xref: /openbmc/linux/net/core/sock.c (revision e5242c5f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Generic socket support routines. Memory allocators, socket lock/release
8  *		handler for protocols to use and generic option handler.
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  */
85 
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87 
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/udp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114 #include <linux/static_key.h>
115 #include <linux/memcontrol.h>
116 #include <linux/prefetch.h>
117 #include <linux/compat.h>
118 #include <linux/mroute.h>
119 #include <linux/mroute6.h>
120 #include <linux/icmpv6.h>
121 
122 #include <linux/uaccess.h>
123 
124 #include <linux/netdevice.h>
125 #include <net/protocol.h>
126 #include <linux/skbuff.h>
127 #include <net/net_namespace.h>
128 #include <net/request_sock.h>
129 #include <net/sock.h>
130 #include <linux/net_tstamp.h>
131 #include <net/xfrm.h>
132 #include <linux/ipsec.h>
133 #include <net/cls_cgroup.h>
134 #include <net/netprio_cgroup.h>
135 #include <linux/sock_diag.h>
136 
137 #include <linux/filter.h>
138 #include <net/sock_reuseport.h>
139 #include <net/bpf_sk_storage.h>
140 
141 #include <trace/events/sock.h>
142 
143 #include <net/tcp.h>
144 #include <net/busy_poll.h>
145 #include <net/phonet/phonet.h>
146 
147 #include <linux/ethtool.h>
148 
149 #include "dev.h"
150 
151 static DEFINE_MUTEX(proto_list_mutex);
152 static LIST_HEAD(proto_list);
153 
154 static void sock_def_write_space_wfree(struct sock *sk);
155 static void sock_def_write_space(struct sock *sk);
156 
157 /**
158  * sk_ns_capable - General socket capability test
159  * @sk: Socket to use a capability on or through
160  * @user_ns: The user namespace of the capability to use
161  * @cap: The capability to use
162  *
163  * Test to see if the opener of the socket had when the socket was
164  * created and the current process has the capability @cap in the user
165  * namespace @user_ns.
166  */
167 bool sk_ns_capable(const struct sock *sk,
168 		   struct user_namespace *user_ns, int cap)
169 {
170 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
171 		ns_capable(user_ns, cap);
172 }
173 EXPORT_SYMBOL(sk_ns_capable);
174 
175 /**
176  * sk_capable - Socket global capability test
177  * @sk: Socket to use a capability on or through
178  * @cap: The global capability to use
179  *
180  * Test to see if the opener of the socket had when the socket was
181  * created and the current process has the capability @cap in all user
182  * namespaces.
183  */
184 bool sk_capable(const struct sock *sk, int cap)
185 {
186 	return sk_ns_capable(sk, &init_user_ns, cap);
187 }
188 EXPORT_SYMBOL(sk_capable);
189 
190 /**
191  * sk_net_capable - Network namespace socket capability test
192  * @sk: Socket to use a capability on or through
193  * @cap: The capability to use
194  *
195  * Test to see if the opener of the socket had when the socket was created
196  * and the current process has the capability @cap over the network namespace
197  * the socket is a member of.
198  */
199 bool sk_net_capable(const struct sock *sk, int cap)
200 {
201 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
202 }
203 EXPORT_SYMBOL(sk_net_capable);
204 
205 /*
206  * Each address family might have different locking rules, so we have
207  * one slock key per address family and separate keys for internal and
208  * userspace sockets.
209  */
210 static struct lock_class_key af_family_keys[AF_MAX];
211 static struct lock_class_key af_family_kern_keys[AF_MAX];
212 static struct lock_class_key af_family_slock_keys[AF_MAX];
213 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
214 
215 /*
216  * Make lock validator output more readable. (we pre-construct these
217  * strings build-time, so that runtime initialization of socket
218  * locks is fast):
219  */
220 
221 #define _sock_locks(x)						  \
222   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
223   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
224   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
225   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
226   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
227   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
228   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
229   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
230   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
231   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
232   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
233   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
234   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
235   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
236   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
237   x "AF_MCTP"  , \
238   x "AF_MAX"
239 
240 static const char *const af_family_key_strings[AF_MAX+1] = {
241 	_sock_locks("sk_lock-")
242 };
243 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
244 	_sock_locks("slock-")
245 };
246 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
247 	_sock_locks("clock-")
248 };
249 
250 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
251 	_sock_locks("k-sk_lock-")
252 };
253 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
254 	_sock_locks("k-slock-")
255 };
256 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
257 	_sock_locks("k-clock-")
258 };
259 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
260 	_sock_locks("rlock-")
261 };
262 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
263 	_sock_locks("wlock-")
264 };
265 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
266 	_sock_locks("elock-")
267 };
268 
269 /*
270  * sk_callback_lock and sk queues locking rules are per-address-family,
