xref: /openbmc/linux/net/core/sock.c (revision ef83f9ef)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Generic socket support routines. Memory allocators, socket lock/release
8  *		handler for protocols to use and generic option handler.
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  */
85 
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87 
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
117 
118 #include <linux/uaccess.h>
119 
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
131 #include <linux/sock_diag.h>
132 
133 #include <linux/filter.h>
134 #include <net/sock_reuseport.h>
135 #include <net/bpf_sk_storage.h>
136 
137 #include <trace/events/sock.h>
138 
139 #include <net/tcp.h>
140 #include <net/busy_poll.h>
141 
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
144 
145 static void sock_inuse_add(struct net *net, int val);
146 
147 /**
148  * sk_ns_capable - General socket capability test
149  * @sk: Socket to use a capability on or through
150  * @user_ns: The user namespace of the capability to use
151  * @cap: The capability to use
152  *
153  * Test to see if the opener of the socket had when the socket was
154  * created and the current process has the capability @cap in the user
155  * namespace @user_ns.
156  */
157 bool sk_ns_capable(const struct sock *sk,
158 		   struct user_namespace *user_ns, int cap)
159 {
160 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
161 		ns_capable(user_ns, cap);
162 }
163 EXPORT_SYMBOL(sk_ns_capable);
164 
165 /**
166  * sk_capable - Socket global capability test
167  * @sk: Socket to use a capability on or through
168  * @cap: The global capability to use
169  *
170  * Test to see if the opener of the socket had when the socket was
171  * created and the current process has the capability @cap in all user
172  * namespaces.
173  */
174 bool sk_capable(const struct sock *sk, int cap)
175 {
176 	return sk_ns_capable(sk, &init_user_ns, cap);
177 }
178 EXPORT_SYMBOL(sk_capable);
179 
180 /**
181  * sk_net_capable - Network namespace socket capability test
182  * @sk: Socket to use a capability on or through
183  * @cap: The capability to use
184  *
185  * Test to see if the opener of the socket had when the socket was created
186  * and the current process has the capability @cap over the network namespace
187  * the socket is a member of.
188  */
189 bool sk_net_capable(const struct sock *sk, int cap)
190 {
191 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
192 }
193 EXPORT_SYMBOL(sk_net_capable);
194 
195 /*
196  * Each address family might have different locking rules, so we have
197  * one slock key per address family and separate keys for internal and
198  * userspace sockets.
199  */
200 static struct lock_class_key af_family_keys[AF_MAX];
201 static struct lock_class_key af_family_kern_keys[AF_MAX];
202 static struct lock_class_key af_family_slock_keys[AF_MAX];
203 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
204 
205 /*
206  * Make lock validator output more readable. (we pre-construct these
207  * strings build-time, so that runtime initialization of socket
208  * locks is fast):
209  */
210 
211 #define _sock_locks(x)						  \
212   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
213   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
214   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
215   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
216   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
217   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
218   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
219   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
220   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
221   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
222   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
223   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
224   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
225   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
226   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
227   x "AF_MAX"
228 
229 static const char *const af_family_key_strings[AF_MAX+1] = {
230 	_sock_locks("sk_lock-")
231 };
232 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
233 	_sock_locks("slock-")
234 };
235 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
236 	_sock_locks("clock-")
237 };
238 
239 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
240 	_sock_locks("k-sk_lock-")
241 };
242 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
243 	_sock_locks("k-slock-")
244 };
245 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
246 	_sock_locks("k-clock-")
247 };
248 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
249 	_sock_locks("rlock-")
250 };
251 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
252 	_sock_locks("wlock-")
253 };
254 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
255 	_sock_locks("elock-")
256 };
257 
258 /*
259  * sk_callback_lock and sk queues locking rules are per-address-family,
260  * so split the lock classes by using a per-AF key:
261  */
262 static struct lock_class_key af_callback_keys[AF_MAX];
263 static struct lock_class_key af_rlock_keys[AF_MAX];
264 static struct lock_class_key af_wlock_keys[AF_MAX];
265 static struct lock_class_key af_elock_keys[AF_MAX];
266 static struct lock_class_key af_kern_callback_keys[AF_MAX];
267 
268 /* Run time adjustable parameters. */
269 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
270 EXPORT_SYMBOL(sysctl_wmem_max);
271 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
272 EXPORT_SYMBOL(sysctl_rmem_max);
273 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
274 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
275 
276 /* Maximal space eaten by iovec or ancillary data plus some space */
277 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
278 EXPORT_SYMBOL(sysctl_optmem_max);
279 
280 int sysctl_tstamp_allow_data __read_mostly = 1;
281 
282 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
283 EXPORT_SYMBOL_GPL(memalloc_socks_key);
284 
285 /**
286  * sk_set_memalloc - sets %SOCK_MEMALLOC
287  * @sk: socket to set it on
288  *
289  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
290  * It's the responsibility of the admin to adjust min_free_kbytes
291  * to meet the requirements
292  */
293 void sk_set_memalloc(struct sock *sk)
294 {
295 	sock_set_flag(sk, SOCK_MEMALLOC);
296 	sk->sk_allocation |= __GFP_MEMALLOC;
297 	static_branch_inc(&memalloc_socks_key);
298 }
299 EXPORT_SYMBOL_GPL(sk_set_memalloc);
300 
301 void sk_clear_memalloc(struct sock *sk)
302 {
303 	sock_reset_flag(sk, SOCK_MEMALLOC);
304 	sk->sk_allocation &= ~__GFP_MEMALLOC;
305 	static_branch_dec(&memalloc_socks_key);
306 
307 	/*
308 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
309 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
310 	 * it has rmem allocations due to the last swapfile being deactivated
311 	 * but there is a risk that the socket is unusable due to exceeding
312 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
313 	 */
314 	sk_mem_reclaim(sk);
315 }
316 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
317 
318 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
319 {
320 	int ret;
321 	unsigned int noreclaim_flag;
322 
323 	/* these should have been dropped before queueing */
324 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
325 
326 	noreclaim_flag = memalloc_noreclaim_save();
327 	ret = sk->sk_backlog_rcv(sk, skb);
328 	memalloc_noreclaim_restore(noreclaim_flag);
329 
330 	return ret;
331 }
332 EXPORT_SYMBOL(__sk_backlog_rcv);
333 
334 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
335 {
336 	struct __kernel_sock_timeval tv;
337 
338 	if (timeo == MAX_SCHEDULE_TIMEOUT) {
339 		tv.tv_sec = 0;
340 		tv.tv_usec = 0;
341 	} else {
342 		tv.tv_sec = timeo / HZ;
343 		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344 	}
345 
346 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347 		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348 		*(struct old_timeval32 *)optval = tv32;
349 		return sizeof(tv32);
350 	}
351 
352 	if (old_timeval) {
353 		struct __kernel_old_timeval old_tv;
354 		old_tv.tv_sec = tv.tv_sec;
355 		old_tv.tv_usec = tv.tv_usec;
356 		*(struct __kernel_old_timeval *)optval = old_tv;
357 		return sizeof(old_tv);
358 	}
359 
360 	*(struct __kernel_sock_timeval *)optval = tv;
361 	return sizeof(tv);
362 }
363 
364 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
365 			    bool old_timeval)
366 {
367 	struct __kernel_sock_timeval tv;
368 
369 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
370 		struct old_timeval32 tv32;
371 
372 		if (optlen < sizeof(tv32))
373 			return -EINVAL;
374 
375 		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
376 			return -EFAULT;
377 		tv.tv_sec = tv32.tv_sec;
378 		tv.tv_usec = tv32.tv_usec;
379 	} else if (old_timeval) {
380 		struct __kernel_old_timeval old_tv;
381 
382 		if (optlen < sizeof(old_tv))
383 			return -EINVAL;
384 		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
385 			return -EFAULT;
386 		tv.tv_sec = old_tv.tv_sec;
387 		tv.tv_usec = old_tv.tv_usec;
388 	} else {
389 		if (optlen < sizeof(tv))
390 			return -EINVAL;
391 		if (copy_from_sockptr(&tv, optval, sizeof(tv)))
392 			return -EFAULT;
393 	}
394 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
395 		return -EDOM;
396 
397 	if (tv.tv_sec < 0) {
398 		static int warned __read_mostly;
399 
400 		*timeo_p = 0;
401 		if (warned < 10 && net_ratelimit()) {
402 			warned++;
403 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
404 				__func__, current->comm, task_pid_nr(current));
405 		}
406 		return 0;
407 	}
408 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
409 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
410 		return 0;
411 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
412 		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
413 	return 0;
414 }
415 
416 static bool sock_needs_netstamp(const struct sock *sk)
417 {
418 	switch (sk->sk_family) {
419 	case AF_UNSPEC:
420 	case AF_UNIX:
421 		return false;
422 	default:
423 		return true;
424 	}
425 }
426 
427 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
428 {
429 	if (sk->sk_flags & flags) {
430 		sk->sk_flags &= ~flags;
431 		if (sock_needs_netstamp(sk) &&
432 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
433 			net_disable_timestamp();
434 	}
435 }
436 
437 
438 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
439 {
440 	unsigned long flags;
441 	struct sk_buff_head *list = &sk->sk_receive_queue;
442 
443 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
444 		atomic_inc(&sk->sk_drops);
445 		trace_sock_rcvqueue_full(sk, skb);
446 		return -ENOMEM;
447 	}
448 
449 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
450 		atomic_inc(&sk->sk_drops);
451 		return -ENOBUFS;
452 	}
453 
454 	skb->dev = NULL;
455 	skb_set_owner_r(skb, sk);
456 
457 	/* we escape from rcu protected region, make sure we dont leak
458 	 * a norefcounted dst
459 	 */
460 	skb_dst_force(skb);
461 
462 	spin_lock_irqsave(&list->lock, flags);
463 	sock_skb_set_dropcount(sk, skb);
464 	__skb_queue_tail(list, skb);
465 	spin_unlock_irqrestore(&list->lock, flags);
466 
467 	if (!sock_flag(sk, SOCK_DEAD))
468 		sk->sk_data_ready(sk);
469 	return 0;
470 }
471 EXPORT_SYMBOL(__sock_queue_rcv_skb);
472 
473 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
474 {
475 	int err;
476 
477 	err = sk_filter(sk, skb);
478 	if (err)
479 		return err;
480 
481 	return __sock_queue_rcv_skb(sk, skb);
482 }
483 EXPORT_SYMBOL(sock_queue_rcv_skb);
484 
485 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
486 		     const int nested, unsigned int trim_cap, bool refcounted)
487 {
488 	int rc = NET_RX_SUCCESS;
489 
490 	if (sk_filter_trim_cap(sk, skb, trim_cap))
491 		goto discard_and_relse;
492 
493 	skb->dev = NULL;
494 
495 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
496 		atomic_inc(&sk->sk_drops);
497 		goto discard_and_relse;
498 	}
499 	if (nested)
500 		bh_lock_sock_nested(sk);
501 	else
502 		bh_lock_sock(sk);
503 	if (!sock_owned_by_user(sk)) {
504 		/*
505 		 * trylock + unlock semantics:
506 		 */
507 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
508 
509 		rc = sk_backlog_rcv(sk, skb);
510 
511 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
512 	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
513 		bh_unlock_sock(sk);
514 		atomic_inc(&sk->sk_drops);
515 		goto discard_and_relse;
516 	}
517 
518 	bh_unlock_sock(sk);
519 out:
520 	if (refcounted)
521 		sock_put(sk);
522 	return rc;
523 discard_and_relse:
524 	kfree_skb(skb);
525 	goto out;
526 }
527 EXPORT_SYMBOL(__sk_receive_skb);
528 
529 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
530 							  u32));
531 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
532 							   u32));
533 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
534 {
535 	struct dst_entry *dst = __sk_dst_get(sk);
536 
537 	if (dst && dst->obsolete &&
538 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
539 			       dst, cookie) == NULL) {
540 		sk_tx_queue_clear(sk);
541 		sk->sk_dst_pending_confirm = 0;
542 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
543 		dst_release(dst);
544 		return NULL;
545 	}
546 
547 	return dst;
548 }
549 EXPORT_SYMBOL(__sk_dst_check);
550 
551 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
552 {
553 	struct dst_entry *dst = sk_dst_get(sk);
554 
555 	if (dst && dst->obsolete &&
556 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
557 			       dst, cookie) == NULL) {
558 		sk_dst_reset(sk);
559 		dst_release(dst);
560 		return NULL;
561 	}
562 
563 	return dst;
564 }
565 EXPORT_SYMBOL(sk_dst_check);
566 
567 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
568 {
569 	int ret = -ENOPROTOOPT;
570 #ifdef CONFIG_NETDEVICES
571 	struct net *net = sock_net(sk);
572 
573 	/* Sorry... */
574 	ret = -EPERM;
575 	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
576 		goto out;
577 
578 	ret = -EINVAL;
579 	if (ifindex < 0)
580 		goto out;
581 
582 	sk->sk_bound_dev_if = ifindex;
583 	if (sk->sk_prot->rehash)
584 		sk->sk_prot->rehash(sk);
585 	sk_dst_reset(sk);
586 
587 	ret = 0;
588 
589 out:
590 #endif
591 
592 	return ret;
593 }
594 
595 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
596 {
597 	int ret;
598 
599 	if (lock_sk)
600 		lock_sock(sk);
601 	ret = sock_bindtoindex_locked(sk, ifindex);
602 	if (lock_sk)
603 		release_sock(sk);
604 
605 	return ret;
606 }
607 EXPORT_SYMBOL(sock_bindtoindex);
608 
609 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
610 {
611 	int ret = -ENOPROTOOPT;
612 #ifdef CONFIG_NETDEVICES
613 	struct net *net = sock_net(sk);
614 	char devname[IFNAMSIZ];
615 	int index;
616 
617 	ret = -EINVAL;
618 	if (optlen < 0)
619 		goto out;
620 
621 	/* Bind this socket to a particular device like "eth0",
622 	 * as specified in the passed interface name. If the
623 	 * name is "" or the option length is zero the socket
624 	 * is not bound.
