sk, ifindex); 660 if (lock_sk) 661 release_sock(sk); 662 663 return ret; 664 } 665 EXPORT_SYMBOL(sock_bindtoindex); 666 667 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 668 { 669 int ret = -ENOPROTOOPT; 670 #ifdef CONFIG_NETDEVICES 671 struct net *net = sock_net(sk); 672 char devname[IFNAMSIZ]; 673 int index; 674 675 ret = -EINVAL; 676 if (optlen < 0) 677 goto out; 678 679 /* Bind this socket to a particular device like "eth0", 680 * as specified in the passed interface name. If the 681 * name is "" or the option length is zero the socket 682 * is not bound. 683 */ 684 if (optlen > IFNAMSIZ - 1) 685 optlen = IFNAMSIZ - 1; 686 memset(devname, 0, sizeof(devname)); 687 688 ret = -EFAULT; 689 if (copy_from_sockptr(devname, optval, optlen)) 690 goto out; 691 692 index = 0; 693 if (devname[0] != '\0') { 694 struct net_device *dev; 695 696 rcu_read_lock(); 697 dev = dev_get_by_name_rcu(net, devname); 698 if (dev) 699 index = dev->ifindex; 700 rcu_read_unlock(); 701 ret = -ENODEV; 702 if (!dev) 703 goto out; 704 } 705 706 return sock_bindtoindex(sk, index, true); 707 out: 708 #endif 709 710 return ret; 711 } 712 713 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 714 int __user *optlen, int len) 715 { 716 int ret = -ENOPROTOOPT; 717 #ifdef CONFIG_NETDEVICES 718 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 719 struct net *net = sock_net(sk); 720 char devname[IFNAMSIZ]; 721 722 if (bound_dev_if == 0) { 723 len = 0; 724 goto zero; 725 } 726 727 ret = -EINVAL; 728 if (len < IFNAMSIZ) 729 goto out; 730 731 ret = netdev_get_name(net, devname, bound_dev_if); 732 if (ret) 733 goto out; 734 735 len = strlen(devname) + 1; 736 737 ret = -EFAULT; 738 if (copy_to_user(optval, devname, len)) 739 goto out; 740 741 zero: 742 ret = -EFAULT; 743 if (put_user(len, optlen)) 744 goto out; 745 746 ret = 0; 747 748 out: 749 #endif 750 751 return ret; 752 } 753 754 bool sk_mc_loop(struct sock *sk) 755 { 756 if (dev_recursion_level()) 757 return false; 758 if (!sk) 759 return true; 760 switch (sk->sk_family) { 761 case AF_INET: 762 return inet_sk(sk)->mc_loop; 763 #if IS_ENABLED(CONFIG_IPV6) 764 case AF_INET6: 765 return inet6_sk(sk)->mc_loop; 766 #endif 767 } 768 WARN_ON_ONCE(1); 769 return true; 770 } 771 EXPORT_SYMBOL(sk_mc_loop); 772 773 void sock_set_reuseaddr(struct sock *sk) 774 { 775 lock_sock(sk); 776 sk->sk_reuse = SK_CAN_REUSE; 777 release_sock(sk); 778 } 779 EXPORT_SYMBOL(sock_set_reuseaddr); 780 781 void sock_set_reuseport(struct sock *sk) 782 { 783 lock_sock(sk); 784 sk->sk_reuseport = true; 785 release_sock(sk); 786 } 787 EXPORT_SYMBOL(sock_set_reuseport); 788 789 void sock_no_linger(struct sock *sk) 790 { 791 lock_sock(sk); 792 sk->sk_lingertime = 0; 793 sock_set_flag(sk, SOCK_LINGER); 794 release_sock(sk); 795 } 796 EXPORT_SYMBOL(sock_no_linger); 797 798 void sock_set_priority(struct sock *sk, u32 priority) 799 { 800 lock_sock(sk); 801 sk->sk_priority = priority; 802 release_sock(sk); 803 } 804 EXPORT_SYMBOL(sock_set_priority); 805 806 void sock_set_sndtimeo(struct sock *sk, s64 secs) 807 { 808 lock_sock(sk); 809 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 810 sk->sk_sndtimeo = secs * HZ; 811 else 812 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 813 release_sock(sk); 814 } 815 EXPORT_SYMBOL(sock_set_sndtimeo); 816 817 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 818 { 819 if (val) { 820 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 821 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 822 sock_set_flag(sk, SOCK_RCVTSTAMP); 823 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 824 } else { 825 sock_reset_flag(sk, SOCK_RCVTSTAMP); 826 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 827 } 828 } 829 830 void sock_enable_timestamps(struct sock *sk) 831 { 832 lock_sock(sk); 833 __sock_set_timestamps(sk, true, false, true); 834 release_sock(sk); 835 } 836 EXPORT_SYMBOL(sock_enable_timestamps); 837 838 void sock_set_timestamp(struct sock *sk, int optname, bool valbool) 839 { 840 switch (optname) { 841 case SO_TIMESTAMP_OLD: 842 __sock_set_timestamps(sk, valbool, false, false); 843 break; 844 case SO_TIMESTAMP_NEW: 845 __sock_set_timestamps(sk, valbool, true, false); 846 break; 847 case SO_TIMESTAMPNS_OLD: 848 __sock_set_timestamps(sk, valbool, false, true); 849 break; 850 case SO_TIMESTAMPNS_NEW: 851 __sock_set_timestamps(sk, valbool, true, true); 852 break; 853 } 854 } 855 856 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) 857 { 858 struct net *net = sock_net(sk); 859 struct net_device *dev = NULL; 860 bool match = false; 861 int *vclock_index; 862 int i, num; 863 864 if (sk->sk_bound_dev_if) 865 dev = dev_get_by_index(net, sk->sk_bound_dev_if); 866 867 if (!dev) { 868 pr_err("%s: sock not bind to device\n", __func__); 869 return -EOPNOTSUPP; 870 } 871 872 num = ethtool_get_phc_vclocks(dev, &vclock_index); 873 dev_put(dev); 874 875 for (i = 0; i < num; i++) { 876 if (*(vclock_index + i) == phc_index) { 877 match = true; 878 break; 879 } 880 } 881 882 if (num > 0) 883 kfree(vclock_index); 884 885 if (!match) 886 return -EINVAL; 887 888 sk->sk_bind_phc = phc_index; 889 890 return 0; 891 } 892 893 int sock_set_timestamping(struct sock *sk, int optname, 894 struct so_timestamping timestamping) 895 { 896 int val = timestamping.flags; 897 int ret; 898 899 if (val & ~SOF_TIMESTAMPING_MASK) 900 return -EINVAL; 901 902 if (val & SOF_TIMESTAMPING_OPT_ID && 903 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 904 if (sk_is_tcp(sk)) { 905 if ((1 << sk->sk_state) & 906 (TCPF_CLOSE | TCPF_LISTEN)) 907 return -EINVAL; 908 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); 909 } else { 910 atomic_set(&sk->sk_tskey, 0); 911 } 912 } 913 914 if (val & SOF_TIMESTAMPING_OPT_STATS && 915 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) 916 return -EINVAL; 917 918 if (val & SOF_TIMESTAMPING_BIND_PHC) { 919 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); 920 if (ret) 921 return ret; 922 } 923 924 sk->sk_tsflags = val; 925 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 926 927 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 928 sock_enable_timestamp(sk, 929 SOCK_TIMESTAMPING_RX_SOFTWARE); 930 else 931 sock_disable_timestamp(sk, 932 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 933 return 0; 934 } 935 936 void sock_set_keepalive(struct sock *sk) 937 { 938 lock_sock(sk); 939 if (sk->sk_prot->keepalive) 940 sk->sk_prot->keepalive(sk, true); 941 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 942 release_sock(sk); 943 } 944 EXPORT_SYMBOL(sock_set_keepalive); 945 946 static void __sock_set_rcvbuf(struct sock *sk, int val) 947 { 948 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 949 * as a negative value. 950 */ 951 val = min_t(int, val, INT_MAX / 2); 952 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 953 954 /* We double it on the way in to account for "struct sk_buff" etc. 955 * overhead. Applications assume that the SO_RCVBUF setting they make 956 * will allow that much actual data to be received on that socket. 957 * 958 * Applications are unaware that "struct sk_buff" and other overheads 959 * allocate from the receive buffer during socket buffer allocation. 960 * 961 * And after considering the possible alternatives, returning the value 962 * we actually used in getsockopt is the most desirable behavior. 963 */ 964 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 965 } 966 967 void sock_set_rcvbuf(struct sock *sk, int val) 968 { 969 lock_sock(sk); 970 __sock_set_rcvbuf(sk, val); 971 release_sock(sk); 972 } 973 EXPORT_SYMBOL(sock_set_rcvbuf); 974 975 static void __sock_set_mark(struct sock *sk, u32 val) 976 { 977 if (val != sk->sk_mark) { 978 sk->sk_mark = val; 979 sk_dst_reset(sk); 980 } 981 } 982 983 void sock_set_mark(struct sock *sk, u32 val) 984 { 985 lock_sock(sk); 986 __sock_set_mark(sk, val); 987 release_sock(sk); 988 } 989 EXPORT_SYMBOL(sock_set_mark); 990 991 static void sock_release_reserved_memory(struct sock *sk, int bytes) 992 { 993 /* Round down bytes to multiple of pages */ 994 bytes = round_down(bytes, PAGE_SIZE); 995 996 WARN_ON(bytes > sk->sk_reserved_mem); 997 sk->sk_reserved_mem -= bytes; 998 sk_mem_reclaim(sk); 999 } 1000 1001 static int sock_reserve_memory(struct sock *sk, int bytes) 1002 { 1003 long allocated; 1004 bool charged; 1005 int pages; 1006 1007 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) 1008 return -EOPNOTSUPP; 1009 1010 if (!bytes) 1011 return 0; 1012 1013 pages = sk_mem_pages(bytes); 1014 1015 /* pre-charge to memcg */ 1016 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, 1017 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1018 if (!charged) 1019 return -ENOMEM; 1020 1021 /* pre-charge to forward_alloc */ 1022 sk_memory_allocated_add(sk, pages); 1023 allocated = sk_memory_allocated(sk); 1024 /* If the system goes into memory pressure with this 1025 * precharge, give up and return error. 1026 */ 1027 if (allocated > sk_prot_mem_limits(sk, 1)) { 1028 sk_memory_allocated_sub(sk, pages); 1029 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); 1030 return -ENOMEM; 1031 } 1032 sk->sk_forward_alloc += pages << PAGE_SHIFT; 1033 1034 sk->sk_reserved_mem += pages << PAGE_SHIFT; 1035 1036 return 0; 1037 } 1038 1039 /* 1040 * This is meant for all protocols to use and covers goings on 1041 * at the socket level. Everything here is generic. 1042 */ 1043 1044 int sock_setsockopt(struct socket *sock, int level, int optname, 1045 sockptr_t optval, unsigned int optlen) 1046 { 1047 struct so_timestamping timestamping; 1048 struct sock_txtime sk_txtime; 1049 struct sock *sk = sock->sk; 1050 int val; 1051 int valbool; 1052 struct linger ling; 1053 int ret = 0; 1054 1055 /* 1056 * Options without arguments 1057 */ 1058 1059 if (optname == SO_BINDTODEVICE) 1060 return sock_setbindtodevice(sk, optval, optlen); 1061 1062 if (optlen < sizeof(int)) 1063 return -EINVAL; 1064 1065 if (copy_from_sockptr(&val, optval, sizeof(val))) 1066 return -EFAULT; 1067 1068 valbool = val ? 1 : 0; 1069 1070 lock_sock(sk); 1071 1072 switch (optname) { 1073 case SO_DEBUG: 1074 if (val && !capable(CAP_NET_ADMIN)) 1075 ret = -EACCES; 1076 else 1077 sock_valbool_flag(sk, SOCK_DBG, valbool); 1078 break; 1079 case SO_REUSEADDR: 1080 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 1081 break; 1082 case SO_REUSEPORT: 1083 sk->sk_reuseport = valbool; 1084 break; 1085 case SO_TYPE: 1086 case SO_PROTOCOL: 1087 case SO_DOMAIN: 1088 case SO_ERROR: 1089 ret = -ENOPROTOOPT; 1090 break; 1091 case SO_DONTROUTE: 1092 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 1093 sk_dst_reset(sk); 1094 break; 1095 case SO_BROADCAST: 1096 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 1097 break; 1098 case SO_SNDBUF: 1099 /* Don't error on this BSD doesn't and if you think 1100 * about it this is right. Otherwise apps have to 1101 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1102 * are treated in BSD as hints 1103 */ 1104 val = min_t(u32, val, sysctl_wmem_max); 1105 set_sndbuf: 1106 /* Ensure val * 2 fits into an int, to prevent max_t() 1107 * from treating it as a negative value. 