xref: /openbmc/linux/net/core/sock.c (revision ec2da07c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Generic socket support routines. Memory allocators, socket lock/release
8  *		handler for protocols to use and generic option handler.
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  */
85 
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87 
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 
117 #include <linux/uaccess.h>
118 
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <linux/net_tstamp.h>
126 #include <net/xfrm.h>
127 #include <linux/ipsec.h>
128 #include <net/cls_cgroup.h>
129 #include <net/netprio_cgroup.h>
130 #include <linux/sock_diag.h>
131 
132 #include <linux/filter.h>
133 #include <net/sock_reuseport.h>
134 #include <net/bpf_sk_storage.h>
135 
136 #include <trace/events/sock.h>
137 
138 #include <net/tcp.h>
139 #include <net/busy_poll.h>
140 
141 static DEFINE_MUTEX(proto_list_mutex);
142 static LIST_HEAD(proto_list);
143 
144 static void sock_inuse_add(struct net *net, int val);
145 
146 /**
147  * sk_ns_capable - General socket capability test
148  * @sk: Socket to use a capability on or through
149  * @user_ns: The user namespace of the capability to use
150  * @cap: The capability to use
151  *
152  * Test to see if the opener of the socket had when the socket was
153  * created and the current process has the capability @cap in the user
154  * namespace @user_ns.
155  */
156 bool sk_ns_capable(const struct sock *sk,
157 		   struct user_namespace *user_ns, int cap)
158 {
159 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
160 		ns_capable(user_ns, cap);
161 }
162 EXPORT_SYMBOL(sk_ns_capable);
163 
164 /**
165  * sk_capable - Socket global capability test
166  * @sk: Socket to use a capability on or through
167  * @cap: The global capability to use
168  *
169  * Test to see if the opener of the socket had when the socket was
170  * created and the current process has the capability @cap in all user
171  * namespaces.
172  */
173 bool sk_capable(const struct sock *sk, int cap)
174 {
175 	return sk_ns_capable(sk, &init_user_ns, cap);
176 }
177 EXPORT_SYMBOL(sk_capable);
178 
179 /**
180  * sk_net_capable - Network namespace socket capability test
181  * @sk: Socket to use a capability on or through
182  * @cap: The capability to use
183  *
184  * Test to see if the opener of the socket had when the socket was created
185  * and the current process has the capability @cap over the network namespace
186  * the socket is a member of.
187  */
188 bool sk_net_capable(const struct sock *sk, int cap)
189 {
190 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
191 }
192 EXPORT_SYMBOL(sk_net_capable);
193 
194 /*
195  * Each address family might have different locking rules, so we have
196  * one slock key per address family and separate keys for internal and
197  * userspace sockets.
198  */
199 static struct lock_class_key af_family_keys[AF_MAX];
200 static struct lock_class_key af_family_kern_keys[AF_MAX];
201 static struct lock_class_key af_family_slock_keys[AF_MAX];
202 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
203 
204 /*
205  * Make lock validator output more readable. (we pre-construct these
206  * strings build-time, so that runtime initialization of socket
207  * locks is fast):
208  */
209 
210 #define _sock_locks(x)						  \
211   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
212   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
213   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
214   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
215   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
216   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
217   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
218   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
219   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
220   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
221   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
222   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
223   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
224   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
225   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
226   x "AF_MAX"
227 
228 static const char *const af_family_key_strings[AF_MAX+1] = {
229 	_sock_locks("sk_lock-")
230 };
231 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
232 	_sock_locks("slock-")
233 };
234 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
235 	_sock_locks("clock-")
236 };
237 
238 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
239 	_sock_locks("k-sk_lock-")
240 };
241 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
242 	_sock_locks("k-slock-")
243 };
244 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
245 	_sock_locks("k-clock-")
246 };
247 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
248 	_sock_locks("rlock-")
249 };
250 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
251 	_sock_locks("wlock-")
252 };
253 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
254 	_sock_locks("elock-")
255 };
256 
257 /*
258  * sk_callback_lock and sk queues locking rules are per-address-family,
259  * so split the lock classes by using a per-AF key:
260  */
261 static struct lock_class_key af_callback_keys[AF_MAX];
262 static struct lock_class_key af_rlock_keys[AF_MAX];
263 static struct lock_class_key af_wlock_keys[AF_MAX];
264 static struct lock_class_key af_elock_keys[AF_MAX];
265 static struct lock_class_key af_kern_callback_keys[AF_MAX];
266 
267 /* Run time adjustable parameters. */
268 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
269 EXPORT_SYMBOL(sysctl_wmem_max);
270 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
271 EXPORT_SYMBOL(sysctl_rmem_max);
272 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
273 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
274 
275 /* Maximal space eaten by iovec or ancillary data plus some space */
276 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
277 EXPORT_SYMBOL(sysctl_optmem_max);
278 
279 int sysctl_tstamp_allow_data __read_mostly = 1;
280 
281 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
282 EXPORT_SYMBOL_GPL(memalloc_socks_key);
283 
284 /**
285  * sk_set_memalloc - sets %SOCK_MEMALLOC
286  * @sk: socket to set it on
287  *
288  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
289  * It's the responsibility of the admin to adjust min_free_kbytes
290  * to meet the requirements
291  */
292 void sk_set_memalloc(struct sock *sk)
293 {
294 	sock_set_flag(sk, SOCK_MEMALLOC);
295 	sk->sk_allocation |= __GFP_MEMALLOC;
296 	static_branch_inc(&memalloc_socks_key);
297 }
298 EXPORT_SYMBOL_GPL(sk_set_memalloc);
299 
300 void sk_clear_memalloc(struct sock *sk)
301 {
302 	sock_reset_flag(sk, SOCK_MEMALLOC);
303 	sk->sk_allocation &= ~__GFP_MEMALLOC;
304 	static_branch_dec(&memalloc_socks_key);
305 
306 	/*
307 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
308 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
309 	 * it has rmem allocations due to the last swapfile being deactivated
310 	 * but there is a risk that the socket is unusable due to exceeding
311 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
312 	 */
313 	sk_mem_reclaim(sk);
314 }
315 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
316 
317 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
318 {
319 	int ret;
320 	unsigned int noreclaim_flag;
321 
322 	/* these should have been dropped before queueing */
323 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
324 
325 	noreclaim_flag = memalloc_noreclaim_save();
326 	ret = sk->sk_backlog_rcv(sk, skb);
327 	memalloc_noreclaim_restore(noreclaim_flag);
328 
329 	return ret;
330 }
331 EXPORT_SYMBOL(__sk_backlog_rcv);
332 
333 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
334 {
335 	struct __kernel_sock_timeval tv;
336 	int size;
337 
338 	if (timeo == MAX_SCHEDULE_TIMEOUT) {
339 		tv.tv_sec = 0;
340 		tv.tv_usec = 0;
341 	} else {
342 		tv.tv_sec = timeo / HZ;
343 		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344 	}
345 
346 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347 		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348 		*(struct old_timeval32 *)optval = tv32;
349 		return sizeof(tv32);
350 	}
351 
352 	if (old_timeval) {
353 		struct __kernel_old_timeval old_tv;
354 		old_tv.tv_sec = tv.tv_sec;
355 		old_tv.tv_usec = tv.tv_usec;
356 		*(struct __kernel_old_timeval *)optval = old_tv;
357 		size = sizeof(old_tv);
358 	} else {
359 		*(struct __kernel_sock_timeval *)optval = tv;
360 		size = sizeof(tv);
361 	}
362 
363 	return size;
364 }
365 
366 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval)
367 {
368 	struct __kernel_sock_timeval tv;
369 
370 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
371 		struct old_timeval32 tv32;
372 
373 		if (optlen < sizeof(tv32))
374 			return -EINVAL;
375 
376 		if (copy_from_user(&tv32, optval, sizeof(tv32)))
377 			return -EFAULT;
378 		tv.tv_sec = tv32.tv_sec;
379 		tv.tv_usec = tv32.tv_usec;
380 	} else if (old_timeval) {
381 		struct __kernel_old_timeval old_tv;
382 
383 		if (optlen < sizeof(old_tv))
384 			return -EINVAL;
385 		if (copy_from_user(&old_tv, optval, sizeof(old_tv)))
386 			return -EFAULT;
387 		tv.tv_sec = old_tv.tv_sec;
388 		tv.tv_usec = old_tv.tv_usec;
389 	} else {
390 		if (optlen < sizeof(tv))
391 			return -EINVAL;
392 		if (copy_from_user(&tv, optval, sizeof(tv)))
393 			return -EFAULT;
394 	}
395 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
396 		return -EDOM;
397 
398 	if (tv.tv_sec < 0) {
399 		static int warned __read_mostly;
400 
401 		*timeo_p = 0;
402 		if (warned < 10 && net_ratelimit()) {
403 			warned++;
404 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
405 				__func__, current->comm, task_pid_nr(current));
406 		}
407 		return 0;
408 	}
409 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
410 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
411 		return 0;
412 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
413 		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
414 	return 0;
415 }
416 
417 static void sock_warn_obsolete_bsdism(const char *name)
418 {
419 	static int warned;
420 	static char warncomm[TASK_COMM_LEN];
421 	if (strcmp(warncomm, current->comm) && warned < 5) {
422 		strcpy(warncomm,  current->comm);
423 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
424 			warncomm, name);
425 		warned++;
426 	}
427 }
428 
429 static bool sock_needs_netstamp(const struct sock *sk)
430 {
431 	switch (sk->sk_family) {
432 	case AF_UNSPEC:
433 	case AF_UNIX:
434 		return false;
435 	default:
436 		return true;
437 	}
438 }
439 
440 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
441 {
442 	if (sk->sk_flags & flags) {
443 		sk->sk_flags &= ~flags;
444 		if (sock_needs_netstamp(sk) &&
445 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
446 			net_disable_timestamp();
447 	}
448 }
449 
450 
451 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
452 {
453 	unsigned long flags;
454 	struct sk_buff_head *list = &sk->sk_receive_queue;
455 
456 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
457 		atomic_inc(&sk->sk_drops);
458 		trace_sock_rcvqueue_full(sk, skb);
459 		return -ENOMEM;
460 	}
461 
462 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
463 		atomic_inc(&sk->sk_drops);
464 		return -ENOBUFS;
465 	}
466 
467 	skb->dev = NULL;
468 	skb_set_owner_r(skb, sk);
469 
470 	/* we escape from rcu protected region, make sure we dont leak
471 	 * a norefcounted dst
472 	 */
473 	skb_dst_force(skb);
474 
475 	spin_lock_irqsave(&list->lock, flags);
476 	sock_skb_set_dropcount(sk, skb);
477 	__skb_queue_tail(list, skb);
478 	spin_unlock_irqrestore(&list->lock, flags);
479 
480 	if (!sock_flag(sk, SOCK_DEAD))
481 		sk->sk_data_ready(sk);
482 	return 0;
483 }
484 EXPORT_SYMBOL(__sock_queue_rcv_skb);
485 
486 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
487 {
488 	int err;
489 
490 	err = sk_filter(sk, skb);
491 	if (err)
492 		return err;
493 
494 	return __sock_queue_rcv_skb(sk, skb);
495 }
496 EXPORT_SYMBOL(sock_queue_rcv_skb);
497 
498 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
499 		     const int nested, unsigned int trim_cap, bool refcounted)
500 {
501 	int rc = NET_RX_SUCCESS;
502 
503 	if (sk_filter_trim_cap(sk, skb, trim_cap))
504 		goto discard_and_relse;
505 
506 	skb->dev = NULL;
507 
508 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
509 		atomic_inc(&sk->sk_drops);
510 		goto discard_and_relse;
511 	}
512 	if (nested)
513 		bh_lock_sock_nested(sk);
514 	else
515 		bh_lock_sock(sk);
516 	if (!sock_owned_by_user(sk)) {
517 		/*
518 		 * trylock + unlock semantics:
519 		 */
520 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
521 
522 		rc = sk_backlog_rcv(sk, skb);
523 
524 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
525 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
526 		bh_unlock_sock(sk);
527 		atomic_inc(&sk->sk_drops);
528 		goto discard_and_relse;
529 	}
530 
531 	bh_unlock_sock(sk);
532 out:
533 	if (refcounted)
534 		sock_put(sk);
535 	return rc;
536 discard_and_relse:
537 	kfree_skb(skb);
538 	goto out;
539 }
540 EXPORT_SYMBOL(__sk_receive_skb);
541 
542 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
543 {
544 	struct dst_entry *dst = __sk_dst_get(sk);
545 
546 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
547 		sk_tx_queue_clear(sk);
548 		sk->sk_dst_pending_confirm = 0;
549 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
550 		dst_release(dst);
551 		return NULL;
552 	}
553 
554 	return dst;
555 }
556 EXPORT_SYMBOL(__sk_dst_check);
557 
558 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
559 {
560 	struct dst_entry *dst = sk_dst_get(sk);
561 
562 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
563 		sk_dst_reset(sk);
564 		dst_release(dst);
565 		return NULL;
566 	}
567 
568 	return dst;
569 }
570 EXPORT_SYMBOL(sk_dst_check);
571 
572 static int sock_setbindtodevice_locked(struct sock *sk, int ifindex)
573 {
574 	int ret = -ENOPROTOOPT;
575 #ifdef CONFIG_NETDEVICES
576 	struct net *net = sock_net(sk);
577 
578 	/* Sorry... */
579 	ret = -EPERM;
580 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
581 		goto out;
582 
583 	ret = -EINVAL;
584 	if (ifindex < 0)
585 		goto out;
586 
587 	sk->sk_bound_dev_if = ifindex;
588 	if (sk->sk_prot->rehash)
589 		sk->sk_prot->rehash(sk);
590 	sk_dst_reset(sk);
591 
592 	ret = 0;
593 
594 out:
595 #endif
596 
597 	return ret;
598 }
599 
600 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
601 				int optlen)
602 {
603 	int ret = -ENOPROTOOPT;
604 #ifdef CONFIG_NETDEVICES
605 	struct net *net = sock_net(sk);
606 	char devname[IFNAMSIZ];
607 	int index;
608 
609 	ret = -EINVAL;
610 	if (optlen < 0)
611 		goto out;
612 
613 	/* Bind this socket to a particular device like "eth0",
614 	 * as specified in the passed interface name. If the
615 	 * name is "" or the option length is zero the socket
616 	 * is not bound.