271  * so split the lock classes by using a per-AF key:
272  */
273 static struct lock_class_key af_callback_keys[AF_MAX];
274 static struct lock_class_key af_rlock_keys[AF_MAX];
275 static struct lock_class_key af_wlock_keys[AF_MAX];
276 static struct lock_class_key af_elock_keys[AF_MAX];
277 static struct lock_class_key af_kern_callback_keys[AF_MAX];
278 
279 /* Run time adjustable parameters. */
280 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
281 EXPORT_SYMBOL(sysctl_wmem_max);
282 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
283 EXPORT_SYMBOL(sysctl_rmem_max);
284 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
285 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
286 int sysctl_mem_pcpu_rsv __read_mostly = SK_MEMORY_PCPU_RESERVE;
287 
288 /* Maximal space eaten by iovec or ancillary data plus some space */
289 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
290 EXPORT_SYMBOL(sysctl_optmem_max);
291 
292 int sysctl_tstamp_allow_data __read_mostly = 1;
293 
294 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
295 EXPORT_SYMBOL_GPL(memalloc_socks_key);
296 
297 /**
298  * sk_set_memalloc - sets %SOCK_MEMALLOC
299  * @sk: socket to set it on
300  *
301  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
302  * It's the responsibility of the admin to adjust min_free_kbytes
303  * to meet the requirements
304  */
305 void sk_set_memalloc(struct sock *sk)
306 {
307 	sock_set_flag(sk, SOCK_MEMALLOC);
308 	sk->sk_allocation |= __GFP_MEMALLOC;
309 	static_branch_inc(&memalloc_socks_key);
310 }
311 EXPORT_SYMBOL_GPL(sk_set_memalloc);
312 
313 void sk_clear_memalloc(struct sock *sk)
314 {
315 	sock_reset_flag(sk, SOCK_MEMALLOC);
316 	sk->sk_allocation &= ~__GFP_MEMALLOC;
317 	static_branch_dec(&memalloc_socks_key);
318 
319 	/*
320 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
321 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
322 	 * it has rmem allocations due to the last swapfile being deactivated
323 	 * but there is a risk that the socket is unusable due to exceeding
324 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
325 	 */
326 	sk_mem_reclaim(sk);
327 }
328 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
329 
330 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
331 {
332 	int ret;
333 	unsigned int noreclaim_flag;
334 
335 	/* these should have been dropped before queueing */
336 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
337 
338 	noreclaim_flag = memalloc_noreclaim_save();
339 	ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
340 				 tcp_v6_do_rcv,
341 				 tcp_v4_do_rcv,
342 				 sk, skb);
343 	memalloc_noreclaim_restore(noreclaim_flag);
344 
345 	return ret;
346 }
347 EXPORT_SYMBOL(__sk_backlog_rcv);
348 
349 void sk_error_report(struct sock *sk)
350 {
351 	sk->sk_error_report(sk);
352 
353 	switch (sk->sk_family) {
354 	case AF_INET:
355 		fallthrough;
356 	case AF_INET6:
357 		trace_inet_sk_error_report(sk);
358 		break;
359 	default:
360 		break;
361 	}
362 }
363 EXPORT_SYMBOL(sk_error_report);
364 
365 int sock_get_timeout(long timeo, void *optval, bool old_timeval)
366 {
367 	struct __kernel_sock_timeval tv;
368 
369 	if (timeo == MAX_SCHEDULE_TIMEOUT) {
370 		tv.tv_sec = 0;
371 		tv.tv_usec = 0;
372 	} else {
373 		tv.tv_sec = timeo / HZ;
374 		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
375 	}
376 
377 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
378 		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
379 		*(struct old_timeval32 *)optval = tv32;
380 		return sizeof(tv32);
381 	}
382 
383 	if (old_timeval) {
384 		struct __kernel_old_timeval old_tv;
385 		old_tv.tv_sec = tv.tv_sec;
386 		old_tv.tv_usec = tv.tv_usec;
387 		*(struct __kernel_old_timeval *)optval = old_tv;
388 		return sizeof(old_tv);
389 	}
390 
391 	*(struct __kernel_sock_timeval *)optval = tv;
392 	return sizeof(tv);
393 }
394 EXPORT_SYMBOL(sock_get_timeout);
395 
396 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
397 			   sockptr_t optval, int optlen, bool old_timeval)
398 {
399 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
400 		struct old_timeval32 tv32;
401 
402 		if (optlen < sizeof(tv32))
403 			return -EINVAL;
404 
405 		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
406 			return -EFAULT;
407 		tv->tv_sec = tv32.tv_sec;
408 		tv->tv_usec = tv32.tv_usec;
409 	} else if (old_timeval) {
410 		struct __kernel_old_timeval old_tv;
411 
412 		if (optlen < sizeof(old_tv))
413 			return -EINVAL;
414 		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
415 			return -EFAULT;
416 		tv->tv_sec = old_tv.tv_sec;
417 		tv->tv_usec = old_tv.tv_usec;
418 	} else {
419 		if (optlen < sizeof(*tv))
420 			return -EINVAL;
421 		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
422 			return -EFAULT;
423 	}
424 
425 	return 0;
426 }
427 EXPORT_SYMBOL(sock_copy_user_timeval);
428 
429 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
430 			    bool old_timeval)
431 {
432 	struct __kernel_sock_timeval tv;
433 	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
434 	long val;
435 
436 	if (err)
437 		return err;
438 
439 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
440 		return -EDOM;
441 
442 	if (tv.tv_sec < 0) {
443 		static int warned __read_mostly;
444 
445 		WRITE_ONCE(*timeo_p, 0);
446 		if (warned < 10 && net_ratelimit()) {
447 			warned++;
448 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
449 				__func__, current->comm, task_pid_nr(current));
450 		}
451 		return 0;
452 	}
453 	val = MAX_SCHEDULE_TIMEOUT;
454 	if ((tv.tv_sec || tv.tv_usec) &&
455 	    (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)))
456 		val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec,
457 						    USEC_PER_SEC / HZ);