625 	 */
626 	if (optlen > IFNAMSIZ - 1)
627 		optlen = IFNAMSIZ - 1;
628 	memset(devname, 0, sizeof(devname));
629 
630 	ret = -EFAULT;
631 	if (copy_from_sockptr(devname, optval, optlen))
632 		goto out;
633 
634 	index = 0;
635 	if (devname[0] != '\0') {
636 		struct net_device *dev;
637 
638 		rcu_read_lock();
639 		dev = dev_get_by_name_rcu(net, devname);
640 		if (dev)
641 			index = dev->ifindex;
642 		rcu_read_unlock();
643 		ret = -ENODEV;
644 		if (!dev)
645 			goto out;
646 	}
647 
648 	return sock_bindtoindex(sk, index, true);
649 out:
650 #endif
651 
652 	return ret;
653 }
654 
655 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
656 				int __user *optlen, int len)
657 {
658 	int ret = -ENOPROTOOPT;
659 #ifdef CONFIG_NETDEVICES
660 	struct net *net = sock_net(sk);
661 	char devname[IFNAMSIZ];
662 
663 	if (sk->sk_bound_dev_if == 0) {
664 		len = 0;
665 		goto zero;
666 	}
667 
668 	ret = -EINVAL;
669 	if (len < IFNAMSIZ)
670 		goto out;
671 
672 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
673 	if (ret)
674 		goto out;
675 
676 	len = strlen(devname) + 1;
677 
678 	ret = -EFAULT;
679 	if (copy_to_user(optval, devname, len))
680 		goto out;
681 
682 zero:
683 	ret = -EFAULT;
684 	if (put_user(len, optlen))
685 		goto out;
686 
687 	ret = 0;
688 
689 out:
690 #endif
691 
692 	return ret;
693 }
694 
695 bool sk_mc_loop(struct sock *sk)
696 {
697 	if (dev_recursion_level())
698 		return false;
699 	if (!sk)
700 		return true;
701 	switch (sk->sk_family) {
702 	case AF_INET:
703 		return inet_sk(sk)->mc_loop;
704 #if IS_ENABLED(CONFIG_IPV6)
705 	case AF_INET6:
706 		return inet6_sk(sk)->mc_loop;
707 #endif
708 	}
709 	WARN_ON_ONCE(1);
710 	return true;
711 }
712 EXPORT_SYMBOL(sk_mc_loop);
713 
714 void sock_set_reuseaddr(struct sock *sk)
715 {
716 	lock_sock(sk);
717 	sk->sk_reuse = SK_CAN_REUSE;
718 	release_sock(sk);
719 }
720 EXPORT_SYMBOL(sock_set_reuseaddr);
721 
722 void sock_set_reuseport(struct sock *sk)
723 {
724 	lock_sock(sk);
725 	sk->sk_reuseport = true;
726 	release_sock(sk);
727 }
728 EXPORT_SYMBOL(sock_set_reuseport);
729 
730 void sock_no_linger(struct sock *sk)
731 {
732 	lock_sock(sk);
733 	sk->sk_lingertime = 0;
734 	sock_set_flag(sk, SOCK_LINGER);
735 	release_sock(sk);
736 }
737 EXPORT_SYMBOL(sock_no_linger);
738 
739 void sock_set_priority(struct sock *sk, u32 priority)
740 {
741 	lock_sock(sk);
742 	sk->sk_priority = priority;
743 	release_sock(sk);
744 }
745 EXPORT_SYMBOL(sock_set_priority);
746 
747 void sock_set_sndtimeo(struct sock *sk, s64 secs)
748 {
749 	lock_sock(sk);
750 	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
751 		sk->sk_sndtimeo = secs * HZ;
752 	else
753 		sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
754 	release_sock(sk);
755 }
756 EXPORT_SYMBOL(sock_set_sndtimeo);
757 
758 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
759 {
760 	if (val)  {
761 		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
762 		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
763 		sock_set_flag(sk, SOCK_RCVTSTAMP);
764 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
765 	} else {
766 		sock_reset_flag(sk, SOCK_RCVTSTAMP);
767 		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
768 	}
769 }
770 
771 void sock_enable_timestamps(struct sock *sk)
772 {
773 	lock_sock(sk);
774 	__sock_set_timestamps(sk, true, false, true);
775 	release_sock(sk);
776 }
777 EXPORT_SYMBOL(sock_enable_timestamps);
778 
779 void sock_set_keepalive(struct sock *sk)
780 {
781 	lock_sock(sk);
782 	if (sk->sk_prot->keepalive)
783 		sk->sk_prot->keepalive(sk, true);
784 	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
785 	release_sock(sk);
786 }
787 EXPORT_SYMBOL(sock_set_keepalive);
788 
789 static void __sock_set_rcvbuf(struct sock *sk, int val)
790 {
791 	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
792 	 * as a negative value.
793 	 */
794 	val = min_t(int, val, INT_MAX / 2);
795 	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
796 
797 	/* We double it on the way in to account for "struct sk_buff" etc.
798 	 * overhead.   Applications assume that the SO_RCVBUF setting they make
799 	 * will allow that much actual data to be received on that socket.
800 	 *
801 	 * Applications are unaware that "struct sk_buff" and other overheads
802 	 * allocate from the receive buffer during socket buffer allocation.
803 	 *
804 	 * And after considering the possible alternatives, returning the value
805 	 * we actually used in getsockopt is the most desirable behavior.
806 	 */
807 	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
808 }
809 
810 void sock_set_rcvbuf(struct sock *sk, int val)
811 {
812 	lock_sock(sk);
813 	__sock_set_rcvbuf(sk, val);
814 	release_sock(sk);
815 }
816 EXPORT_SYMBOL(sock_set_rcvbuf);
817 
818 static void __sock_set_mark(struct sock *sk, u32 val)
819 {
820 	if (val != sk->sk_mark) {
821 		sk->sk_mark = val;
822 		sk_dst_reset(sk);
823 	}
824 }
825 
826 void sock_set_mark(struct sock *sk, u32 val)
827 {
828 	lock_sock(sk);
829 	__sock_set_mark(sk, val);
830 	release_sock(sk);
831 }
832 EXPORT_SYMBOL(sock_set_mark);
833 
834 /*
835  *	This is meant for all protocols to use and covers goings on
836  *	at the socket level. Everything here is generic.
837  */
838 
839 int sock_setsockopt(struct socket *sock, int level, int optname,
840 		    sockptr_t optval, unsigned int optlen)
841 {
842 	struct sock_txtime sk_txtime;
843 	struct sock *sk = sock->sk;
844 	int val;
845 	int valbool;
846 	struct linger ling;
847 	int ret = 0;
848 
849 	/*
850 	 *	Options without arguments
851 	 */
852 
853 	if (optname == SO_BINDTODEVICE)
854 		return sock_setbindtodevice(sk, optval, optlen);
855 
856 	if (optlen < sizeof(int))
857 		return -EINVAL;
858 
859 	if (copy_from_sockptr(&val, optval, sizeof(val)))
860 		return -EFAULT;
861 
862 	valbool = val ? 1 : 0;
863 
864 	lock_sock(sk);
865 
866 	switch (optname) {
867 	case SO_DEBUG:
868 		if (val && !capable(CAP_NET_ADMIN))
869 			ret = -EACCES;
870 		else
871 			sock_valbool_flag(sk, SOCK_DBG, valbool);
872 		break;
873 	case SO_REUSEADDR:
874 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
875 		break;
876 	case SO_REUSEPORT:
877 		sk->sk_reuseport = valbool;
878 		break;
879 	case SO_TYPE:
880 	case SO_PROTOCOL:
881 	case SO_DOMAIN:
882 	case SO_ERROR:
883 		ret = -ENOPROTOOPT;
884 		break;
885 	case SO_DONTROUTE:
886 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
887 		sk_dst_reset(sk);
888 		break;
889 	case SO_BROADCAST:
890 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
891 		break;
892 	case SO_SNDBUF:
893 		/* Don't error on this BSD doesn't and if you think
894 		 * about it this is right. Otherwise apps have to
895 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
896 		 * are treated in BSD as hints
897 		 */
898 		val = min_t(u32, val, sysctl_wmem_max);
899 set_sndbuf:
900 		/* Ensure val * 2 fits into an int, to prevent max_t()
901 		 * from treating it as a negative value.
902 		 */
903 		val = min_t(int, val, INT_MAX / 2);
904 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
905 		WRITE_ONCE(sk->sk_sndbuf,
906 			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
907 		/* Wake up sending tasks if we upped the value. */
908 		sk->sk_write_space(sk);
909 		break;
910 
911 	case SO_SNDBUFFORCE:
912 		if (!capable(CAP_NET_ADMIN)) {
913 			ret = -EPERM;
914 			break;
915 		}
916 
917 		/* No negative values (to prevent underflow, as val will be
918 		 * multiplied by 2).
919 		 */
920 		if (val < 0)
921 			val = 0;
922 		goto set_sndbuf;
923 
924 	case SO_RCVBUF:
925 		/* Don't error on this BSD doesn't and if you think
926 		 * about it this is right. Otherwise apps have to
927 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
928 		 * are treated in BSD as hints
929 		 */
930 		__sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
931 		break;
932 
933 	case SO_RCVBUFFORCE:
934 		if (!capable(CAP_NET_ADMIN)) {
935 			ret = -EPERM;
936 			break;
937 		}
938 
939 		/* No negative values (to prevent underflow, as val will be
940 		 * multiplied by 2).