617 	 */
618 	if (optlen > IFNAMSIZ - 1)
619 		optlen = IFNAMSIZ - 1;
620 	memset(devname, 0, sizeof(devname));
621 
622 	ret = -EFAULT;
623 	if (copy_from_user(devname, optval, optlen))
624 		goto out;
625 
626 	index = 0;
627 	if (devname[0] != '\0') {
628 		struct net_device *dev;
629 
630 		rcu_read_lock();
631 		dev = dev_get_by_name_rcu(net, devname);
632 		if (dev)
633 			index = dev->ifindex;
634 		rcu_read_unlock();
635 		ret = -ENODEV;
636 		if (!dev)
637 			goto out;
638 	}
639 
640 	lock_sock(sk);
641 	ret = sock_setbindtodevice_locked(sk, index);
642 	release_sock(sk);
643 
644 out:
645 #endif
646 
647 	return ret;
648 }
649 
650 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
651 				int __user *optlen, int len)
652 {
653 	int ret = -ENOPROTOOPT;
654 #ifdef CONFIG_NETDEVICES
655 	struct net *net = sock_net(sk);
656 	char devname[IFNAMSIZ];
657 
658 	if (sk->sk_bound_dev_if == 0) {
659 		len = 0;
660 		goto zero;
661 	}
662 
663 	ret = -EINVAL;
664 	if (len < IFNAMSIZ)
665 		goto out;
666 
667 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
668 	if (ret)
669 		goto out;
670 
671 	len = strlen(devname) + 1;
672 
673 	ret = -EFAULT;
674 	if (copy_to_user(optval, devname, len))
675 		goto out;
676 
677 zero:
678 	ret = -EFAULT;
679 	if (put_user(len, optlen))
680 		goto out;
681 
682 	ret = 0;
683 
684 out:
685 #endif
686 
687 	return ret;
688 }
689 
690 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
691 {
692 	if (valbool)
693 		sock_set_flag(sk, bit);
694 	else
695 		sock_reset_flag(sk, bit);
696 }
697 
698 bool sk_mc_loop(struct sock *sk)
699 {
700 	if (dev_recursion_level())
701 		return false;
702 	if (!sk)
703 		return true;
704 	switch (sk->sk_family) {
705 	case AF_INET:
706 		return inet_sk(sk)->mc_loop;
707 #if IS_ENABLED(CONFIG_IPV6)
708 	case AF_INET6:
709 		return inet6_sk(sk)->mc_loop;
710 #endif
711 	}
712 	WARN_ON(1);
713 	return true;
714 }
715 EXPORT_SYMBOL(sk_mc_loop);
716 
717 /*
718  *	This is meant for all protocols to use and covers goings on
719  *	at the socket level. Everything here is generic.
720  */
721 
722 int sock_setsockopt(struct socket *sock, int level, int optname,
723 		    char __user *optval, unsigned int optlen)
724 {
725 	struct sock_txtime sk_txtime;
726 	struct sock *sk = sock->sk;
727 	int val;
728 	int valbool;
729 	struct linger ling;
730 	int ret = 0;
731 
732 	/*
733 	 *	Options without arguments
734 	 */
735 
736 	if (optname == SO_BINDTODEVICE)
737 		return sock_setbindtodevice(sk, optval, optlen);
738 
739 	if (optlen < sizeof(int))
740 		return -EINVAL;
741 
742 	if (get_user(val, (int __user *)optval))
743 		return -EFAULT;
744 
745 	valbool = val ? 1 : 0;
746 
747 	lock_sock(sk);
748 
749 	switch (optname) {
750 	case SO_DEBUG:
751 		if (val && !capable(CAP_NET_ADMIN))
752 			ret = -EACCES;
753 		else
754 			sock_valbool_flag(sk, SOCK_DBG, valbool);
755 		break;
756 	case SO_REUSEADDR:
757 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
758 		break;
759 	case SO_REUSEPORT:
760 		sk->sk_reuseport = valbool;
761 		break;
762 	case SO_TYPE:
763 	case SO_PROTOCOL:
764 	case SO_DOMAIN:
765 	case SO_ERROR:
766 		ret = -ENOPROTOOPT;
767 		break;
768 	case SO_DONTROUTE:
769 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
770 		sk_dst_reset(sk);
771 		break;
772 	case SO_BROADCAST:
773 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
774 		break;
775 	case SO_SNDBUF:
776 		/* Don't error on this BSD doesn't and if you think
777 		 * about it this is right. Otherwise apps have to
778 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
779 		 * are treated in BSD as hints
780 		 */
781 		val = min_t(u32, val, sysctl_wmem_max);
782 set_sndbuf:
783 		/* Ensure val * 2 fits into an int, to prevent max_t()
784 		 * from treating it as a negative value.
785 		 */
786 		val = min_t(int, val, INT_MAX / 2);
787 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
788 		sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
789 		/* Wake up sending tasks if we upped the value. */
790 		sk->sk_write_space(sk);
791 		break;
792 
793 	case SO_SNDBUFFORCE:
794 		if (!capable(CAP_NET_ADMIN)) {
795 			ret = -EPERM;
796 			break;
797 		}
798 
799 		/* No negative values (to prevent underflow, as val will be
800 		 * multiplied by 2).
801 		 */
802 		if (val < 0)
803 			val = 0;
804 		goto set_sndbuf;
805 
806 	case SO_RCVBUF:
807 		/* Don't error on this BSD doesn't and if you think
808 		 * about it this is right. Otherwise apps have to
809 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
810 		 * are treated in BSD as hints
811 		 */
812 		val = min_t(u32, val, sysctl_rmem_max);
813 set_rcvbuf:
814 		/* Ensure val * 2 fits into an int, to prevent max_t()
815 		 * from treating it as a negative value.
816 		 */
817 		val = min_t(int, val, INT_MAX / 2);
818 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
819 		/*
820 		 * We double it on the way in to account for
821 		 * "struct sk_buff" etc. overhead.   Applications
822 		 * assume that the SO_RCVBUF setting they make will
823 		 * allow that much actual data to be received on that
824 		 * socket.
825 		 *
826 		 * Applications are unaware that "struct sk_buff" and
827 		 * other overheads allocate from the receive buffer
828 		 * during socket buffer allocation.
829 		 *
830 		 * And after considering the possible alternatives,
831 		 * returning the value we actually used in getsockopt
832 		 * is the most desirable behavior.
833 		 */
834 		sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
835 		break;
836 
837 	case SO_RCVBUFFORCE:
838 		if (!capable(CAP_NET_ADMIN)) {
839 			ret = -EPERM;
840 			break;
841 		}
842 
843 		/* No negative values (to prevent underflow, as val will be
844 		 * multiplied by 2).
845 		 */
846 		if (val < 0)
847 			val = 0;
848 		goto set_rcvbuf;
849 
850 	case SO_KEEPALIVE:
851 		if (sk->sk_prot->keepalive)
852 			sk->sk_prot->keepalive(sk, valbool);
853 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
854 		break;
855 
856 	case SO_OOBINLINE:
857 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
858 		break;
859 
860 	case SO_NO_CHECK:
861 		sk->sk_no_check_tx = valbool;
862 		break;
863 
864 	case SO_PRIORITY:
865 		if ((val >= 0 && val <= 6) ||
866 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
867 			sk->sk_priority = val;
868 		else
869 			ret = -EPERM;
870 		break;
871 
872 	case SO_LINGER:
873 		if (optlen < sizeof(ling)) {
874 			ret = -EINVAL;	/* 1003.1g */
875 			break;
876 		}
877 		if (copy_from_user(&ling, optval, sizeof(ling))) {
878 			ret = -EFAULT;
879 			break;
880 		}
881 		if (!ling.l_onoff)
882 			sock_reset_flag(sk, SOCK_LINGER);
883 		else {
884 #if (BITS_PER_LONG == 32)
885 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
886 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
887 			else
888 #endif
889 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
890 			sock_set_flag(sk, SOCK_LINGER);
891 		}
892 		break;
893 
894 	case SO_BSDCOMPAT:
895 		sock_warn_obsolete_bsdism("setsockopt");
896 		break;
897 
898 	case SO_PASSCRED:
899 		if (valbool)
900 			set_bit(SOCK_PASSCRED, &sock->flags);
901 		else
902 			clear_bit(SOCK_PASSCRED, &sock->flags);
903 		break;
904 
905 	case SO_TIMESTAMP_OLD:
906 	case SO_TIMESTAMP_NEW:
907 	case SO_TIMESTAMPNS_OLD:
908 	case SO_TIMESTAMPNS_NEW:
909 		if (valbool)  {
910 			if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW)
911 				sock_set_flag(sk, SOCK_TSTAMP_NEW);
912 			else
913 				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
914 
915 			if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW)
916 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
917 			else
918 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
919 			sock_set_flag(sk, SOCK_RCVTSTAMP);
920 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
921 		} else {
922 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
923 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
924 			sock_reset_flag(sk, SOCK_TSTAMP_NEW);
925 		}
926 		break;
927 
928 	case SO_TIMESTAMPING_NEW:
929 		sock_set_flag(sk, SOCK_TSTAMP_NEW);
930 		/* fall through */
931 	case SO_TIMESTAMPING_OLD:
932 		if (val & ~SOF_TIMESTAMPING_MASK) {
933 			ret = -EINVAL;
934 			break;
935 		}
936 
937 		if (val & SOF_TIMESTAMPING_OPT_ID &&
938 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
939 			if (sk->sk_protocol == IPPROTO_TCP &&
940 			    sk->sk_type == SOCK_STREAM) {
941 				if ((1 << sk->sk_state) &
942 				    (TCPF_CLOSE | TCPF_LISTEN)) {
943 					ret = -EINVAL;
944 					break;
945 				}
946 				sk->sk_tskey = tcp_sk(sk)->snd_una;
947 			} else {
948 				sk->sk_tskey = 0;
949 			}
950 		}
951 
952 		if (val & SOF_TIMESTAMPING_OPT_STATS &&
953 		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
954 			ret = -EINVAL;
955 			break;
956 		}
957 
958 		sk->sk_tsflags = val;
959 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
960 			sock_enable_timestamp(sk,
961 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
962 		else {
963 			if (optname == SO_TIMESTAMPING_NEW)
964 				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
965 
966 			sock_disable_timestamp(sk,
967 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
968 		}
969 		break;
970 
971 	case SO_RCVLOWAT:
972 		if (val < 0)
973 			val = INT_MAX;
974 		if (sock->ops->set_rcvlowat)
975 			ret = sock->ops->set_rcvlowat(sk, val);
976 		else
977 			sk->sk_rcvlowat = val ? : 1;
978 		break;
979 
980 	case SO_RCVTIMEO_OLD:
981 	case SO_RCVTIMEO_NEW:
982 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD);
983 		break;
984 
985 	case SO_SNDTIMEO_OLD:
986 	case SO_SNDTIMEO_NEW:
987 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD);
988 		break;
989 
990 	case SO_ATTACH_FILTER:
991 		ret = -EINVAL;
992 		if (optlen == sizeof(struct sock_fprog)) {
993 			struct sock_fprog fprog;
994 
995 			ret = -EFAULT;
996 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
997 				break;
998 
999 			ret = sk_attach_filter(&fprog, sk);
1000 		}
1001 		break;
1002 
1003 	case SO_ATTACH_BPF:
1004 		ret = -EINVAL;
1005 		if (optlen == sizeof(u32)) {
1006 			u32 ufd;
1007 
1008 			ret = -EFAULT;
1009 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1010 				break;
1011 
1012 			ret = sk_attach_bpf(ufd, sk);
1013 		}
1014 		break;
1015 
1016 	case SO_ATTACH_REUSEPORT_CBPF:
1017 		ret = -EINVAL;
1018 		if (optlen == sizeof(struct sock_fprog)) {
1019 			struct sock_fprog fprog;
1020 
1021 			ret = -EFAULT;
1022 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
1023 				break;
1024 
1025 			ret = sk_reuseport_attach_filter(&fprog, sk);
1026 		}
1027 		break;
1028 
1029 	case SO_ATTACH_REUSEPORT_EBPF:
1030 		ret = -EINVAL;
1031 		if (optlen == sizeof(u32)) {
1032 			u32 ufd;
1033 
1034 			ret = -EFAULT;
1035 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1036 				break;
1037 
1038 			ret = sk_reuseport_attach_bpf(ufd, sk);
1039 		}
1040 		break;
1041 
1042 	case SO_DETACH_REUSEPORT_BPF:
1043 		ret = reuseport_detach_prog(sk);
1044 		break;
1045 
1046 	case SO_DETACH_FILTER:
1047 		ret = sk_detach_filter(sk);
1048 		break;
1049 
1050 	case SO_LOCK_FILTER:
1051 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1052 			ret = -EPERM;
1053 		else
1054 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1055 		break;
1056 
1057 	case SO_PASSSEC:
1058 		if (valbool)
1059 			set_bit(SOCK_PASSSEC, &sock->flags);
1060 		else
1061 			clear_bit(SOCK_PASSSEC, &sock->flags);
1062 		break;
1063 	case SO_MARK:
1064 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1065 			ret = -EPERM;
1066 		} else if (val != sk->sk_mark) {
1067 			sk->sk_mark = val;
1068 			sk_dst_reset(sk);
1069 		}
1070 		break;
1071 
1072 	case SO_RXQ_OVFL:
1073 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1074 		break;
1075 
1076 	case SO_WIFI_STATUS:
1077 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1078 		break;
1079 
1080 	case SO_PEEK_OFF:
1081 		if (sock->ops->set_peek_off)
1082 			ret = sock->ops->set_peek_off(sk, val);
1083 		else
1084 			ret = -EOPNOTSUPP;
1085 		break;
1086 
1087 	case SO_NOFCS:
1088 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1089 		break;
1090 
1091 	case SO_SELECT_ERR_QUEUE:
1092 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1093 		break;
1094 
1095 #ifdef CONFIG_NET_RX_BUSY_POLL
1096 	case SO_BUSY_POLL:
1097 		/* allow unprivileged users to decrease the value */
1098 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1099 			ret = -EPERM;
1100 		else {
1101 			if (val < 0)
1102 				ret = -EINVAL;
1103 			else
1104 				sk->sk_ll_usec = val;
1105 		}
1106 		break;
1107 #endif
1108 
1109 	case SO_MAX_PACING_RATE:
1110 		{
1111 		unsigned long ulval = (val == ~0U) ? ~0UL : val;
1112 
1113 		if (sizeof(ulval) != sizeof(val) &&
1114 		    optlen >= sizeof(ulval) &&
1115 		    get_user(ulval, (unsigned long __user *)optval)) {
1116 			ret = -EFAULT;
1117 			break;
1118 		}
1119 		if (ulval != ~0UL)
1120 			cmpxchg(&sk->sk_pacing_status,
1121 				SK_PACING_NONE,
1122 				SK_PACING_NEEDED);
1123 		sk->sk_max_pacing_rate = ulval;
1124 		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1125 		break;
1126 		}
1127 	case SO_INCOMING_CPU:
1128 		sk->sk_incoming_cpu = val;
1129 		break;
1130 
1131 	case SO_CNX_ADVICE:
1132 		if (val == 1)
1133 			dst_negative_advice(sk);
1134 		break;
1135 
1136 	case SO_ZEROCOPY:
1137 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1138 			if (!((sk->sk_type == SOCK_STREAM &&
1139 			       sk->sk_protocol == IPPROTO_TCP) ||
1140 			      (sk->sk_type == SOCK_DGRAM &&
1141 			       sk->sk_protocol == IPPROTO_UDP)))
1142 				ret = -ENOTSUPP;
1143 		} else if (sk->sk_family != PF_RDS) {
1144 			ret = -ENOTSUPP;
1145 		}
1146 		if (!ret) {
1147 			if (val < 0 || val > 1)
1148 				ret = -EINVAL;
1149 			else
1150 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1151 		}
1152 		break;
1153 
1154 	case SO_TXTIME:
1155 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1156 			ret = -EPERM;
1157 		} else if (optlen != sizeof(struct sock_txtime)) {
1158 			ret = -EINVAL;
1159 		} else if (copy_from_user(&sk_txtime, optval,
1160 			   sizeof(struct sock_txtime))) {
1161 			ret = -EFAULT;
1162 		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1163 			ret = -EINVAL;
1164 		} else {
1165 			sock_valbool_flag(sk, SOCK_TXTIME, true);
1166 			sk->sk_clockid = sk_txtime.clockid;
1167 			sk->sk_txtime_deadline_mode =
1168 				!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1169 			sk->sk_txtime_report_errors =
1170 				!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1171 		}
1172 		break;
1173 
1174 	case SO_BINDTOIFINDEX:
1175 		ret = sock_setbindtodevice_locked(sk, val);
1176 		break;
1177 
1178 	default:
1179 		ret = -ENOPROTOOPT;
1180 		break;
1181 	}
1182 	release_sock(sk);
1183 	return ret;
1184 }
1185 EXPORT_SYMBOL(sock_setsockopt);
1186 
1187 
1188 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1189 			  struct ucred *ucred)
1190 {
1191 	ucred->pid = pid_vnr(pid);
1192 	ucred->uid = ucred->gid = -1;
1193 	if (cred) {
1194 		struct user_namespace *current_ns = current_user_ns();
1195 
1196 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1197 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1198 	}
1199 }
1200 
1201 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1202 {
1203 	struct user_namespace *user_ns = current_user_ns();
1204 	int i;
1205 
1206 	for (i = 0; i < src->ngroups; i++)
1207 		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1208 			return -EFAULT;
1209 
1210 	return 0;
1211 }
1212 
1213 int sock_getsockopt(struct socket *sock, int level, int optname,
1214 		    char __user *optval, int __user *optlen)
1215 {
1216 	struct sock *sk = sock->sk;
1217 
1218 	union {
1219 		int val;
1220 		u64 val64;
1221 		unsigned long ulval;
1222 		struct linger ling;
1223 		struct old_timeval32 tm32;
1224 		struct __kernel_old_timeval tm;
1225 		struct  __kernel_sock_timeval stm;
1226 		struct sock_txtime txtime;
1227 	} v;
1228 
1229 	int lv = sizeof(int);
1230 	int len;
1231 
1232 	if (get_user(len, optlen))
1233 		return -EFAULT;
1234 	if (len < 0)
1235 		return -EINVAL;
1236 
1237 	memset(&v, 0, sizeof(v));
1238 
1239 	switch (optname) {
1240 	case SO_DEBUG:
1241 		v.val = sock_flag(sk, SOCK_DBG);
1242 		break;
1243 
1244 	case SO_DONTROUTE:
1245 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1246 		break;
1247 
1248 	case SO_BROADCAST:
1249 		v.val = sock_flag(sk, SOCK_BROADCAST);
1250 		break;
1251 
1252 	case SO_SNDBUF:
1253 		v.val = sk->sk_sndbuf;
1254 		break;
1255 
1256 	case SO_RCVBUF:
1257 		v.val = sk->sk_rcvbuf;
1258 		break;
1259 
1260 	case SO_REUSEADDR:
1261 		v.val = sk->sk_reuse;
1262 		break;
1263 
1264 	case SO_REUSEPORT:
1265 		v.val = sk->sk_reuseport;
1266 		break;
1267 
1268 	case SO_KEEPALIVE:
1269 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1270 		break;
1271 
1272 	case SO_TYPE:
1273 		v.val = sk->sk_type;
1274 		break;
1275 
1276 	case SO_PROTOCOL:
1277 		v.val = sk->sk_protocol;
1278 		break;
1279 
1280 	case SO_DOMAIN:
1281 		v.val = sk->sk_family;
1282 		break;
1283 
1284 	case SO_ERROR:
1285 		v.val = -sock_error(sk);
1286 		if (v.val == 0)
1287 			v.val = xchg(&sk->sk_err_soft, 0);
1288 		break;
1289 
1290 	case SO_OOBINLINE:
1291 		v.val = sock_flag(sk, SOCK_URGINLINE);
1292 		break;
1293 
1294 	case SO_NO_CHECK:
1295 		v.val = sk->sk_no_check_tx;
1296 		break;
1297 
1298 	case SO_PRIORITY:
1299 		v.val = sk->sk_priority;
1300 		break;
1301 
1302 	case SO_LINGER:
1303 		lv		= sizeof(v.ling);
1304 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1305 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1306 		break;
1307 
1308 	case SO_BSDCOMPAT:
1309 		sock_warn_obsolete_bsdism("getsockopt");
1310 		break;
1311 
1312 	case SO_TIMESTAMP_OLD:
1313 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1314 				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1315 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1316 		break;
1317 
1318 	case SO_TIMESTAMPNS_OLD:
1319 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1320 		break;
1321 
1322 	case SO_TIMESTAMP_NEW:
1323 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1324 		break;
1325 
1326 	case SO_TIMESTAMPNS_NEW:
1327 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1328 		break;
1329 
1330 	case SO_TIMESTAMPING_OLD:
1331 		v.val = sk->sk_tsflags;
1332 		break;
1333 
1334 	case SO_RCVTIMEO_OLD:
1335 	case SO_RCVTIMEO_NEW:
1336 		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1337 		break;
1338 
1339 	case SO_SNDTIMEO_OLD:
1340 	case SO_SNDTIMEO_NEW:
1341 		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1342 		break;
1343 
1344 	case SO_RCVLOWAT:
1345 		v.val = sk->sk_rcvlowat;
1346 		break;
1347 
1348 	case SO_SNDLOWAT:
1349 		v.val = 1;
1350 		break;
1351 
1352 	case SO_PASSCRED:
1353 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1354 		break;
1355 
1356 	case SO_PEERCRED:
1357 	{
1358 		struct ucred peercred;
1359 		if (len > sizeof(peercred))
1360 			len = sizeof(peercred);
1361 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1362 		if (copy_to_user(optval, &peercred, len))
1363 			return -EFAULT;
1364 		goto lenout;
1365 	}
1366 
1367 	case SO_PEERGROUPS:
1368 	{
1369 		int ret, n;
1370 
1371 		if (!sk->sk_peer_cred)
1372 			return -ENODATA;
1373 
1374 		n = sk->sk_peer_cred->group_info->ngroups;
1375 		if (len < n * sizeof(gid_t)) {
1376 			len = n * sizeof(gid_t);
1377 			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1378 		}
1379 		len = n * sizeof(gid_t);
1380 
1381 		ret = groups_to_user((gid_t __user *)optval,
1382 				     sk->sk_peer_cred->group_info);
1383 		if (ret)
1384 			return ret;
1385 		goto lenout;
1386 	}
1387 
1388 	case SO_PEERNAME:
1389 	{
1390 		char address[128];
1391 
1392 		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1393 		if (lv < 0)
1394 			return -ENOTCONN;
1395 		if (lv < len)
1396 			return -EINVAL;
1397 		if (copy_to_user(optval, address, len))
1398 			return -EFAULT;
1399 		goto lenout;
1400 	}
1401 
1402 	/* Dubious BSD thing... Probably nobody even uses it, but
1403 	 * the UNIX standard wants it for whatever reason... -DaveM
1404 	 */
1405 	case SO_ACCEPTCONN:
1406 		v.val = sk->sk_state == TCP_LISTEN;
1407 		break;
1408 
1409 	case SO_PASSSEC:
1410 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1411 		break;
1412 
1413 	case SO_PEERSEC:
1414 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1415 
1416 	case SO_MARK:
1417 		v.val = sk->sk_mark;
1418 		break;
1419 
1420 	case SO_RXQ_OVFL:
1421 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1422 		break;
1423 
1424 	case SO_WIFI_STATUS:
1425 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1426 		break;
1427 
1428 	case SO_PEEK_OFF:
1429 		if (!sock->ops->set_peek_off)
1430 			return -EOPNOTSUPP;
1431 
1432 		v.val = sk->sk_peek_off;
1433 		break;
1434 	case SO_NOFCS:
1435 		v.val = sock_flag(sk, SOCK_NOFCS);
1436 		break;
1437 
1438 	case SO_BINDTODEVICE:
1439 		return sock_getbindtodevice(sk, optval, optlen, len);
1440 
1441 	case SO_GET_FILTER:
1442 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1443 		if (len < 0)
1444 			return len;
1445 
1446 		goto lenout;
1447 
1448 	case SO_LOCK_FILTER:
1449 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1450 		break;
1451 
1452 	case SO_BPF_EXTENSIONS:
1453 		v.val = bpf_tell_extensions();
1454 		break;
1455 
1456 	case SO_SELECT_ERR_QUEUE:
1457 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1458 		break;
1459 
1460 #ifdef CONFIG_NET_RX_BUSY_POLL
1461 	case SO_BUSY_POLL:
1462 		v.val = sk->sk_ll_usec;
1463 		break;
1464 #endif
1465 
1466 	case SO_MAX_PACING_RATE:
1467 		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1468 			lv = sizeof(v.ulval);
1469 			v.ulval = sk->sk_max_pacing_rate;
1470 		} else {
1471 			/* 32bit version */
1472 			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1473 		}
1474 		break;
1475 
1476 	case SO_INCOMING_CPU:
1477 		v.val = sk->sk_incoming_cpu;
1478 		break;
1479 
1480 	case SO_MEMINFO:
1481 	{
1482 		u32 meminfo[SK_MEMINFO_VARS];
1483 
1484 		sk_get_meminfo(sk, meminfo);
1485 
1486 		len = min_t(unsigned int, len, sizeof(meminfo));
1487 		if (copy_to_user(optval, &meminfo, len))
1488 			return -EFAULT;
1489 
1490 		goto lenout;
1491 	}
1492 
1493 #ifdef CONFIG_NET_RX_BUSY_POLL
1494 	case SO_INCOMING_NAPI_ID:
1495 		v.val = READ_ONCE(sk->sk_napi_id);
1496 
1497 		/* aggregate non-NAPI IDs down to 0 */
1498 		if (v.val < MIN_NAPI_ID)
1499 			v.val = 0;
1500 
1501 		break;
1502 #endif
1503 
1504 	case SO_COOKIE:
1505 		lv = sizeof(u64);
1506 		if (len < lv)
1507 			return -EINVAL;
1508 		v.val64 = sock_gen_cookie(sk);
1509 		break;
1510 
1511 	case SO_ZEROCOPY:
1512 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1513 		break;
1514 
1515 	case SO_TXTIME:
1516 		lv = sizeof(v.txtime);
1517 		v.txtime.clockid = sk->sk_clockid;
1518 		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1519 				  SOF_TXTIME_DEADLINE_MODE : 0;
1520 		v.txtime.flags |= sk->sk_txtime_report_errors ?