458 	WRITE_ONCE(*timeo_p, val);
459 	return 0;
460 }
461 
462 static bool sock_needs_netstamp(const struct sock *sk)
463 {
464 	switch (sk->sk_family) {
465 	case AF_UNSPEC:
466 	case AF_UNIX:
467 		return false;
468 	default:
469 		return true;
470 	}
471 }
472 
473 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
474 {
475 	if (sk->sk_flags & flags) {
476 		sk->sk_flags &= ~flags;
477 		if (sock_needs_netstamp(sk) &&
478 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
479 			net_disable_timestamp();
480 	}
481 }
482 
483 
484 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
485 {
486 	unsigned long flags;
487 	struct sk_buff_head *list = &sk->sk_receive_queue;
488 
489 	if (atomic_read(&sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) {
490 		atomic_inc(&sk->sk_drops);
491 		trace_sock_rcvqueue_full(sk, skb);
492 		return -ENOMEM;
493 	}
494 
495 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
496 		atomic_inc(&sk->sk_drops);
497 		return -ENOBUFS;
498 	}
499 
500 	skb->dev = NULL;
501 	skb_set_owner_r(skb, sk);
502 
503 	/* we escape from rcu protected region, make sure we dont leak
504 	 * a norefcounted dst
505 	 */
506 	skb_dst_force(skb);
507 
508 	spin_lock_irqsave(&list->lock, flags);
509 	sock_skb_set_dropcount(sk, skb);
510 	__skb_queue_tail(list, skb);
511 	spin_unlock_irqrestore(&list->lock, flags);
512 
513 	if (!sock_flag(sk, SOCK_DEAD))
514 		sk->sk_data_ready(sk);
515 	return 0;
516 }
517 EXPORT_SYMBOL(__sock_queue_rcv_skb);
518 
519 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
520 			      enum skb_drop_reason *reason)
521 {
522 	enum skb_drop_reason drop_reason;
523 	int err;
524 
525 	err = sk_filter(sk, skb);
526 	if (err) {
527 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
528 		goto out;
529 	}
530 	err = __sock_queue_rcv_skb(sk, skb);
531 	switch (err) {
532 	case -ENOMEM:
533 		drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
534 		break;
535 	case -ENOBUFS:
536 		drop_reason = SKB_DROP_REASON_PROTO_MEM;
537 		break;
538 	default:
539 		drop_reason = SKB_NOT_DROPPED_YET;
540 		break;
541 	}
542 out:
543 	if (reason)
544 		*reason = drop_reason;
545 	return err;
546 }
547 EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
548 
549 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
550 		     const int nested, unsigned int trim_cap, bool refcounted)
551 {
552 	int rc = NET_RX_SUCCESS;
553 
554 	if (sk_filter_trim_cap(sk, skb, trim_cap))
555 		goto discard_and_relse;
556 
557 	skb->dev = NULL;
558 
559 	if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) {
560 		atomic_inc(&sk->sk_drops);
561 		goto discard_and_relse;
562 	}
563 	if (nested)
564 		bh_lock_sock_nested(sk);
565 	else
566 		bh_lock_sock(sk);
567 	if (!sock_owned_by_user(sk)) {
568 		/*
569 		 * trylock + unlock semantics:
570 		 */
571 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
572 
573 		rc = sk_backlog_rcv(sk, skb);
574 
575 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
576 	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
577 		bh_unlock_sock(sk);
578 		atomic_inc(&sk->sk_drops);
579 		goto discard_and_relse;
580 	}
581 
582 	bh_unlock_sock(sk);
583 out:
584 	if (refcounted)
585 		sock_put(sk);
586 	return rc;
587 discard_and_relse:
588 	kfree_skb(skb);
589 	goto out;
590 }
591 EXPORT_SYMBOL(__sk_receive_skb);
592 
593 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
594 							  u32));
595 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
596 							   u32));
597 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
598 {
599 	struct dst_entry *dst = __sk_dst_get(sk);
600 
601 	if (dst && dst->obsolete &&
602 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
603 			       dst, cookie) == NULL) {
604 		sk_tx_queue_clear(sk);
605 		WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
606 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
607 		dst_release(dst);
608 		return NULL;
609 	}
610 
611 	return dst;
612 }
613 EXPORT_SYMBOL(__sk_dst_check);
614 
615 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
616 {
617 	struct dst_entry *dst = sk_dst_get(sk);
618 
619 	if (dst && dst->obsolete &&
620 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
621 			       dst, cookie) == NULL) {
622 		sk_dst_reset(sk);
623 		dst_release(dst);
624 		return NULL;
625 	}
626 
627 	return dst;
628 }
629 EXPORT_SYMBOL(sk_dst_check);
630 
631 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
632 {
633 	int ret = -ENOPROTOOPT;
634 #ifdef CONFIG_NETDEVICES
635 	struct net *net = sock_net(sk);
636 
637 	/* Sorry... */
638 	ret = -EPERM;
639 	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
640 		goto out;
641 
642 	ret = -EINVAL;
643 	if (ifindex < 0)
644 		goto out;
645 
646 	/* Paired with all READ_ONCE() done locklessly. */
647 	WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
648 
649 	if (sk->sk_prot->rehash)
650 		sk->sk_prot->rehash(sk);
651 	sk_dst_reset(sk);
652 
653 	ret = 0;
654 
655 out:
656 #endif
657 
658 	return ret;
659 }
660 
661 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
662 {
663 	int ret;
664 
665 	if (lock_sk)
666 		lock_sock(sk);
667 	ret = sock_bindtoindex_locked(sk, ifindex);
668 	if (lock_sk)
669 		release_sock(sk);
670 
671 	return ret;
672 }
673 EXPORT_SYMBOL(sock_bindtoindex);
674 
675 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
676 {
677 	int ret = -ENOPROTOOPT;
678 #ifdef CONFIG_NETDEVICES
679 	struct net *net = sock_net(sk);
680 	char devname[IFNAMSIZ];
681 	int index;
682 
683 	ret = -EINVAL;
684 	if (optlen < 0)
685 		goto out;
686 
687 	/* Bind this socket to a particular device like "eth0",
688 	 * as specified in the passed interface name. If the
689 	 * name is "" or the option length is zero the socket
690 	 * is not bound.