941 		 */
942 		__sock_set_rcvbuf(sk, max(val, 0));
943 		break;
944 
945 	case SO_KEEPALIVE:
946 		if (sk->sk_prot->keepalive)
947 			sk->sk_prot->keepalive(sk, valbool);
948 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
949 		break;
950 
951 	case SO_OOBINLINE:
952 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
953 		break;
954 
955 	case SO_NO_CHECK:
956 		sk->sk_no_check_tx = valbool;
957 		break;
958 
959 	case SO_PRIORITY:
960 		if ((val >= 0 && val <= 6) ||
961 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
962 			sk->sk_priority = val;
963 		else
964 			ret = -EPERM;
965 		break;
966 
967 	case SO_LINGER:
968 		if (optlen < sizeof(ling)) {
969 			ret = -EINVAL;	/* 1003.1g */
970 			break;
971 		}
972 		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
973 			ret = -EFAULT;
974 			break;
975 		}
976 		if (!ling.l_onoff)
977 			sock_reset_flag(sk, SOCK_LINGER);
978 		else {
979 #if (BITS_PER_LONG == 32)
980 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
981 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
982 			else
983 #endif
984 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
985 			sock_set_flag(sk, SOCK_LINGER);
986 		}
987 		break;
988 
989 	case SO_BSDCOMPAT:
990 		break;
991 
992 	case SO_PASSCRED:
993 		if (valbool)
994 			set_bit(SOCK_PASSCRED, &sock->flags);
995 		else
996 			clear_bit(SOCK_PASSCRED, &sock->flags);
997 		break;
998 
999 	case SO_TIMESTAMP_OLD:
1000 		__sock_set_timestamps(sk, valbool, false, false);
1001 		break;
1002 	case SO_TIMESTAMP_NEW:
1003 		__sock_set_timestamps(sk, valbool, true, false);
1004 		break;
1005 	case SO_TIMESTAMPNS_OLD:
1006 		__sock_set_timestamps(sk, valbool, false, true);
1007 		break;
1008 	case SO_TIMESTAMPNS_NEW:
1009 		__sock_set_timestamps(sk, valbool, true, true);
1010 		break;
1011 	case SO_TIMESTAMPING_NEW:
1012 	case SO_TIMESTAMPING_OLD:
1013 		if (val & ~SOF_TIMESTAMPING_MASK) {
1014 			ret = -EINVAL;
1015 			break;
1016 		}
1017 
1018 		if (val & SOF_TIMESTAMPING_OPT_ID &&
1019 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
1020 			if (sk->sk_protocol == IPPROTO_TCP &&
1021 			    sk->sk_type == SOCK_STREAM) {
1022 				if ((1 << sk->sk_state) &
1023 				    (TCPF_CLOSE | TCPF_LISTEN)) {
1024 					ret = -EINVAL;
1025 					break;
1026 				}
1027 				sk->sk_tskey = tcp_sk(sk)->snd_una;
1028 			} else {
1029 				sk->sk_tskey = 0;
1030 			}
1031 		}
1032 
1033 		if (val & SOF_TIMESTAMPING_OPT_STATS &&
1034 		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
1035 			ret = -EINVAL;
1036 			break;
1037 		}
1038 
1039 		sk->sk_tsflags = val;
1040 		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
1041 
1042 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
1043 			sock_enable_timestamp(sk,
1044 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
1045 		else
1046 			sock_disable_timestamp(sk,
1047 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
1048 		break;
1049 
1050 	case SO_RCVLOWAT:
1051 		if (val < 0)
1052 			val = INT_MAX;
1053 		if (sock->ops->set_rcvlowat)
1054 			ret = sock->ops->set_rcvlowat(sk, val);
1055 		else
1056 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1057 		break;
1058 
1059 	case SO_RCVTIMEO_OLD:
1060 	case SO_RCVTIMEO_NEW:
1061 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1062 				       optlen, optname == SO_RCVTIMEO_OLD);
1063 		break;
1064 
1065 	case SO_SNDTIMEO_OLD:
1066 	case SO_SNDTIMEO_NEW:
1067 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1068 				       optlen, optname == SO_SNDTIMEO_OLD);
1069 		break;
1070 
1071 	case SO_ATTACH_FILTER: {
1072 		struct sock_fprog fprog;
1073 
1074 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1075 		if (!ret)
1076 			ret = sk_attach_filter(&fprog, sk);
1077 		break;
1078 	}
1079 	case SO_ATTACH_BPF:
1080 		ret = -EINVAL;
1081 		if (optlen == sizeof(u32)) {
1082 			u32 ufd;
1083 
1084 			ret = -EFAULT;
1085 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1086 				break;
1087 
1088 			ret = sk_attach_bpf(ufd, sk);
1089 		}
1090 		break;
1091 
1092 	case SO_ATTACH_REUSEPORT_CBPF: {
1093 		struct sock_fprog fprog;
1094 
1095 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1096 		if (!ret)
1097 			ret = sk_reuseport_attach_filter(&fprog, sk);
1098 		break;
1099 	}
1100 	case SO_ATTACH_REUSEPORT_EBPF:
1101 		ret = -EINVAL;
1102 		if (optlen == sizeof(u32)) {
1103 			u32 ufd;
1104 
1105 			ret = -EFAULT;
1106 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1107 				break;
1108 
1109 			ret = sk_reuseport_attach_bpf(ufd, sk);
1110 		}
1111 		break;
1112 
1113 	case SO_DETACH_REUSEPORT_BPF:
1114 		ret = reuseport_detach_prog(sk);
1115 		break;
1116 
1117 	case SO_DETACH_FILTER:
1118 		ret = sk_detach_filter(sk);
1119 		break;
1120 
1121 	case SO_LOCK_FILTER:
1122 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1123 			ret = -EPERM;
1124 		else
1125 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1126 		break;
1127 
1128 	case SO_PASSSEC:
1129 		if (valbool)
1130 			set_bit(SOCK_PASSSEC, &sock->flags);
1131 		else
1132 			clear_bit(SOCK_PASSSEC, &sock->flags);
1133 		break;
1134 	case SO_MARK:
1135 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1136 			ret = -EPERM;
1137 			break;
1138 		}
1139 
1140 		__sock_set_mark(sk, val);
1141 		break;
1142 
1143 	case SO_RXQ_OVFL:
1144 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1145 		break;
1146 
1147 	case SO_WIFI_STATUS:
1148 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1149 		break;
1150 
1151 	case SO_PEEK_OFF:
1152 		if (sock->ops->set_peek_off)
1153 			ret = sock->ops->set_peek_off(sk, val);
1154 		else
1155 			ret = -EOPNOTSUPP;
1156 		break;
1157 
1158 	case SO_NOFCS:
1159 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1160 		break;
1161 
1162 	case SO_SELECT_ERR_QUEUE:
1163 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1164 		break;
1165 
1166 #ifdef CONFIG_NET_RX_BUSY_POLL
1167 	case SO_BUSY_POLL:
1168 		/* allow unprivileged users to decrease the value */
1169 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1170 			ret = -EPERM;
1171 		else {
1172 			if (val < 0)
1173 				ret = -EINVAL;
1174 			else
1175 				sk->sk_ll_usec = val;
1176 		}
1177 		break;
1178 	case SO_PREFER_BUSY_POLL:
1179 		if (valbool && !capable(CAP_NET_ADMIN))
1180 			ret = -EPERM;
1181 		else
1182 			WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1183 		break;
1184 	case SO_BUSY_POLL_BUDGET:
1185 		if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) {
1186 			ret = -EPERM;
1187 		} else {
1188 			if (val < 0 || val > U16_MAX)
1189 				ret = -EINVAL;
1190 			else
1191 				WRITE_ONCE(sk->sk_busy_poll_budget, val);
1192 		}
1193 		break;
1194 #endif
1195 
1196 	case SO_MAX_PACING_RATE:
1197 		{
1198 		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1199 
1200 		if (sizeof(ulval) != sizeof(val) &&
1201 		    optlen >= sizeof(ulval) &&
1202 		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1203 			ret = -EFAULT;
1204 			break;
1205 		}
1206 		if (ulval != ~0UL)
1207 			cmpxchg(&sk->sk_pacing_status,
1208 				SK_PACING_NONE,
1209 				SK_PACING_NEEDED);
1210 		sk->sk_max_pacing_rate = ulval;
1211 		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1212 		break;
1213 		}
1214 	case SO_INCOMING_CPU:
1215 		WRITE_ONCE(sk->sk_incoming_cpu, val);
1216 		break;
1217 
1218 	case SO_CNX_ADVICE:
1219 		if (val == 1)
1220 			dst_negative_advice(sk);
1221 		break;
1222 
1223 	case SO_ZEROCOPY:
1224 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1225 			if (!((sk->sk_type == SOCK_STREAM &&
1226 			       sk->sk_protocol == IPPROTO_TCP) ||
1227 			      (sk->sk_type == SOCK_DGRAM &&
1228 			       sk->sk_protocol == IPPROTO_UDP)))
1229 				ret = -ENOTSUPP;
1230 		} else if (sk->sk_family != PF_RDS) {
1231 			ret = -ENOTSUPP;
1232 		}
1233 		if (!ret) {
1234 			if (val < 0 || val > 1)
1235 				ret = -EINVAL;
1236 			else
1237 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1238 		}
1239 		break;
1240 
1241 	case SO_TXTIME:
1242 		if (optlen != sizeof(struct sock_txtime)) {
1243 			ret = -EINVAL;
1244 			break;
1245 		} else if (copy_from_sockptr(&sk_txtime, optval,
1246 			   sizeof(struct sock_txtime))) {
1247 			ret = -EFAULT;
1248 			break;
1249 		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1250 			ret = -EINVAL;
1251 			break;
1252 		}
1253 		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1254 		 * scheduler has enough safe guards.
1255 		 */
1256 		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1257 		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1258 			ret = -EPERM;
1259 			break;
1260 		}
1261 		sock_valbool_flag(sk, SOCK_TXTIME, true);
1262 		sk->sk_clockid = sk_txtime.clockid;
1263 		sk->sk_txtime_deadline_mode =
1264 			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1265 		sk->sk_txtime_report_errors =
1266 			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1267 		break;
1268 
1269 	case SO_BINDTOIFINDEX:
1270 		ret = sock_bindtoindex_locked(sk, val);
1271 		break;
1272 
1273 	default:
1274 		ret = -ENOPROTOOPT;
1275 		break;
1276 	}
1277 	release_sock(sk);
1278 	return ret;
1279 }
1280 EXPORT_SYMBOL(sock_setsockopt);
1281 
1282 
1283 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1284 			  struct ucred *ucred)
1285 {
1286 	ucred->pid = pid_vnr(pid);
1287 	ucred->uid = ucred->gid = -1;
1288 	if (cred) {
1289 		struct user_namespace *current_ns = current_user_ns();
1290 
1291 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1292 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1293 	}
1294 }
1295 
1296 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1297 {
1298 	struct user_namespace *user_ns = current_user_ns();
1299 	int i;
1300 
1301 	for (i = 0; i < src->ngroups; i++)
1302 		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1303 			return -EFAULT;
1304 
1305 	return 0;
1306 }
1307 
1308 int sock_getsockopt(struct socket *sock, int level, int optname,
1309 		    char __user *optval, int __user *optlen)
1310 {
1311 	struct sock *sk = sock->sk;
1312 
1313 	union {
1314 		int val;
1315 		u64 val64;
1316 		unsigned long ulval;
1317 		struct linger ling;
1318 		struct old_timeval32 tm32;
1319 		struct __kernel_old_timeval tm;
1320 		struct  __kernel_sock_timeval stm;
1321 		struct sock_txtime txtime;
1322 	} v;
1323 
1324 	int lv = sizeof(int);
1325 	int len;
1326 
1327 	if (get_user(len, optlen))
1328 		return -EFAULT;
1329 	if (len < 0)
1330 		return -EINVAL;
1331 
1332 	memset(&v, 0, sizeof(v));
1333 
1334 	switch (optname) {
1335 	case SO_DEBUG:
1336 		v.val = sock_flag(sk, SOCK_DBG);
1337 		break;
1338 
1339 	case SO_DONTROUTE:
1340 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1341 		break;
1342 
1343 	case SO_BROADCAST:
1344 		v.val = sock_flag(sk, SOCK_BROADCAST);
1345 		break;
1346 
1347 	case SO_SNDBUF:
1348 		v.val = sk->sk_sndbuf;
1349 		break;
1350 
1351 	case SO_RCVBUF:
1352 		v.val = sk->sk_rcvbuf;
1353 		break;
1354 
1355 	case SO_REUSEADDR:
1356 		v.val = sk->sk_reuse;
1357 		break;
1358 
1359 	case SO_REUSEPORT:
1360 		v.val = sk->sk_reuseport;
1361 		break;
1362 
1363 	case SO_KEEPALIVE:
1364 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1365 		break;
1366 
1367 	case SO_TYPE:
1368 		v.val = sk->sk_type;
1369 		break;
1370 
1371 	case SO_PROTOCOL:
1372 		v.val = sk->sk_protocol;
1373 		break;
1374 
1375 	case SO_DOMAIN:
1376 		v.val = sk->sk_family;
1377 		break;
1378 
1379 	case SO_ERROR:
1380 		v.val = -sock_error(sk);
1381 		if (v.val == 0)
1382 			v.val = xchg(&sk->sk_err_soft, 0);
1383 		break;
1384 
1385 	case SO_OOBINLINE:
1386 		v.val = sock_flag(sk, SOCK_URGINLINE);
1387 		break;
1388 
1389 	case SO_NO_CHECK:
1390 		v.val = sk->sk_no_check_tx;
1391 		break;
1392 
1393 	case SO_PRIORITY:
1394 		v.val = sk->sk_priority;
1395 		break;
1396 
1397 	case SO_LINGER:
1398 		lv		= sizeof(v.ling);
1399 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1400 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1401 		break;
1402 
1403 	case SO_BSDCOMPAT:
1404 		break;
1405 
1406 	case SO_TIMESTAMP_OLD:
1407 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1408 				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1409 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1410 		break;
1411 
1412 	case SO_TIMESTAMPNS_OLD:
1413 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1414 		break;
1415 
1416 	case SO_TIMESTAMP_NEW:
1417 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1418 		break;
1419 
1420 	case SO_TIMESTAMPNS_NEW:
1421 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1422 		break;
1423 
1424 	case SO_TIMESTAMPING_OLD:
1425 		v.val = sk->sk_tsflags;
1426 		break;
1427 
1428 	case SO_RCVTIMEO_OLD:
1429 	case SO_RCVTIMEO_NEW:
1430 		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1431 		break;
1432 
1433 	case SO_SNDTIMEO_OLD:
1434 	case SO_SNDTIMEO_NEW:
1435 		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1436 		break;
1437 
1438 	case SO_RCVLOWAT:
1439 		v.val = sk->sk_rcvlowat;
1440 		break;
1441 
1442 	case SO_SNDLOWAT:
1443 		v.val = 1;
1444 		break;
1445 
1446 	case SO_PASSCRED:
1447 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1448 		break;
1449 
1450 	case SO_PEERCRED:
1451 	{
1452 		struct ucred peercred;
1453 		if (len > sizeof(peercred))
1454 			len = sizeof(peercred);
1455 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1456 		if (copy_to_user(optval, &peercred, len))
1457 			return -EFAULT;
1458 		goto lenout;
1459 	}
1460 
1461 	case SO_PEERGROUPS:
1462 	{
1463 		int ret, n;
1464 
1465 		if (!sk->sk_peer_cred)
1466 			return -ENODATA;
1467 
1468 		n = sk->sk_peer_cred->group_info->ngroups;
1469 		if (len < n * sizeof(gid_t)) {
1470 			len = n * sizeof(gid_t);
1471 			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1472 		}
1473 		len = n * sizeof(gid_t);
1474 
1475 		ret = groups_to_user((gid_t __user *)optval,
1476 				     sk->sk_peer_cred->group_info);
1477 		if (ret)
1478 			return ret;
1479 		goto lenout;
1480 	}
1481 
1482 	case SO_PEERNAME:
1483 	{
1484 		char address[128];
1485 
1486 		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1487 		if (lv < 0)
1488 			return -ENOTCONN;
1489 		if (lv < len)
1490 			return -EINVAL;
1491 		if (copy_to_user(optval, address, len))
1492 			return -EFAULT;
1493 		goto lenout;
1494 	}
1495 
1496 	/* Dubious BSD thing... Probably nobody even uses it, but
1497 	 * the UNIX standard wants it for whatever reason... -DaveM
1498 	 */
1499 	case SO_ACCEPTCONN:
1500 		v.val = sk->sk_state == TCP_LISTEN;
1501 		break;
1502 
1503 	case SO_PASSSEC:
1504 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1505 		break;
1506 
1507 	case SO_PEERSEC:
1508 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1509 
1510 	case SO_MARK:
1511 		v.val = sk->sk_mark;
1512 		break;
1513 
1514 	case SO_RXQ_OVFL:
1515 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1516 		break;
1517 
1518 	case SO_WIFI_STATUS:
1519 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1520 		break;
1521 
1522 	case SO_PEEK_OFF:
1523 		if (!sock->ops->set_peek_off)
1524 			return -EOPNOTSUPP;
1525 
1526 		v.val = sk->sk_peek_off;
1527 		break;
1528 	case SO_NOFCS:
1529 		v.val = sock_flag(sk, SOCK_NOFCS);
1530 		break;
1531 
1532 	case SO_BINDTODEVICE:
1533 		return sock_getbindtodevice(sk, optval, optlen, len);
1534 
1535 	case SO_GET_FILTER:
1536 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1537 		if (len < 0)
1538 			return len;
1539 
1540 		goto lenout;
1541 
1542 	case SO_LOCK_FILTER:
1543 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1544 		break;
1545 
1546 	case SO_BPF_EXTENSIONS:
1547 		v.val = bpf_tell_extensions();
1548 		break;
1549 
1550 	case SO_SELECT_ERR_QUEUE:
1551 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1552 		break;
1553 
1554 #ifdef CONFIG_NET_RX_BUSY_POLL
1555 	case SO_BUSY_POLL:
1556 		v.val = sk->sk_ll_usec;
1557 		break;
1558 	case SO_PREFER_BUSY_POLL:
1559 		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1560 		break;
1561 #endif
1562 
1563 	case SO_MAX_PACING_RATE:
1564 		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1565 			lv = sizeof(v.ulval);
1566 			v.ulval = sk->sk_max_pacing_rate;
1567 		} else {
1568 			/* 32bit version */
1569 			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1570 		}
1571 		break;
1572 
1573 	case SO_INCOMING_CPU:
1574 		v.val = READ_ONCE(sk->sk_incoming_cpu);
1575 		break;
1576 
1577 	case SO_MEMINFO:
1578 	{
1579 		u32 meminfo[SK_MEMINFO_VARS];
1580 
1581 		sk_get_meminfo(sk, meminfo);
1582 
1583 		len = min_t(unsigned int, len, sizeof(meminfo));
1584 		if (copy_to_user(optval, &meminfo, len))
1585 			return -EFAULT;
1586 
1587 		goto lenout;
1588 	}
1589 
1590 #ifdef CONFIG_NET_RX_BUSY_POLL
1591 	case SO_INCOMING_NAPI_ID:
1592 		v.val = READ_ONCE(sk->sk_napi_id);
1593 
1594 		/* aggregate non-NAPI IDs down to 0 */
1595 		if (v.val < MIN_NAPI_ID)
1596 			v.val = 0;
1597 
1598 		break;
1599 #endif
1600 
1601 	case SO_COOKIE:
1602 		lv = sizeof(u64);
1603 		if (len < lv)
1604 			return -EINVAL;
1605 		v.val64 = sock_gen_cookie(sk);
1606 		break;
1607 
1608 	case SO_ZEROCOPY:
1609 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1610 		break;
1611 
1612 	case SO_TXTIME:
1613 		lv = sizeof(v.txtime);
1614 		v.txtime.clockid = sk->sk_clockid;
1615 		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1616 				  SOF_TXTIME_DEADLINE_MODE : 0;
1617 		v.txtime.flags |= sk->sk_txtime_report_errors ?