1521 				  SOF_TXTIME_REPORT_ERRORS : 0;
1522 		break;
1523 
1524 	case SO_BINDTOIFINDEX:
1525 		v.val = sk->sk_bound_dev_if;
1526 		break;
1527 
1528 	default:
1529 		/* We implement the SO_SNDLOWAT etc to not be settable
1530 		 * (1003.1g 7).
1531 		 */
1532 		return -ENOPROTOOPT;
1533 	}
1534 
1535 	if (len > lv)
1536 		len = lv;
1537 	if (copy_to_user(optval, &v, len))
1538 		return -EFAULT;
1539 lenout:
1540 	if (put_user(len, optlen))
1541 		return -EFAULT;
1542 	return 0;
1543 }
1544 
1545 /*
1546  * Initialize an sk_lock.
1547  *
1548  * (We also register the sk_lock with the lock validator.)
1549  */
1550 static inline void sock_lock_init(struct sock *sk)
1551 {
1552 	if (sk->sk_kern_sock)
1553 		sock_lock_init_class_and_name(
1554 			sk,
1555 			af_family_kern_slock_key_strings[sk->sk_family],
1556 			af_family_kern_slock_keys + sk->sk_family,
1557 			af_family_kern_key_strings[sk->sk_family],
1558 			af_family_kern_keys + sk->sk_family);
1559 	else
1560 		sock_lock_init_class_and_name(
1561 			sk,
1562 			af_family_slock_key_strings[sk->sk_family],
1563 			af_family_slock_keys + sk->sk_family,
1564 			af_family_key_strings[sk->sk_family],
1565 			af_family_keys + sk->sk_family);
1566 }
1567 
1568 /*
1569  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1570  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1571  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1572  */
1573 static void sock_copy(struct sock *nsk, const struct sock *osk)
1574 {
1575 #ifdef CONFIG_SECURITY_NETWORK
1576 	void *sptr = nsk->sk_security;
1577 #endif
1578 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1579 
1580 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1581 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1582 
1583 #ifdef CONFIG_SECURITY_NETWORK
1584 	nsk->sk_security = sptr;
1585 	security_sk_clone(osk, nsk);
1586 #endif
1587 }
1588 
1589 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1590 		int family)
1591 {
1592 	struct sock *sk;
1593 	struct kmem_cache *slab;
1594 
1595 	slab = prot->slab;
1596 	if (slab != NULL) {
1597 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1598 		if (!sk)
1599 			return sk;
1600 		if (want_init_on_alloc(priority))
1601 			sk_prot_clear_nulls(sk, prot->obj_size);
1602 	} else
1603 		sk = kmalloc(prot->obj_size, priority);
1604 
1605 	if (sk != NULL) {
1606 		if (security_sk_alloc(sk, family, priority))
1607 			goto out_free;
1608 
1609 		if (!try_module_get(prot->owner))
1610 			goto out_free_sec;
1611 		sk_tx_queue_clear(sk);
1612 	}
1613 
1614 	return sk;
1615 
1616 out_free_sec:
1617 	security_sk_free(sk);
1618 out_free:
1619 	if (slab != NULL)
1620 		kmem_cache_free(slab, sk);
1621 	else
1622 		kfree(sk);
1623 	return NULL;
1624 }
1625 
1626 static void sk_prot_free(struct proto *prot, struct sock *sk)
1627 {
1628 	struct kmem_cache *slab;
1629 	struct module *owner;
1630 
1631 	owner = prot->owner;
1632 	slab = prot->slab;
1633 
1634 	cgroup_sk_free(&sk->sk_cgrp_data);
1635 	mem_cgroup_sk_free(sk);
1636 	security_sk_free(sk);
1637 	if (slab != NULL)
1638 		kmem_cache_free(slab, sk);
1639 	else
1640 		kfree(sk);
1641 	module_put(owner);
1642 }
1643 
1644 /**
1645  *	sk_alloc - All socket objects are allocated here
1646  *	@net: the applicable net namespace
1647  *	@family: protocol family
1648  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1649  *	@prot: struct proto associated with this new sock instance
1650  *	@kern: is this to be a kernel socket?
1651  */
1652 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1653 		      struct proto *prot, int kern)
1654 {
1655 	struct sock *sk;
1656 
1657 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1658 	if (sk) {
1659 		sk->sk_family = family;
1660 		/*
1661 		 * See comment in struct sock definition to understand
1662 		 * why we need sk_prot_creator -acme
1663 		 */
1664 		sk->sk_prot = sk->sk_prot_creator = prot;
1665 		sk->sk_kern_sock = kern;
1666 		sock_lock_init(sk);
1667 		sk->sk_net_refcnt = kern ? 0 : 1;
1668 		if (likely(sk->sk_net_refcnt)) {
1669 			get_net(net);
1670 			sock_inuse_add(net, 1);
1671 		}
1672 
1673 		sock_net_set(sk, net);
1674 		refcount_set(&sk->sk_wmem_alloc, 1);
1675 
1676 		mem_cgroup_sk_alloc(sk);
1677 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1678 		sock_update_classid(&sk->sk_cgrp_data);
1679 		sock_update_netprioidx(&sk->sk_cgrp_data);
1680 	}
1681 
1682 	return sk;
1683 }
1684 EXPORT_SYMBOL(sk_alloc);
1685 
1686 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1687  * grace period. This is the case for UDP sockets and TCP listeners.
1688  */
1689 static void __sk_destruct(struct rcu_head *head)
1690 {
1691 	struct sock *sk = container_of(head, struct sock, sk_rcu);
1692 	struct sk_filter *filter;
1693 
1694 	if (sk->sk_destruct)
1695 		sk->sk_destruct(sk);
1696 
1697 	filter = rcu_dereference_check(sk->sk_filter,
1698 				       refcount_read(&sk->sk_wmem_alloc) == 0);
1699 	if (filter) {
1700 		sk_filter_uncharge(sk, filter);
1701 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1702 	}
1703 	if (rcu_access_pointer(sk->sk_reuseport_cb))
1704 		reuseport_detach_sock(sk);
1705 
1706 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1707 
1708 #ifdef CONFIG_BPF_SYSCALL
1709 	bpf_sk_storage_free(sk);
1710 #endif
1711 
1712 	if (atomic_read(&sk->sk_omem_alloc))
1713 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1714 			 __func__, atomic_read(&sk->sk_omem_alloc));
1715 
1716 	if (sk->sk_frag.page) {
1717 		put_page(sk->sk_frag.page);
1718 		sk->sk_frag.page = NULL;
1719 	}
1720 
1721 	if (sk->sk_peer_cred)
1722 		put_cred(sk->sk_peer_cred);
1723 	put_pid(sk->sk_peer_pid);
1724 	if (likely(sk->sk_net_refcnt))
1725 		put_net(sock_net(sk));
1726 	sk_prot_free(sk->sk_prot_creator, sk);
1727 }
1728 
1729 void sk_destruct(struct sock *sk)
1730 {
1731 	if (sock_flag(sk, SOCK_RCU_FREE))
1732 		call_rcu(&sk->sk_rcu, __sk_destruct);
1733 	else
1734 		__sk_destruct(&sk->sk_rcu);
1735 }
1736 
1737 static void __sk_free(struct sock *sk)
1738 {
1739 	if (likely(sk->sk_net_refcnt))
1740 		sock_inuse_add(sock_net(sk), -1);
1741 
1742 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1743 		sock_diag_broadcast_destroy(sk);
1744 	else
1745 		sk_destruct(sk);
1746 }
1747 
1748 void sk_free(struct sock *sk)
1749 {
1750 	/*
1751 	 * We subtract one from sk_wmem_alloc and can know if
1752 	 * some packets are still in some tx queue.
1753 	 * If not null, sock_wfree() will call __sk_free(sk) later
1754 	 */
1755 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1756 		__sk_free(sk);
1757 }
1758 EXPORT_SYMBOL(sk_free);
1759 
1760 static void sk_init_common(struct sock *sk)
1761 {
1762 	skb_queue_head_init(&sk->sk_receive_queue);
1763 	skb_queue_head_init(&sk->sk_write_queue);
1764 	skb_queue_head_init(&sk->sk_error_queue);
1765 
1766 	rwlock_init(&sk->sk_callback_lock);
1767 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1768 			af_rlock_keys + sk->sk_family,
1769 			af_family_rlock_key_strings[sk->sk_family]);
1770 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1771 			af_wlock_keys + sk->sk_family,
1772 			af_family_wlock_key_strings[sk->sk_family]);
1773 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1774 			af_elock_keys + sk->sk_family,
1775 			af_family_elock_key_strings[sk->sk_family]);
1776 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1777 			af_callback_keys + sk->sk_family,
1778 			af_family_clock_key_strings[sk->sk_family]);
1779 }
1780 
1781 /**
1782  *	sk_clone_lock - clone a socket, and lock its clone
1783  *	@sk: the socket to clone
1784  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1785  *
1786  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1787  */
1788 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1789 {
1790 	struct sock *newsk;
1791 	bool is_charged = true;
1792 
1793 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1794 	if (newsk != NULL) {
1795 		struct sk_filter *filter;
1796 
1797 		sock_copy(newsk, sk);
1798 
1799 		newsk->sk_prot_creator = sk->sk_prot;
1800 
1801 		/* SANITY */
1802 		if (likely(newsk->sk_net_refcnt))
1803 			get_net(sock_net(newsk));
1804 		sk_node_init(&newsk->sk_node);
1805 		sock_lock_init(newsk);
1806 		bh_lock_sock(newsk);
1807 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1808 		newsk->sk_backlog.len = 0;
1809 
1810 		atomic_set(&newsk->sk_rmem_alloc, 0);
1811 		/*
1812 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1813 		 */
1814 		refcount_set(&newsk->sk_wmem_alloc, 1);
1815 		atomic_set(&newsk->sk_omem_alloc, 0);
1816 		sk_init_common(newsk);
1817 
1818 		newsk->sk_dst_cache	= NULL;
1819 		newsk->sk_dst_pending_confirm = 0;
1820 		newsk->sk_wmem_queued	= 0;
1821 		newsk->sk_forward_alloc = 0;
1822 		atomic_set(&newsk->sk_drops, 0);
1823 		newsk->sk_send_head	= NULL;
1824 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1825 		atomic_set(&newsk->sk_zckey, 0);
1826 
1827 		sock_reset_flag(newsk, SOCK_DONE);
1828 		mem_cgroup_sk_alloc(newsk);
1829 		cgroup_sk_alloc(&newsk->sk_cgrp_data);
1830 
1831 		rcu_read_lock();
1832 		filter = rcu_dereference(sk->sk_filter);
1833 		if (filter != NULL)
1834 			/* though it's an empty new sock, the charging may fail
1835 			 * if sysctl_optmem_max was changed between creation of
1836 			 * original socket and cloning
1837 			 */
1838 			is_charged = sk_filter_charge(newsk, filter);
1839 		RCU_INIT_POINTER(newsk->sk_filter, filter);
1840 		rcu_read_unlock();
1841 
1842 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1843 			/* We need to make sure that we don't uncharge the new
1844 			 * socket if we couldn't charge it in the first place
1845 			 * as otherwise we uncharge the parent's filter.