691 	 */
692 	if (optlen > IFNAMSIZ - 1)
693 		optlen = IFNAMSIZ - 1;
694 	memset(devname, 0, sizeof(devname));
695 
696 	ret = -EFAULT;
697 	if (copy_from_sockptr(devname, optval, optlen))
698 		goto out;
699 
700 	index = 0;
701 	if (devname[0] != '\0') {
702 		struct net_device *dev;
703 
704 		rcu_read_lock();
705 		dev = dev_get_by_name_rcu(net, devname);
706 		if (dev)
707 			index = dev->ifindex;
708 		rcu_read_unlock();
709 		ret = -ENODEV;
710 		if (!dev)
711 			goto out;
712 	}
713 
714 	sockopt_lock_sock(sk);
715 	ret = sock_bindtoindex_locked(sk, index);
716 	sockopt_release_sock(sk);
717 out:
718 #endif
719 
720 	return ret;
721 }
722 
723 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
724 				sockptr_t optlen, int len)
725 {
726 	int ret = -ENOPROTOOPT;
727 #ifdef CONFIG_NETDEVICES
728 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
729 	struct net *net = sock_net(sk);
730 	char devname[IFNAMSIZ];
731 
732 	if (bound_dev_if == 0) {
733 		len = 0;
734 		goto zero;
735 	}
736 
737 	ret = -EINVAL;
738 	if (len < IFNAMSIZ)
739 		goto out;
740 
741 	ret = netdev_get_name(net, devname, bound_dev_if);
742 	if (ret)
743 		goto out;
744 
745 	len = strlen(devname) + 1;
746 
747 	ret = -EFAULT;
748 	if (copy_to_sockptr(optval, devname, len))
749 		goto out;
750 
751 zero:
752 	ret = -EFAULT;
753 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
754 		goto out;
755 
756 	ret = 0;
757 
758 out:
759 #endif
760 
761 	return ret;
762 }
763 
764 bool sk_mc_loop(struct sock *sk)
765 {
766 	if (dev_recursion_level())
767 		return false;
768 	if (!sk)
769 		return true;
770 	/* IPV6_ADDRFORM can change sk->sk_family under us. */
771 	switch (READ_ONCE(sk->sk_family)) {
772 	case AF_INET:
773 		return inet_test_bit(MC_LOOP, sk);
774 #if IS_ENABLED(CONFIG_IPV6)
775 	case AF_INET6:
776 		return inet6_sk(sk)->mc_loop;
777 #endif
778 	}
779 	WARN_ON_ONCE(1);
780 	return true;
781 }
782 EXPORT_SYMBOL(sk_mc_loop);
783 
784 void sock_set_reuseaddr(struct sock *sk)
785 {
786 	lock_sock(sk);
787 	sk->sk_reuse = SK_CAN_REUSE;
788 	release_sock(sk);
789 }
790 EXPORT_SYMBOL(sock_set_reuseaddr);
791 
792 void sock_set_reuseport(struct sock *sk)
793 {
794 	lock_sock(sk);
795 	sk->sk_reuseport = true;
796 	release_sock(sk);
797 }
798 EXPORT_SYMBOL(sock_set_reuseport);
799 
800 void sock_no_linger(struct sock *sk)
801 {
802 	lock_sock(sk);
803 	WRITE_ONCE(sk->sk_lingertime, 0);
804 	sock_set_flag(sk, SOCK_LINGER);
805 	release_sock(sk);
806 }
807 EXPORT_SYMBOL(sock_no_linger);
808 
809 void sock_set_priority(struct sock *sk, u32 priority)
810 {
811 	lock_sock(sk);
812 	WRITE_ONCE(sk->sk_priority, priority);
813 	release_sock(sk);
814 }
815 EXPORT_SYMBOL(sock_set_priority);
816 
817 void sock_set_sndtimeo(struct sock *sk, s64 secs)
818 {
819 	lock_sock(sk);
820 	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
821 		WRITE_ONCE(sk->sk_sndtimeo, secs * HZ);
822 	else
823 		WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT);
824 	release_sock(sk);
825 }
826 EXPORT_SYMBOL(sock_set_sndtimeo);
827 
828 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
829 {
830 	if (val)  {
831 		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
832 		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
833 		sock_set_flag(sk, SOCK_RCVTSTAMP);
834 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
835 	} else {
836 		sock_reset_flag(sk, SOCK_RCVTSTAMP);
837 		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
838 	}
839 }
840 
841 void sock_enable_timestamps(struct sock *sk)
842 {
843 	lock_sock(sk);
844 	__sock_set_timestamps(sk, true, false, true);
845 	release_sock(sk);
846 }
847 EXPORT_SYMBOL(sock_enable_timestamps);
848 
849 void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
850 {
851 	switch (optname) {
852 	case SO_TIMESTAMP_OLD:
853 		__sock_set_timestamps(sk, valbool, false, false);
854 		break;
855 	case SO_TIMESTAMP_NEW:
856 		__sock_set_timestamps(sk, valbool, true, false);
857 		break;
858 	case SO_TIMESTAMPNS_OLD:
859 		__sock_set_timestamps(sk, valbool, false, true);
860 		break;
861 	case SO_TIMESTAMPNS_NEW:
862 		__sock_set_timestamps(sk, valbool, true, true);
863 		break;
864 	}
865 }
866 
867 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
868 {
869 	struct net *net = sock_net(sk);
870 	struct net_device *dev = NULL;
871 	bool match = false;
872 	int *vclock_index;
873 	int i, num;
874 
875 	if (sk->sk_bound_dev_if)
876 		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
877 
878 	if (!dev) {
879 		pr_err("%s: sock not bind to device\n", __func__);
880 		return -EOPNOTSUPP;
881 	}
882 
883 	num = ethtool_get_phc_vclocks(dev, &vclock_index);