1618 				  SOF_TXTIME_REPORT_ERRORS : 0;
1619 		break;
1620 
1621 	case SO_BINDTOIFINDEX:
1622 		v.val = sk->sk_bound_dev_if;
1623 		break;
1624 
1625 	default:
1626 		/* We implement the SO_SNDLOWAT etc to not be settable
1627 		 * (1003.1g 7).
1628 		 */
1629 		return -ENOPROTOOPT;
1630 	}
1631 
1632 	if (len > lv)
1633 		len = lv;
1634 	if (copy_to_user(optval, &v, len))
1635 		return -EFAULT;
1636 lenout:
1637 	if (put_user(len, optlen))
1638 		return -EFAULT;
1639 	return 0;
1640 }
1641 
1642 /*
1643  * Initialize an sk_lock.
1644  *
1645  * (We also register the sk_lock with the lock validator.)
1646  */
1647 static inline void sock_lock_init(struct sock *sk)
1648 {
1649 	if (sk->sk_kern_sock)
1650 		sock_lock_init_class_and_name(
1651 			sk,
1652 			af_family_kern_slock_key_strings[sk->sk_family],
1653 			af_family_kern_slock_keys + sk->sk_family,
1654 			af_family_kern_key_strings[sk->sk_family],
1655 			af_family_kern_keys + sk->sk_family);
1656 	else
1657 		sock_lock_init_class_and_name(
1658 			sk,
1659 			af_family_slock_key_strings[sk->sk_family],
1660 			af_family_slock_keys + sk->sk_family,
1661 			af_family_key_strings[sk->sk_family],
1662 			af_family_keys + sk->sk_family);
1663 }
1664 
1665 /*
1666  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1667  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1668  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1669  */
1670 static void sock_copy(struct sock *nsk, const struct sock *osk)
1671 {
1672 	const struct proto *prot = READ_ONCE(osk->sk_prot);
1673 #ifdef CONFIG_SECURITY_NETWORK
1674 	void *sptr = nsk->sk_security;
1675 #endif
1676 
1677 	/* If we move sk_tx_queue_mapping out of the private section,
1678 	 * we must check if sk_tx_queue_clear() is called after
1679 	 * sock_copy() in sk_clone_lock().
1680 	 */
1681 	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
1682 		     offsetof(struct sock, sk_dontcopy_begin) ||
1683 		     offsetof(struct sock, sk_tx_queue_mapping) >=
1684 		     offsetof(struct sock, sk_dontcopy_end));
1685 
1686 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1687 
1688 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1689 	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1690 
1691 #ifdef CONFIG_SECURITY_NETWORK
1692 	nsk->sk_security = sptr;
1693 	security_sk_clone(osk, nsk);
1694 #endif
1695 }
1696 
1697 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1698 		int family)
1699 {
1700 	struct sock *sk;
1701 	struct kmem_cache *slab;
1702 
1703 	slab = prot->slab;
1704 	if (slab != NULL) {
1705 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1706 		if (!sk)
1707 			return sk;
1708 		if (want_init_on_alloc(priority))
1709 			sk_prot_clear_nulls(sk, prot->obj_size);
1710 	} else
1711 		sk = kmalloc(prot->obj_size, priority);
1712 
1713 	if (sk != NULL) {
1714 		if (security_sk_alloc(sk, family, priority))
1715 			goto out_free;
1716 
1717 		if (!try_module_get(prot->owner))
1718 			goto out_free_sec;
1719 	}
1720 
1721 	return sk;
1722 
1723 out_free_sec:
1724 	security_sk_free(sk);
1725 out_free:
1726 	if (slab != NULL)
1727 		kmem_cache_free(slab, sk);
1728 	else
1729 		kfree(sk);
1730 	return NULL;
1731 }
1732 
1733 static void sk_prot_free(struct proto *prot, struct sock *sk)
1734 {
1735 	struct kmem_cache *slab;
1736 	struct module *owner;
1737 
1738 	owner = prot->owner;
1739 	slab = prot->slab;
1740 
1741 	cgroup_sk_free(&sk->sk_cgrp_data);
1742 	mem_cgroup_sk_free(sk);
1743 	security_sk_free(sk);
1744 	if (slab != NULL)
1745 		kmem_cache_free(slab, sk);
1746 	else
1747 		kfree(sk);
1748 	module_put(owner);
1749 }
1750 
1751 /**
1752  *	sk_alloc - All socket objects are allocated here
1753  *	@net: the applicable net namespace
1754  *	@family: protocol family
1755  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1756  *	@prot: struct proto associated with this new sock instance
1757  *	@kern: is this to be a kernel socket?
1758  */
1759 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1760 		      struct proto *prot, int kern)
1761 {
1762 	struct sock *sk;
1763 
1764 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1765 	if (sk) {
1766 		sk->sk_family = family;
1767 		/*
1768 		 * See comment in struct sock definition to understand
1769 		 * why we need sk_prot_creator -acme
1770 		 */
1771 		sk->sk_prot = sk->sk_prot_creator = prot;
1772 		sk->sk_kern_sock = kern;
1773 		sock_lock_init(sk);
1774 		sk->sk_net_refcnt = kern ? 0 : 1;
1775 		if (likely(sk->sk_net_refcnt)) {
1776 			get_net(net);
1777 			sock_inuse_add(net, 1);
1778 		}
1779 
1780 		sock_net_set(sk, net);
1781 		refcount_set(&sk->sk_wmem_alloc, 1);
1782 
1783 		mem_cgroup_sk_alloc(sk);
1784 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1785 		sock_update_classid(&sk->sk_cgrp_data);
1786 		sock_update_netprioidx(&sk->sk_cgrp_data);
1787 		sk_tx_queue_clear(sk);
1788 	}
1789 
1790 	return sk;
1791 }
1792 EXPORT_SYMBOL(sk_alloc);
1793 
1794 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1795  * grace period. This is the case for UDP sockets and TCP listeners.
1796  */
1797 static void __sk_destruct(struct rcu_head *head)
1798 {
1799 	struct sock *sk = container_of(head, struct sock, sk_rcu);
1800 	struct sk_filter *filter;
1801 
1802 	if (sk->sk_destruct)
1803 		sk->sk_destruct(sk);
1804 
1805 	filter = rcu_dereference_check(sk->sk_filter,
1806 				       refcount_read(&sk->sk_wmem_alloc) == 0);
1807 	if (filter) {
1808 		sk_filter_uncharge(sk, filter);
1809 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1810 	}
1811 
1812 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1813 
1814 #ifdef CONFIG_BPF_SYSCALL
1815 	bpf_sk_storage_free(sk);
1816 #endif
1817 
1818 	if (atomic_read(&sk->sk_omem_alloc))
1819 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1820 			 __func__, atomic_read(&sk->sk_omem_alloc));
1821 
1822 	if (sk->sk_frag.page) {
1823 		put_page(sk->sk_frag.page);
1824 		sk->sk_frag.page = NULL;
1825 	}
1826 
1827 	if (sk->sk_peer_cred)
1828 		put_cred(sk->sk_peer_cred);
1829 	put_pid(sk->sk_peer_pid);
1830 	if (likely(sk->sk_net_refcnt))
1831 		put_net(sock_net(sk));
1832 	sk_prot_free(sk->sk_prot_creator, sk);
1833 }
1834 
1835 void sk_destruct(struct sock *sk)
1836 {
1837 	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1838 
1839 	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1840 		reuseport_detach_sock(sk);
1841 		use_call_rcu = true;
1842 	}
1843 
1844 	if (use_call_rcu)
1845 		call_rcu(&sk->sk_rcu, __sk_destruct);
1846 	else
1847 		__sk_destruct(&sk->sk_rcu);
1848 }
1849 
1850 static void __sk_free(struct sock *sk)
1851 {
1852 	if (likely(sk->sk_net_refcnt))
1853 		sock_inuse_add(sock_net(sk), -1);
1854 
1855 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1856 		sock_diag_broadcast_destroy(sk);
1857 	else
1858 		sk_destruct(sk);
1859 }
1860 
1861 void sk_free(struct sock *sk)
1862 {
1863 	/*
1864 	 * We subtract one from sk_wmem_alloc and can know if
1865 	 * some packets are still in some tx queue.
1866 	 * If not null, sock_wfree() will call __sk_free(sk) later
1867 	 */
1868 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1869 		__sk_free(sk);
1870 }
1871 EXPORT_SYMBOL(sk_free);
1872 
1873 static void sk_init_common(struct sock *sk)
1874 {
1875 	skb_queue_head_init(&sk->sk_receive_queue);
1876 	skb_queue_head_init(&sk->sk_write_queue);
1877 	skb_queue_head_init(&sk->sk_error_queue);
1878 
1879 	rwlock_init(&sk->sk_callback_lock);
1880 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1881 			af_rlock_keys + sk->sk_family,
1882 			af_family_rlock_key_strings[sk->sk_family]);
1883 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1884 			af_wlock_keys + sk->sk_family,
1885 			af_family_wlock_key_strings[sk->sk_family]);
1886 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1887 			af_elock_keys + sk->sk_family,
1888 			af_family_elock_key_strings[sk->sk_family]);
1889 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1890 			af_callback_keys + sk->sk_family,
1891 			af_family_clock_key_strings[sk->sk_family]);
1892 }
1893 
1894 /**
1895  *	sk_clone_lock - clone a socket, and lock its clone
1896  *	@sk: the socket to clone
1897  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1898  *
1899  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1900  */
1901 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1902 {
1903 	struct proto *prot = READ_ONCE(sk->sk_prot);
1904 	struct sk_filter *filter;
1905 	bool is_charged = true;
1906 	struct sock *newsk;
1907 
1908 	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
1909 	if (!newsk)
1910 		goto out;
1911 
1912 	sock_copy(newsk, sk);
1913 
1914 	newsk->sk_prot_creator = prot;
1915 
1916 	/* SANITY */
1917 	if (likely(newsk->sk_net_refcnt))
1918 		get_net(sock_net(newsk));
1919 	sk_node_init(&newsk->sk_node);
1920 	sock_lock_init(newsk);
1921 	bh_lock_sock(newsk);
1922 	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1923 	newsk->sk_backlog.len = 0;
1924 
1925 	atomic_set(&newsk->sk_rmem_alloc, 0);
1926 
1927 	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
1928 	refcount_set(&newsk->sk_wmem_alloc, 1);
1929 
1930 	atomic_set(&newsk->sk_omem_alloc, 0);
1931 	sk_init_common(newsk);
1932 
1933 	newsk->sk_dst_cache	= NULL;
1934 	newsk->sk_dst_pending_confirm = 0;
1935 	newsk->sk_wmem_queued	= 0;
1936 	newsk->sk_forward_alloc = 0;
1937 	atomic_set(&newsk->sk_drops, 0);
1938 	newsk->sk_send_head	= NULL;
1939 	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1940 	atomic_set(&newsk->sk_zckey, 0);
1941 
1942 	sock_reset_flag(newsk, SOCK_DONE);
1943 
1944 	/* sk->sk_memcg will be populated at accept() time */
1945 	newsk->sk_memcg = NULL;
1946 
1947 	cgroup_sk_clone(&newsk->sk_cgrp_data);
1948 
1949 	rcu_read_lock();
1950 	filter = rcu_dereference(sk->sk_filter);
1951 	if (filter != NULL)
1952 		/* though it's an empty new sock, the charging may fail
1953 		 * if sysctl_optmem_max was changed between creation of
1954 		 * original socket and cloning
1955 		 */
1956 		is_charged = sk_filter_charge(newsk, filter);
1957 	RCU_INIT_POINTER(newsk->sk_filter, filter);
1958 	rcu_read_unlock();
1959 
1960 	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1961 		/* We need to make sure that we don't uncharge the new
1962 		 * socket if we couldn't charge it in the first place
1963 		 * as otherwise we uncharge the parent's filter.