1108 */ 1109 val = min_t(int, val, INT_MAX / 2); 1110 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1111 WRITE_ONCE(sk->sk_sndbuf, 1112 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 1113 /* Wake up sending tasks if we upped the value. */ 1114 sk->sk_write_space(sk); 1115 break; 1116 1117 case SO_SNDBUFFORCE: 1118 if (!capable(CAP_NET_ADMIN)) { 1119 ret = -EPERM; 1120 break; 1121 } 1122 1123 /* No negative values (to prevent underflow, as val will be 1124 * multiplied by 2). 1125 */ 1126 if (val < 0) 1127 val = 0; 1128 goto set_sndbuf; 1129 1130 case SO_RCVBUF: 1131 /* Don't error on this BSD doesn't and if you think 1132 * about it this is right. Otherwise apps have to 1133 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1134 * are treated in BSD as hints 1135 */ 1136 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max)); 1137 break; 1138 1139 case SO_RCVBUFFORCE: 1140 if (!capable(CAP_NET_ADMIN)) { 1141 ret = -EPERM; 1142 break; 1143 } 1144 1145 /* No negative values (to prevent underflow, as val will be 1146 * multiplied by 2). 1147 */ 1148 __sock_set_rcvbuf(sk, max(val, 0)); 1149 break; 1150 1151 case SO_KEEPALIVE: 1152 if (sk->sk_prot->keepalive) 1153 sk->sk_prot->keepalive(sk, valbool); 1154 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 1155 break; 1156 1157 case SO_OOBINLINE: 1158 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 1159 break; 1160 1161 case SO_NO_CHECK: 1162 sk->sk_no_check_tx = valbool; 1163 break; 1164 1165 case SO_PRIORITY: 1166 if ((val >= 0 && val <= 6) || 1167 ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || 1168 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 1169 sk->sk_priority = val; 1170 else 1171 ret = -EPERM; 1172 break; 1173 1174 case SO_LINGER: 1175 if (optlen < sizeof(ling)) { 1176 ret = -EINVAL; /* 1003.1g */ 1177 break; 1178 } 1179 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 1180 ret = -EFAULT; 1181 break; 1182 } 1183 if (!ling.l_onoff) 1184 sock_reset_flag(sk, SOCK_LINGER); 1185 else { 1186 #if (BITS_PER_LONG == 32) 1187 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 1188 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 1189 else 1190 #endif 1191 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 1192 sock_set_flag(sk, SOCK_LINGER); 1193 } 1194 break; 1195 1196 case SO_BSDCOMPAT: 1197 break; 1198 1199 case SO_PASSCRED: 1200 if (valbool) 1201 set_bit(SOCK_PASSCRED, &sock->flags); 1202 else 1203 clear_bit(SOCK_PASSCRED, &sock->flags); 1204 break; 1205 1206 case SO_TIMESTAMP_OLD: 1207 case SO_TIMESTAMP_NEW: 1208 case SO_TIMESTAMPNS_OLD: 1209 case SO_TIMESTAMPNS_NEW: 1210 sock_set_timestamp(sk, optname, valbool); 1211 break; 1212 1213 case SO_TIMESTAMPING_NEW: 1214 case SO_TIMESTAMPING_OLD: 1215 if (optlen == sizeof(timestamping)) { 1216 if (copy_from_sockptr(×tamping, optval, 1217 sizeof(timestamping))) { 1218 ret = -EFAULT; 1219 break; 1220 } 1221 } else { 1222 memset(×tamping, 0, sizeof(timestamping)); 1223 timestamping.flags = val; 1224 } 1225 ret = sock_set_timestamping(sk, optname, timestamping); 1226 break; 1227 1228 case SO_RCVLOWAT: 1229 if (val < 0) 1230 val = INT_MAX; 1231 if (sock->ops->set_rcvlowat) 1232 ret = sock->ops->set_rcvlowat(sk, val); 1233 else 1234 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1235 break; 1236 1237 case SO_RCVTIMEO_OLD: 1238 case SO_RCVTIMEO_NEW: 1239 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1240 optlen, optname == SO_RCVTIMEO_OLD); 1241 break; 1242 1243 case SO_SNDTIMEO_OLD: 1244 case SO_SNDTIMEO_NEW: 1245 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1246 optlen, optname == SO_SNDTIMEO_OLD); 1247 break; 1248 1249 case SO_ATTACH_FILTER: { 1250 struct sock_fprog fprog; 1251 1252 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1253 if (!ret) 1254 ret = sk_attach_filter(&fprog, sk); 1255 break; 1256 } 1257 case SO_ATTACH_BPF: 1258 ret = -EINVAL; 1259 if (optlen == sizeof(u32)) { 1260 u32 ufd; 1261 1262 ret = -EFAULT; 1263 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1264 break; 1265 1266 ret = sk_attach_bpf(ufd, sk); 1267 } 1268 break; 1269 1270 case SO_ATTACH_REUSEPORT_CBPF: { 1271 struct sock_fprog fprog; 1272 1273 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1274 if (!ret) 1275 ret = sk_reuseport_attach_filter(&fprog, sk); 1276 break; 1277 } 1278 case SO_ATTACH_REUSEPORT_EBPF: 1279 ret = -EINVAL; 1280 if (optlen == sizeof(u32)) { 1281 u32 ufd; 1282 1283 ret = -EFAULT; 1284 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1285 break; 1286 1287 ret = sk_reuseport_attach_bpf(ufd, sk); 1288 } 1289 break; 1290 1291 case SO_DETACH_REUSEPORT_BPF: 1292 ret = reuseport_detach_prog(sk); 1293 break; 1294 1295 case SO_DETACH_FILTER: 1296 ret = sk_detach_filter(sk); 1297 break; 1298 1299 case SO_LOCK_FILTER: 1300 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1301 ret = -EPERM; 1302 else 1303 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1304 break; 1305 1306 case SO_PASSSEC: 1307 if (valbool) 1308 set_bit(SOCK_PASSSEC, &sock->flags); 1309 else 1310 clear_bit(SOCK_PASSSEC, &sock->flags); 1311 break; 1312 case SO_MARK: 1313 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1314 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1315 ret = -EPERM; 1316 break; 1317 } 1318 1319 __sock_set_mark(sk, val); 1320 break; 1321 case SO_RCVMARK: 1322 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1323 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1324 ret = -EPERM; 1325 break; 1326 } 1327 1328 sock_valbool_flag(sk, SOCK_RCVMARK, valbool); 1329 break; 1330 1331 case SO_RXQ_OVFL: 1332 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1333 break; 1334 1335 case SO_WIFI_STATUS: 1336 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1337 break; 1338 1339 case SO_PEEK_OFF: 1340 if (sock->ops->set_peek_off) 1341 ret = sock->ops->set_peek_off(sk, val); 1342 else 1343 ret = -EOPNOTSUPP; 1344 break; 1345 1346 case SO_NOFCS: 1347 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1348 break; 1349 1350 case SO_SELECT_ERR_QUEUE: 1351 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1352 break; 1353 1354 #ifdef CONFIG_NET_RX_BUSY_POLL 1355 case SO_BUSY_POLL: 1356 /* allow unprivileged users to decrease the value */ 1357 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1358 ret = -EPERM; 1359 else { 1360 if (val < 0) 1361 ret = -EINVAL; 1362 else 1363 WRITE_ONCE(sk->sk_ll_usec, val); 1364 } 1365 break; 1366 case SO_PREFER_BUSY_POLL: 1367 if (valbool && !capable(CAP_NET_ADMIN)) 1368 ret = -EPERM; 1369 else 1370 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1371 break; 1372 case SO_BUSY_POLL_BUDGET: 1373 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) { 1374 ret = -EPERM; 1375 } else { 1376 if (val < 0 || val > U16_MAX) 1377 ret = -EINVAL; 1378 else 1379 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1380 } 1381 break; 1382 #endif 1383 1384 case SO_MAX_PACING_RATE: 1385 { 1386 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1387 1388 if (sizeof(ulval) != sizeof(val) && 1389 optlen >= sizeof(ulval) && 1390 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1391 ret = -EFAULT; 1392 break; 1393 } 1394 if (ulval != ~0UL) 1395 cmpxchg(&sk->sk_pacing_status, 1396 SK_PACING_NONE, 1397 SK_PACING_NEEDED); 1398 sk->sk_max_pacing_rate = ulval; 1399 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1400 break; 1401 } 1402 case SO_INCOMING_CPU: 1403 WRITE_ONCE(sk->sk_incoming_cpu, val); 1404 break; 1405 1406 case SO_CNX_ADVICE: 1407 if (val == 1) 1408 dst_negative_advice(sk); 1409 break; 1410 1411 case SO_ZEROCOPY: 1412 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1413 if (!(sk_is_tcp(sk) || 1414 (sk->sk_type == SOCK_DGRAM && 1415 sk->sk_protocol == IPPROTO_UDP))) 1416 ret = -EOPNOTSUPP; 1417 } else if (sk->sk_family != PF_RDS) { 1418 ret = -EOPNOTSUPP; 1419 } 1420 if (!ret) { 1421 if (val < 0 || val > 1) 1422 ret = -EINVAL; 1423 else 1424 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1425 } 1426 break; 1427 1428 case SO_TXTIME: 1429 if (optlen != sizeof(struct sock_txtime)) { 1430 ret = -EINVAL; 1431 break; 1432 } else if (copy_from_sockptr(&sk_txtime, optval, 1433 sizeof(struct sock_txtime))) { 1434 ret = -EFAULT; 1435 break; 1436 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1437 ret = -EINVAL; 1438 break; 1439 } 1440 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1441 * scheduler has enough safe guards. 1442 */ 1443 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1444 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1445 ret = -EPERM; 1446 break; 1447 } 1448 sock_valbool_flag(sk, SOCK_TXTIME, true); 1449 sk->sk_clockid = sk_txtime.clockid; 1450 sk->sk_txtime_deadline_mode = 1451 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1452 sk->sk_txtime_report_errors = 1453 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1454 break; 1455 1456 case SO_BINDTOIFINDEX: 1457 ret = sock_bindtoindex_locked(sk, val); 1458 break; 1459 1460 case SO_BUF_LOCK: 1461 if (val & ~SOCK_BUF_LOCK_MASK) { 1462 ret = -EINVAL; 1463 break; 1464 } 1465 sk->sk_userlocks = val | (sk->sk_userlocks & 1466 ~SOCK_BUF_LOCK_MASK); 1467 break; 1468 1469 case SO_RESERVE_MEM: 1470 { 1471 int delta; 1472 1473 if (val < 0) { 1474 ret = -EINVAL; 1475 break; 1476 } 1477 1478 delta = val - sk->sk_reserved_mem; 1479 if (delta < 0) 1480 sock_release_reserved_memory(sk, -delta); 1481 else 1482 ret = sock_reserve_memory(sk, delta); 1483 break; 1484 } 1485 1486 case SO_TXREHASH: 1487 if (val < -1 || val > 1) { 1488 ret = -EINVAL; 1489 break; 1490 } 1491 /* Paired with READ_ONCE() in tcp_rtx_synack() */ 1492 WRITE_ONCE(sk->sk_txrehash, (u8)val); 1493 break; 1494 1495 default: 1496 ret = -ENOPROTOOPT; 1497 break; 1498 } 1499 release_sock(sk); 1500 return ret; 1501 } 1502 EXPORT_SYMBOL(sock_setsockopt); 1503 1504 static const struct cred *sk_get_peer_cred(struct sock *sk) 1505 { 1506 const struct cred *cred; 1507 1508 spin_lock(&sk->sk_peer_lock); 1509 cred = get_cred(sk->sk_peer_cred); 1510 spin_unlock(&sk->sk_peer_lock); 1511 1512 return cred; 1513 } 1514 1515 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1516 struct ucred *ucred) 1517 { 1518 ucred->pid = pid_vnr(pid); 1519 ucred->uid = ucred->gid = -1; 1520 if (cred) { 1521 struct user_namespace *current_ns = current_user_ns(); 1522 1523 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1524 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1525 } 1526 } 1527 1528 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1529 { 1530 struct user_namespace *user_ns = current_user_ns(); 1531 int i; 1532 1533 for (i = 0; i < src->ngroups; i++) 1534 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1535 return -EFAULT; 1536 1537 return 0; 1538 } 1539 1540 int sock_getsockopt(struct socket *sock, int level, int optname, 1541 char __user *optval, int __user *optlen) 1542 { 1543 struct sock *sk = sock->sk; 1544 1545 union { 1546 int val; 1547 u64 val64; 1548 unsigned long ulval; 1549 struct linger ling; 1550 struct old_timeval32 tm32; 1551 struct __kernel_old_timeval tm; 1552 struct __kernel_sock_timeval stm; 1553 struct sock_txtime txtime; 1554 struct so_timestamping timestamping; 1555 } v; 1556 1557 int lv = sizeof(int); 1558 int len; 1559 1560 if (get_user(len, optlen)) 1561 return -EFAULT; 1562 if (len < 0) 1563 return -EINVAL; 1564 1565 