884 	dev_put(dev);
885 
886 	for (i = 0; i < num; i++) {
887 		if (*(vclock_index + i) == phc_index) {
888 			match = true;
889 			break;
890 		}
891 	}
892 
893 	if (num > 0)
894 		kfree(vclock_index);
895 
896 	if (!match)
897 		return -EINVAL;
898 
899 	WRITE_ONCE(sk->sk_bind_phc, phc_index);
900 
901 	return 0;
902 }
903 
904 int sock_set_timestamping(struct sock *sk, int optname,
905 			  struct so_timestamping timestamping)
906 {
907 	int val = timestamping.flags;
908 	int ret;
909 
910 	if (val & ~SOF_TIMESTAMPING_MASK)
911 		return -EINVAL;
912 
913 	if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
914 	    !(val & SOF_TIMESTAMPING_OPT_ID))
915 		return -EINVAL;
916 
917 	if (val & SOF_TIMESTAMPING_OPT_ID &&
918 	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
919 		if (sk_is_tcp(sk)) {
920 			if ((1 << sk->sk_state) &
921 			    (TCPF_CLOSE | TCPF_LISTEN))
922 				return -EINVAL;
923 			if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
924 				atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
925 			else
926 				atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
927 		} else {
928 			atomic_set(&sk->sk_tskey, 0);
929 		}
930 	}
931 
932 	if (val & SOF_TIMESTAMPING_OPT_STATS &&
933 	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
934 		return -EINVAL;
935 
936 	if (val & SOF_TIMESTAMPING_BIND_PHC) {
937 		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
938 		if (ret)
939 			return ret;
940 	}
941 
942 	WRITE_ONCE(sk->sk_tsflags, val);
943 	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
944 
945 	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
946 		sock_enable_timestamp(sk,
947 				      SOCK_TIMESTAMPING_RX_SOFTWARE);
948 	else
949 		sock_disable_timestamp(sk,
950 				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
951 	return 0;
952 }
953 
954 void sock_set_keepalive(struct sock *sk)
955 {
956 	lock_sock(sk);
957 	if (sk->sk_prot->keepalive)
958 		sk->sk_prot->keepalive(sk, true);
959 	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
960 	release_sock(sk);
961 }
962 EXPORT_SYMBOL(sock_set_keepalive);
963 
964 static void __sock_set_rcvbuf(struct sock *sk, int val)
965 {
966 	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
967 	 * as a negative value.
968 	 */
969 	val = min_t(int, val, INT_MAX / 2);
970 	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
971 
972 	/* We double it on the way in to account for "struct sk_buff" etc.
973 	 * overhead.   Applications assume that the SO_RCVBUF setting they make
974 	 * will allow that much actual data to be received on that socket.
975 	 *
976 	 * Applications are unaware that "struct sk_buff" and other overheads
977 	 * allocate from the receive buffer during socket buffer allocation.
978 	 *
979 	 * And after considering the possible alternatives, returning the value
980 	 * we actually used in getsockopt is the most desirable behavior.
981 	 */
982 	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
983 }
984 
985 void sock_set_rcvbuf(struct sock *sk, int val)
986 {
987 	lock_sock(sk);
988 	__sock_set_rcvbuf(sk, val);
989 	release_sock(sk);
990 }
991 EXPORT_SYMBOL(sock_set_rcvbuf);
992 
993 static void __sock_set_mark(struct sock *sk, u32 val)
994 {
995 	if (val != sk->sk_mark) {
996 		WRITE_ONCE(sk->sk_mark, val);
997 		sk_dst_reset(sk);
998 	}
999 }
1000 
1001 void sock_set_mark(struct sock *sk, u32 val)
1002 {
1003 	lock_sock(sk);
1004 	__sock_set_mark(sk, val);
1005 	release_sock(sk);
1006 }
1007 EXPORT_SYMBOL(sock_set_mark);
1008 
1009 static void sock_release_reserved_memory(struct sock *sk, int bytes)
1010 {
1011 	/* Round down bytes to multiple of pages */
1012 	bytes = round_down(bytes, PAGE_SIZE);
1013 
1014 	WARN_ON(bytes > sk->sk_reserved_mem);
1015 	WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes);
1016 	sk_mem_reclaim(sk);
1017 }
1018 
1019 static int sock_reserve_memory(struct sock *sk, int bytes)
1020 {
1021 	long allocated;
1022 	bool charged;
1023 	int pages;
1024 
1025 	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1026 		return -EOPNOTSUPP;
1027 
1028 	if (!bytes)
1029 		return 0;
1030 
1031 	pages = sk_mem_pages(bytes);
1032 
1033 	/* pre-charge to memcg */
1034 	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1035 					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1036 	if (!charged)
1037 		return -ENOMEM;
1038 
1039 	/* pre-charge to forward_alloc */
1040 	sk_memory_allocated_add(sk, pages);
1041 	allocated = sk_memory_allocated(sk);
1042 	/* If the system goes into memory pressure with this
1043 	 * precharge, give up and return error.