1964 		 */
1965 		if (!is_charged)
1966 			RCU_INIT_POINTER(newsk->sk_filter, NULL);
1967 		sk_free_unlock_clone(newsk);
1968 		newsk = NULL;
1969 		goto out;
1970 	}
1971 	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1972 
1973 	if (bpf_sk_storage_clone(sk, newsk)) {
1974 		sk_free_unlock_clone(newsk);
1975 		newsk = NULL;
1976 		goto out;
1977 	}
1978 
1979 	/* Clear sk_user_data if parent had the pointer tagged
1980 	 * as not suitable for copying when cloning.
1981 	 */
1982 	if (sk_user_data_is_nocopy(newsk))
1983 		newsk->sk_user_data = NULL;
1984 
1985 	newsk->sk_err	   = 0;
1986 	newsk->sk_err_soft = 0;
1987 	newsk->sk_priority = 0;
1988 	newsk->sk_incoming_cpu = raw_smp_processor_id();
1989 	if (likely(newsk->sk_net_refcnt))
1990 		sock_inuse_add(sock_net(newsk), 1);
1991 
1992 	/* Before updating sk_refcnt, we must commit prior changes to memory
1993 	 * (Documentation/RCU/rculist_nulls.rst for details)
1994 	 */
1995 	smp_wmb();
1996 	refcount_set(&newsk->sk_refcnt, 2);
1997 
1998 	/* Increment the counter in the same struct proto as the master
1999 	 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2000 	 * is the same as sk->sk_prot->socks, as this field was copied
2001 	 * with memcpy).
2002 	 *
2003 	 * This _changes_ the previous behaviour, where
2004 	 * tcp_create_openreq_child always was incrementing the
2005 	 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2006 	 * to be taken into account in all callers. -acme
2007 	 */
2008 	sk_refcnt_debug_inc(newsk);
2009 	sk_set_socket(newsk, NULL);
2010 	sk_tx_queue_clear(newsk);
2011 	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2012 
2013 	if (newsk->sk_prot->sockets_allocated)
2014 		sk_sockets_allocated_inc(newsk);
2015 
2016 	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2017 		net_enable_timestamp();
2018 out:
2019 	return newsk;
2020 }
2021 EXPORT_SYMBOL_GPL(sk_clone_lock);
2022 
2023 void sk_free_unlock_clone(struct sock *sk)
2024 {
2025 	/* It is still raw copy of parent, so invalidate
2026 	 * destructor and make plain sk_free() */
2027 	sk->sk_destruct = NULL;
2028 	bh_unlock_sock(sk);
2029 	sk_free(sk);
2030 }
2031 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2032 
2033 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2034 {
2035 	u32 max_segs = 1;
2036 
2037 	sk_dst_set(sk, dst);
2038 	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2039 	if (sk->sk_route_caps & NETIF_F_GSO)
2040 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2041 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
2042 	if (sk_can_gso(sk)) {
2043 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2044 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2045 		} else {
2046 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2047 			sk->sk_gso_max_size = dst->dev->gso_max_size;
2048 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2049 		}
2050 	}
2051 	sk->sk_gso_max_segs = max_segs;
2052 }
2053 EXPORT_SYMBOL_GPL(sk_setup_caps);
2054 
2055 /*
2056  *	Simple resource managers for sockets.
2057  */
2058 
2059 
2060 /*
2061  * Write buffer destructor automatically called from kfree_skb.
2062  */
2063 void sock_wfree(struct sk_buff *skb)
2064 {
2065 	struct sock *sk = skb->sk;
2066 	unsigned int len = skb->truesize;
2067 
2068 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2069 		/*
2070 		 * Keep a reference on sk_wmem_alloc, this will be released
2071 		 * after sk_write_space() call
2072 		 */
2073 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2074 		sk->sk_write_space(sk);
2075 		len = 1;
2076 	}
2077 	/*
2078 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2079 	 * could not do because of in-flight packets
2080 	 */
2081 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2082 		__sk_free(sk);
2083 }
2084 EXPORT_SYMBOL(sock_wfree);
2085 
2086 /* This variant of sock_wfree() is used by TCP,
2087  * since it sets SOCK_USE_WRITE_QUEUE.
2088  */
2089 void __sock_wfree(struct sk_buff *skb)
2090 {
2091 	struct sock *sk = skb->sk;
2092 
2093 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2094 		__sk_free(sk);
2095 }
2096 
2097 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2098 {
2099 	skb_orphan(skb);
2100 	skb->sk = sk;
2101 #ifdef CONFIG_INET
2102 	if (unlikely(!sk_fullsock(sk))) {
2103 		skb->destructor = sock_edemux;
2104 		sock_hold(sk);
2105 		return;
2106 	}
2107 #endif
2108 	skb->destructor = sock_wfree;
2109 	skb_set_hash_from_sk(skb, sk);
2110 	/*
2111 	 * We used to take a refcount on sk, but following operation
2112 	 * is enough to guarantee sk_free() wont free this sock until
2113 	 * all in-flight packets are completed
2114 	 */
2115 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2116 }
2117 EXPORT_SYMBOL(skb_set_owner_w);
2118 
2119 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2120 {
2121 #ifdef CONFIG_TLS_DEVICE
2122 	/* Drivers depend on in-order delivery for crypto offload,
2123 	 * partial orphan breaks out-of-order-OK logic.
2124 	 */
2125 	if (skb->decrypted)
2126 		return false;
2127 #endif
2128 	return (skb->destructor == sock_wfree ||
2129 		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2130 }
2131 
2132 /* This helper is used by netem, as it can hold packets in its
2133  * delay queue. We want to allow the owner socket to send more
2134  * packets, as if they were already TX completed by a typical driver.
2135  * But we also want to keep skb->sk set because some packet schedulers
2136  * rely on it (sch_fq for example).
2137  */
2138 void skb_orphan_partial(struct sk_buff *skb)
2139 {
2140 	if (skb_is_tcp_pure_ack(skb))
2141 		return;
2142 
2143 	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2144 		return;
2145 
2146 	skb_orphan(skb);
2147 }
2148 EXPORT_SYMBOL(skb_orphan_partial);
2149 
2150 /*
2151  * Read buffer destructor automatically called from kfree_skb.
2152  */
2153 void sock_rfree(struct sk_buff *skb)
2154 {
2155 	struct sock *sk = skb->sk;
2156 	unsigned int len = skb->truesize;
2157 
2158 	atomic_sub(len, &sk->sk_rmem_alloc);
2159 	sk_mem_uncharge(sk, len);
2160 }
2161 EXPORT_SYMBOL(sock_rfree);
2162 
2163 /*
2164  * Buffer destructor for skbs that are not used directly in read or write
2165  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2166  */
2167 void sock_efree(struct sk_buff *skb)
2168 {
2169 	sock_put(skb->sk);
2170 }
2171 EXPORT_SYMBOL(sock_efree);
2172 
2173 /* Buffer destructor for prefetch/receive path where reference count may
2174  * not be held, e.g. for listen sockets.
2175  */
2176 #ifdef CONFIG_INET
2177 void sock_pfree(struct sk_buff *skb)
2178 {
2179 	if (sk_is_refcounted(skb->sk))
2180 		sock_gen_put(skb->sk);
2181 }
2182 EXPORT_SYMBOL(sock_pfree);
2183 #endif /* CONFIG_INET */
2184 
2185 kuid_t sock_i_uid(struct sock *sk)
2186 {
2187 	kuid_t uid;
2188 
2189 	read_lock_bh(&sk->sk_callback_lock);
2190 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2191 	read_unlock_bh(&sk->sk_callback_lock);
2192 	return uid;
2193 }
2194 EXPORT_SYMBOL(sock_i_uid);
2195 
2196 unsigned long sock_i_ino(struct sock *sk)
2197 {
2198 	unsigned long ino;
2199 
2200 	read_lock_bh(&sk->sk_callback_lock);
2201 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2202 	read_unlock_bh(&sk->sk_callback_lock);
2203 	return ino;
2204 }
2205 EXPORT_SYMBOL(sock_i_ino);
2206 
2207 /*
2208  * Allocate a skb from the socket's send buffer.
2209  */
2210 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2211 			     gfp_t priority)
2212 {
2213 	if (force ||
2214 	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2215 		struct sk_buff *skb = alloc_skb(size, priority);
2216 
2217 		if (skb) {
2218 			skb_set_owner_w(skb, sk);
2219 			return skb;
2220 		}
2221 	}
2222 	return NULL;
2223 }
2224 EXPORT_SYMBOL(sock_wmalloc);
2225 
2226 static void sock_ofree(struct sk_buff *skb)
2227 {
2228 	struct sock *sk = skb->sk;
2229 
2230 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2231 }
2232 
2233 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2234 			     gfp_t priority)
2235 {
2236 	struct sk_buff *skb;
2237 
2238 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2239 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2240 	    sysctl_optmem_max)
2241 		return NULL;
2242 
2243 	skb = alloc_skb(size, priority);
2244 	if (!skb)
2245 		return NULL;
2246 
2247 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2248 	skb->sk = sk;
2249 	skb->destructor = sock_ofree;
2250 	return skb;
2251 }
2252 
2253 /*
2254  * Allocate a memory block from the socket's option memory buffer.
2255  */
2256 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2257 {
2258 	if ((unsigned int)size <= sysctl_optmem_max &&
2259 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2260 		void *mem;
2261 		/* First do the add, to avoid the race if kmalloc
2262 		 * might sleep.
2263 		 */
2264 		atomic_add(size, &sk->sk_omem_alloc);
2265 		mem = kmalloc(size, priority);
2266 		if (mem)
2267 			return mem;
2268 		atomic_sub(size, &sk->sk_omem_alloc);
2269 	}
2270 	return NULL;
2271 }
2272 EXPORT_SYMBOL(sock_kmalloc);
2273 
2274 /* Free an option memory block. Note, we actually want the inline
2275  * here as this allows gcc to detect the nullify and fold away the
2276  * condition entirely.
2277  */
2278 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2279 				  const bool nullify)
2280 {
2281 	if (WARN_ON_ONCE(!mem))
2282 		return;
2283 	if (nullify)
2284 		kfree_sensitive(mem);
2285 	else
2286 		kfree(mem);
2287 	atomic_sub(size, &sk->sk_omem_alloc);
2288 }
2289 
2290 void sock_kfree_s(struct sock *sk, void *mem, int size)
2291 {
2292 	__sock_kfree_s(sk, mem, size, false);
2293 }
2294 EXPORT_SYMBOL(sock_kfree_s);
2295 
2296 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2297 {
2298 	__sock_kfree_s(sk, mem, size, true);
2299 }
2300 EXPORT_SYMBOL(sock_kzfree_s);
2301 
2302 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2303    I think, these locks should be removed for datagram sockets.