1846 			 */
1847 			if (!is_charged)
1848 				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1849 			sk_free_unlock_clone(newsk);
1850 			newsk = NULL;
1851 			goto out;
1852 		}
1853 		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1854 #ifdef CONFIG_BPF_SYSCALL
1855 		RCU_INIT_POINTER(newsk->sk_bpf_storage, NULL);
1856 #endif
1857 
1858 		newsk->sk_err	   = 0;
1859 		newsk->sk_err_soft = 0;
1860 		newsk->sk_priority = 0;
1861 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1862 		if (likely(newsk->sk_net_refcnt))
1863 			sock_inuse_add(sock_net(newsk), 1);
1864 
1865 		/*
1866 		 * Before updating sk_refcnt, we must commit prior changes to memory
1867 		 * (Documentation/RCU/rculist_nulls.txt for details)
1868 		 */
1869 		smp_wmb();
1870 		refcount_set(&newsk->sk_refcnt, 2);
1871 
1872 		/*
1873 		 * Increment the counter in the same struct proto as the master
1874 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1875 		 * is the same as sk->sk_prot->socks, as this field was copied
1876 		 * with memcpy).
1877 		 *
1878 		 * This _changes_ the previous behaviour, where
1879 		 * tcp_create_openreq_child always was incrementing the
1880 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1881 		 * to be taken into account in all callers. -acme
1882 		 */
1883 		sk_refcnt_debug_inc(newsk);
1884 		sk_set_socket(newsk, NULL);
1885 		RCU_INIT_POINTER(newsk->sk_wq, NULL);
1886 
1887 		if (newsk->sk_prot->sockets_allocated)
1888 			sk_sockets_allocated_inc(newsk);
1889 
1890 		if (sock_needs_netstamp(sk) &&
1891 		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1892 			net_enable_timestamp();
1893 	}
1894 out:
1895 	return newsk;
1896 }
1897 EXPORT_SYMBOL_GPL(sk_clone_lock);
1898 
1899 void sk_free_unlock_clone(struct sock *sk)
1900 {
1901 	/* It is still raw copy of parent, so invalidate
1902 	 * destructor and make plain sk_free() */
1903 	sk->sk_destruct = NULL;
1904 	bh_unlock_sock(sk);
1905 	sk_free(sk);
1906 }
1907 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1908 
1909 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1910 {
1911 	u32 max_segs = 1;
1912 
1913 	sk_dst_set(sk, dst);
1914 	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1915 	if (sk->sk_route_caps & NETIF_F_GSO)
1916 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1917 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1918 	if (sk_can_gso(sk)) {
1919 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1920 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1921 		} else {
1922 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1923 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1924 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1925 		}
1926 	}
1927 	sk->sk_gso_max_segs = max_segs;
1928 }
1929 EXPORT_SYMBOL_GPL(sk_setup_caps);
1930 
1931 /*
1932  *	Simple resource managers for sockets.
1933  */
1934 
1935 
1936 /*
1937  * Write buffer destructor automatically called from kfree_skb.
1938  */
1939 void sock_wfree(struct sk_buff *skb)
1940 {
1941 	struct sock *sk = skb->sk;
1942 	unsigned int len = skb->truesize;
1943 
1944 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1945 		/*
1946 		 * Keep a reference on sk_wmem_alloc, this will be released
1947 		 * after sk_write_space() call
1948 		 */
1949 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1950 		sk->sk_write_space(sk);
1951 		len = 1;
1952 	}
1953 	/*
1954 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1955 	 * could not do because of in-flight packets
1956 	 */
1957 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1958 		__sk_free(sk);
1959 }
1960 EXPORT_SYMBOL(sock_wfree);
1961 
1962 /* This variant of sock_wfree() is used by TCP,
1963  * since it sets SOCK_USE_WRITE_QUEUE.
1964  */
1965 void __sock_wfree(struct sk_buff *skb)
1966 {
1967 	struct sock *sk = skb->sk;
1968 
1969 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1970 		__sk_free(sk);
1971 }
1972 
1973 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1974 {
1975 	skb_orphan(skb);
1976 	skb->sk = sk;
1977 #ifdef CONFIG_INET
1978 	if (unlikely(!sk_fullsock(sk))) {
1979 		skb->destructor = sock_edemux;
1980 		sock_hold(sk);
1981 		return;
1982 	}
1983 #endif
1984 	skb->destructor = sock_wfree;
1985 	skb_set_hash_from_sk(skb, sk);
1986 	/*
1987 	 * We used to take a refcount on sk, but following operation
1988 	 * is enough to guarantee sk_free() wont free this sock until
1989 	 * all in-flight packets are completed
1990 	 */
1991 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1992 }
1993 EXPORT_SYMBOL(skb_set_owner_w);
1994 
1995 static bool can_skb_orphan_partial(const struct sk_buff *skb)
1996 {
1997 #ifdef CONFIG_TLS_DEVICE
1998 	/* Drivers depend on in-order delivery for crypto offload,
1999 	 * partial orphan breaks out-of-order-OK logic.
2000 	 */
2001 	if (skb->decrypted)
2002 		return false;
2003 #endif
2004 	return (skb->destructor == sock_wfree ||
2005 		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2006 }
2007 
2008 /* This helper is used by netem, as it can hold packets in its
2009  * delay queue. We want to allow the owner socket to send more
2010  * packets, as if they were already TX completed by a typical driver.
2011  * But we also want to keep skb->sk set because some packet schedulers
2012  * rely on it (sch_fq for example).
2013  */
2014 void skb_orphan_partial(struct sk_buff *skb)
2015 {
2016 	if (skb_is_tcp_pure_ack(skb))
2017 		return;
2018 
2019 	if (can_skb_orphan_partial(skb)) {
2020 		struct sock *sk = skb->sk;
2021 
2022 		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2023 			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2024 			skb->destructor = sock_efree;
2025 		}
2026 	} else {
2027 		skb_orphan(skb);
2028 	}
2029 }
2030 EXPORT_SYMBOL(skb_orphan_partial);
2031 
2032 /*
2033  * Read buffer destructor automatically called from kfree_skb.
2034  */
2035 void sock_rfree(struct sk_buff *skb)
2036 {
2037 	struct sock *sk = skb->sk;
2038 	unsigned int len = skb->truesize;
2039 
2040 	atomic_sub(len, &sk->sk_rmem_alloc);
2041 	sk_mem_uncharge(sk, len);
2042 }
2043 EXPORT_SYMBOL(sock_rfree);
2044 
2045 /*
2046  * Buffer destructor for skbs that are not used directly in read or write
2047  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2048  */
2049 void sock_efree(struct sk_buff *skb)
2050 {
2051 	sock_put(skb->sk);
2052 }
2053 EXPORT_SYMBOL(sock_efree);
2054 
2055 kuid_t sock_i_uid(struct sock *sk)
2056 {
2057 	kuid_t uid;
2058 
2059 	read_lock_bh(&sk->sk_callback_lock);
2060 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2061 	read_unlock_bh(&sk->sk_callback_lock);
2062 	return uid;
2063 }
2064 EXPORT_SYMBOL(sock_i_uid);
2065 
2066 unsigned long sock_i_ino(struct sock *sk)
2067 {
2068 	unsigned long ino;
2069 
2070 	read_lock_bh(&sk->sk_callback_lock);
2071 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2072 	read_unlock_bh(&sk->sk_callback_lock);
2073 	return ino;
2074 }
2075 EXPORT_SYMBOL(sock_i_ino);
2076 
2077 /*
2078  * Allocate a skb from the socket's send buffer.
2079  */
2080 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2081 			     gfp_t priority)
2082 {
2083 	if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
2084 		struct sk_buff *skb = alloc_skb(size, priority);
2085 		if (skb) {
2086 			skb_set_owner_w(skb, sk);
2087 			return skb;
2088 		}
2089 	}
2090 	return NULL;
2091 }
2092 EXPORT_SYMBOL(sock_wmalloc);
2093 
2094 static void sock_ofree(struct sk_buff *skb)
2095 {
2096 	struct sock *sk = skb->sk;
2097 
2098 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2099 }
2100 
2101 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2102 			     gfp_t priority)
2103 {
2104 	struct sk_buff *skb;
2105 
2106 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2107 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2108 	    sysctl_optmem_max)
2109 		return NULL;
2110 
2111 	skb = alloc_skb(size, priority);
2112 	if (!skb)
2113 		return NULL;
2114 
2115 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2116 	skb->sk = sk;
2117 	skb->destructor = sock_ofree;
2118 	return skb;
2119 }
2120 
2121 /*
2122  * Allocate a memory block from the socket's option memory buffer.
2123  */
2124 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2125 {
2126 	if ((unsigned int)size <= sysctl_optmem_max &&
2127 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2128 		void *mem;
2129 		/* First do the add, to avoid the race if kmalloc
2130 		 * might sleep.
2131 		 */
2132 		atomic_add(size, &sk->sk_omem_alloc);
2133 		mem = kmalloc(size, priority);
2134 		if (mem)
2135 			return mem;
2136 		atomic_sub(size, &sk->sk_omem_alloc);
2137 	}
2138 	return NULL;
2139 }
2140 EXPORT_SYMBOL(sock_kmalloc);
2141 
2142 /* Free an option memory block. Note, we actually want the inline
2143  * here as this allows gcc to detect the nullify and fold away the
2144  * condition entirely.
2145  */
2146 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2147 				  const bool nullify)
2148 {
2149 	if (WARN_ON_ONCE(!mem))
2150 		return;
2151 	if (nullify)
2152 		kzfree(mem);
2153 	else
2154 		kfree(mem);
2155 	atomic_sub(size, &sk->sk_omem_alloc);
2156 }
2157 
2158 void sock_kfree_s(struct sock *sk, void *mem, int size)
2159 {
2160 	__sock_kfree_s(sk, mem, size, false);
2161 }
2162 EXPORT_SYMBOL(sock_kfree_s);
2163 
2164 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2165 {
2166 	__sock_kfree_s(sk, mem, size, true);
2167 }
2168 EXPORT_SYMBOL(sock_kzfree_s);
2169 
2170 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2171    I think, these locks should be removed for datagram sockets.
2172  */
2173 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2174 {
2175 	DEFINE_WAIT(wait);
2176 
2177 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2178 	for (;;) {
2179 		if (!timeo)
2180 			break;
2181 		if (signal_pending(current))
2182 			break;
2183 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2184 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2185 		if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2186 			break;
2187 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2188 			break;
2189 		if (sk->sk_err)
2190 			break;
2191 		timeo = schedule_timeout(timeo);
2192 	}
2193 	finish_wait(sk_sleep(sk), &wait);
2194 	return timeo;
2195 }
2196 
2197 
2198 /*
2199  *	Generic send/receive buffer handlers
2200  */
2201 
2202 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2203 				     unsigned long data_len, int noblock,
2204 				     int *errcode, int max_page_order)
2205 {
2206 	struct sk_buff *skb;
2207 	long timeo;
2208 	int err;
2209 
2210 	timeo = sock_sndtimeo(sk, noblock);
2211 	for (;;) {
2212 		err = sock_error(sk);
2213 		if (err != 0)
2214 			goto failure;
2215 
2216 		err = -EPIPE;
2217 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2218 			goto failure;
2219 
2220 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2221 			break;
2222 
2223 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2224 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2225 		err = -EAGAIN;
2226 		if (!timeo)
2227 			goto failure;
2228 		if (signal_pending(current))
2229 			goto interrupted;
2230 		timeo = sock_wait_for_wmem(sk, timeo);
2231 	}
2232 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2233 				   errcode, sk->sk_allocation);
2234 	if (skb)
2235 		skb_set_owner_w(skb, sk);
2236 	return skb;
2237 
2238 interrupted:
2239 	err = sock_intr_errno(timeo);
2240 failure:
2241 	*errcode = err;
2242 	return NULL;
2243 }
2244 EXPORT_SYMBOL(sock_alloc_send_pskb);
2245 
2246 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2247 				    int noblock, int *errcode)
2248 {
2249 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2250 }
2251 EXPORT_SYMBOL(sock_alloc_send_skb);
2252 
2253 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2254 		     struct sockcm_cookie *sockc)
2255 {
2256 	u32 tsflags;
2257 
2258 	switch (cmsg->cmsg_type) {
2259 	case SO_MARK:
2260 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2261 			return -EPERM;
2262 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2263 			return -EINVAL;
2264 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2265 		break;
2266 	case SO_TIMESTAMPING_OLD:
2267 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2268 			return -EINVAL;
2269 
2270 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2271 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2272 			return -EINVAL;
2273 
2274 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2275 		sockc->tsflags |= tsflags;
2276 		break;
2277 	case SCM_TXTIME:
2278 		if (!sock_flag(sk, SOCK_TXTIME))
2279 			return -EINVAL;
2280 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2281 			return -EINVAL;
2282 		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2283 		break;
2284 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2285 	case SCM_RIGHTS:
2286 	case SCM_CREDENTIALS:
2287 		break;
2288 	default:
2289 		return -EINVAL;
2290 	}
2291 	return 0;
2292 }
2293 EXPORT_SYMBOL(__sock_cmsg_send);
2294 
2295 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2296 		   struct sockcm_cookie *sockc)
2297 {
2298 	struct cmsghdr *cmsg;
2299 	int ret;
2300 
2301 	for_each_cmsghdr(cmsg, msg) {
2302 		if (!CMSG_OK(msg, cmsg))
2303 			return -EINVAL;
2304 		if (cmsg->cmsg_level != SOL_SOCKET)
2305 			continue;
2306 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2307 		if (ret)
2308 			return ret;
2309 	}
2310 	return 0;
2311 }
2312 EXPORT_SYMBOL(sock_cmsg_send);
2313 
2314 static void sk_enter_memory_pressure(struct sock *sk)
2315 {
2316 	if (!sk->sk_prot->enter_memory_pressure)
2317 		return;
2318 
2319 	sk->sk_prot->enter_memory_pressure(sk);
2320 }
2321 
2322 static void sk_leave_memory_pressure(struct sock *sk)
2323 {
2324 	if (sk->sk_prot->leave_memory_pressure) {
2325 		sk->sk_prot->leave_memory_pressure(sk);
2326 	} else {
2327 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2328 
2329 		if (memory_pressure && *memory_pressure)
2330 			*memory_pressure = 0;
2331 	}
2332 }
2333 
2334 /* On 32bit arches, an skb frag is limited to 2^15 */
2335 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2336 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2337 
2338 /**
2339  * skb_page_frag_refill - check that a page_frag contains enough room
2340  * @sz: minimum size of the fragment we want to get
2341  * @pfrag: pointer to page_frag
2342  * @gfp: priority for memory allocation
2343  *
2344  * Note: While this allocator tries to use high order pages, there is
2345  * no guarantee that allocations succeed. Therefore, @sz MUST be
2346  * less or equal than PAGE_SIZE.