1044 	 */
1045 	if (allocated > sk_prot_mem_limits(sk, 1)) {
1046 		sk_memory_allocated_sub(sk, pages);
1047 		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1048 		return -ENOMEM;
1049 	}
1050 	sk_forward_alloc_add(sk, pages << PAGE_SHIFT);
1051 
1052 	WRITE_ONCE(sk->sk_reserved_mem,
1053 		   sk->sk_reserved_mem + (pages << PAGE_SHIFT));
1054 
1055 	return 0;
1056 }
1057 
1058 void sockopt_lock_sock(struct sock *sk)
1059 {
1060 	/* When current->bpf_ctx is set, the setsockopt is called from
1061 	 * a bpf prog.  bpf has ensured the sk lock has been
1062 	 * acquired before calling setsockopt().
1063 	 */
1064 	if (has_current_bpf_ctx())
1065 		return;
1066 
1067 	lock_sock(sk);
1068 }
1069 EXPORT_SYMBOL(sockopt_lock_sock);
1070 
1071 void sockopt_release_sock(struct sock *sk)
1072 {
1073 	if (has_current_bpf_ctx())
1074 		return;
1075 
1076 	release_sock(sk);
1077 }
1078 EXPORT_SYMBOL(sockopt_release_sock);
1079 
1080 bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1081 {
1082 	return has_current_bpf_ctx() || ns_capable(ns, cap);
1083 }
1084 EXPORT_SYMBOL(sockopt_ns_capable);
1085 
1086 bool sockopt_capable(int cap)
1087 {
1088 	return has_current_bpf_ctx() || capable(cap);
1089 }
1090 EXPORT_SYMBOL(sockopt_capable);
1091 
1092 /*
1093  *	This is meant for all protocols to use and covers goings on
1094  *	at the socket level. Everything here is generic.
1095  */
1096 
1097 int sk_setsockopt(struct sock *sk, int level, int optname,
1098 		  sockptr_t optval, unsigned int optlen)
1099 {
1100 	struct so_timestamping timestamping;
1101 	struct socket *sock = sk->sk_socket;
1102 	struct sock_txtime sk_txtime;
1103 	int val;
1104 	int valbool;
1105 	struct linger ling;
1106 	int ret = 0;
1107 
1108 	/*
1109 	 *	Options without arguments
1110 	 */
1111 
1112 	if (optname == SO_BINDTODEVICE)
1113 		return sock_setbindtodevice(sk, optval, optlen);
1114 
1115 	if (optlen < sizeof(int))
1116 		return -EINVAL;
1117 
1118 	if (copy_from_sockptr(&val, optval, sizeof(val)))
1119 		return -EFAULT;
1120 
1121 	valbool = val ? 1 : 0;
1122 
1123 	sockopt_lock_sock(sk);
1124 
1125 	switch (optname) {
1126 	case SO_DEBUG:
1127 		if (val && !sockopt_capable(CAP_NET_ADMIN))
1128 			ret = -EACCES;
1129 		else
1130 			sock_valbool_flag(sk, SOCK_DBG, valbool);
1131 		break;
1132 	case SO_REUSEADDR:
1133 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1134 		break;
1135 	case SO_REUSEPORT:
1136 		sk->sk_reuseport = valbool;
1137 		break;
1138 	case SO_TYPE:
1139 	case SO_PROTOCOL:
1140 	case SO_DOMAIN:
1141 	case SO_ERROR:
1142 		ret = -ENOPROTOOPT;
1143 		break;
1144 	case SO_DONTROUTE:
1145 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1146 		sk_dst_reset(sk);
1147 		break;
1148 	case SO_BROADCAST:
1149 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1150 		break;
1151 	case SO_SNDBUF:
1152 		/* Don't error on this BSD doesn't and if you think
1153 		 * about it this is right. Otherwise apps have to
1154 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1155 		 * are treated in BSD as hints
1156 		 */
1157 		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1158 set_sndbuf:
1159 		/* Ensure val * 2 fits into an int, to prevent max_t()
1160 		 * from treating it as a negative value.
1161 		 */
1162 		val = min_t(int, val, INT_MAX / 2);
1163 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1164 		WRITE_ONCE(sk->sk_sndbuf,
1165 			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1166 		/* Wake up sending tasks if we upped the value. */
1167 		sk->sk_write_space(sk);
1168 		break;
1169 
1170 	case SO_SNDBUFFORCE:
1171 		if (!sockopt_capable(CAP_NET_ADMIN)) {
1172 			ret = -EPERM;
1173 			break;
1174 		}
1175 
1176 		/* No negative values (to prevent underflow, as val will be
1177 		 * multiplied by 2).
1178 		 */
1179 		if (val < 0)
1180 			val = 0;
1181 		goto set_sndbuf;
1182 
1183 	case SO_RCVBUF:
1184 		/* Don't error on this BSD doesn't and if you think
1185 		 * about it this is right. Otherwise apps have to
1186 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1187 		 * are treated in BSD as hints
1188 		 */
1189 		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1190 		break;
1191 
1192 	case SO_RCVBUFFORCE:
1193 		if (!sockopt_capable(CAP_NET_ADMIN)) {
1194 			ret = -EPERM;
1195 			break;
1196 		}
1197 
1198 		/* No negative values (to prevent underflow, as val will be
1199 		 * multiplied by 2).