2304  */
2305 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2306 {
2307 	DEFINE_WAIT(wait);
2308 
2309 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2310 	for (;;) {
2311 		if (!timeo)
2312 			break;
2313 		if (signal_pending(current))
2314 			break;
2315 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2316 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2317 		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2318 			break;
2319 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2320 			break;
2321 		if (sk->sk_err)
2322 			break;
2323 		timeo = schedule_timeout(timeo);
2324 	}
2325 	finish_wait(sk_sleep(sk), &wait);
2326 	return timeo;
2327 }
2328 
2329 
2330 /*
2331  *	Generic send/receive buffer handlers
2332  */
2333 
2334 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2335 				     unsigned long data_len, int noblock,
2336 				     int *errcode, int max_page_order)
2337 {
2338 	struct sk_buff *skb;
2339 	long timeo;
2340 	int err;
2341 
2342 	timeo = sock_sndtimeo(sk, noblock);
2343 	for (;;) {
2344 		err = sock_error(sk);
2345 		if (err != 0)
2346 			goto failure;
2347 
2348 		err = -EPIPE;
2349 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2350 			goto failure;
2351 
2352 		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2353 			break;
2354 
2355 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2356 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2357 		err = -EAGAIN;
2358 		if (!timeo)
2359 			goto failure;
2360 		if (signal_pending(current))
2361 			goto interrupted;
2362 		timeo = sock_wait_for_wmem(sk, timeo);
2363 	}
2364 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2365 				   errcode, sk->sk_allocation);
2366 	if (skb)
2367 		skb_set_owner_w(skb, sk);
2368 	return skb;
2369 
2370 interrupted:
2371 	err = sock_intr_errno(timeo);
2372 failure:
2373 	*errcode = err;
2374 	return NULL;
2375 }
2376 EXPORT_SYMBOL(sock_alloc_send_pskb);
2377 
2378 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2379 				    int noblock, int *errcode)
2380 {
2381 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2382 }
2383 EXPORT_SYMBOL(sock_alloc_send_skb);
2384 
2385 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2386 		     struct sockcm_cookie *sockc)
2387 {
2388 	u32 tsflags;
2389 
2390 	switch (cmsg->cmsg_type) {
2391 	case SO_MARK:
2392 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2393 			return -EPERM;
2394 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2395 			return -EINVAL;
2396 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2397 		break;
2398 	case SO_TIMESTAMPING_OLD:
2399 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2400 			return -EINVAL;
2401 
2402 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2403 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2404 			return -EINVAL;
2405 
2406 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2407 		sockc->tsflags |= tsflags;
2408 		break;
2409 	case SCM_TXTIME:
2410 		if (!sock_flag(sk, SOCK_TXTIME))
2411 			return -EINVAL;
2412 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2413 			return -EINVAL;
2414 		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2415 		break;
2416 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2417 	case SCM_RIGHTS:
2418 	case SCM_CREDENTIALS:
2419 		break;
2420 	default:
2421 		return -EINVAL;
2422 	}
2423 	return 0;
2424 }
2425 EXPORT_SYMBOL(__sock_cmsg_send);
2426 
2427 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2428 		   struct sockcm_cookie *sockc)
2429 {
2430 	struct cmsghdr *cmsg;
2431 	int ret;
2432 
2433 	for_each_cmsghdr(cmsg, msg) {
2434 		if (!CMSG_OK(msg, cmsg))
2435 			return -EINVAL;
2436 		if (cmsg->cmsg_level != SOL_SOCKET)
2437 			continue;
2438 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2439 		if (ret)
2440 			return ret;
2441 	}
2442 	return 0;
2443 }
2444 EXPORT_SYMBOL(sock_cmsg_send);
2445 
2446 static void sk_enter_memory_pressure(struct sock *sk)
2447 {
2448 	if (!sk->sk_prot->enter_memory_pressure)
2449 		return;
2450 
2451 	sk->sk_prot->enter_memory_pressure(sk);
2452 }
2453 
2454 static void sk_leave_memory_pressure(struct sock *sk)
2455 {
2456 	if (sk->sk_prot->leave_memory_pressure) {
2457 		sk->sk_prot->leave_memory_pressure(sk);
2458 	} else {
2459 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2460 
2461 		if (memory_pressure && READ_ONCE(*memory_pressure))
2462 			WRITE_ONCE(*memory_pressure, 0);
2463 	}
2464 }
2465 
2466 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2467 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2468 
2469 /**
2470  * skb_page_frag_refill - check that a page_frag contains enough room
2471  * @sz: minimum size of the fragment we want to get
2472  * @pfrag: pointer to page_frag
2473  * @gfp: priority for memory allocation
2474  *
2475  * Note: While this allocator tries to use high order pages, there is
2476  * no guarantee that allocations succeed. Therefore, @sz MUST be
2477  * less or equal than PAGE_SIZE.
2478  */
2479 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2480 {
2481 	if (pfrag->page) {
2482 		if (page_ref_count(pfrag->page) == 1) {
2483 			pfrag->offset = 0;
2484 			return true;
2485 		}
2486 		if (pfrag->offset + sz <= pfrag->size)
2487 			return true;
2488 		put_page(pfrag->page);
2489 	}
2490 
2491 	pfrag->offset = 0;
2492 	if (SKB_FRAG_PAGE_ORDER &&
2493 	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2494 		/* Avoid direct reclaim but allow kswapd to wake */
2495 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2496 					  __GFP_COMP | __GFP_NOWARN |
2497 					  __GFP_NORETRY,
2498 					  SKB_FRAG_PAGE_ORDER);
2499 		if (likely(pfrag->page)) {
2500 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2501 			return true;
2502 		}
2503 	}
2504 	pfrag->page = alloc_page(gfp);
2505 	if (likely(pfrag->page)) {
2506 		pfrag->size = PAGE_SIZE;
2507 		return true;
2508 	}
2509 	return false;
2510 }
2511 EXPORT_SYMBOL(skb_page_frag_refill);
2512 
2513 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2514 {
2515 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2516 		return true;
2517 
2518 	sk_enter_memory_pressure(sk);
2519 	sk_stream_moderate_sndbuf(sk);
2520 	return false;
2521 }
2522 EXPORT_SYMBOL(sk_page_frag_refill);
2523 
2524 void __lock_sock(struct sock *sk)
2525 	__releases(&sk->sk_lock.slock)
2526 	__acquires(&sk->sk_lock.slock)
2527 {
2528 	DEFINE_WAIT(wait);
2529 
2530 	for (;;) {
2531 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2532 					TASK_UNINTERRUPTIBLE);
2533 		spin_unlock_bh(&sk->sk_lock.slock);
2534 		schedule();
2535 		spin_lock_bh(&sk->sk_lock.slock);
2536 		if (!sock_owned_by_user(sk))
2537 			break;
2538 	}
2539 	finish_wait(&sk->sk_lock.wq, &wait);
2540 }
2541 
2542 void __release_sock(struct sock *sk)
2543 	__releases(&sk->sk_lock.slock)
2544 	__acquires(&sk->sk_lock.slock)
2545 {
2546 	struct sk_buff *skb, *next;
2547 
2548 	while ((skb = sk->sk_backlog.head) != NULL) {
2549 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2550 
2551 		spin_unlock_bh(&sk->sk_lock.slock);
2552 
2553 		do {
2554 			next = skb->next;
2555 			prefetch(next);
2556 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2557 			skb_mark_not_on_list(skb);
2558 			sk_backlog_rcv(sk, skb);
2559 
2560 			cond_resched();
2561 
2562 			skb = next;
2563 		} while (skb != NULL);
2564 
2565 		spin_lock_bh(&sk->sk_lock.slock);
2566 	}
2567 
2568 	/*
2569 	 * Doing the zeroing here guarantee we can not loop forever
2570 	 * while a wild producer attempts to flood us.
2571 	 */
2572 	sk->sk_backlog.len = 0;
2573 }
2574 
2575 void __sk_flush_backlog(struct sock *sk)
2576 {
2577 	spin_lock_bh(&sk->sk_lock.slock);
2578 	__release_sock(sk);
2579 	spin_unlock_bh(&sk->sk_lock.slock);
2580 }
2581 
2582 /**
2583  * sk_wait_data - wait for data to arrive at sk_receive_queue
2584  * @sk:    sock to wait on
2585  * @timeo: for how long
2586  * @skb:   last skb seen on sk_receive_queue
2587  *
2588  * Now socket state including sk->sk_err is changed only under lock,
2589  * hence we may omit checks after joining wait queue.
2590  * We check receive queue before schedule() only as optimization;
2591  * it is very likely that release_sock() added new data.
2592  */
2593 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2594 {
2595 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2596 	int rc;
2597 
2598 	add_wait_queue(sk_sleep(sk), &wait);
2599 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2600 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2601 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2602 	remove_wait_queue(sk_sleep(sk), &wait);
2603 	return rc;
2604 }
2605 EXPORT_SYMBOL(sk_wait_data);
2606 
2607 /**
2608  *	__sk_mem_raise_allocated - increase memory_allocated
2609  *	@sk: socket
2610  *	@size: memory size to allocate
2611  *	@amt: pages to allocate
2612  *	@kind: allocation type
2613  *
2614  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2615  */
2616 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2617 {
2618 	struct proto *prot = sk->sk_prot;
2619 	long allocated = sk_memory_allocated_add(sk, amt);
2620 	bool charged = true;
2621 
2622 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2623 	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2624 		goto suppress_allocation;
2625 
2626 	/* Under limit. */
2627 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2628 		sk_leave_memory_pressure(sk);
2629 		return 1;
2630 	}
2631 
2632 	/* Under pressure. */
2633 	if (allocated > sk_prot_mem_limits(sk, 1))
2634 		sk_enter_memory_pressure(sk);
2635 
2636 	/* Over hard limit. */
2637 	if (allocated > sk_prot_mem_limits(sk, 2))
2638 		goto suppress_allocation;
2639 
2640 	/* guarantee minimum buffer size under pressure */
2641 	if (kind == SK_MEM_RECV) {
2642 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2643 			return 1;
2644 
2645 	} else { /* SK_MEM_SEND */
2646 		int wmem0 = sk_get_wmem0(sk, prot);
2647 
2648 		if (sk->sk_type == SOCK_STREAM) {
2649 			if (sk->sk_wmem_queued < wmem0)
2650 				return 1;
2651 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2652 				return 1;
2653 		}
2654 	}
2655 
2656 	if (sk_has_memory_pressure(sk)) {
2657 		u64 alloc;
2658 
2659 		if (!sk_under_memory_pressure(sk))
2660 			return 1;
2661 		alloc = sk_sockets_allocated_read_positive(sk);
2662 		if (sk_prot_mem_limits(sk, 2) > alloc *
2663 		    sk_mem_pages(sk->sk_wmem_queued +
2664 				 atomic_read(&sk->sk_rmem_alloc) +
2665 				 sk->sk_forward_alloc))
2666 			return 1;
2667 	}
2668 
2669 suppress_allocation:
2670 
2671 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2672 		sk_stream_moderate_sndbuf(sk);
2673 
2674 		/* Fail only if socket is _under_ its sndbuf.
2675 		 * In this case we cannot block, so that we have to fail.
2676 		 */
2677 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2678 			return 1;
2679 	}
2680 
2681 	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2682 		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2683 
2684 	sk_memory_allocated_sub(sk, amt);
2685 
2686 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2687 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2688 
2689 	return 0;
2690 }
2691 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2692 
2693 /**
2694  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2695  *	@sk: socket
2696  *	@size: memory size to allocate
2697  *	@kind: allocation type
2698  *
2699  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2700  *	rmem allocation. This function assumes that protocols which have
2701  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2702  */
2703 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2704 {
2705 	int ret, amt = sk_mem_pages(size);
2706 
2707 	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2708 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2709 	if (!ret)
2710 		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2711 	return ret;
2712 }
2713 EXPORT_SYMBOL(__sk_mem_schedule);
2714 
2715 /**
2716  *	__sk_mem_reduce_allocated - reclaim memory_allocated
2717  *	@sk: socket
2718  *	@amount: number of quanta
2719  *
2720  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2721  */
2722 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2723 {
2724 	sk_memory_allocated_sub(sk, amount);
2725 
2726 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2727 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2728 
2729 	if (sk_under_memory_pressure(sk) &&
2730 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2731 		sk_leave_memory_pressure(sk);
2732 }
2733 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2734 
2735 /**
2736  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2737  *	@sk: socket
2738  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2739  */
2740 void __sk_mem_reclaim(struct sock *sk, int amount)
2741 {
2742 	amount >>= SK_MEM_QUANTUM_SHIFT;
2743 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2744 	__sk_mem_reduce_allocated(sk, amount);
2745 }
2746 EXPORT_SYMBOL(__sk_mem_reclaim);
2747 
2748 int sk_set_peek_off(struct sock *sk, int val)
2749 {
2750 	sk->sk_peek_off = val;
2751 	return 0;
2752 }
2753 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2754 
2755 /*
2756  * Set of default routines for initialising struct proto_ops when
2757  * the protocol does not support a particular function. In certain
2758  * cases where it makes no sense for a protocol to have a "do nothing"
2759  * function, some default processing is provided.
2760  */
2761 
2762 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2763 {
2764 	return -EOPNOTSUPP;
2765 }
2766 EXPORT_SYMBOL(sock_no_bind);
2767 
2768 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2769 		    int len, int flags)
2770 {
2771 	return -EOPNOTSUPP;
2772 }
2773 EXPORT_SYMBOL(sock_no_connect);
2774 
2775 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2776 {
2777 	return -EOPNOTSUPP;
2778 }
2779 EXPORT_SYMBOL(sock_no_socketpair);
2780 
2781 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2782 		   bool kern)
2783 {
2784 	return -EOPNOTSUPP;
2785 }
2786 EXPORT_SYMBOL(sock_no_accept);
2787 
2788 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2789 		    int peer)
2790 {
2791 	return -EOPNOTSUPP;
2792 }
2793 EXPORT_SYMBOL(sock_no_getname);
2794 
2795 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2796 {
2797 	return -EOPNOTSUPP;
2798 }
2799 EXPORT_SYMBOL(sock_no_ioctl);
2800 
2801 int sock_no_listen(struct socket *sock, int backlog)
2802 {
2803 	return -EOPNOTSUPP;
2804 }
2805 EXPORT_SYMBOL(sock_no_listen);
2806 
2807 int sock_no_shutdown(struct socket *sock, int how)
2808 {
2809 	return -EOPNOTSUPP;
2810 }
2811 EXPORT_SYMBOL(sock_no_shutdown);
2812 
2813 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2814 {
2815 	return -EOPNOTSUPP;
2816 }
2817 EXPORT_SYMBOL(sock_no_sendmsg);
2818 
2819 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2820 {
2821 	return -EOPNOTSUPP;
2822 }
2823 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2824 
2825 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2826 		    int flags)
2827 {
2828 	return -EOPNOTSUPP;
2829 }
2830 EXPORT_SYMBOL(sock_no_recvmsg);
2831 
2832 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2833 {
2834 	/* Mirror missing mmap method error code */
2835 	return -ENODEV;
2836 }
2837 EXPORT_SYMBOL(sock_no_mmap);
2838 
2839 /*
2840  * When a file is received (via SCM_RIGHTS, etc), we must bump the
2841  * various sock-based usage counts.