memset(&v, 0, sizeof(v)); 1566 1567 switch (optname) { 1568 case SO_DEBUG: 1569 v.val = sock_flag(sk, SOCK_DBG); 1570 break; 1571 1572 case SO_DONTROUTE: 1573 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1574 break; 1575 1576 case SO_BROADCAST: 1577 v.val = sock_flag(sk, SOCK_BROADCAST); 1578 break; 1579 1580 case SO_SNDBUF: 1581 v.val = sk->sk_sndbuf; 1582 break; 1583 1584 case SO_RCVBUF: 1585 v.val = sk->sk_rcvbuf; 1586 break; 1587 1588 case SO_REUSEADDR: 1589 v.val = sk->sk_reuse; 1590 break; 1591 1592 case SO_REUSEPORT: 1593 v.val = sk->sk_reuseport; 1594 break; 1595 1596 case SO_KEEPALIVE: 1597 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1598 break; 1599 1600 case SO_TYPE: 1601 v.val = sk->sk_type; 1602 break; 1603 1604 case SO_PROTOCOL: 1605 v.val = sk->sk_protocol; 1606 break; 1607 1608 case SO_DOMAIN: 1609 v.val = sk->sk_family; 1610 break; 1611 1612 case SO_ERROR: 1613 v.val = -sock_error(sk); 1614 if (v.val == 0) 1615 v.val = xchg(&sk->sk_err_soft, 0); 1616 break; 1617 1618 case SO_OOBINLINE: 1619 v.val = sock_flag(sk, SOCK_URGINLINE); 1620 break; 1621 1622 case SO_NO_CHECK: 1623 v.val = sk->sk_no_check_tx; 1624 break; 1625 1626 case SO_PRIORITY: 1627 v.val = sk->sk_priority; 1628 break; 1629 1630 case SO_LINGER: 1631 lv = sizeof(v.ling); 1632 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1633 v.ling.l_linger = sk->sk_lingertime / HZ; 1634 break; 1635 1636 case SO_BSDCOMPAT: 1637 break; 1638 1639 case SO_TIMESTAMP_OLD: 1640 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1641 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1642 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1643 break; 1644 1645 case SO_TIMESTAMPNS_OLD: 1646 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1647 break; 1648 1649 case SO_TIMESTAMP_NEW: 1650 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1651 break; 1652 1653 case SO_TIMESTAMPNS_NEW: 1654 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1655 break; 1656 1657 case SO_TIMESTAMPING_OLD: 1658 lv = sizeof(v.timestamping); 1659 v.timestamping.flags = sk->sk_tsflags; 1660 v.timestamping.bind_phc = sk->sk_bind_phc; 1661 break; 1662 1663 case SO_RCVTIMEO_OLD: 1664 case SO_RCVTIMEO_NEW: 1665 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1666 break; 1667 1668 case SO_SNDTIMEO_OLD: 1669 case SO_SNDTIMEO_NEW: 1670 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1671 break; 1672 1673 case SO_RCVLOWAT: 1674 v.val = sk->sk_rcvlowat; 1675 break; 1676 1677 case SO_SNDLOWAT: 1678 v.val = 1; 1679 break; 1680 1681 case SO_PASSCRED: 1682 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1683 break; 1684 1685 case SO_PEERCRED: 1686 { 1687 struct ucred peercred; 1688 if (len > sizeof(peercred)) 1689 len = sizeof(peercred); 1690 1691 spin_lock(&sk->sk_peer_lock); 1692 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1693 spin_unlock(&sk->sk_peer_lock); 1694 1695 if (copy_to_user(optval, &peercred, len)) 1696 return -EFAULT; 1697 goto lenout; 1698 } 1699 1700 case SO_PEERGROUPS: 1701 { 1702 const struct cred *cred; 1703 int ret, n; 1704 1705 cred = sk_get_peer_cred(sk); 1706 if (!cred) 1707 return -ENODATA; 1708 1709 n = cred->group_info->ngroups; 1710 if (len < n * sizeof(gid_t)) { 1711 len = n * sizeof(gid_t); 1712 put_cred(cred); 1713 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1714 } 1715 len = n * sizeof(gid_t); 1716 1717 ret = groups_to_user((gid_t __user *)optval, cred->group_info); 1718 put_cred(cred); 1719 if (ret) 1720 return ret; 1721 goto lenout; 1722 } 1723 1724 case SO_PEERNAME: 1725 { 1726 char address[128]; 1727 1728 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1729 if (lv < 0) 1730 return -ENOTCONN; 1731 if (lv < len) 1732 return -EINVAL; 1733 if (copy_to_user(optval, address, len)) 1734 return -EFAULT; 1735 goto lenout; 1736 } 1737 1738 /* Dubious BSD thing... Probably nobody even uses it, but 1739 * the UNIX standard wants it for whatever reason... -DaveM 1740 */ 1741 case SO_ACCEPTCONN: 1742 v.val = sk->sk_state == TCP_LISTEN; 1743 break; 1744 1745 case SO_PASSSEC: 1746 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1747 break; 1748 1749 case SO_PEERSEC: 1750 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1751 1752 case SO_MARK: 1753 v.val = sk->sk_mark; 1754 break; 1755 1756 case SO_RCVMARK: 1757 v.val = sock_flag(sk, SOCK_RCVMARK); 1758 break; 1759 1760 case SO_RXQ_OVFL: 1761 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1762 break; 1763 1764 case SO_WIFI_STATUS: 1765 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1766 break; 1767 1768 case SO_PEEK_OFF: 1769 if (!sock->ops->set_peek_off) 1770 return -EOPNOTSUPP; 1771 1772 v.val = sk->sk_peek_off; 1773 break; 1774 case SO_NOFCS: 1775 v.val = sock_flag(sk, SOCK_NOFCS); 1776 break; 1777 1778 case SO_BINDTODEVICE: 1779 return sock_getbindtodevice(sk, optval, optlen, len); 1780 1781 case SO_GET_FILTER: 1782 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1783 if (len < 0) 1784 return len; 1785 1786 goto lenout; 1787 1788 case SO_LOCK_FILTER: 1789 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1790 break; 1791 1792 case SO_BPF_EXTENSIONS: 1793 v.val = bpf_tell_extensions(); 1794 break; 1795 1796 case SO_SELECT_ERR_QUEUE: 1797 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1798 break; 1799 1800 #ifdef CONFIG_NET_RX_BUSY_POLL 1801 case SO_BUSY_POLL: 1802 v.val = sk->sk_ll_usec; 1803 break; 1804 case SO_PREFER_BUSY_POLL: 1805 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1806 break; 1807 #endif 1808 1809 case SO_MAX_PACING_RATE: 1810 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1811 lv = sizeof(v.ulval); 1812 v.ulval = sk->sk_max_pacing_rate; 1813 } else { 1814 /* 32bit version */ 1815 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1816 } 1817 break; 1818 1819 case SO_INCOMING_CPU: 1820 v.val = READ_ONCE(sk->sk_incoming_cpu); 1821 break; 1822 1823 case SO_MEMINFO: 1824 { 1825 u32 meminfo[SK_MEMINFO_VARS]; 1826 1827 sk_get_meminfo(sk, meminfo); 1828 1829 len = min_t(unsigned int, len, sizeof(meminfo)); 1830 if (copy_to_user(optval, &meminfo, len)) 1831 return -EFAULT; 1832 1833 goto lenout; 1834 } 1835 1836 #ifdef CONFIG_NET_RX_BUSY_POLL 1837 case SO_INCOMING_NAPI_ID: 1838 v.val = READ_ONCE(sk->sk_napi_id); 1839 1840 /* aggregate non-NAPI IDs down to 0 */ 1841 if (v.val < MIN_NAPI_ID) 1842 v.val = 0; 1843 1844 break; 1845 #endif 1846 1847 case SO_COOKIE: 1848 lv = sizeof(u64); 1849 if (len < lv) 1850 return -EINVAL; 1851 v.val64 = sock_gen_cookie(sk); 1852 break; 1853 1854 case SO_ZEROCOPY: 1855 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1856 break; 1857 1858 case SO_TXTIME: 1859 lv = sizeof(v.txtime); 1860 v.txtime.clockid = sk->sk_clockid; 1861 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1862 SOF_TXTIME_DEADLINE_MODE : 0; 1863 v.txtime.flags |= sk->sk_txtime_report_errors ? 1864 SOF_TXTIME_REPORT_ERRORS : 0; 1865 break; 1866 1867 case SO_BINDTOIFINDEX: 1868 v.val = READ_ONCE(sk->sk_bound_dev_if); 1869 break; 1870 1871 case SO_NETNS_COOKIE: 1872 lv = sizeof(u64); 1873 if (len != lv) 1874 return -EINVAL; 1875 v.val64 = sock_net(sk)->net_cookie; 1876 break; 1877 1878 case SO_BUF_LOCK: 1879 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; 1880 break; 1881 1882 case SO_RESERVE_MEM: 1883 v.val = sk->sk_reserved_mem; 1884 break; 1885 1886 case SO_TXREHASH: 1887 v.val = sk->sk_txrehash; 1888 break; 1889 1890 default: 1891 /* We implement the SO_SNDLOWAT etc to not be settable 1892 * (1003.1g 7). 1893 */ 1894 return -ENOPROTOOPT; 1895 } 1896 1897 if (len > lv) 1898 len = lv; 1899 if (copy_to_user(optval, &v, len)) 1900 return -EFAULT; 1901 lenout: 1902 if (put_user(len, optlen)) 1903 return -EFAULT; 1904 return 0; 1905 } 1906 1907 /* 1908 * Initialize an sk_lock. 1909 * 1910 * (We also register the sk_lock with the lock validator.) 1911 */ 1912 static inline void sock_lock_init(struct sock *sk) 1913 { 1914 if (sk->sk_kern_sock) 1915 sock_lock_init_class_and_name( 1916 sk, 1917 af_family_kern_slock_key_strings[sk->sk_family], 1918 af_family_kern_slock_keys + sk->sk_family, 1919 af_family_kern_key_strings[sk->sk_family], 1920 af_family_kern_keys + sk->sk_family); 1921 else 1922 sock_lock_init_class_and_name( 1923 sk, 1924 af_family_slock_key_strings[sk->sk_family], 1925 af_family_slock_keys + sk->sk_family, 1926 af_family_key_strings[sk->sk_family], 1927 af_family_keys + sk->sk_family); 1928 } 1929 1930 /* 1931 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1932 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1933 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1934 */ 1935 static void sock_copy(struct sock *nsk, const struct sock *osk) 1936 { 1937 const struct proto *prot = READ_ONCE(osk->sk_prot); 1938 #ifdef CONFIG_SECURITY_NETWORK 1939 void *sptr = nsk->sk_security; 1940 #endif 1941 1942 /* If we move sk_tx_queue_mapping out of the private section, 1943 * we must check if sk_tx_queue_clear() is called after 1944 * sock_copy() in sk_clone_lock(). 1945 */ 1946 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 1947 offsetof(struct sock, sk_dontcopy_begin) || 1948 offsetof(struct sock, sk_tx_queue_mapping) >= 1949 offsetof(struct sock, sk_dontcopy_end)); 1950 1951 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1952 1953 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1954 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1955 1956 #ifdef CONFIG_SECURITY_NETWORK 1957 nsk->sk_security = sptr; 1958 security_sk_clone(osk, nsk); 1959 #endif 1960 } 1961 1962 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1963 int family) 1964 { 1965 struct sock *sk; 1966 struct kmem_cache *slab; 1967 1968 slab = prot->slab; 1969 if (slab != NULL) { 1970 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1971 if (!sk) 1972 return sk; 1973 if (want_init_on_alloc(priority)) 1974 sk_prot_clear_nulls(sk, prot->obj_size); 1975 } else 1976 sk = kmalloc(prot->obj_size, priority); 1977 1978 if (sk != NULL) { 1979 if (security_sk_alloc(sk, family, priority)) 1980 goto out_free; 1981 1982 if (!try_module_get(prot->owner)) 1983 goto out_free_sec; 1984 } 1985 1986 return sk; 1987 1988 out_free_sec: 1989 security_sk_free(sk); 1990 out_free: 1991 if (slab != NULL) 1992 kmem_cache_free(slab, sk); 1993 else 1994 kfree(sk); 1995 return NULL; 1996 } 1997 1998 static void sk_prot_free(struct proto *prot, struct sock *sk) 1999 { 2000 struct kmem_cache *slab; 2001 struct module *owner; 2002 2003 owner = prot->owner; 2004 slab = prot->slab; 2005 2006 cgroup_sk_free(&sk->sk_cgrp_data); 2007 mem_cgroup_sk_free(sk); 2008 security_sk_free(sk); 2009 if (slab != NULL) 2010 kmem_cache_free(slab, sk); 2011 else 2012 kfree(sk); 2013 module_put(owner); 2014 } 2015 2016 /** 2017 * sk_alloc - All socket objects are allocated here 2018 * @net: the applicable net namespace 2019 * @family: protocol family 2020 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2021 * @prot: struct proto associated with this new sock instance 2022 * @kern: is this to be a kernel socket? 