2347  */
2348 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2349 {
2350 	if (pfrag->page) {
2351 		if (page_ref_count(pfrag->page) == 1) {
2352 			pfrag->offset = 0;
2353 			return true;
2354 		}
2355 		if (pfrag->offset + sz <= pfrag->size)
2356 			return true;
2357 		put_page(pfrag->page);
2358 	}
2359 
2360 	pfrag->offset = 0;
2361 	if (SKB_FRAG_PAGE_ORDER &&
2362 	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2363 		/* Avoid direct reclaim but allow kswapd to wake */
2364 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2365 					  __GFP_COMP | __GFP_NOWARN |
2366 					  __GFP_NORETRY,
2367 					  SKB_FRAG_PAGE_ORDER);
2368 		if (likely(pfrag->page)) {
2369 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2370 			return true;
2371 		}
2372 	}
2373 	pfrag->page = alloc_page(gfp);
2374 	if (likely(pfrag->page)) {
2375 		pfrag->size = PAGE_SIZE;
2376 		return true;
2377 	}
2378 	return false;
2379 }
2380 EXPORT_SYMBOL(skb_page_frag_refill);
2381 
2382 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2383 {
2384 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2385 		return true;
2386 
2387 	sk_enter_memory_pressure(sk);
2388 	sk_stream_moderate_sndbuf(sk);
2389 	return false;
2390 }
2391 EXPORT_SYMBOL(sk_page_frag_refill);
2392 
2393 static void __lock_sock(struct sock *sk)
2394 	__releases(&sk->sk_lock.slock)
2395 	__acquires(&sk->sk_lock.slock)
2396 {
2397 	DEFINE_WAIT(wait);
2398 
2399 	for (;;) {
2400 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2401 					TASK_UNINTERRUPTIBLE);
2402 		spin_unlock_bh(&sk->sk_lock.slock);
2403 		schedule();
2404 		spin_lock_bh(&sk->sk_lock.slock);
2405 		if (!sock_owned_by_user(sk))
2406 			break;
2407 	}
2408 	finish_wait(&sk->sk_lock.wq, &wait);
2409 }
2410 
2411 void __release_sock(struct sock *sk)
2412 	__releases(&sk->sk_lock.slock)
2413 	__acquires(&sk->sk_lock.slock)
2414 {
2415 	struct sk_buff *skb, *next;
2416 
2417 	while ((skb = sk->sk_backlog.head) != NULL) {
2418 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2419 
2420 		spin_unlock_bh(&sk->sk_lock.slock);
2421 
2422 		do {
2423 			next = skb->next;
2424 			prefetch(next);
2425 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2426 			skb_mark_not_on_list(skb);
2427 			sk_backlog_rcv(sk, skb);
2428 
2429 			cond_resched();
2430 
2431 			skb = next;
2432 		} while (skb != NULL);
2433 
2434 		spin_lock_bh(&sk->sk_lock.slock);
2435 	}
2436 
2437 	/*
2438 	 * Doing the zeroing here guarantee we can not loop forever
2439 	 * while a wild producer attempts to flood us.
2440 	 */
2441 	sk->sk_backlog.len = 0;
2442 }
2443 
2444 void __sk_flush_backlog(struct sock *sk)
2445 {
2446 	spin_lock_bh(&sk->sk_lock.slock);
2447 	__release_sock(sk);
2448 	spin_unlock_bh(&sk->sk_lock.slock);
2449 }
2450 
2451 /**
2452  * sk_wait_data - wait for data to arrive at sk_receive_queue
2453  * @sk:    sock to wait on
2454  * @timeo: for how long
2455  * @skb:   last skb seen on sk_receive_queue
2456  *
2457  * Now socket state including sk->sk_err is changed only under lock,
2458  * hence we may omit checks after joining wait queue.
2459  * We check receive queue before schedule() only as optimization;
2460  * it is very likely that release_sock() added new data.
2461  */
2462 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2463 {
2464 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2465 	int rc;
2466 
2467 	add_wait_queue(sk_sleep(sk), &wait);
2468 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2469 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2470 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2471 	remove_wait_queue(sk_sleep(sk), &wait);
2472 	return rc;
2473 }
2474 EXPORT_SYMBOL(sk_wait_data);
2475 
2476 /**
2477  *	__sk_mem_raise_allocated - increase memory_allocated
2478  *	@sk: socket
2479  *	@size: memory size to allocate
2480  *	@amt: pages to allocate
2481  *	@kind: allocation type
2482  *
2483  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2484  */
2485 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2486 {
2487 	struct proto *prot = sk->sk_prot;
2488 	long allocated = sk_memory_allocated_add(sk, amt);
2489 	bool charged = true;
2490 
2491 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2492 	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2493 		goto suppress_allocation;
2494 
2495 	/* Under limit. */
2496 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2497 		sk_leave_memory_pressure(sk);
2498 		return 1;
2499 	}
2500 
2501 	/* Under pressure. */
2502 	if (allocated > sk_prot_mem_limits(sk, 1))
2503 		sk_enter_memory_pressure(sk);
2504 
2505 	/* Over hard limit. */
2506 	if (allocated > sk_prot_mem_limits(sk, 2))
2507 		goto suppress_allocation;
2508 
2509 	/* guarantee minimum buffer size under pressure */
2510 	if (kind == SK_MEM_RECV) {
2511 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2512 			return 1;
2513 
2514 	} else { /* SK_MEM_SEND */
2515 		int wmem0 = sk_get_wmem0(sk, prot);
2516 
2517 		if (sk->sk_type == SOCK_STREAM) {
2518 			if (sk->sk_wmem_queued < wmem0)
2519 				return 1;
2520 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2521 				return 1;
2522 		}
2523 	}
2524 
2525 	if (sk_has_memory_pressure(sk)) {
2526 		u64 alloc;
2527 
2528 		if (!sk_under_memory_pressure(sk))
2529 			return 1;
2530 		alloc = sk_sockets_allocated_read_positive(sk);
2531 		if (sk_prot_mem_limits(sk, 2) > alloc *
2532 		    sk_mem_pages(sk->sk_wmem_queued +
2533 				 atomic_read(&sk->sk_rmem_alloc) +
2534 				 sk->sk_forward_alloc))
2535 			return 1;
2536 	}
2537 
2538 suppress_allocation:
2539 
2540 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2541 		sk_stream_moderate_sndbuf(sk);
2542 
2543 		/* Fail only if socket is _under_ its sndbuf.
2544 		 * In this case we cannot block, so that we have to fail.
2545 		 */
2546 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2547 			return 1;
2548 	}
2549 
2550 	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2551 		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2552 
2553 	sk_memory_allocated_sub(sk, amt);
2554 
2555 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2556 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2557 
2558 	return 0;
2559 }
2560 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2561 
2562 /**
2563  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2564  *	@sk: socket
2565  *	@size: memory size to allocate
2566  *	@kind: allocation type
2567  *
2568  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2569  *	rmem allocation. This function assumes that protocols which have
2570  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2571  */
2572 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2573 {
2574 	int ret, amt = sk_mem_pages(size);
2575 
2576 	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2577 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2578 	if (!ret)
2579 		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2580 	return ret;
2581 }
2582 EXPORT_SYMBOL(__sk_mem_schedule);
2583 
2584 /**
2585  *	__sk_mem_reduce_allocated - reclaim memory_allocated
2586  *	@sk: socket
2587  *	@amount: number of quanta
2588  *
2589  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2590  */
2591 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2592 {
2593 	sk_memory_allocated_sub(sk, amount);
2594 
2595 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2596 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2597 
2598 	if (sk_under_memory_pressure(sk) &&
2599 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2600 		sk_leave_memory_pressure(sk);
2601 }
2602 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2603 
2604 /**
2605  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2606  *	@sk: socket
2607  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2608  */
2609 void __sk_mem_reclaim(struct sock *sk, int amount)
2610 {
2611 	amount >>= SK_MEM_QUANTUM_SHIFT;
2612 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2613 	__sk_mem_reduce_allocated(sk, amount);
2614 }
2615 EXPORT_SYMBOL(__sk_mem_reclaim);
2616 
2617 int sk_set_peek_off(struct sock *sk, int val)
2618 {
2619 	sk->sk_peek_off = val;
2620 	return 0;
2621 }
2622 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2623 
2624 /*
2625  * Set of default routines for initialising struct proto_ops when
2626  * the protocol does not support a particular function. In certain
2627  * cases where it makes no sense for a protocol to have a "do nothing"
2628  * function, some default processing is provided.