2842  */
2843 void __receive_sock(struct file *file)
2844 {
2845 	struct socket *sock;
2846 
2847 	sock = sock_from_file(file);
2848 	if (sock) {
2849 		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2850 		sock_update_classid(&sock->sk->sk_cgrp_data);
2851 	}
2852 }
2853 
2854 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2855 {
2856 	ssize_t res;
2857 	struct msghdr msg = {.msg_flags = flags};
2858 	struct kvec iov;
2859 	char *kaddr = kmap(page);
2860 	iov.iov_base = kaddr + offset;
2861 	iov.iov_len = size;
2862 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2863 	kunmap(page);
2864 	return res;
2865 }
2866 EXPORT_SYMBOL(sock_no_sendpage);
2867 
2868 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2869 				int offset, size_t size, int flags)
2870 {
2871 	ssize_t res;
2872 	struct msghdr msg = {.msg_flags = flags};
2873 	struct kvec iov;
2874 	char *kaddr = kmap(page);
2875 
2876 	iov.iov_base = kaddr + offset;
2877 	iov.iov_len = size;
2878 	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2879 	kunmap(page);
2880 	return res;
2881 }
2882 EXPORT_SYMBOL(sock_no_sendpage_locked);
2883 
2884 /*
2885  *	Default Socket Callbacks
2886  */
2887 
2888 static void sock_def_wakeup(struct sock *sk)
2889 {
2890 	struct socket_wq *wq;
2891 
2892 	rcu_read_lock();
2893 	wq = rcu_dereference(sk->sk_wq);
2894 	if (skwq_has_sleeper(wq))
2895 		wake_up_interruptible_all(&wq->wait);
2896 	rcu_read_unlock();
2897 }
2898 
2899 static void sock_def_error_report(struct sock *sk)
2900 {
2901 	struct socket_wq *wq;
2902 
2903 	rcu_read_lock();
2904 	wq = rcu_dereference(sk->sk_wq);
2905 	if (skwq_has_sleeper(wq))
2906 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2907 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2908 	rcu_read_unlock();
2909 }
2910 
2911 void sock_def_readable(struct sock *sk)
2912 {
2913 	struct socket_wq *wq;
2914 
2915 	rcu_read_lock();
2916 	wq = rcu_dereference(sk->sk_wq);
2917 	if (skwq_has_sleeper(wq))
2918 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2919 						EPOLLRDNORM | EPOLLRDBAND);
2920 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2921 	rcu_read_unlock();
2922 }
2923 
2924 static void sock_def_write_space(struct sock *sk)
2925 {
2926 	struct socket_wq *wq;
2927 
2928 	rcu_read_lock();
2929 
2930 	/* Do not wake up a writer until he can make "significant"
2931 	 * progress.  --DaveM
2932 	 */
2933 	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2934 		wq = rcu_dereference(sk->sk_wq);
2935 		if (skwq_has_sleeper(wq))
2936 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2937 						EPOLLWRNORM | EPOLLWRBAND);
2938 
2939 		/* Should agree with poll, otherwise some programs break */
2940 		if (sock_writeable(sk))
2941 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2942 	}
2943 
2944 	rcu_read_unlock();
2945 }
2946 
2947 static void sock_def_destruct(struct sock *sk)
2948 {
2949 }
2950 
2951 void sk_send_sigurg(struct sock *sk)
2952 {
2953 	if (sk->sk_socket && sk->sk_socket->file)
2954 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2955 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2956 }
2957 EXPORT_SYMBOL(sk_send_sigurg);
2958 
2959 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2960 		    unsigned long expires)
2961 {
2962 	if (!mod_timer(timer, expires))
2963 		sock_hold(sk);
2964 }
2965 EXPORT_SYMBOL(sk_reset_timer);
2966 
2967 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2968 {
2969 	if (del_timer(timer))
2970 		__sock_put(sk);
2971 }
2972 EXPORT_SYMBOL(sk_stop_timer);
2973 
2974 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
2975 {
2976 	if (del_timer_sync(timer))
2977 		__sock_put(sk);
2978 }
2979 EXPORT_SYMBOL(sk_stop_timer_sync);
2980 
2981 void sock_init_data(struct socket *sock, struct sock *sk)
2982 {
2983 	sk_init_common(sk);
2984 	sk->sk_send_head	=	NULL;
2985 
2986 	timer_setup(&sk->sk_timer, NULL, 0);
2987 
2988 	sk->sk_allocation	=	GFP_KERNEL;
2989 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2990 	sk->sk_sndbuf		=	sysctl_wmem_default;
2991 	sk->sk_state		=	TCP_CLOSE;
2992 	sk_set_socket(sk, sock);
2993 
2994 	sock_set_flag(sk, SOCK_ZAPPED);
2995 
2996 	if (sock) {
2997 		sk->sk_type	=	sock->type;
2998 		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2999 		sock->sk	=	sk;
3000 		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
3001 	} else {
3002 		RCU_INIT_POINTER(sk->sk_wq, NULL);
3003 		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
3004 	}
3005 
3006 	rwlock_init(&sk->sk_callback_lock);
3007 	if (sk->sk_kern_sock)
3008 		lockdep_set_class_and_name(
3009 			&sk->sk_callback_lock,
3010 			af_kern_callback_keys + sk->sk_family,
3011 			af_family_kern_clock_key_strings[sk->sk_family]);
3012 	else
3013 		lockdep_set_class_and_name(
3014 			&sk->sk_callback_lock,
3015 			af_callback_keys + sk->sk_family,
3016 			af_family_clock_key_strings[sk->sk_family]);
3017 
3018 	sk->sk_state_change	=	sock_def_wakeup;
3019 	sk->sk_data_ready	=	sock_def_readable;
3020 	sk->sk_write_space	=	sock_def_write_space;
3021 	sk->sk_error_report	=	sock_def_error_report;
3022 	sk->sk_destruct		=	sock_def_destruct;
3023 
3024 	sk->sk_frag.page	=	NULL;
3025 	sk->sk_frag.offset	=	0;
3026 	sk->sk_peek_off		=	-1;
3027 
3028 	sk->sk_peer_pid 	=	NULL;
3029 	sk->sk_peer_cred	=	NULL;
3030 	sk->sk_write_pending	=	0;
3031 	sk->sk_rcvlowat		=	1;
3032 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3033 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3034 
3035 	sk->sk_stamp = SK_DEFAULT_STAMP;
3036 #if BITS_PER_LONG==32
3037 	seqlock_init(&sk->sk_stamp_seq);
3038 #endif
3039 	atomic_set(&sk->sk_zckey, 0);
3040 
3041 #ifdef CONFIG_NET_RX_BUSY_POLL
3042 	sk->sk_napi_id		=	0;
3043 	sk->sk_ll_usec		=	sysctl_net_busy_read;
3044 #endif
3045 
3046 	sk->sk_max_pacing_rate = ~0UL;
3047 	sk->sk_pacing_rate = ~0UL;
3048 	WRITE_ONCE(sk->sk_pacing_shift, 10);
3049 	sk->sk_incoming_cpu = -1;
3050 
3051 	sk_rx_queue_clear(sk);
3052 	/*
3053 	 * Before updating sk_refcnt, we must commit prior changes to memory
3054 	 * (Documentation/RCU/rculist_nulls.rst for details)
3055 	 */
3056 	smp_wmb();
3057 	refcount_set(&sk->sk_refcnt, 1);
3058 	atomic_set(&sk->sk_drops, 0);
3059 }
3060 EXPORT_SYMBOL(sock_init_data);
3061 
3062 void lock_sock_nested(struct sock *sk, int subclass)
3063 {
3064 	might_sleep();
3065 	spin_lock_bh(&sk->sk_lock.slock);
3066 	if (sk->sk_lock.owned)
3067 		__lock_sock(sk);
3068 	sk->sk_lock.owned = 1;
3069 	spin_unlock(&sk->sk_lock.slock);
3070 	/*
3071 	 * The sk_lock has mutex_lock() semantics here:
3072 	 */
3073 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3074 	local_bh_enable();
3075 }
3076 EXPORT_SYMBOL(lock_sock_nested);
3077 
3078 void release_sock(struct sock *sk)
3079 {
3080 	spin_lock_bh(&sk->sk_lock.slock);
3081 	if (sk->sk_backlog.tail)
3082 		__release_sock(sk);
3083 
3084 	/* Warning : release_cb() might need to release sk ownership,
3085 	 * ie call sock_release_ownership(sk) before us.
3086 	 */
3087 	if (sk->sk_prot->release_cb)
3088 		sk->sk_prot->release_cb(sk);
3089 
3090 	sock_release_ownership(sk);
3091 	if (waitqueue_active(&sk->sk_lock.wq))
3092 		wake_up(&sk->sk_lock.wq);
3093 	spin_unlock_bh(&sk->sk_lock.slock);
3094 }
3095 EXPORT_SYMBOL(release_sock);
3096 
3097 /**
3098  * lock_sock_fast - fast version of lock_sock
3099  * @sk: socket
3100  *
3101  * This version should be used for very small section, where process wont block
3102  * return false if fast path is taken:
3103  *
3104  *   sk_lock.slock locked, owned = 0, BH disabled
3105  *
3106  * return true if slow path is taken:
3107  *
3108  *   sk_lock.slock unlocked, owned = 1, BH enabled
3109  */
3110 bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3111 {
3112 	might_sleep();
3113 	spin_lock_bh(&sk->sk_lock.slock);
3114 
3115 	if (!sk->sk_lock.owned)
3116 		/*
3117 		 * Note : We must disable BH
3118 		 */
3119 		return false;
3120 
3121 	__lock_sock(sk);
3122 	sk->sk_lock.owned = 1;
3123 	spin_unlock(&sk->sk_lock.slock);
3124 	/*
3125 	 * The sk_lock has mutex_lock() semantics here:
3126 	 */
3127 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3128 	__acquire(&sk->sk_lock.slock);
3129 	local_bh_enable();
3130 	return true;
3131 }
3132 EXPORT_SYMBOL(lock_sock_fast);
3133 
3134 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3135 		   bool timeval, bool time32)
3136 {
3137 	struct sock *sk = sock->sk;
3138 	struct timespec64 ts;
3139 
3140 	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3141 	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3142 	if (ts.tv_sec == -1)
3143 		return -ENOENT;
3144 	if (ts.tv_sec == 0) {
3145 		ktime_t kt = ktime_get_real();
3146 		sock_write_timestamp(sk, kt);
3147 		ts = ktime_to_timespec64(kt);
3148 	}
3149 
3150 	if (timeval)
3151 		ts.tv_nsec /= 1000;
3152 
3153 #ifdef CONFIG_COMPAT_32BIT_TIME
3154 	if (time32)
3155 		return put_old_timespec32(&ts, userstamp);
3156 #endif
3157 #ifdef CONFIG_SPARC64
3158 	/* beware of padding in sparc64 timeval */
3159 	if (timeval && !in_compat_syscall()) {
3160 		struct __kernel_old_timeval __user tv = {
3161 			.tv_sec = ts.tv_sec,
3162 			.tv_usec = ts.tv_nsec,
3163 		};
3164 		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3165 			return -EFAULT;
3166 		return 0;
3167 	}
3168 #endif
3169 	return put_timespec64(&ts, userstamp);
3170 }
3171 EXPORT_SYMBOL(sock_gettstamp);
3172 
3173 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3174 {
3175 	if (!sock_flag(sk, flag)) {
3176 		unsigned long previous_flags = sk->sk_flags;
3177 
3178 		sock_set_flag(sk, flag);
3179 		/*
3180 		 * we just set one of the two flags which require net
3181 		 * time stamping, but time stamping might have been on
3182 		 * already because of the other one
3183 		 */
3184 		if (sock_needs_netstamp(sk) &&
3185 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3186 			net_enable_timestamp();
3187 	}
3188 }
3189 
3190 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3191 		       int level, int type)
3192 {
3193 	struct sock_exterr_skb *serr;
3194 	struct sk_buff *skb;
3195 	int copied, err;
3196 
3197 	err = -EAGAIN;
3198 	skb = sock_dequeue_err_skb(sk);
3199 	if (skb == NULL)
3200 		goto out;
3201 
3202 	copied = skb->len;
3203 	if (copied > len) {
3204 		msg->msg_flags |= MSG_TRUNC;
3205 		copied = len;
3206 	}
3207 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3208 	if (err)
3209 		goto out_free_skb;
3210 
3211 	sock_recv_timestamp(msg, sk, skb);
3212 
3213 	serr = SKB_EXT_ERR(skb);
3214 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3215 
3216 	msg->msg_flags |= MSG_ERRQUEUE;
3217 	err = copied;
3218 
3219 out_free_skb:
3220 	kfree_skb(skb);
3221 out:
3222 	return err;
3223 }
3224 EXPORT_SYMBOL(sock_recv_errqueue);
3225 
3226 /*
3227  *	Get a socket option on an socket.
3228  *
3229  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3230  *	asynchronous errors should be reported by getsockopt. We assume
3231  *	this means if you specify SO_ERROR (otherwise whats the point of it).
3232  */
3233 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3234 			   char __user *optval, int __user *optlen)
3235 {
3236 	struct sock *sk = sock->sk;
3237 
3238 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3239 }
3240 EXPORT_SYMBOL(sock_common_getsockopt);
3241 
3242 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3243 			int flags)
3244 {
3245 	struct sock *sk = sock->sk;
3246 	int addr_len = 0;
3247 	int err;
3248 
3249 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3250 				   flags & ~MSG_DONTWAIT, &addr_len);
3251 	if (err >= 0)
3252 		msg->msg_namelen = addr_len;
3253 	return err;
3254 }
3255 EXPORT_SYMBOL(sock_common_recvmsg);
3256 
3257 /*
3258  *	Set socket options on an inet socket.
3259  */
3260 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3261 			   sockptr_t optval, unsigned int optlen)
3262 {
3263 	struct sock *sk = sock->sk;
3264 
3265 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3266 }
3267 EXPORT_SYMBOL(sock_common_setsockopt);
3268 
3269 void sk_common_release(struct sock *sk)
3270 {
3271 	if (sk->sk_prot->destroy)
3272 		sk->sk_prot->destroy(sk);
3273 
3274 	/*
3275 	 * Observation: when sk_common_release is called, processes have
3276 	 * no access to socket. But net still has.
3277 	 * Step one, detach it from networking:
3278 	 *
3279 	 * A. Remove from hash tables.