2023 */ 2024 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 2025 struct proto *prot, int kern) 2026 { 2027 struct sock *sk; 2028 2029 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 2030 if (sk) { 2031 sk->sk_family = family; 2032 /* 2033 * See comment in struct sock definition to understand 2034 * why we need sk_prot_creator -acme 2035 */ 2036 sk->sk_prot = sk->sk_prot_creator = prot; 2037 sk->sk_kern_sock = kern; 2038 sock_lock_init(sk); 2039 sk->sk_net_refcnt = kern ? 0 : 1; 2040 if (likely(sk->sk_net_refcnt)) { 2041 get_net_track(net, &sk->ns_tracker, priority); 2042 sock_inuse_add(net, 1); 2043 } 2044 2045 sock_net_set(sk, net); 2046 refcount_set(&sk->sk_wmem_alloc, 1); 2047 2048 mem_cgroup_sk_alloc(sk); 2049 cgroup_sk_alloc(&sk->sk_cgrp_data); 2050 sock_update_classid(&sk->sk_cgrp_data); 2051 sock_update_netprioidx(&sk->sk_cgrp_data); 2052 sk_tx_queue_clear(sk); 2053 } 2054 2055 return sk; 2056 } 2057 EXPORT_SYMBOL(sk_alloc); 2058 2059 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 2060 * grace period. This is the case for UDP sockets and TCP listeners. 2061 */ 2062 static void __sk_destruct(struct rcu_head *head) 2063 { 2064 struct sock *sk = container_of(head, struct sock, sk_rcu); 2065 struct sk_filter *filter; 2066 2067 if (sk->sk_destruct) 2068 sk->sk_destruct(sk); 2069 2070 filter = rcu_dereference_check(sk->sk_filter, 2071 refcount_read(&sk->sk_wmem_alloc) == 0); 2072 if (filter) { 2073 sk_filter_uncharge(sk, filter); 2074 RCU_INIT_POINTER(sk->sk_filter, NULL); 2075 } 2076 2077 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 2078 2079 #ifdef CONFIG_BPF_SYSCALL 2080 bpf_sk_storage_free(sk); 2081 #endif 2082 2083 if (atomic_read(&sk->sk_omem_alloc)) 2084 pr_debug("%s: optmem leakage (%d bytes) detected\n", 2085 __func__, atomic_read(&sk->sk_omem_alloc)); 2086 2087 if (sk->sk_frag.page) { 2088 put_page(sk->sk_frag.page); 2089 sk->sk_frag.page = NULL; 2090 } 2091 2092 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ 2093 put_cred(sk->sk_peer_cred); 2094 put_pid(sk->sk_peer_pid); 2095 2096 if (likely(sk->sk_net_refcnt)) 2097 put_net_track(sock_net(sk), &sk->ns_tracker); 2098 sk_prot_free(sk->sk_prot_creator, sk); 2099 } 2100 2101 void sk_destruct(struct sock *sk) 2102 { 2103 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 2104 2105 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 2106 reuseport_detach_sock(sk); 2107 use_call_rcu = true; 2108 } 2109 2110 if (use_call_rcu) 2111 call_rcu(&sk->sk_rcu, __sk_destruct); 2112 else 2113 __sk_destruct(&sk->sk_rcu); 2114 } 2115 2116 static void __sk_free(struct sock *sk) 2117 { 2118 if (likely(sk->sk_net_refcnt)) 2119 sock_inuse_add(sock_net(sk), -1); 2120 2121 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 2122 sock_diag_broadcast_destroy(sk); 2123 else 2124 sk_destruct(sk); 2125 } 2126 2127 void sk_free(struct sock *sk) 2128 { 2129 /* 2130 * We subtract one from sk_wmem_alloc and can know if 2131 * some packets are still in some tx queue. 2132 * If not null, sock_wfree() will call __sk_free(sk) later 2133 */ 2134 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 2135 __sk_free(sk); 2136 } 2137 EXPORT_SYMBOL(sk_free); 2138 2139 static void sk_init_common(struct sock *sk) 2140 { 2141 skb_queue_head_init(&sk->sk_receive_queue); 2142 skb_queue_head_init(&sk->sk_write_queue); 2143 skb_queue_head_init(&sk->sk_error_queue); 2144 2145 rwlock_init(&sk->sk_callback_lock); 2146 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 2147 af_rlock_keys + sk->sk_family, 2148 af_family_rlock_key_strings[sk->sk_family]); 2149 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 2150 af_wlock_keys + sk->sk_family, 2151 af_family_wlock_key_strings[sk->sk_family]); 2152 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 2153 af_elock_keys + sk->sk_family, 2154 af_family_elock_key_strings[sk->sk_family]); 2155 lockdep_set_class_and_name(&sk->sk_callback_lock, 2156 af_callback_keys + sk->sk_family, 2157 af_family_clock_key_strings[sk->sk_family]); 2158 } 2159 2160 /** 2161 * sk_clone_lock - clone a socket, and lock its clone 2162 * @sk: the socket to clone 2163 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2164 * 2165 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 2166 */ 2167 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 2168 { 2169 struct proto *prot = READ_ONCE(sk->sk_prot); 2170 struct sk_filter *filter; 2171 bool is_charged = true; 2172 struct sock *newsk; 2173 2174 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 2175 if (!newsk) 2176 goto out; 2177 2178 sock_copy(newsk, sk); 2179 2180 newsk->sk_prot_creator = prot; 2181 2182 /* SANITY */ 2183 if (likely(newsk->sk_net_refcnt)) { 2184 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); 2185 sock_inuse_add(sock_net(newsk), 1); 2186 } 2187 sk_node_init(&newsk->sk_node); 2188 sock_lock_init(newsk); 2189 bh_lock_sock(newsk); 2190 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 2191 newsk->sk_backlog.len = 0; 2192 2193 atomic_set(&newsk->sk_rmem_alloc, 0); 2194 2195 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 2196 refcount_set(&newsk->sk_wmem_alloc, 1); 2197 2198 atomic_set(&newsk->sk_omem_alloc, 0); 2199 sk_init_common(newsk); 2200 2201 newsk->sk_dst_cache = NULL; 2202 newsk->sk_dst_pending_confirm = 0; 2203 newsk->sk_wmem_queued = 0; 2204 newsk->sk_forward_alloc = 0; 2205 newsk->sk_reserved_mem = 0; 2206 atomic_set(&newsk->sk_drops, 0); 2207 newsk->sk_send_head = NULL; 2208 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 2209 atomic_set(&newsk->sk_zckey, 0); 2210 2211 sock_reset_flag(newsk, SOCK_DONE); 2212 2213 /* sk->sk_memcg will be populated at accept() time */ 2214 newsk->sk_memcg = NULL; 2215 2216 cgroup_sk_clone(&newsk->sk_cgrp_data); 2217 2218 rcu_read_lock(); 2219 filter = rcu_dereference(sk->sk_filter); 2220 if (filter != NULL) 2221 /* though it's an empty new sock, the charging may fail 2222 * if sysctl_optmem_max was changed between creation of 2223 * original socket and cloning 2224 */ 2225 is_charged = sk_filter_charge(newsk, filter); 2226 RCU_INIT_POINTER(newsk->sk_filter, filter); 2227 rcu_read_unlock(); 2228 2229 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 2230 /* We need to make sure that we don't uncharge the new 2231 * socket if we couldn't charge it in the first place 2232 * as otherwise we uncharge the parent's filter. 2233 */ 2234 if (!is_charged) 2235 RCU_INIT_POINTER(newsk->sk_filter, NULL); 2236 sk_free_unlock_clone(newsk); 2237 newsk = NULL; 2238 goto out; 2239 } 2240 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 2241 2242 if (bpf_sk_storage_clone(sk, newsk)) { 2243 sk_free_unlock_clone(newsk); 2244 newsk = NULL; 2245 goto out; 2246 } 2247 2248 /* Clear sk_user_data if parent had the pointer tagged 2249 * as not suitable for copying when cloning. 2250 */ 2251 if (sk_user_data_is_nocopy(newsk)) 2252 newsk->sk_user_data = NULL; 2253 2254 newsk->sk_err = 0; 2255 newsk->sk_err_soft = 0; 2256 newsk->sk_priority = 0; 2257 newsk->sk_incoming_cpu = raw_smp_processor_id(); 2258 2259 /* Before updating sk_refcnt, we must commit prior changes to memory 2260 * (Documentation/RCU/rculist_nulls.rst for details) 2261 */ 2262 smp_wmb(); 2263 refcount_set(&newsk->sk_refcnt, 2); 2264 2265 /* Increment the counter in the same struct proto as the master 2266 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 2267 * is the same as sk->sk_prot->socks, as this field was copied 2268 * with memcpy). 2269 * 2270 * This _changes_ the previous behaviour, where 2271 * tcp_create_openreq_child always was incrementing the 2272 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 2273 * to be taken into account in all callers. -acme 2274 */ 2275 sk_refcnt_debug_inc(newsk); 2276 sk_set_socket(newsk, NULL); 2277 sk_tx_queue_clear(newsk); 2278 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2279 2280 if (newsk->sk_prot->sockets_allocated) 2281 sk_sockets_allocated_inc(newsk); 2282 2283 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2284 net_enable_timestamp(); 2285 out: 2286 return newsk; 2287 } 2288 EXPORT_SYMBOL_GPL(sk_clone_lock); 2289 2290 void sk_free_unlock_clone(struct sock *sk) 2291 { 2292 /* It is still raw copy of parent, so invalidate 2293 * destructor and make plain sk_free() */ 2294 sk->sk_destruct = NULL; 2295 bh_unlock_sock(sk); 2296 sk_free(sk); 2297 } 2298 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2299 2300 static void sk_trim_gso_size(struct sock *sk) 2301 { 2302 if (sk->sk_gso_max_size <= GSO_LEGACY_MAX_SIZE) 2303 return; 2304 #if IS_ENABLED(CONFIG_IPV6) 2305 if (sk->sk_family == AF_INET6 && 2306 sk_is_tcp(sk) && 2307 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)) 2308 return; 2309 #endif 2310 sk->sk_gso_max_size = GSO_LEGACY_MAX_SIZE; 2311 } 2312 2313 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2314 { 2315 u32 max_segs = 1; 2316 2317 sk_dst_set(sk, dst); 2318 sk->sk_route_caps = dst->dev->features; 2319 if (sk_is_tcp(sk)) 2320 sk->sk_route_caps |= NETIF_F_GSO; 2321 if (sk->sk_route_caps & NETIF_F_GSO) 2322 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2323 if (unlikely(sk->sk_gso_disabled)) 2324 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2325 if (sk_can_gso(sk)) { 2326 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2327 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2328 } else { 2329 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2330 /* pairs with the WRITE_ONCE() in netif_set_gso_max_size() */ 2331 sk->sk_gso_max_size = READ_ONCE(dst->dev->gso_max_size); 2332 sk_trim_gso_size(sk); 2333 sk->sk_gso_max_size -= (MAX_TCP_HEADER + 1); 2334 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ 2335 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); 2336 } 2337 } 2338 sk->sk_gso_max_segs = max_segs; 2339 } 2340 EXPORT_SYMBOL_GPL(sk_setup_caps); 2341 2342 /* 2343 * Simple resource managers for sockets. 2344 */ 2345 2346 2347 /* 2348 * Write buffer destructor automatically called from kfree_skb. 2349 */ 2350 void sock_wfree(struct sk_buff *skb) 2351 { 2352 struct sock *sk = skb->sk; 2353 unsigned int len = skb->truesize; 2354 bool free; 2355 2356 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2357 if (sock_flag(sk, SOCK_RCU_FREE) && 2358 sk->sk_write_space == sock_def_write_space) { 2359 rcu_read_lock(); 2360 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc); 2361 sock_def_write_space_wfree(sk); 2362 rcu_read_unlock(); 2363 if (unlikely(free)) 2364 __sk_free(sk); 2365 return; 2366 } 2367 2368 /* 2369 * Keep a reference on sk_wmem_alloc, this will be released 2370 * after sk_write_space() call 2371 */ 2372 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2373 sk->sk_write_space(sk); 2374 len = 1; 2375 } 2376 /* 2377 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2378 * could not do because of in-flight packets 2379 */ 2380 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2381 __sk_free(sk); 2382 } 2383 EXPORT_SYMBOL(sock_wfree); 2384 2385 /* This variant of sock_wfree() is used by TCP, 2386 * since it sets SOCK_USE_WRITE_QUEUE. 