2629  */
2630 
2631 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2632 {
2633 	return -EOPNOTSUPP;
2634 }
2635 EXPORT_SYMBOL(sock_no_bind);
2636 
2637 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2638 		    int len, int flags)
2639 {
2640 	return -EOPNOTSUPP;
2641 }
2642 EXPORT_SYMBOL(sock_no_connect);
2643 
2644 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2645 {
2646 	return -EOPNOTSUPP;
2647 }
2648 EXPORT_SYMBOL(sock_no_socketpair);
2649 
2650 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2651 		   bool kern)
2652 {
2653 	return -EOPNOTSUPP;
2654 }
2655 EXPORT_SYMBOL(sock_no_accept);
2656 
2657 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2658 		    int peer)
2659 {
2660 	return -EOPNOTSUPP;
2661 }
2662 EXPORT_SYMBOL(sock_no_getname);
2663 
2664 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2665 {
2666 	return -EOPNOTSUPP;
2667 }
2668 EXPORT_SYMBOL(sock_no_ioctl);
2669 
2670 int sock_no_listen(struct socket *sock, int backlog)
2671 {
2672 	return -EOPNOTSUPP;
2673 }
2674 EXPORT_SYMBOL(sock_no_listen);
2675 
2676 int sock_no_shutdown(struct socket *sock, int how)
2677 {
2678 	return -EOPNOTSUPP;
2679 }
2680 EXPORT_SYMBOL(sock_no_shutdown);
2681 
2682 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2683 		    char __user *optval, unsigned int optlen)
2684 {
2685 	return -EOPNOTSUPP;
2686 }
2687 EXPORT_SYMBOL(sock_no_setsockopt);
2688 
2689 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2690 		    char __user *optval, int __user *optlen)
2691 {
2692 	return -EOPNOTSUPP;
2693 }
2694 EXPORT_SYMBOL(sock_no_getsockopt);
2695 
2696 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2697 {
2698 	return -EOPNOTSUPP;
2699 }
2700 EXPORT_SYMBOL(sock_no_sendmsg);
2701 
2702 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2703 {
2704 	return -EOPNOTSUPP;
2705 }
2706 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2707 
2708 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2709 		    int flags)
2710 {
2711 	return -EOPNOTSUPP;
2712 }
2713 EXPORT_SYMBOL(sock_no_recvmsg);
2714 
2715 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2716 {
2717 	/* Mirror missing mmap method error code */
2718 	return -ENODEV;
2719 }
2720 EXPORT_SYMBOL(sock_no_mmap);
2721 
2722 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2723 {
2724 	ssize_t res;
2725 	struct msghdr msg = {.msg_flags = flags};
2726 	struct kvec iov;
2727 	char *kaddr = kmap(page);
2728 	iov.iov_base = kaddr + offset;
2729 	iov.iov_len = size;
2730 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2731 	kunmap(page);
2732 	return res;
2733 }
2734 EXPORT_SYMBOL(sock_no_sendpage);
2735 
2736 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2737 				int offset, size_t size, int flags)
2738 {
2739 	ssize_t res;
2740 	struct msghdr msg = {.msg_flags = flags};
2741 	struct kvec iov;
2742 	char *kaddr = kmap(page);
2743 
2744 	iov.iov_base = kaddr + offset;
2745 	iov.iov_len = size;
2746 	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2747 	kunmap(page);
2748 	return res;
2749 }
2750 EXPORT_SYMBOL(sock_no_sendpage_locked);
2751 
2752 /*
2753  *	Default Socket Callbacks
2754  */
2755 
2756 static void sock_def_wakeup(struct sock *sk)
2757 {
2758 	struct socket_wq *wq;
2759 
2760 	rcu_read_lock();
2761 	wq = rcu_dereference(sk->sk_wq);
2762 	if (skwq_has_sleeper(wq))
2763 		wake_up_interruptible_all(&wq->wait);
2764 	rcu_read_unlock();
2765 }
2766 
2767 static void sock_def_error_report(struct sock *sk)
2768 {
2769 	struct socket_wq *wq;
2770 
2771 	rcu_read_lock();
2772 	wq = rcu_dereference(sk->sk_wq);
2773 	if (skwq_has_sleeper(wq))
2774 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2775 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2776 	rcu_read_unlock();
2777 }
2778 
2779 static void sock_def_readable(struct sock *sk)
2780 {
2781 	struct socket_wq *wq;
2782 
2783 	rcu_read_lock();
2784 	wq = rcu_dereference(sk->sk_wq);
2785 	if (skwq_has_sleeper(wq))
2786 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2787 						EPOLLRDNORM | EPOLLRDBAND);
2788 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2789 	rcu_read_unlock();
2790 }
2791 
2792 static void sock_def_write_space(struct sock *sk)
2793 {
2794 	struct socket_wq *wq;
2795 
2796 	rcu_read_lock();
2797 
2798 	/* Do not wake up a writer until he can make "significant"
2799 	 * progress.  --DaveM
2800 	 */
2801 	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2802 		wq = rcu_dereference(sk->sk_wq);
2803 		if (skwq_has_sleeper(wq))
2804 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2805 						EPOLLWRNORM | EPOLLWRBAND);
2806 
2807 		/* Should agree with poll, otherwise some programs break */
2808 		if (sock_writeable(sk))
2809 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2810 	}
2811 
2812 	rcu_read_unlock();
2813 }
2814 
2815 static void sock_def_destruct(struct sock *sk)
2816 {
2817 }
2818 
2819 void sk_send_sigurg(struct sock *sk)
2820 {
2821 	if (sk->sk_socket && sk->sk_socket->file)
2822 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2823 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2824 }
2825 EXPORT_SYMBOL(sk_send_sigurg);
2826 
2827 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2828 		    unsigned long expires)
2829 {
2830 	if (!mod_timer(timer, expires))
2831 		sock_hold(sk);
2832 }
2833 EXPORT_SYMBOL(sk_reset_timer);
2834 
2835 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2836 {
2837 	if (del_timer(timer))
2838 		__sock_put(sk);
2839 }
2840 EXPORT_SYMBOL(sk_stop_timer);
2841 
2842 void sock_init_data(struct socket *sock, struct sock *sk)
2843 {
2844 	sk_init_common(sk);
2845 	sk->sk_send_head	=	NULL;
2846 
2847 	timer_setup(&sk->sk_timer, NULL, 0);
2848 
2849 	sk->sk_allocation	=	GFP_KERNEL;
2850 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2851 	sk->sk_sndbuf		=	sysctl_wmem_default;
2852 	sk->sk_state		=	TCP_CLOSE;
2853 	sk_set_socket(sk, sock);
2854 
2855 	sock_set_flag(sk, SOCK_ZAPPED);
2856 
2857 	if (sock) {
2858 		sk->sk_type	=	sock->type;
2859 		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2860 		sock->sk	=	sk;
2861 		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2862 	} else {
2863 		RCU_INIT_POINTER(sk->sk_wq, NULL);
2864 		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2865 	}
2866 
2867 	rwlock_init(&sk->sk_callback_lock);
2868 	if (sk->sk_kern_sock)
2869 		lockdep_set_class_and_name(
2870 			&sk->sk_callback_lock,
2871 			af_kern_callback_keys + sk->sk_family,
2872 			af_family_kern_clock_key_strings[sk->sk_family]);
2873 	else
2874 		lockdep_set_class_and_name(
2875 			&sk->sk_callback_lock,
2876 			af_callback_keys + sk->sk_family,
2877 			af_family_clock_key_strings[sk->sk_family]);
2878 
2879 	sk->sk_state_change	=	sock_def_wakeup;
2880 	sk->sk_data_ready	=	sock_def_readable;
2881 	sk->sk_write_space	=	sock_def_write_space;
2882 	sk->sk_error_report	=	sock_def_error_report;
2883 	sk->sk_destruct		=	sock_def_destruct;
2884 
2885 	sk->sk_frag.page	=	NULL;
2886 	sk->sk_frag.offset	=	0;
2887 	sk->sk_peek_off		=	-1;
2888 
2889 	sk->sk_peer_pid 	=	NULL;
2890 	sk->sk_peer_cred	=	NULL;
2891 	sk->sk_write_pending	=	0;
2892 	sk->sk_rcvlowat		=	1;
2893 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2894 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2895 
2896 	sk->sk_stamp = SK_DEFAULT_STAMP;
2897 #if BITS_PER_LONG==32
2898 	seqlock_init(&sk->sk_stamp_seq);
2899 #endif
2900 	atomic_set(&sk->sk_zckey, 0);
2901 
2902 #ifdef CONFIG_NET_RX_BUSY_POLL
2903 	sk->sk_napi_id		=	0;
2904 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2905 #endif
2906 
2907 	sk->sk_max_pacing_rate = ~0UL;
2908 	sk->sk_pacing_rate = ~0UL;
2909 	sk->sk_pacing_shift = 10;
2910 	sk->sk_incoming_cpu = -1;
2911 
2912 	sk_rx_queue_clear(sk);
2913 	/*
2914 	 * Before updating sk_refcnt, we must commit prior changes to memory
2915 	 * (Documentation/RCU/rculist_nulls.txt for details)
2916 	 */
2917 	smp_wmb();
2918 	refcount_set(&sk->sk_refcnt, 1);
2919 	atomic_set(&sk->sk_drops, 0);
2920 }
2921 EXPORT_SYMBOL(sock_init_data);
2922 
2923 void lock_sock_nested(struct sock *sk, int subclass)
2924 {
2925 	might_sleep();
2926 	spin_lock_bh(&sk->sk_lock.slock);
2927 	if (sk->sk_lock.owned)
2928 		__lock_sock(sk);
2929 	sk->sk_lock.owned = 1;
2930 	spin_unlock(&sk->sk_lock.slock);
2931 	/*
2932 	 * The sk_lock has mutex_lock() semantics here:
2933 	 */
2934 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2935 	local_bh_enable();
2936 }
2937 EXPORT_SYMBOL(lock_sock_nested);
2938 
2939 void release_sock(struct sock *sk)
2940 {
2941 	spin_lock_bh(&sk->sk_lock.slock);
2942 	if (sk->sk_backlog.tail)
2943 		__release_sock(sk);
2944 
2945 	/* Warning : release_cb() might need to release sk ownership,
2946 	 * ie call sock_release_ownership(sk) before us.
2947 	 */
2948 	if (sk->sk_prot->release_cb)
2949 		sk->sk_prot->release_cb(sk);
2950 
2951 	sock_release_ownership(sk);
2952 	if (waitqueue_active(&sk->sk_lock.wq))
2953 		wake_up(&sk->sk_lock.wq);
2954 	spin_unlock_bh(&sk->sk_lock.slock);
2955 }
2956 EXPORT_SYMBOL(release_sock);
2957 
2958 /**
2959  * lock_sock_fast - fast version of lock_sock
2960  * @sk: socket
2961  *
2962  * This version should be used for very small section, where process wont block
2963  * return false if fast path is taken:
2964  *
2965  *   sk_lock.slock locked, owned = 0, BH disabled
2966  *
2967  * return true if slow path is taken:
2968  *
2969  *   sk_lock.slock unlocked, owned = 1, BH enabled
2970  */
2971 bool lock_sock_fast(struct sock *sk)
2972 {
2973 	might_sleep();
2974 	spin_lock_bh(&sk->sk_lock.slock);
2975 
2976 	if (!sk->sk_lock.owned)
2977 		/*
2978 		 * Note : We must disable BH
2979 		 */
2980 		return false;
2981 
2982 	__lock_sock(sk);
2983 	sk->sk_lock.owned = 1;
2984 	spin_unlock(&sk->sk_lock.slock);
2985 	/*
2986 	 * The sk_lock has mutex_lock() semantics here:
2987 	 */
2988 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2989 	local_bh_enable();
2990 	return true;
2991 }
2992 EXPORT_SYMBOL(lock_sock_fast);
2993 
2994 int sock_gettstamp(struct socket *sock, void __user *userstamp,
2995 		   bool timeval, bool time32)
2996 {
2997 	struct sock *sk = sock->sk;
2998 	struct timespec64 ts;
2999 
3000 	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3001 	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3002 	if (ts.tv_sec == -1)
3003 		return -ENOENT;
3004 	if (ts.tv_sec == 0) {
3005 		ktime_t kt = ktime_get_real();
3006 		sock_write_timestamp(sk, kt);;
3007 		ts = ktime_to_timespec64(kt);
3008 	}
3009 
3010 	if (timeval)
3011 		ts.tv_nsec /= 1000;
3012 
3013 #ifdef CONFIG_COMPAT_32BIT_TIME
3014 	if (time32)
3015 		return put_old_timespec32(&ts, userstamp);
3016 #endif
3017 #ifdef CONFIG_SPARC64
3018 	/* beware of padding in sparc64 timeval */
3019 	if (timeval && !in_compat_syscall()) {
3020 		struct __kernel_old_timeval __user tv = {
3021 			.tv_sec = ts.tv_sec,
3022 			.tv_usec = ts.tv_nsec,
3023 		};
3024 		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3025 			return -EFAULT;
3026 		return 0;
3027 	}
3028 #endif
3029 	return put_timespec64(&ts, userstamp);
3030 }
3031 EXPORT_SYMBOL(sock_gettstamp);
3032 
3033 void sock_enable_timestamp(struct sock *sk, int flag)
3034 {
3035 	if (!sock_flag(sk, flag)) {
3036 		unsigned long previous_flags = sk->sk_flags;
3037 
3038 		sock_set_flag(sk, flag);
3039 		/*
3040 		 * we just set one of the two flags which require net
3041 		 * time stamping, but time stamping might have been on
3042 		 * already because of the other one
3043 		 */
3044 		if (sock_needs_netstamp(sk) &&
3045 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3046 			net_enable_timestamp();
3047 	}
3048 }
3049 
3050 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3051 		       int level, int type)
3052 {
3053 	struct sock_exterr_skb *serr;
3054 	struct sk_buff *skb;
3055 	int copied, err;
3056 
3057 	err = -EAGAIN;
3058 	skb = sock_dequeue_err_skb(sk);
3059 	if (skb == NULL)
3060 		goto out;
3061 
3062 	copied = skb->len;
3063 	if (copied > len) {
3064 		msg->msg_flags |= MSG_TRUNC;
3065 		copied = len;
3066 	}
3067 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3068 	if (err)
3069 		goto out_free_skb;
3070 
3071 	sock_recv_timestamp(msg, sk, skb);
3072 
3073 	serr = SKB_EXT_ERR(skb);
3074 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3075 
3076 	msg->msg_flags |= MSG_ERRQUEUE;
3077 	err = copied;
3078 
3079 out_free_skb:
3080 	kfree_skb(skb);
3081 out:
3082 	return err;
3083 }
3084 EXPORT_SYMBOL(sock_recv_errqueue);
3085 
3086 /*
3087  *	Get a socket option on an socket.
3088  *
3089  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3090  *	asynchronous errors should be reported by getsockopt. We assume
3091  *	this means if you specify SO_ERROR (otherwise whats the point of it).
3092  */
3093 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3094 			   char __user *optval, int __user *optlen)
3095 {
3096 	struct sock *sk = sock->sk;
3097 
3098 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3099 }
3100 EXPORT_SYMBOL(sock_common_getsockopt);
3101 
3102 #ifdef CONFIG_COMPAT
3103 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3104 				  char __user *optval, int __user *optlen)
3105 {
3106 	struct sock *sk = sock->sk;
3107 
3108 	if (sk->sk_prot->compat_getsockopt != NULL)
3109 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
3110 						      optval, optlen);
3111 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3112 }
3113 EXPORT_SYMBOL(compat_sock_common_getsockopt);
3114 #endif
3115 
3116 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3117 			int flags)
3118 {
3119 	struct sock *sk = sock->sk;
3120 	int addr_len = 0;
3121 	int err;
3122 
3123 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3124 				   flags & ~MSG_DONTWAIT, &addr_len);
3125 	if (err >= 0)
3126 		msg->msg_namelen = addr_len;
3127 	return err;
3128 }
3129 EXPORT_SYMBOL(sock_common_recvmsg);
3130 
3131 /*
3132  *	Set socket options on an inet socket.
3133  */
3134 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3135 			   char __user *optval, unsigned int optlen)
3136 {
3137 	struct sock *sk = sock->sk;
3138 
3139 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3140 }
3141 EXPORT_SYMBOL(sock_common_setsockopt);
3142 
3143 #ifdef CONFIG_COMPAT
3144 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3145 				  char __user *optval, unsigned int optlen)
3146 {
3147 	struct sock *sk = sock->sk;
3148 
3149 	if (sk->sk_prot->compat_setsockopt != NULL)
3150 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
3151 						      optval, optlen);
3152 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3153 }
3154 EXPORT_SYMBOL(compat_sock_common_setsockopt);
3155 #endif
3156 
3157 void sk_common_release(struct sock *sk)
3158 {
3159 	if (sk->sk_prot->destroy)
3160 		sk->sk_prot->destroy(sk);
3161 
3162 	/*
3163 	 * Observation: when sock_common_release is called, processes have
3164 	 * no access to socket. But net still has.