3280 	 */
3281 
3282 	sk->sk_prot->unhash(sk);
3283 
3284 	/*
3285 	 * In this point socket cannot receive new packets, but it is possible
3286 	 * that some packets are in flight because some CPU runs receiver and
3287 	 * did hash table lookup before we unhashed socket. They will achieve
3288 	 * receive queue and will be purged by socket destructor.
3289 	 *
3290 	 * Also we still have packets pending on receive queue and probably,
3291 	 * our own packets waiting in device queues. sock_destroy will drain
3292 	 * receive queue, but transmitted packets will delay socket destruction
3293 	 * until the last reference will be released.
3294 	 */
3295 
3296 	sock_orphan(sk);
3297 
3298 	xfrm_sk_free_policy(sk);
3299 
3300 	sk_refcnt_debug_release(sk);
3301 
3302 	sock_put(sk);
3303 }
3304 EXPORT_SYMBOL(sk_common_release);
3305 
3306 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3307 {
3308 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3309 
3310 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3311 	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3312 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3313 	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3314 	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3315 	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3316 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3317 	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3318 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3319 }
3320 
3321 #ifdef CONFIG_PROC_FS
3322 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
3323 struct prot_inuse {
3324 	int val[PROTO_INUSE_NR];
3325 };
3326 
3327 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3328 
3329 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3330 {
3331 	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3332 }
3333 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3334 
3335 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3336 {
3337 	int cpu, idx = prot->inuse_idx;
3338 	int res = 0;
3339 
3340 	for_each_possible_cpu(cpu)
3341 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3342 
3343 	return res >= 0 ? res : 0;
3344 }
3345 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3346 
3347 static void sock_inuse_add(struct net *net, int val)
3348 {
3349 	this_cpu_add(*net->core.sock_inuse, val);
3350 }
3351 
3352 int sock_inuse_get(struct net *net)
3353 {
3354 	int cpu, res = 0;
3355 
3356 	for_each_possible_cpu(cpu)
3357 		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3358 
3359 	return res;
3360 }
3361 
3362 EXPORT_SYMBOL_GPL(sock_inuse_get);
3363 
3364 static int __net_init sock_inuse_init_net(struct net *net)
3365 {
3366 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3367 	if (net->core.prot_inuse == NULL)
3368 		return -ENOMEM;
3369 
3370 	net->core.sock_inuse = alloc_percpu(int);
3371 	if (net->core.sock_inuse == NULL)
3372 		goto out;
3373 
3374 	return 0;
3375 
3376 out:
3377 	free_percpu(net->core.prot_inuse);
3378 	return -ENOMEM;
3379 }
3380 
3381 static void __net_exit sock_inuse_exit_net(struct net *net)
3382 {
3383 	free_percpu(net->core.prot_inuse);
3384 	free_percpu(net->core.sock_inuse);
3385 }
3386 
3387 static struct pernet_operations net_inuse_ops = {
3388 	.init = sock_inuse_init_net,
3389 	.exit = sock_inuse_exit_net,
3390 };
3391 
3392 static __init int net_inuse_init(void)
3393 {
3394 	if (register_pernet_subsys(&net_inuse_ops))
3395 		panic("Cannot initialize net inuse counters");
3396 
3397 	return 0;
3398 }
3399 
3400 core_initcall(net_inuse_init);
3401 
3402 static int assign_proto_idx(struct proto *prot)
3403 {
3404 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3405 
3406 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3407 		pr_err("PROTO_INUSE_NR exhausted\n");
3408 		return -ENOSPC;
3409 	}
3410 
3411 	set_bit(prot->inuse_idx, proto_inuse_idx);
3412 	return 0;
3413 }
3414 
3415 static void release_proto_idx(struct proto *prot)
3416 {
3417 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3418 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3419 }
3420 #else
3421 static inline int assign_proto_idx(struct proto *prot)
3422 {
3423 	return 0;
3424 }
3425 
3426 static inline void release_proto_idx(struct proto *prot)
3427 {
3428 }
3429 
3430 static void sock_inuse_add(struct net *net, int val)
3431 {
3432 }
3433 #endif
3434 
3435 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3436 {
3437 	if (!twsk_prot)
3438 		return;
3439 	kfree(twsk_prot->twsk_slab_name);
3440 	twsk_prot->twsk_slab_name = NULL;
3441 	kmem_cache_destroy(twsk_prot->twsk_slab);
3442 	twsk_prot->twsk_slab = NULL;
3443 }
3444 
3445 static int tw_prot_init(const struct proto *prot)
3446 {
3447 	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3448 
3449 	if (!twsk_prot)
3450 		return 0;
3451 
3452 	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3453 					      prot->name);
3454 	if (!twsk_prot->twsk_slab_name)
3455 		return -ENOMEM;
3456 
3457 	twsk_prot->twsk_slab =
3458 		kmem_cache_create(twsk_prot->twsk_slab_name,
3459 				  twsk_prot->twsk_obj_size, 0,
3460 				  SLAB_ACCOUNT | prot->slab_flags,
3461 				  NULL);
3462 	if (!twsk_prot->twsk_slab) {
3463 		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3464 			prot->name);
3465 		return -ENOMEM;
3466 	}
3467 
3468 	return 0;
3469 }
3470 
3471 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3472 {
3473 	if (!rsk_prot)
3474 		return;
3475 	kfree(rsk_prot->slab_name);
3476 	rsk_prot->slab_name = NULL;
3477 	kmem_cache_destroy(rsk_prot->slab);
3478 	rsk_prot->slab = NULL;
3479 }
3480 
3481 static int req_prot_init(const struct proto *prot)
3482 {
3483 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3484 
3485 	if (!rsk_prot)
3486 		return 0;
3487 
3488 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3489 					prot->name);
3490 	if (!rsk_prot->slab_name)
3491 		return -ENOMEM;
3492 
3493 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3494 					   rsk_prot->obj_size, 0,
3495 					   SLAB_ACCOUNT | prot->slab_flags,
3496 					   NULL);
3497 
3498 	if (!rsk_prot->slab) {
3499 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3500 			prot->name);
3501 		return -ENOMEM;
3502 	}
3503 	return 0;
3504 }
3505 
3506 int proto_register(struct proto *prot, int alloc_slab)
3507 {
3508 	int ret = -ENOBUFS;
3509 
3510 	if (alloc_slab) {
3511 		prot->slab = kmem_cache_create_usercopy(prot->name,
3512 					prot->obj_size, 0,
3513 					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3514 					prot->slab_flags,
3515 					prot->useroffset, prot->usersize,
3516 					NULL);
3517 
3518 		if (prot->slab == NULL) {
3519 			pr_crit("%s: Can't create sock SLAB cache!\n",
3520 				prot->name);
3521 			goto out;
3522 		}
3523 
3524 		if (req_prot_init(prot))
3525 			goto out_free_request_sock_slab;
3526 
3527 		if (tw_prot_init(prot))
3528 			goto out_free_timewait_sock_slab;
3529 	}
3530 
3531 	mutex_lock(&proto_list_mutex);
3532 	ret = assign_proto_idx(prot);
3533 	if (ret) {
3534 		mutex_unlock(&proto_list_mutex);
3535 		goto out_free_timewait_sock_slab;
3536 	}
3537 	list_add(&prot->node, &proto_list);
3538 	mutex_unlock(&proto_list_mutex);
3539 	return ret;
3540 
3541 out_free_timewait_sock_slab:
3542 	if (alloc_slab)
3543 		tw_prot_cleanup(prot->twsk_prot);
3544 out_free_request_sock_slab:
3545 	if (alloc_slab) {
3546 		req_prot_cleanup(prot->rsk_prot);
3547 
3548 		kmem_cache_destroy(prot->slab);
3549 		prot->slab = NULL;
3550 	}
3551 out:
3552 	return ret;
3553 }
3554 EXPORT_SYMBOL(proto_register);
3555 
3556 void proto_unregister(struct proto *prot)
3557 {
3558 	mutex_lock(&proto_list_mutex);
3559 	release_proto_idx(prot);
3560 	list_del(&prot->node);
3561 	mutex_unlock(&proto_list_mutex);
3562 
3563 	kmem_cache_destroy(prot->slab);
3564 	prot->slab = NULL;
3565 
3566 	req_prot_cleanup(prot->rsk_prot);
3567 	tw_prot_cleanup(prot->twsk_prot);
3568 }
3569 EXPORT_SYMBOL(proto_unregister);
3570 
3571 int sock_load_diag_module(int family, int protocol)
3572 {
3573 	if (!protocol) {
3574 		if (!sock_is_registered(family))
3575 			return -ENOENT;
3576 
3577 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3578 				      NETLINK_SOCK_DIAG, family);
3579 	}
3580 
3581 #ifdef CONFIG_INET
3582 	if (family == AF_INET &&
3583 	    protocol != IPPROTO_RAW &&
3584 	    protocol < MAX_INET_PROTOS &&
3585 	    !rcu_access_pointer(inet_protos[protocol]))
3586 		return -ENOENT;
3587 #endif
3588 
3589 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3590 			      NETLINK_SOCK_DIAG, family, protocol);
3591 }
3592 EXPORT_SYMBOL(sock_load_diag_module);
3593 
3594 #ifdef CONFIG_PROC_FS
3595 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3596 	__acquires(proto_list_mutex)
3597 {
3598 	mutex_lock(&proto_list_mutex);
3599 	return seq_list_start_head(&proto_list, *pos);
3600 }
3601 
3602 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3603 {
3604 	return seq_list_next(v, &proto_list, pos);
3605 }
3606 
3607 static void proto_seq_stop(struct seq_file *seq, void *v)
3608 	__releases(proto_list_mutex)
3609 {
3610 	mutex_unlock(&proto_list_mutex);
3611 }
3612 
3613 static char proto_method_implemented(const void *method)
3614 {
3615 	return method == NULL ? 'n' : 'y';
3616 }
3617 static long sock_prot_memory_allocated(struct proto *proto)
3618 {
3619 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3620 }
3621 
3622 static const char *sock_prot_memory_pressure(struct proto *proto)
3623 {
3624 	return proto->memory_pressure != NULL ?
3625 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3626 }
3627 
3628 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3629 {
3630 
3631 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3632 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3633 		   proto->name,
3634 		   proto->obj_size,
3635 		   sock_prot_inuse_get(seq_file_net(seq), proto),
3636 		   sock_prot_memory_allocated(proto),
3637 		   sock_prot_memory_pressure(proto),
3638 		   proto->max_header,
3639 		   proto->slab == NULL ? "no" : "yes",
3640 		   module_name(proto->owner),
3641 		   proto_method_implemented(proto->close),
3642 		   proto_method_implemented(proto->connect),
3643 		   proto_method_implemented(proto->disconnect),
3644 		   proto_method_implemented(proto->accept),
3645 		   proto_method_implemented(proto->ioctl),
3646 		   proto_method_implemented(proto->init),
3647 		   proto_method_implemented(proto->destroy),
3648 		   proto_method_implemented(proto->shutdown),
3649 		   proto_method_implemented(proto->setsockopt),
3650 		   proto_method_implemented(proto->getsockopt),
3651 		   proto_method_implemented(proto->sendmsg),
3652 		   proto_method_implemented(proto->recvmsg),
3653 		   proto_method_implemented(proto->sendpage),
3654 		   proto_method_implemented(proto->bind),
3655 		   proto_method_implemented(proto->backlog_rcv),
3656 		   proto_method_implemented(proto->hash),
3657 		   proto_method_implemented(proto->unhash),
3658 		   proto_method_implemented(proto->get_port),
3659 		   proto_method_implemented(proto->enter_memory_pressure));
3660 }
3661 
3662 static int proto_seq_show(struct seq_file *seq, void *v)
3663 {
3664 	if (v == &proto_list)
3665 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3666 			   "protocol",
3667 			   "size",
3668 			   "sockets",
3669 			   "memory",
3670 			   "press",
3671 			   "maxhdr",
3672 			   "slab",
3673 			   "module",
3674 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3675 	else
3676 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3677 	return 0;
3678 }
3679 
3680 static const struct seq_operations proto_seq_ops = {
3681 	.start  = proto_seq_start,
3682 	.next   = proto_seq_next,
3683 	.stop   = proto_seq_stop,
3684 	.show   = proto_seq_show,
3685 };
3686 
3687 static __net_init int proto_init_net(struct net *net)
3688 {
3689 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3690 			sizeof(struct seq_net_private)))
3691 		return -ENOMEM;
3692 
3693 	return 0;
3694 }
3695 
3696 static __net_exit void proto_exit_net(struct net *net)
3697 {
3698 	remove_proc_entry("protocols", net->proc_net);
3699 }
3700 
3701 
3702 static __net_initdata struct pernet_operations proto_net_ops = {
3703 	.init = proto_init_net,
3704 	.exit = proto_exit_net,
3705 };
3706 
3707 static int __init proto_init(void)
3708 {
3709 	return register_pernet_subsys(&proto_net_ops);
3710 }
3711 
3712 subsys_initcall(proto_init);
3713 
3714 #endif /* PROC_FS */
3715 
3716 #ifdef CONFIG_NET_RX_BUSY_POLL
3717 bool sk_busy_loop_end(void *p, unsigned long start_time)
3718 {
3719 	struct sock *sk = p;
3720 
3721 	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3722 	       sk_busy_loop_timeout(sk, start_time);
3723 }
3724 EXPORT_SYMBOL(sk_busy_loop_end);
3725 #endif /* CONFIG_NET_RX_BUSY_POLL */
3726 
3727 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3728 {
3729 	if (!sk->sk_prot->bind_add)
3730 		return -EOPNOTSUPP;
3731 	return sk->sk_prot->bind_add(sk, addr, addr_len);
3732 }
3733 EXPORT_SYMBOL(sock_bind_add);
3734