2387 */ 2388 void __sock_wfree(struct sk_buff *skb) 2389 { 2390 struct sock *sk = skb->sk; 2391 2392 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2393 __sk_free(sk); 2394 } 2395 2396 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2397 { 2398 skb_orphan(skb); 2399 skb->sk = sk; 2400 #ifdef CONFIG_INET 2401 if (unlikely(!sk_fullsock(sk))) { 2402 skb->destructor = sock_edemux; 2403 sock_hold(sk); 2404 return; 2405 } 2406 #endif 2407 skb->destructor = sock_wfree; 2408 skb_set_hash_from_sk(skb, sk); 2409 /* 2410 * We used to take a refcount on sk, but following operation 2411 * is enough to guarantee sk_free() wont free this sock until 2412 * all in-flight packets are completed 2413 */ 2414 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2415 } 2416 EXPORT_SYMBOL(skb_set_owner_w); 2417 2418 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2419 { 2420 #ifdef CONFIG_TLS_DEVICE 2421 /* Drivers depend on in-order delivery for crypto offload, 2422 * partial orphan breaks out-of-order-OK logic. 2423 */ 2424 if (skb->decrypted) 2425 return false; 2426 #endif 2427 return (skb->destructor == sock_wfree || 2428 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2429 } 2430 2431 /* This helper is used by netem, as it can hold packets in its 2432 * delay queue. We want to allow the owner socket to send more 2433 * packets, as if they were already TX completed by a typical driver. 2434 * But we also want to keep skb->sk set because some packet schedulers 2435 * rely on it (sch_fq for example). 2436 */ 2437 void skb_orphan_partial(struct sk_buff *skb) 2438 { 2439 if (skb_is_tcp_pure_ack(skb)) 2440 return; 2441 2442 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2443 return; 2444 2445 skb_orphan(skb); 2446 } 2447 EXPORT_SYMBOL(skb_orphan_partial); 2448 2449 /* 2450 * Read buffer destructor automatically called from kfree_skb. 2451 */ 2452 void sock_rfree(struct sk_buff *skb) 2453 { 2454 struct sock *sk = skb->sk; 2455 unsigned int len = skb->truesize; 2456 2457 atomic_sub(len, &sk->sk_rmem_alloc); 2458 sk_mem_uncharge(sk, len); 2459 } 2460 EXPORT_SYMBOL(sock_rfree); 2461 2462 /* 2463 * Buffer destructor for skbs that are not used directly in read or write 2464 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2465 */ 2466 void sock_efree(struct sk_buff *skb) 2467 { 2468 sock_put(skb->sk); 2469 } 2470 EXPORT_SYMBOL(sock_efree); 2471 2472 /* Buffer destructor for prefetch/receive path where reference count may 2473 * not be held, e.g. for listen sockets. 2474 */ 2475 #ifdef CONFIG_INET 2476 void sock_pfree(struct sk_buff *skb) 2477 { 2478 if (sk_is_refcounted(skb->sk)) 2479 sock_gen_put(skb->sk); 2480 } 2481 EXPORT_SYMBOL(sock_pfree); 2482 #endif /* CONFIG_INET */ 2483 2484 kuid_t sock_i_uid(struct sock *sk) 2485 { 2486 kuid_t uid; 2487 2488 read_lock_bh(&sk->sk_callback_lock); 2489 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2490 read_unlock_bh(&sk->sk_callback_lock); 2491 return uid; 2492 } 2493 EXPORT_SYMBOL(sock_i_uid); 2494 2495 unsigned long sock_i_ino(struct sock *sk) 2496 { 2497 unsigned long ino; 2498 2499 read_lock_bh(&sk->sk_callback_lock); 2500 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2501 read_unlock_bh(&sk->sk_callback_lock); 2502 return ino; 2503 } 2504 EXPORT_SYMBOL(sock_i_ino); 2505 2506 /* 2507 * Allocate a skb from the socket's send buffer. 2508 */ 2509 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2510 gfp_t priority) 2511 { 2512 if (force || 2513 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2514 struct sk_buff *skb = alloc_skb(size, priority); 2515 2516 if (skb) { 2517 skb_set_owner_w(skb, sk); 2518 return skb; 2519 } 2520 } 2521 return NULL; 2522 } 2523 EXPORT_SYMBOL(sock_wmalloc); 2524 2525 static void sock_ofree(struct sk_buff *skb) 2526 { 2527 struct sock *sk = skb->sk; 2528 2529 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2530 } 2531 2532 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2533 gfp_t priority) 2534 { 2535 struct sk_buff *skb; 2536 2537 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2538 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2539 sysctl_optmem_max) 2540 return NULL; 2541 2542 skb = alloc_skb(size, priority); 2543 if (!skb) 2544 return NULL; 2545 2546 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2547 skb->sk = sk; 2548 skb->destructor = sock_ofree; 2549 return skb; 2550 } 2551 2552 /* 2553 * Allocate a memory block from the socket's option memory buffer. 2554 */ 2555 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2556 { 2557 if ((unsigned int)size <= sysctl_optmem_max && 2558 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 2559 void *mem; 2560 /* First do the add, to avoid the race if kmalloc 2561 * might sleep. 2562 */ 2563 atomic_add(size, &sk->sk_omem_alloc); 2564 mem = kmalloc(size, priority); 2565 if (mem) 2566 return mem; 2567 atomic_sub(size, &sk->sk_omem_alloc); 2568 } 2569 return NULL; 2570 } 2571 EXPORT_SYMBOL(sock_kmalloc); 2572 2573 /* Free an option memory block. Note, we actually want the inline 2574 * here as this allows gcc to detect the nullify and fold away the 2575 * condition entirely. 2576 */ 2577 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2578 const bool nullify) 2579 { 2580 if (WARN_ON_ONCE(!mem)) 2581 return; 2582 if (nullify) 2583 kfree_sensitive(mem); 2584 else 2585 kfree(mem); 2586 atomic_sub(size, &sk->sk_omem_alloc); 2587 } 2588 2589 void sock_kfree_s(struct sock *sk, void *mem, int size) 2590 { 2591 __sock_kfree_s(sk, mem, size, false); 2592 } 2593 EXPORT_SYMBOL(sock_kfree_s); 2594 2595 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2596 { 2597 __sock_kfree_s(sk, mem, size, true); 2598 } 2599 EXPORT_SYMBOL(sock_kzfree_s); 2600 2601 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2602 I think, these locks should be removed for datagram sockets. 2603 */ 2604 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2605 { 2606 DEFINE_WAIT(wait); 2607 2608 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2609 for (;;) { 2610 if (!timeo) 2611 break; 2612 if (signal_pending(current)) 2613 break; 2614 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2615 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2616 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2617 break; 2618 if (sk->sk_shutdown & SEND_SHUTDOWN) 2619 break; 2620 if (sk->sk_err) 2621 break; 2622 timeo = schedule_timeout(timeo); 2623 } 2624 finish_wait(sk_sleep(sk), &wait); 2625 return timeo; 2626 } 2627 2628 2629 /* 2630 * Generic send/receive buffer handlers 2631 */ 2632 2633 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2634 unsigned long data_len, int noblock, 2635 int *errcode, int max_page_order) 2636 { 2637 struct sk_buff *skb; 2638 long timeo; 2639 int err; 2640 2641 timeo = sock_sndtimeo(sk, noblock); 2642 for (;;) { 2643 err = sock_error(sk); 2644 if (err != 0) 2645 goto failure; 2646 2647 err = -EPIPE; 2648 if (sk->sk_shutdown & SEND_SHUTDOWN) 2649 goto failure; 2650 2651 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2652 break; 2653 2654 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2655 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2656 err = -EAGAIN; 2657 if (!timeo) 2658 goto failure; 2659 if (signal_pending(current)) 2660 goto interrupted; 2661 timeo = sock_wait_for_wmem(sk, timeo); 2662 } 2663 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2664 errcode, sk->sk_allocation); 2665 if (skb) 2666 skb_set_owner_w(skb, sk); 2667 return skb; 2668 2669 interrupted: 2670 err = sock_intr_errno(timeo); 2671 failure: 2672 *errcode = err; 2673 return NULL; 2674 } 2675 EXPORT_SYMBOL(sock_alloc_send_pskb); 2676 2677 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2678 struct sockcm_cookie *sockc) 2679 { 2680 u32 tsflags; 2681 2682 switch (cmsg->cmsg_type) { 2683 case SO_MARK: 2684 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 2685 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2686 return -EPERM; 2687 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2688 return -EINVAL; 2689 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2690 break; 2691 case SO_TIMESTAMPING_OLD: 2692 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2693 return -EINVAL; 2694 2695 tsflags = *(u32 *)CMSG_DATA(cmsg); 2696 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2697 return -EINVAL; 2698 2699 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2700 sockc->tsflags |= tsflags; 2701 break; 2702 case SCM_TXTIME: 2703 if (!sock_flag(sk, SOCK_TXTIME)) 2704 return -EINVAL; 2705 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2706 return -EINVAL; 2707 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2708 break; 2709 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2710 case SCM_RIGHTS: 2711 case SCM_CREDENTIALS: 2712 break; 2713 default: 2714 return -EINVAL; 2715 } 2716 return 0; 2717 } 2718 EXPORT_SYMBOL(__sock_cmsg_send); 2719 2720 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2721 struct sockcm_cookie *sockc) 2722 { 2723 struct cmsghdr *cmsg; 2724 int ret; 2725 2726 for_each_cmsghdr(cmsg, msg) { 2727 if (!CMSG_OK(msg, cmsg)) 2728 return -EINVAL; 2729 if (cmsg->cmsg_level != SOL_SOCKET) 2730 continue; 2731 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2732 if (ret) 2733 return ret; 2734 } 2735 return 0; 2736 } 2737 EXPORT_SYMBOL(sock_cmsg_send); 2738 2739 static void sk_enter_memory_pressure(struct sock *sk) 2740 { 2741 if (!sk->sk_prot->enter_memory_pressure) 2742 return; 2743 2744 sk->sk_prot->enter_memory_pressure(sk); 2745 } 2746 2747 static void sk_leave_memory_pressure(struct sock *sk) 2748 { 2749 if (sk->sk_prot->leave_memory_pressure) { 2750 sk->sk_prot->leave_memory_pressure(sk); 2751 } else { 2752 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2753 2754 if (memory_pressure && READ_ONCE(*memory_pressure)) 2755 WRITE_ONCE(*memory_pressure, 0); 2756 } 2757 } 2758 2759 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2760 2761 /** 2762 * skb_page_frag_refill - check that a page_frag contains enough room 2763 * @sz: minimum size of the fragment we want to get 2764 * @pfrag: pointer to page_frag 2765 * @gfp: priority for memory allocation 2766 * 2767 * Note: While this allocator tries to use high order pages, there is 2768 * no guarantee that allocations succeed. Therefore, @sz MUST be 2769 * less or equal than PAGE_SIZE. 2770 */ 2771 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2772 { 2773 if (pfrag->page) { 2774 if (page_ref_count(pfrag->page) == 1) { 2775 pfrag->offset = 0; 2776 return true; 2777 } 2778 if (pfrag->offset + sz <= pfrag->size) 2779 return true; 2780 put_page(pfrag->page); 2781 } 2782 2783 pfrag->offset = 0; 2784 if (SKB_FRAG_PAGE_ORDER && 2785 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2786 /* Avoid direct reclaim but allow kswapd to wake */ 2787 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2788 __GFP_COMP | __GFP_NOWARN | 2789 __GFP_NORETRY, 2790 SKB_FRAG_PAGE_ORDER); 2791 if (likely(pfrag->page)) { 2792 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2793 return true; 2794 } 2795 } 2796 pfrag->page = alloc_page(gfp); 2797 if (likely(pfrag->page)) { 2798 pfrag->size = PAGE_SIZE; 2799 return true; 2800 } 2801 return false; 2802 } 2803 EXPORT_SYMBOL(skb_page_frag_refill); 2804 2805 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2806 { 2807 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2808 return true; 2809 2810 sk_enter_memory_pressure(sk); 2811 sk_stream_moderate_sndbuf(sk); 2812 return false; 2813 } 2814 EXPORT_SYMBOL(sk_page_frag_refill); 2815 2816 void __lock_sock(struct sock *sk) 2817 __releases(&sk->sk_lock.slock) 2818 __acquires(&sk->sk_lock.slock) 2819 { 2820 DEFINE_WAIT(wait); 2821 2822 for (;;) { 2823 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2824 TASK_UNINTERRUPTIBLE); 2825 spin_unlock_bh(&sk->sk_lock.slock); 2826 schedule(); 2827 spin_lock_bh(&sk->sk_lock.slock); 2828 if (!sock_owned_by_user(sk)) 2829 break; 2830 } 2831 finish_wait(&sk->sk_lock.wq, &wait); 2832 } 2833 2834 void __release_sock(struct sock *sk) 2835 __releases(&sk->sk_lock.slock) 2836 __acquires(&sk->sk_lock.slock) 2837 { 2838 struct sk_buff *skb, *next; 2839 2840 while ((skb = sk->sk_backlog.head) != NULL) { 2841 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2842 2843 spin_unlock_bh(&sk->sk_lock.slock); 2844 2845 do { 2846 next = skb->next; 2847 prefetch(next); 2848 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); 2849 skb_mark_not_on_list(skb); 2850 sk_backlog_rcv(sk, skb); 2851 2852 cond_resched(); 2853 2854 skb = next; 2855 } while (skb != NULL); 2856 2857 spin_lock_bh(&sk->sk_lock.slock); 2858 } 2859 2860 /* 2861 * Doing the zeroing here guarantee we can not loop forever 2862 * while a wild producer attempts to flood us. 2863 */ 2864 sk->sk_backlog.len = 0; 2865 } 2866 2867 void __sk_flush_backlog(struct sock *sk) 2868 { 2869 spin_lock_bh(&sk->sk_lock.slock); 2870 __release_sock(sk); 2871 spin_unlock_bh(&sk->sk_lock.slock); 2872 } 2873 2874 /** 2875 * sk_wait_data - wait for data to arrive at sk_receive_queue 2876 * @sk: sock to wait on 2877 * @timeo: for how long 2878 * @skb: last skb seen on sk_receive_queue 2879 * 2880 * Now socket state including sk->sk_err is changed only under lock, 2881 * hence we may omit checks after joining wait queue. 2882 * We check receive queue before schedule() only as optimization; 2883 * it is very likely that release_sock() added new data. 2884 */ 2885 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2886 { 2887 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2888 int rc; 2889 2890 add_wait_queue(sk_sleep(sk), &wait); 2891 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2892 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2893 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2894 remove_wait_queue(sk_sleep(sk), &wait); 2895 return rc; 2896 } 2897 EXPORT_SYMBOL(sk_wait_data); 2898 2899 /** 2900 * __sk_mem_raise_allocated - increase memory_allocated 2901 * @sk: socket 2902 * @size: memory size to allocate 2903 * @amt: pages to allocate 2904 * @kind: allocation type 2905 * 2906 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2907 */ 2908 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2909 { 2910 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg; 2911 struct proto *prot = sk->sk_prot; 2912 bool charged = true; 2913 long allocated; 2914 2915 sk_memory_allocated_add(sk, amt); 2916 allocated = sk_memory_allocated(sk); 2917 if (memcg_charge && 2918 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt, 2919 gfp_memcg_charge()))) 2920 goto suppress_allocation; 2921 2922 /* Under limit. */ 2923 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2924 sk_leave_memory_pressure(sk); 2925 return 1; 2926 } 2927 2928 /* Under pressure. */ 2929 if (allocated > sk_prot_mem_limits(sk, 1)) 2930 sk_enter_memory_pressure(sk); 2931 2932 /* Over hard limit. */ 2933 if (allocated > sk_prot_mem_limits(sk, 2)) 2934 goto suppress_allocation; 2935 2936 /* guarantee minimum buffer size under pressure */ 2937 if (kind == SK_MEM_RECV) { 2938 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2939 return 1; 2940 2941 } else { /* SK_MEM_SEND */ 2942 int wmem0 = sk_get_wmem0(sk, prot); 2943 2944 if (sk->sk_type == SOCK_STREAM) { 2945 if (sk->sk_wmem_queued < wmem0) 2946 return 1; 2947 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2948 return 1; 2949 } 2950 } 2951 2952 if (sk_has_memory_pressure(sk)) { 2953 u64 alloc; 2954 2955 if (!sk_under_memory_pressure(sk)) 2956 return 1; 2957 alloc = sk_sockets_allocated_read_positive(sk); 2958 if (sk_prot_mem_limits(sk, 2) > alloc * 2959 sk_mem_pages(sk->sk_wmem_queued + 2960 atomic_read(&sk->sk_rmem_alloc) + 2961 sk->sk_forward_alloc)) 2962 return 1; 2963 } 2964 2965 suppress_allocation: 2966 2967 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2968 sk_stream_moderate_sndbuf(sk); 2969 2970 /* Fail only if socket is _under_ its sndbuf. 2971 * In this case we cannot block, so that we have to fail. 2972 */ 2973 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { 2974 /* Force charge with __GFP_NOFAIL */ 2975 if (memcg_charge && !charged) { 2976 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 2977 gfp_memcg_charge() | __GFP_NOFAIL); 2978 } 2979 return 1; 2980 } 2981 } 2982 2983 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 2984 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 2985 2986 sk_memory_allocated_sub(sk, amt); 2987 2988 if (memcg_charge && charged) 2989 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2990 2991 return 0; 2992 } 2993 2994 /** 2995 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2996 * @sk: socket 2997 * @size: memory size to allocate 2998 * @kind: allocation type 2999 * 3000 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 3001 * rmem allocation. This function assumes that protocols which have 3002 * memory_pressure use sk_wmem_queued as write buffer accounting. 3003 */ 3004 int __sk_mem_schedule(struct sock *sk, int size, int kind) 3005 { 3006 int ret, amt = sk_mem_pages(size); 3007 3008 sk->sk_forward_alloc += amt << PAGE_SHIFT; 3009 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 3010 if (!ret) 3011 sk->sk_forward_alloc -= amt << PAGE_SHIFT; 3012 return ret; 3013 } 3014 EXPORT_SYMBOL(__sk_mem_schedule); 3015 3016 /** 3017 * __sk_mem_reduce_allocated - reclaim memory_allocated 3018 * @sk: socket 3019 * @amount: number of quanta 3020 * 3021 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 3022 */ 3023 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 3024 { 3025 sk_memory_allocated_sub(sk, amount); 3026 3027 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3028 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 3029 3030 if (sk_under_memory_pressure(sk) && 3031 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 3032 sk_leave_memory_pressure(sk); 3033 } 3034 3035 /** 3036 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 3037 * @sk: socket 3038 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple) 3039 */ 3040 void __sk_mem_reclaim(struct sock *sk, int amount) 3041 { 3042 amount >>= PAGE_SHIFT; 3043 sk->sk_forward_alloc -= amount << PAGE_SHIFT; 3044 __sk_mem_reduce_allocated(sk, amount); 3045 } 3046 EXPORT_SYMBOL(__sk_mem_reclaim); 3047 3048 int sk_set_peek_off(struct sock *sk, int val) 3049 { 3050 sk->sk_peek_off = val; 3051 return 0; 3052 } 3053 EXPORT_SYMBOL_GPL(sk_set_peek_off); 3054 3055 /* 3056 * Set of default routines for initialising struct proto_ops when 3057 * the protocol does not support a particular function. In certain 3058 * cases where it makes no sense for a protocol to have a "do nothing" 3059 * function, some default processing is provided. 3060 */ 3061 3062 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 3063 { 3064 return -EOPNOTSUPP; 3065 } 3066 EXPORT_SYMBOL(sock_no_bind); 3067 3068 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 3069 int len, int flags) 3070 { 3071 return -EOPNOTSUPP; 3072 } 3073 EXPORT_SYMBOL(sock_no_connect); 3074 3075 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 3076 { 3077 return -EOPNOTSUPP; 3078 } 3079 EXPORT_SYMBOL(sock_no_socketpair); 3080 3081 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 3082 bool kern) 3083 { 3084 return -EOPNOTSUPP; 3085 } 3086 EXPORT_SYMBOL(sock_no_accept); 3087 3088 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 3089 int peer) 3090 { 3091 return -EOPNOTSUPP; 3092 } 3093 EXPORT_SYMBOL(sock_no_getname); 3094 3095 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3096 { 3097 return -EOPNOTSUPP; 3098 } 3099 EXPORT_SYMBOL(sock_no_ioctl); 3100 3101 int sock_no_listen(struct socket *sock, int backlog) 3102 { 3103 return -EOPNOTSUPP; 3104 } 3105 EXPORT_SYMBOL(sock_no_listen); 3106 3107 int sock_no_shutdown(struct socket *sock, int how) 3108 { 3109 return -EOPNOTSUPP; 3110 } 3111 EXPORT_SYMBOL(sock_no_shutdown); 3112 3113 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 3114 { 3115 return -EOPNOTSUPP; 3116 } 3117 EXPORT_SYMBOL(sock_no_sendmsg); 3118 3119 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 3120 { 3121 return -EOPNOTSUPP; 3122 } 3123 EXPORT_SYMBOL(sock_no_sendmsg_locked); 3124 3125 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 3126 int flags) 3127 { 3128 return -EOPNOTSUPP; 3129 } 3130 EXPORT_SYMBOL(sock_no_recvmsg); 3131 3132 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 3133 { 3134 /* Mirror missing mmap method error code */ 3135 return -ENODEV; 3136 } 3137 EXPORT_SYMBOL(sock_no_mmap); 3138 3139 /* 3140 * When a file is received (via SCM_RIGHTS, etc), we must bump the 3141 * various sock-based usage counts. 3142 */ 3143 void __receive_sock(struct file *file) 3144 { 3145 struct socket *sock; 3146 3147 sock = sock_from_file(file); 3148 if (sock) { 3149 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 3150 sock_update_classid(&sock->sk->sk_cgrp_data); 3151 } 3152 } 3153 3154 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 3155 { 3156 ssize_t res; 3157 struct msghdr msg = {.msg_flags = flags}; 3158 struct kvec iov; 3159 char *kaddr = kmap(page); 3160 iov.iov_base = kaddr + offset; 3161 iov.iov_len = size; 3162 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 3163 kunmap(page); 3164 return res; 3165 } 3166 EXPORT_SYMBOL(sock_no_sendpage); 3167 3168 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 3169 int offset, size_t size, int flags) 3170 { 3171 ssize_t res; 3172 struct msghdr msg = {.msg_flags = flags}; 3173 struct kvec iov; 3174 char *kaddr = kmap(page); 3175 3176 iov.iov_base = kaddr + offset; 3177 iov.iov_len = size; 3178 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 3179 kunmap(page); 3180 return res; 3181 } 3182 EXPORT_SYMBOL(sock_no_sendpage_locked); 3183 3184 /* 3185 * Default Socket Callbacks 3186 */ 3187 3188 static void sock_def_wakeup(struct sock *sk) 3189 { 3190 struct socket_wq *wq; 3191 3192 rcu_read_lock(); 3193 wq = rcu_dereference(sk->sk_wq); 3194 if (skwq_has_sleeper(wq)) 3195 wake_up_interruptible_all(&wq->wait); 3196 rcu_read_unlock(); 3197 } 3198 3199 static void sock_def_error_report(struct sock *sk) 3200 { 3201 struct socket_wq *wq; 3202 3203 rcu_read_lock(); 3204 wq = rcu_dereference(sk->sk_wq); 3205 if (skwq_has_sleeper(wq)) 3206 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 3207 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 3208 rcu_read_unlock(); 3209 } 3210 3211 void sock_def_readable(struct sock *sk) 3212 { 3213 struct socket_wq *wq; 3214 3215 rcu_read_lock(); 3216 wq = rcu_dereference(sk->sk_wq); 3217 if (skwq_has_sleeper(wq)) 3218 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 3219 EPOLLRDNORM | EPOLLRDBAND); 3220 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3221 rcu_read_unlock(); 3222 } 3223 3224 static void sock_def_write_space(struct sock *sk) 3225 { 3226 struct socket_wq *wq; 3227 3228 rcu_read_lock(); 3229 3230 /* Do not wake up a writer until he can make "significant" 3231 * progress. --DaveM 3232 */ 3233 if (sock_writeable(sk)) { 3234 wq = rcu_dereference(sk->sk_wq); 3235 if (skwq_has_sleeper(wq)) 3236 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3237 EPOLLWRNORM | EPOLLWRBAND); 3238 3239 /* Should agree with poll, otherwise some programs break */ 3240 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3241 } 3242 3243 rcu_read_unlock(); 3244 } 3245 3246 /* An optimised version of sock_def_write_space(), should only be called 3247 * for SOCK_RCU_FREE sockets under RCU read section and after putting 3248 * ->sk_wmem_alloc. 