3165 	 * Step one, detach it from networking:
3166 	 *
3167 	 * A. Remove from hash tables.
3168 	 */
3169 
3170 	sk->sk_prot->unhash(sk);
3171 
3172 	/*
3173 	 * In this point socket cannot receive new packets, but it is possible
3174 	 * that some packets are in flight because some CPU runs receiver and
3175 	 * did hash table lookup before we unhashed socket. They will achieve
3176 	 * receive queue and will be purged by socket destructor.
3177 	 *
3178 	 * Also we still have packets pending on receive queue and probably,
3179 	 * our own packets waiting in device queues. sock_destroy will drain
3180 	 * receive queue, but transmitted packets will delay socket destruction
3181 	 * until the last reference will be released.
3182 	 */
3183 
3184 	sock_orphan(sk);
3185 
3186 	xfrm_sk_free_policy(sk);
3187 
3188 	sk_refcnt_debug_release(sk);
3189 
3190 	sock_put(sk);
3191 }
3192 EXPORT_SYMBOL(sk_common_release);
3193 
3194 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3195 {
3196 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3197 
3198 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3199 	mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3200 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3201 	mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3202 	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3203 	mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3204 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3205 	mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3206 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3207 }
3208 
3209 #ifdef CONFIG_PROC_FS
3210 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
3211 struct prot_inuse {
3212 	int val[PROTO_INUSE_NR];
3213 };
3214 
3215 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3216 
3217 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3218 {
3219 	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3220 }
3221 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3222 
3223 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3224 {
3225 	int cpu, idx = prot->inuse_idx;
3226 	int res = 0;
3227 
3228 	for_each_possible_cpu(cpu)
3229 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3230 
3231 	return res >= 0 ? res : 0;
3232 }
3233 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3234 
3235 static void sock_inuse_add(struct net *net, int val)
3236 {
3237 	this_cpu_add(*net->core.sock_inuse, val);
3238 }
3239 
3240 int sock_inuse_get(struct net *net)
3241 {
3242 	int cpu, res = 0;
3243 
3244 	for_each_possible_cpu(cpu)
3245 		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3246 
3247 	return res;
3248 }
3249 
3250 EXPORT_SYMBOL_GPL(sock_inuse_get);
3251 
3252 static int __net_init sock_inuse_init_net(struct net *net)
3253 {
3254 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3255 	if (net->core.prot_inuse == NULL)
3256 		return -ENOMEM;
3257 
3258 	net->core.sock_inuse = alloc_percpu(int);
3259 	if (net->core.sock_inuse == NULL)
3260 		goto out;
3261 
3262 	return 0;
3263 
3264 out:
3265 	free_percpu(net->core.prot_inuse);
3266 	return -ENOMEM;
3267 }
3268 
3269 static void __net_exit sock_inuse_exit_net(struct net *net)
3270 {
3271 	free_percpu(net->core.prot_inuse);
3272 	free_percpu(net->core.sock_inuse);
3273 }
3274 
3275 static struct pernet_operations net_inuse_ops = {
3276 	.init = sock_inuse_init_net,
3277 	.exit = sock_inuse_exit_net,
3278 };
3279 
3280 static __init int net_inuse_init(void)
3281 {
3282 	if (register_pernet_subsys(&net_inuse_ops))
3283 		panic("Cannot initialize net inuse counters");
3284 
3285 	return 0;
3286 }
3287 
3288 core_initcall(net_inuse_init);
3289 
3290 static void assign_proto_idx(struct proto *prot)
3291 {
3292 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3293 
3294 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3295 		pr_err("PROTO_INUSE_NR exhausted\n");
3296 		return;
3297 	}
3298 
3299 	set_bit(prot->inuse_idx, proto_inuse_idx);
3300 }
3301 
3302 static void release_proto_idx(struct proto *prot)
3303 {
3304 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3305 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3306 }
3307 #else
3308 static inline void assign_proto_idx(struct proto *prot)
3309 {
3310 }
3311 
3312 static inline void release_proto_idx(struct proto *prot)
3313 {
3314 }
3315 
3316 static void sock_inuse_add(struct net *net, int val)
3317 {
3318 }
3319 #endif
3320 
3321 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3322 {
3323 	if (!rsk_prot)
3324 		return;
3325 	kfree(rsk_prot->slab_name);
3326 	rsk_prot->slab_name = NULL;
3327 	kmem_cache_destroy(rsk_prot->slab);
3328 	rsk_prot->slab = NULL;
3329 }
3330 
3331 static int req_prot_init(const struct proto *prot)
3332 {
3333 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3334 
3335 	if (!rsk_prot)
3336 		return 0;
3337 
3338 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3339 					prot->name);
3340 	if (!rsk_prot->slab_name)
3341 		return -ENOMEM;
3342 
3343 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3344 					   rsk_prot->obj_size, 0,
3345 					   SLAB_ACCOUNT | prot->slab_flags,
3346 					   NULL);
3347 
3348 	if (!rsk_prot->slab) {
3349 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3350 			prot->name);
3351 		return -ENOMEM;
3352 	}
3353 	return 0;
3354 }
3355 
3356 int proto_register(struct proto *prot, int alloc_slab)
3357 {
3358 	if (alloc_slab) {
3359 		prot->slab = kmem_cache_create_usercopy(prot->name,
3360 					prot->obj_size, 0,
3361 					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3362 					prot->slab_flags,
3363 					prot->useroffset, prot->usersize,
3364 					NULL);
3365 
3366 		if (prot->slab == NULL) {
3367 			pr_crit("%s: Can't create sock SLAB cache!\n",
3368 				prot->name);
3369 			goto out;
3370 		}
3371 
3372 		if (req_prot_init(prot))
3373 			goto out_free_request_sock_slab;
3374 
3375 		if (prot->twsk_prot != NULL) {
3376 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3377 
3378 			if (prot->twsk_prot->twsk_slab_name == NULL)
3379 				goto out_free_request_sock_slab;
3380 
3381 			prot->twsk_prot->twsk_slab =
3382 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3383 						  prot->twsk_prot->twsk_obj_size,
3384 						  0,
3385 						  SLAB_ACCOUNT |
3386 						  prot->slab_flags,
3387 						  NULL);
3388 			if (prot->twsk_prot->twsk_slab == NULL)
3389 				goto out_free_timewait_sock_slab_name;
3390 		}
3391 	}
3392 
3393 	mutex_lock(&proto_list_mutex);
3394 	list_add(&prot->node, &proto_list);
3395 	assign_proto_idx(prot);
3396 	mutex_unlock(&proto_list_mutex);
3397 	return 0;
3398 
3399 out_free_timewait_sock_slab_name:
3400 	kfree(prot->twsk_prot->twsk_slab_name);
3401 out_free_request_sock_slab:
3402 	req_prot_cleanup(prot->rsk_prot);
3403 
3404 	kmem_cache_destroy(prot->slab);
3405 	prot->slab = NULL;
3406 out:
3407 	return -ENOBUFS;
3408 }
3409 EXPORT_SYMBOL(proto_register);
3410 
3411 void proto_unregister(struct proto *prot)
3412 {
3413 	mutex_lock(&proto_list_mutex);
3414 	release_proto_idx(prot);
3415 	list_del(&prot->node);
3416 	mutex_unlock(&proto_list_mutex);
3417 
3418 	kmem_cache_destroy(prot->slab);
3419 	prot->slab = NULL;
3420 
3421 	req_prot_cleanup(prot->rsk_prot);
3422 
3423 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3424 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3425 		kfree(prot->twsk_prot->twsk_slab_name);
3426 		prot->twsk_prot->twsk_slab = NULL;
3427 	}
3428 }
3429 EXPORT_SYMBOL(proto_unregister);
3430 
3431 int sock_load_diag_module(int family, int protocol)
3432 {
3433 	if (!protocol) {
3434 		if (!sock_is_registered(family))
3435 			return -ENOENT;
3436 
3437 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3438 				      NETLINK_SOCK_DIAG, family);
3439 	}
3440 
3441 #ifdef CONFIG_INET
3442 	if (family == AF_INET &&
3443 	    protocol != IPPROTO_RAW &&
3444 	    !rcu_access_pointer(inet_protos[protocol]))
3445 		return -ENOENT;
3446 #endif
3447 
3448 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3449 			      NETLINK_SOCK_DIAG, family, protocol);
3450 }
3451 EXPORT_SYMBOL(sock_load_diag_module);
3452 
3453 #ifdef CONFIG_PROC_FS
3454 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3455 	__acquires(proto_list_mutex)
3456 {
3457 	mutex_lock(&proto_list_mutex);
3458 	return seq_list_start_head(&proto_list, *pos);
3459 }
3460 
3461 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3462 {
3463 	return seq_list_next(v, &proto_list, pos);
3464 }
3465 
3466 static void proto_seq_stop(struct seq_file *seq, void *v)
3467 	__releases(proto_list_mutex)
3468 {
3469 	mutex_unlock(&proto_list_mutex);
3470 }
3471 
3472 static char proto_method_implemented(const void *method)
3473 {
3474 	return method == NULL ? 'n' : 'y';
3475 }
3476 static long sock_prot_memory_allocated(struct proto *proto)
3477 {
3478 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3479 }
3480 
3481 static char *sock_prot_memory_pressure(struct proto *proto)
3482 {
3483 	return proto->memory_pressure != NULL ?
3484 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3485 }
3486 
3487 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3488 {
3489 
3490 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3491 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3492 		   proto->name,
3493 		   proto->obj_size,
3494 		   sock_prot_inuse_get(seq_file_net(seq), proto),
3495 		   sock_prot_memory_allocated(proto),
3496 		   sock_prot_memory_pressure(proto),
3497 		   proto->max_header,
3498 		   proto->slab == NULL ? "no" : "yes",
3499 		   module_name(proto->owner),
3500 		   proto_method_implemented(proto->close),
3501 		   proto_method_implemented(proto->connect),
3502 		   proto_method_implemented(proto->disconnect),
3503 		   proto_method_implemented(proto->accept),
3504 		   proto_method_implemented(proto->ioctl),
3505 		   proto_method_implemented(proto->init),
3506 		   proto_method_implemented(proto->destroy),
3507 		   proto_method_implemented(proto->shutdown),
3508 		   proto_method_implemented(proto->setsockopt),
3509 		   proto_method_implemented(proto->getsockopt),
3510 		   proto_method_implemented(proto->sendmsg),
3511 		   proto_method_implemented(proto->recvmsg),
3512 		   proto_method_implemented(proto->sendpage),
3513 		   proto_method_implemented(proto->bind),
3514 		   proto_method_implemented(proto->backlog_rcv),
3515 		   proto_method_implemented(proto->hash),
3516 		   proto_method_implemented(proto->unhash),
3517 		   proto_method_implemented(proto->get_port),
3518 		   proto_method_implemented(proto->enter_memory_pressure));
3519 }
3520 
3521 static int proto_seq_show(struct seq_file *seq, void *v)
3522 {
3523 	if (v == &proto_list)
3524 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3525 			   "protocol",
3526 			   "size",
3527 			   "sockets",
3528 			   "memory",
3529 			   "press",
3530 			   "maxhdr",
3531 			   "slab",
3532 			   "module",
3533 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3534 	else
3535 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3536 	return 0;
3537 }
3538 
3539 static const struct seq_operations proto_seq_ops = {
3540 	.start  = proto_seq_start,
3541 	.next   = proto_seq_next,
3542 	.stop   = proto_seq_stop,
3543 	.show   = proto_seq_show,
3544 };
3545 
3546 static __net_init int proto_init_net(struct net *net)
3547 {
3548 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3549 			sizeof(struct seq_net_private)))
3550 		return -ENOMEM;
3551 
3552 	return 0;
3553 }
3554 
3555 static __net_exit void proto_exit_net(struct net *net)
3556 {
3557 	remove_proc_entry("protocols", net->proc_net);
3558 }
3559 
3560 
3561 static __net_initdata struct pernet_operations proto_net_ops = {
3562 	.init = proto_init_net,
3563 	.exit = proto_exit_net,
3564 };
3565 
3566 static int __init proto_init(void)
3567 {
3568 	return register_pernet_subsys(&proto_net_ops);
3569 }
3570 
3571 subsys_initcall(proto_init);
3572 
3573 #endif /* PROC_FS */
3574 
3575 #ifdef CONFIG_NET_RX_BUSY_POLL
3576 bool sk_busy_loop_end(void *p, unsigned long start_time)
3577 {
3578 	struct sock *sk = p;
3579 
3580 	return !skb_queue_empty(&sk->sk_receive_queue) ||
3581 	       sk_busy_loop_timeout(sk, start_time);
3582 }
3583 EXPORT_SYMBOL(sk_busy_loop_end);
3584 #endif /* CONFIG_NET_RX_BUSY_POLL */
3585