3249 */ 3250 static void sock_def_write_space_wfree(struct sock *sk) 3251 { 3252 /* Do not wake up a writer until he can make "significant" 3253 * progress. --DaveM 3254 */ 3255 if (sock_writeable(sk)) { 3256 struct socket_wq *wq = rcu_dereference(sk->sk_wq); 3257 3258 /* rely on refcount_sub from sock_wfree() */ 3259 smp_mb__after_atomic(); 3260 if (wq && waitqueue_active(&wq->wait)) 3261 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3262 EPOLLWRNORM | EPOLLWRBAND); 3263 3264 /* Should agree with poll, otherwise some programs break */ 3265 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3266 } 3267 } 3268 3269 static void sock_def_destruct(struct sock *sk) 3270 { 3271 } 3272 3273 void sk_send_sigurg(struct sock *sk) 3274 { 3275 if (sk->sk_socket && sk->sk_socket->file) 3276 if (send_sigurg(&sk->sk_socket->file->f_owner)) 3277 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 3278 } 3279 EXPORT_SYMBOL(sk_send_sigurg); 3280 3281 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 3282 unsigned long expires) 3283 { 3284 if (!mod_timer(timer, expires)) 3285 sock_hold(sk); 3286 } 3287 EXPORT_SYMBOL(sk_reset_timer); 3288 3289 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 3290 { 3291 if (del_timer(timer)) 3292 __sock_put(sk); 3293 } 3294 EXPORT_SYMBOL(sk_stop_timer); 3295 3296 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 3297 { 3298 if (del_timer_sync(timer)) 3299 __sock_put(sk); 3300 } 3301 EXPORT_SYMBOL(sk_stop_timer_sync); 3302 3303 void sock_init_data(struct socket *sock, struct sock *sk) 3304 { 3305 sk_init_common(sk); 3306 sk->sk_send_head = NULL; 3307 3308 timer_setup(&sk->sk_timer, NULL, 0); 3309 3310 sk->sk_allocation = GFP_KERNEL; 3311 sk->sk_rcvbuf = sysctl_rmem_default; 3312 sk->sk_sndbuf = sysctl_wmem_default; 3313 sk->sk_state = TCP_CLOSE; 3314 sk_set_socket(sk, sock); 3315 3316 sock_set_flag(sk, SOCK_ZAPPED); 3317 3318 if (sock) { 3319 sk->sk_type = sock->type; 3320 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 3321 sock->sk = sk; 3322 sk->sk_uid = SOCK_INODE(sock)->i_uid; 3323 } else { 3324 RCU_INIT_POINTER(sk->sk_wq, NULL); 3325 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 3326 } 3327 3328 rwlock_init(&sk->sk_callback_lock); 3329 if (sk->sk_kern_sock) 3330 lockdep_set_class_and_name( 3331 &sk->sk_callback_lock, 3332 af_kern_callback_keys + sk->sk_family, 3333 af_family_kern_clock_key_strings[sk->sk_family]); 3334 else 3335 lockdep_set_class_and_name( 3336 &sk->sk_callback_lock, 3337 af_callback_keys + sk->sk_family, 3338 af_family_clock_key_strings[sk->sk_family]); 3339 3340 sk->sk_state_change = sock_def_wakeup; 3341 sk->sk_data_ready = sock_def_readable; 3342 sk->sk_write_space = sock_def_write_space; 3343 sk->sk_error_report = sock_def_error_report; 3344 sk->sk_destruct = sock_def_destruct; 3345 3346 sk->sk_frag.page = NULL; 3347 sk->sk_frag.offset = 0; 3348 sk->sk_peek_off = -1; 3349 3350 sk->sk_peer_pid = NULL; 3351 sk->sk_peer_cred = NULL; 3352 spin_lock_init(&sk->sk_peer_lock); 3353 3354 sk->sk_write_pending = 0; 3355 sk->sk_rcvlowat = 1; 3356 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3357 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3358 3359 sk->sk_stamp = SK_DEFAULT_STAMP; 3360 #if BITS_PER_LONG==32 3361 seqlock_init(&sk->sk_stamp_seq); 3362 #endif 3363 atomic_set(&sk->sk_zckey, 0); 3364 3365 #ifdef CONFIG_NET_RX_BUSY_POLL 3366 sk->sk_napi_id = 0; 3367 sk->sk_ll_usec = sysctl_net_busy_read; 3368 #endif 3369 3370 sk->sk_max_pacing_rate = ~0UL; 3371 sk->sk_pacing_rate = ~0UL; 3372 WRITE_ONCE(sk->sk_pacing_shift, 10); 3373 sk->sk_incoming_cpu = -1; 3374 sk->sk_txrehash = SOCK_TXREHASH_DEFAULT; 3375 3376 sk_rx_queue_clear(sk); 3377 /* 3378 * Before updating sk_refcnt, we must commit prior changes to memory 3379 * (Documentation/RCU/rculist_nulls.rst for details) 3380 */ 3381 smp_wmb(); 3382 refcount_set(&sk->sk_refcnt, 1); 3383 atomic_set(&sk->sk_drops, 0); 3384 } 3385 EXPORT_SYMBOL(sock_init_data); 3386 3387 void lock_sock_nested(struct sock *sk, int subclass) 3388 { 3389 /* The sk_lock has mutex_lock() semantics here. */ 3390 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3391 3392 might_sleep(); 3393 spin_lock_bh(&sk->sk_lock.slock); 3394 if (sock_owned_by_user_nocheck(sk)) 3395 __lock_sock(sk); 3396 sk->sk_lock.owned = 1; 3397 spin_unlock_bh(&sk->sk_lock.slock); 3398 } 3399 EXPORT_SYMBOL(lock_sock_nested); 3400 3401 void release_sock(struct sock *sk) 3402 { 3403 spin_lock_bh(&sk->sk_lock.slock); 3404 if (sk->sk_backlog.tail) 3405 __release_sock(sk); 3406 3407 /* Warning : release_cb() might need to release sk ownership, 3408 * ie call sock_release_ownership(sk) before us. 3409 */ 3410 if (sk->sk_prot->release_cb) 3411 sk->sk_prot->release_cb(sk); 3412 3413 sock_release_ownership(sk); 3414 if (waitqueue_active(&sk->sk_lock.wq)) 3415 wake_up(&sk->sk_lock.wq); 3416 spin_unlock_bh(&sk->sk_lock.slock); 3417 } 3418 EXPORT_SYMBOL(release_sock); 3419 3420 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3421 { 3422 might_sleep(); 3423 spin_lock_bh(&sk->sk_lock.slock); 3424 3425 if (!sock_owned_by_user_nocheck(sk)) { 3426 /* 3427 * Fast path return with bottom halves disabled and 3428 * sock::sk_lock.slock held. 3429 * 3430 * The 'mutex' is not contended and holding 3431 * sock::sk_lock.slock prevents all other lockers to 3432 * proceed so the corresponding unlock_sock_fast() can 3433 * avoid the slow path of release_sock() completely and 3434 * just release slock. 3435 * 3436 * From a semantical POV this is equivalent to 'acquiring' 3437 * the 'mutex', hence the corresponding lockdep 3438 * mutex_release() has to happen in the fast path of 3439 * unlock_sock_fast(). 3440 */ 3441 return false; 3442 } 3443 3444 __lock_sock(sk); 3445 sk->sk_lock.owned = 1; 3446 __acquire(&sk->sk_lock.slock); 3447 spin_unlock_bh(&sk->sk_lock.slock); 3448 return true; 3449 } 3450 EXPORT_SYMBOL(__lock_sock_fast); 3451 3452 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3453 bool timeval, bool time32) 3454 { 3455 struct sock *sk = sock->sk; 3456 struct timespec64 ts; 3457 3458 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3459 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3460 if (ts.tv_sec == -1) 3461 return -ENOENT; 3462 if (ts.tv_sec == 0) { 3463 ktime_t kt = ktime_get_real(); 3464 sock_write_timestamp(sk, kt); 3465 ts = ktime_to_timespec64(kt); 3466 } 3467 3468 if (timeval) 3469 ts.tv_nsec /= 1000; 3470 3471 #ifdef CONFIG_COMPAT_32BIT_TIME 3472 if (time32) 3473 return put_old_timespec32(&ts, userstamp); 3474 #endif 3475 #ifdef CONFIG_SPARC64 3476 /* beware of padding in sparc64 timeval */ 3477 if (timeval && !in_compat_syscall()) { 3478 struct __kernel_old_timeval __user tv = { 3479 .tv_sec = ts.tv_sec, 3480 .tv_usec = ts.tv_nsec, 3481 }; 3482 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3483 return -EFAULT; 3484 return 0; 3485 } 3486 #endif 3487 return put_timespec64(&ts, userstamp); 3488 } 3489 EXPORT_SYMBOL(sock_gettstamp); 3490 3491 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3492 { 3493 if (!sock_flag(sk, flag)) { 3494 unsigned long previous_flags = sk->sk_flags; 3495 3496 sock_set_flag(sk, flag); 3497 /* 3498 * we just set one of the two flags which require net 3499 * time stamping, but time stamping might have been on 3500 * already because of the other one 3501 */ 3502 if (sock_needs_netstamp(sk) && 3503 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3504 net_enable_timestamp(); 3505 } 3506 } 3507 3508 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3509 int level, int type) 3510 { 3511 struct sock_exterr_skb *serr; 3512 struct sk_buff *skb; 3513 int copied, err; 3514 3515 err = -EAGAIN; 3516 skb = sock_dequeue_err_skb(sk); 3517 if (skb == NULL) 3518 goto out; 3519 3520 copied = skb->len; 3521 if (copied > len) { 3522 msg->msg_flags |= MSG_TRUNC; 3523 copied = len; 3524 } 3525 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3526 if (err) 3527 goto out_free_skb; 3528 3529 sock_recv_timestamp(msg, sk, skb); 3530 3531 serr = SKB_EXT_ERR(skb); 3532 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3533 3534 msg->msg_flags |= MSG_ERRQUEUE; 3535 err = copied; 3536 3537 out_free_skb: 3538 kfree_skb(skb); 3539 out: 3540 return err; 3541 } 3542 EXPORT_SYMBOL(sock_recv_errqueue); 3543 3544 /* 3545 * Get a socket option on an socket. 3546 * 3547 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3548 * asynchronous errors should be reported by getsockopt. We assume 3549 * this means if you specify SO_ERROR (otherwise whats the point of it). 3550 */ 3551 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3552 char __user *optval, int __user *optlen) 3553 { 3554 struct sock *sk = sock->sk; 3555 3556 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3557 } 3558 EXPORT_SYMBOL(sock_common_getsockopt); 3559 3560 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3561 int flags) 3562 { 3563 struct sock *sk = sock->sk; 3564 int addr_len = 0; 3565 int err; 3566 3567 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); 3568 if (err >= 0) 3569 msg->msg_namelen = addr_len; 3570 return err; 3571 } 3572 EXPORT_SYMBOL(sock_common_recvmsg); 3573 3574 /* 3575 * Set socket options on an inet socket. 3576 */ 3577 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3578 sockptr_t optval, unsigned int optlen) 3579 { 3580 struct sock *sk = sock->sk; 3581 3582 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3583 } 3584 EXPORT_SYMBOL(sock_common_setsockopt); 3585 3586 void sk_common_release(struct sock *sk) 3587 { 3588 if (sk->sk_prot->destroy) 3589 sk->sk_prot->destroy(sk); 3590 3591 /* 3592 * Observation: when sk_common_release is called, processes have 3593 * no access to socket. But net still has. 3594 * Step one, detach it from networking: 3595 * 3596 * A. Remove from hash tables. 3597 */ 3598 3599 sk->sk_prot->unhash(sk); 3600 3601 /* 3602 * In this point socket cannot receive new packets, but it is possible 3603 * that some packets are in flight because some CPU runs receiver and 3604 * did hash table lookup before we unhashed socket. They will achieve 3605 * receive queue and will be purged by socket destructor. 3606 * 3607 * Also we still have packets pending on receive queue and probably, 3608 * our own packets waiting in device queues. sock_destroy will drain 3609 * receive queue, but transmitted packets will delay socket destruction 3610 * until the last reference will be released. 3611 */ 3612 3613 sock_orphan(sk); 3614 3615 xfrm_sk_free_policy(sk); 3616 3617 sk_refcnt_debug_release(sk); 3618 3619 sock_put(sk); 3620 } 3621 EXPORT_SYMBOL(sk_common_release); 3622 3623 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3624 { 3625 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3626 3627 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3628 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3629 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3630 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3631 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3632 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3633 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3634 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3635 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3636 } 3637 3638 #ifdef CONFIG_PROC_FS 3639 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3640 3641 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3642 { 3643 int cpu, idx = prot->inuse_idx; 3644 int res = 0; 3645 3646 for_each_possible_cpu(cpu) 3647 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3648 3649 return res >= 0 ? res : 0; 3650 } 3651 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3652 3653 int sock_inuse_get(struct net *net) 3654 { 3655 int cpu, res = 0; 3656 3657 for_each_possible_cpu(cpu) 3658 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; 3659 3660 return res; 3661 } 3662 3663 EXPORT_SYMBOL_GPL(sock_inuse_get); 3664 3665 static int __net_init sock_inuse_init_net(struct net *net) 3666 { 3667 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3668 if (net->core.prot_inuse == NULL) 3669 return -ENOMEM; 3670 return 0; 3671 } 3672 3673 static void __net_exit sock_inuse_exit_net(struct net *net) 3674 { 3675 free_percpu(net->core.prot_inuse); 3676 } 3677 3678 static struct pernet_operations net_inuse_ops = { 3679 .init = sock_inuse_init_net, 3680 .exit = sock_inuse_exit_net, 3681 }; 3682 3683 static __init int net_inuse_init(void) 3684 { 3685 if (register_pernet_subsys(&net_inuse_ops)) 3686 panic("Cannot initialize net inuse counters"); 3687 3688 return 0; 3689 } 3690 3691 core_initcall(net_inuse_init); 3692 3693 static int assign_proto_idx(struct proto *prot) 3694 { 3695 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3696 3697 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3698 pr_err("PROTO_INUSE_NR exhausted\n"); 3699 return -ENOSPC; 3700 } 3701 3702 set_bit(prot->inuse_idx, proto_inuse_idx); 3703 return 0; 3704 } 3705 3706 static void release_proto_idx(struct proto *prot) 3707 { 3708 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3709 clear_bit(prot->inuse_idx, proto_inuse_idx); 3710 } 3711 #else 3712 static inline int assign_proto_idx(struct proto *prot) 3713 { 3714 return 0; 3715 } 3716 3717 static inline void release_proto_idx(struct proto *prot) 3718 { 3719 } 3720 3721 #endif 3722 3723 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3724 { 3725 if (!twsk_prot) 3726 return; 3727 kfree(twsk_prot->twsk_slab_name); 3728 twsk_prot->twsk_slab_name = NULL; 3729 kmem_cache_destroy(twsk_prot->twsk_slab); 3730 twsk_prot->twsk_slab = NULL; 3731 } 3732 3733 static int tw_prot_init(const struct proto *prot) 3734 { 3735 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 3736 3737 if (!twsk_prot) 3738 return 0; 3739 3740 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 3741 prot->name); 3742 if (!twsk_prot->twsk_slab_name) 3743 return -ENOMEM; 3744 3745 twsk_prot->twsk_slab = 3746 kmem_cache_create(twsk_prot->twsk_slab_name, 3747 twsk_prot->twsk_obj_size, 0, 3748 SLAB_ACCOUNT | prot->slab_flags, 3749 NULL); 3750 if (!twsk_prot->twsk_slab) { 3751 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 3752 prot->name); 3753 return -ENOMEM; 3754 } 3755 3756 return 0; 3757 } 3758 3759 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3760 { 3761 if (!rsk_prot) 3762 return; 3763 kfree(rsk_prot->slab_name); 3764 rsk_prot->slab_name = NULL; 3765 kmem_cache_destroy(rsk_prot->slab); 3766 rsk_prot->slab = NULL; 3767 } 3768 3769 static int req_prot_init(const struct proto *prot) 3770 { 3771 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3772 3773 if (!rsk_prot) 3774 return 0; 3775 3776 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3777 prot->name); 3778 if (!rsk_prot->slab_name) 3779 return -ENOMEM; 3780 3781 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3782 rsk_prot->obj_size, 0, 3783 SLAB_ACCOUNT | prot->slab_flags, 3784 NULL); 3785 3786 if (!rsk_prot->slab) { 3787 pr_crit("%s: Can't create request sock SLAB cache!\n", 3788 prot->name); 3789 return -ENOMEM; 3790 } 3791 return 0; 3792 } 3793 3794 int proto_register(struct proto *prot, int alloc_slab) 3795 { 3796 int ret = -ENOBUFS; 3797 3798 if (prot->memory_allocated && !prot->sysctl_mem) { 3799 pr_err("%s: missing sysctl_mem\n", prot->name); 3800 return -EINVAL; 3801 } 3802 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { 3803 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name); 3804 return -EINVAL; 3805 } 3806 if (alloc_slab) { 3807 prot->slab = kmem_cache_create_usercopy(prot->name, 3808 prot->obj_size, 0, 3809 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3810 prot->slab_flags, 3811 prot->useroffset, prot->usersize, 3812 NULL); 3813 3814 if (prot->slab == NULL) { 3815 pr_crit("%s: Can't create sock SLAB cache!\n", 3816 prot->name); 3817 goto out; 3818 } 3819 3820 if (req_prot_init(prot)) 3821 goto out_free_request_sock_slab; 3822 3823 if (tw_prot_init(prot)) 3824 goto out_free_timewait_sock_slab; 3825 } 3826 3827 mutex_lock(&proto_list_mutex); 3828 ret = assign_proto_idx(prot); 3829 if (ret) { 3830 mutex_unlock(&proto_list_mutex); 3831 goto out_free_timewait_sock_slab; 3832 } 3833 list_add(&prot->node, &proto_list); 3834 mutex_unlock(&proto_list_mutex); 3835 return ret; 3836 3837 out_free_timewait_sock_slab: 3838 if (alloc_slab) 3839 tw_prot_cleanup(prot->twsk_prot); 3840 out_free_request_sock_slab: 3841 if (alloc_slab) { 3842 req_prot_cleanup(prot->rsk_prot); 3843 3844 kmem_cache_destroy(prot->slab); 3845 prot->slab = NULL; 3846 } 3847 out: 3848 return ret; 3849 } 3850 EXPORT_SYMBOL(proto_register); 3851 3852 void proto_unregister(struct proto *prot) 3853 { 3854 mutex_lock(&proto_list_mutex); 3855 release_proto_idx(prot); 3856 list_del(&prot->node); 3857 mutex_unlock(&proto_list_mutex); 3858 3859 kmem_cache_destroy(prot->slab); 3860 prot->slab = NULL; 3861 3862 req_prot_cleanup(prot->rsk_prot); 3863 tw_prot_cleanup(prot->twsk_prot); 3864 } 3865 EXPORT_SYMBOL(proto_unregister); 3866 3867 int sock_load_diag_module(int family, int protocol) 3868 { 3869 if (!protocol) { 3870 if (!sock_is_registered(family)) 3871 return -ENOENT; 3872 3873 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3874 NETLINK_SOCK_DIAG, family); 3875 } 3876 3877 #ifdef CONFIG_INET 3878 if (family == AF_INET && 3879 protocol != IPPROTO_RAW && 3880 protocol < MAX_INET_PROTOS && 3881 !rcu_access_pointer(inet_protos[protocol])) 3882 return -ENOENT; 3883 #endif 3884 3885 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3886 NETLINK_SOCK_DIAG, family, protocol); 3887 } 3888 EXPORT_SYMBOL(sock_load_diag_module); 3889 3890 #ifdef CONFIG_PROC_FS 3891 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3892 __acquires(proto_list_mutex) 3893 { 3894 mutex_lock(&proto_list_mutex); 3895 return seq_list_start_head(&proto_list, *pos); 3896 } 3897 3898 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3899 { 3900 return seq_list_next(v, &proto_list, pos); 3901 } 3902 3903 static void proto_seq_stop(struct seq_file *seq, void *v) 3904 __releases(proto_list_mutex) 3905 { 3906 mutex_unlock(&proto_list_mutex); 3907 } 3908 3909 static char proto_method_implemented(const void *method) 3910 { 3911 return method == NULL ? 'n' : 'y'; 3912 } 3913 static long sock_prot_memory_allocated(struct proto *proto) 3914 { 3915 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3916 } 3917 3918 static const char *sock_prot_memory_pressure(struct proto *proto) 3919 { 3920 return proto->memory_pressure != NULL ? 3921 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3922 } 3923 3924 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3925 { 3926 3927 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3928 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3929 proto->name, 3930 proto->obj_size, 3931 sock_prot_inuse_get(seq_file_net(seq), proto), 3932 sock_prot_memory_allocated(proto), 3933 sock_prot_memory_pressure(proto), 3934 proto->max_header, 3935 proto->slab == NULL ? "no" : "yes", 3936 module_name(proto->owner), 3937 proto_method_implemented(proto->close), 3938 proto_method_implemented(proto->connect), 3939 proto_method_implemented(proto->disconnect), 3940 proto_method_implemented(proto->accept), 3941 proto_method_implemented(proto->ioctl), 3942 proto_method_implemented(proto->init), 3943 proto_method_implemented(proto->destroy), 3944 proto_method_implemented(proto->shutdown), 3945 proto_method_implemented(proto->setsockopt), 3946 proto_method_implemented(proto->getsockopt), 3947 proto_method_implemented(proto->sendmsg), 3948 proto_method_implemented(proto->recvmsg), 3949 proto_method_implemented(proto->sendpage), 3950 proto_method_implemented(proto->bind), 3951 proto_method_implemented(proto->backlog_rcv), 3952 proto_method_implemented(proto->hash), 3953 proto_method_implemented(proto->unhash), 3954 proto_method_implemented(proto->get_port), 3955 proto_method_implemented(proto->enter_memory_pressure)); 3956 } 3957 3958 static int proto_seq_show(struct seq_file *seq, void *v) 3959 { 3960 if (v == &proto_list) 3961 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3962 "protocol", 3963 "size", 3964 "sockets", 3965 "memory", 3966 "press", 3967 "maxhdr", 3968 "slab", 3969 "module", 3970 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3971 else 3972 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3973 return 0; 3974 } 3975 3976 static const struct seq_operations proto_seq_ops = { 3977 .start = proto_seq_start, 3978 .next = proto_seq_next, 3979 .stop = proto_seq_stop, 3980 .show = proto_seq_show, 3981 }; 3982 3983 static __net_init int proto_init_net(struct net *net) 3984 { 3985 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 3986 sizeof(struct seq_net_private))) 3987 return -ENOMEM; 3988 3989 return 0; 3990 } 3991 3992 static __net_exit void proto_exit_net(struct net *net) 3993 { 3994 remove_proc_entry("protocols", net->proc_net); 3995 } 3996 3997 3998 static __net_initdata struct pernet_operations proto_net_ops = { 3999 .init = proto_init_net, 4000 .exit = proto_exit_net, 4001 }; 4002 4003 static int __init proto_init(void) 4004 { 4005 return register_pernet_subsys(&proto_net_ops); 4006 } 4007 4008 subsys_initcall(proto_init); 4009 4010 #endif /* PROC_FS */ 4011 4012 #ifdef CONFIG_NET_RX_BUSY_POLL 4013 bool sk_busy_loop_end(void *p, unsigned long start_time) 4014 { 4015 struct sock *sk = p; 4016 4017 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 4018 sk_busy_loop_timeout(sk, start_time); 4019 } 4020 EXPORT_SYMBOL(sk_busy_loop_end); 4021 #endif /* CONFIG_NET_RX_BUSY_POLL */ 4022 4023 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 4024 { 4025 if (!sk->sk_prot->bind_add) 4026 return -EOPNOTSUPP; 4027 return sk->sk_prot->bind_add(sk, addr, addr_len); 4028 } 4029 EXPORT_SYMBOL(sock_bind_add); 4030