1200 		 */
1201 		__sock_set_rcvbuf(sk, max(val, 0));
1202 		break;
1203 
1204 	case SO_KEEPALIVE:
1205 		if (sk->sk_prot->keepalive)
1206 			sk->sk_prot->keepalive(sk, valbool);
1207 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1208 		break;
1209 
1210 	case SO_OOBINLINE:
1211 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1212 		break;
1213 
1214 	case SO_NO_CHECK:
1215 		sk->sk_no_check_tx = valbool;
1216 		break;
1217 
1218 	case SO_PRIORITY:
1219 		if ((val >= 0 && val <= 6) ||
1220 		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1221 		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1222 			WRITE_ONCE(sk->sk_priority, val);
1223 		else
1224 			ret = -EPERM;
1225 		break;
1226 
1227 	case SO_LINGER:
1228 		if (optlen < sizeof(ling)) {
1229 			ret = -EINVAL;	/* 1003.1g */
1230 			break;
1231 		}
1232 		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1233 			ret = -EFAULT;
1234 			break;
1235 		}
1236 		if (!ling.l_onoff) {
1237 			sock_reset_flag(sk, SOCK_LINGER);
1238 		} else {
1239 			unsigned long t_sec = ling.l_linger;
1240 
1241 			if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ)
1242 				WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT);
1243 			else
1244 				WRITE_ONCE(sk->sk_lingertime, t_sec * HZ);
1245 			sock_set_flag(sk, SOCK_LINGER);
1246 		}
1247 		break;
1248 
1249 	case SO_BSDCOMPAT:
1250 		break;
1251 
1252 	case SO_PASSCRED:
1253 		assign_bit(SOCK_PASSCRED, &sock->flags, valbool);
1254 		break;
1255 
1256 	case SO_PASSPIDFD:
1257 		assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool);
1258 		break;
1259 
1260 	case SO_TIMESTAMP_OLD:
1261 	case SO_TIMESTAMP_NEW:
1262 	case SO_TIMESTAMPNS_OLD:
1263 	case SO_TIMESTAMPNS_NEW:
1264 		sock_set_timestamp(sk, optname, valbool);
1265 		break;
1266 
1267 	case SO_TIMESTAMPING_NEW:
1268 	case SO_TIMESTAMPING_OLD:
1269 		if (optlen == sizeof(timestamping)) {
1270 			if (copy_from_sockptr(&timestamping, optval,
1271 					      sizeof(timestamping))) {
1272 				ret = -EFAULT;
1273 				break;
1274 			}
1275 		} else {
1276 			memset(&timestamping, 0, sizeof(timestamping));
1277 			timestamping.flags = val;
1278 		}
1279 		ret = sock_set_timestamping(sk, optname, timestamping);
1280 		break;
1281 
1282 	case SO_RCVLOWAT:
1283 		{
1284 		int (*set_rcvlowat)(struct sock *sk, int val) = NULL;
1285 
1286 		if (val < 0)
1287 			val = INT_MAX;
1288 		if (sock)
1289 			set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat;
1290 		if (set_rcvlowat)
1291 			ret = set_rcvlowat(sk, val);
1292 		else
1293 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1294 		break;
1295 		}
1296 	case SO_RCVTIMEO_OLD:
1297 	case SO_RCVTIMEO_NEW:
1298 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1299 				       optlen, optname == SO_RCVTIMEO_OLD);
1300 		break;
1301 
1302 	case SO_SNDTIMEO_OLD:
1303 	case SO_SNDTIMEO_NEW:
1304 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1305 				       optlen, optname == SO_SNDTIMEO_OLD);
1306 		break;
1307 
1308 	case SO_ATTACH_FILTER: {
1309 		struct sock_fprog fprog;
1310 
1311 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1312 		if (!ret)
1313 			ret = sk_attach_filter(&fprog, sk);
1314 		break;
1315 	}
1316 	case SO_ATTACH_BPF:
1317 		ret = -EINVAL;
1318 		if (optlen == sizeof(u32)) {
1319 			u32 ufd;
1320 
1321 			ret = -EFAULT;
1322 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1323 				break;
1324 
1325 			ret = sk_attach_bpf(ufd, sk);
1326 		}
1327 		break;
1328 
1329 	case SO_ATTACH_REUSEPORT_CBPF: {
1330 		struct sock_fprog fprog;
1331 
1332 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1333 		if (!ret)
1334 			ret = sk_reuseport_attach_filter(&fprog, sk);
1335 		break;
1336 	}
1337 	case SO_ATTACH_REUSEPORT_EBPF:
1338 		ret = -EINVAL;
1339 		if (optlen == sizeof(u32)) {
1340 			u32 ufd;
1341 
1342 			ret = -EFAULT;
1343 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1344 				break;
1345 
1346 			ret = sk_reuseport_attach_bpf(ufd, sk);
1347 		}
1348 		break;
1349 
1350 	case SO_DETACH_REUSEPORT_BPF:
1351 		ret = reuseport_detach_prog(sk);
1352 		break;
1353 
1354 	case SO_DETACH_FILTER:
1355 		ret = sk_detach_filter(sk);
1356 		break;
1357 
1358 	case SO_LOCK_FILTER:
1359 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1360 			ret = -EPERM;
1361 		else
1362 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1363 		break;
1364 
1365 	case SO_PASSSEC:
1366 		assign_bit(SOCK_PASSSEC, &sock->flags, valbool);
1367 		break;
1368 	case SO_MARK:
1369 		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1370 		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1371 			ret = -EPERM;
1372 			break;
1373 		}
1374 
1375 		__sock_set_mark(sk, val);
1376 		break;
1377 	case SO_RCVMARK:
1378 		sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1379 		break;
1380 
1381 	case SO_RXQ_OVFL:
1382 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1383 		break;
1384 
1385 	case SO_WIFI_STATUS:
1386 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1387 		break;
1388 
1389 	case SO_PEEK_OFF:
1390 		{
1391 		int (*set_peek_off)(struct sock *sk, int val);
1392 
1393 		set_peek_off = READ_ONCE(sock->ops)->set_peek_off;
1394 		if (set_peek_off)
1395 			ret = set_peek_off(sk, val);
1396 		else
1397 			ret = -EOPNOTSUPP;
1398 		break;
1399 		}
1400 
1401 	case SO_NOFCS:
1402 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1403 		break;
1404 
1405 	case SO_SELECT_ERR_QUEUE:
1406 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1407 		break;
1408 
1409 #ifdef CONFIG_NET_RX_BUSY_POLL
1410 	case SO_BUSY_POLL:
1411 		if (val < 0)
1412 			ret = -EINVAL;
1413 		else
1414 			WRITE_ONCE(sk->sk_ll_usec, val);
1415 		break;
1416 	case SO_PREFER_BUSY_POLL:
1417 		if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1418 			ret = -EPERM;
1419 		else
1420 			WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1421 		break;
1422 	case SO_BUSY_POLL_BUDGET:
1423 		if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) {
1424 			ret = -EPERM;
1425 		} else {
1426 			if (val < 0 || val > U16_MAX)
1427 				ret = -EINVAL;
1428 			else
1429 				WRITE_ONCE(sk->sk_busy_poll_budget, val);
1430 		}
1431 		break;
1432 #endif
1433 
1434 	case SO_MAX_PACING_RATE:
1435 		{
1436 		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1437 
1438 		if (sizeof(ulval) != sizeof(val) &&
1439 		    optlen >= sizeof(ulval) &&
1440 		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1441 			ret = -EFAULT;
1442 			break;
1443 		}
1444 		if (ulval != ~0UL)
1445 			cmpxchg(&sk->sk_pacing_status,
1446 				SK_PACING_NONE,
1447 				SK_PACING_NEEDED);
1448 		/* Pairs with READ_ONCE() from sk_getsockopt() */
1449 		WRITE_ONCE(sk->sk_max_pacing_rate, ulval);
1450 		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1451 		break;
1452 		}
1453 	case SO_INCOMING_CPU:
1454 		reuseport_update_incoming_cpu(sk, val);
1455 		break;
1456 
1457 	case SO_CNX_ADVICE:
1458 		if (val == 1)
1459 			dst_negative_advice(sk);
1460 		break;
1461 
1462 	case SO_ZEROCOPY:
1463 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1464 			if (!(sk_is_tcp(sk) ||
1465 			      (sk->sk_type == SOCK_DGRAM &&
1466 			       sk->sk_protocol == IPPROTO_UDP)))
1467 				ret = -EOPNOTSUPP;
1468 		} else if (sk->sk_family != PF_RDS) {
1469 			ret = -EOPNOTSUPP;
1470 		}
1471 		if (!ret) {
1472 			if (val < 0 || val > 1)
1473 				ret = -EINVAL;
1474 			else
1475 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1476 		}
1477 		break;
1478 
1479 	case SO_TXTIME:
1480 		if (optlen != sizeof(struct sock_txtime)) {
1481 			ret = -EINVAL;
1482 			break;
1483 		} else if (copy_from_sockptr(&sk_txtime, optval,
1484 			   sizeof(struct sock_txtime))) {
1485 			ret = -EFAULT;
1486 			break;
1487 		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1488 			ret = -EINVAL;
1489 			break;
1490 		}
1491 		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1492 		 * scheduler has enough safe guards.
1493 		 */
1494 		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1495 		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1496 			ret = -EPERM;
1497 			break;
1498 		}
1499 		sock_valbool_flag(sk, SOCK_TXTIME, true);
1500 		sk->sk_clockid = sk_txtime.clockid;
1501 		sk->sk_txtime_deadline_mode =
1502 			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1503 		sk->sk_txtime_report_errors =
1504 			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1505 		break;
1506 
1507 	case SO_BINDTOIFINDEX:
1508 		ret = sock_bindtoindex_locked(sk, val);
1509 		break;
1510 
1511 	case SO_BUF_LOCK:
1512 		if (val & ~SOCK_BUF_LOCK_MASK) {
1513 			ret = -EINVAL;
1514 			break;
1515 		}
1516 		sk->sk_userlocks = val | (sk->sk_userlocks &
1517 					  ~SOCK_BUF_LOCK_MASK);
1518 		break;
1519 
1520 	case SO_RESERVE_MEM:
1521 	{
1522 		int delta;
1523 
1524 		if (val < 0) {
1525 			ret = -EINVAL;
1526 			break;
1527 		}
1528 
1529 		delta = val - sk->sk_reserved_mem;
1530 		if (delta < 0)
1531 			sock_release_reserved_memory(sk, -delta);
1532 		else
1533 			ret = sock_reserve_memory(sk, delta);
1534 		break;
1535 	}
1536 
1537 	case SO_TXREHASH:
1538 		if (val < -1 || val > 1) {
1539 			ret = -EINVAL;
1540 			break;
1541 		}
1542 		if ((u8)val == SOCK_TXREHASH_DEFAULT)
1543 			val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1544 		/* Paired with READ_ONCE() in tcp_rtx_synack()
1545 		 * and sk_getsockopt().
1546 		 */
1547 		WRITE_ONCE(sk->sk_txrehash, (u8)val);
1548 		break;
1549 
1550 	default:
1551 		ret = -ENOPROTOOPT;
1552 		break;
1553 	}
1554 	sockopt_release_sock(sk);
1555 	return ret;
1556 }
1557 
1558 int sock_setsockopt(struct socket *sock, int level, int optname,
1559 		    sockptr_t optval, unsigned int optlen)
1560 {
1561 	return sk_setsockopt(sock->sk, level, optname,
1562 			     optval, optlen);
1563 }
1564 EXPORT_SYMBOL(sock_setsockopt);
1565 
1566 static const struct cred *sk_get_peer_cred(struct sock *sk)
1567 {
1568 	const struct cred *cred;
1569 
1570 	spin_lock(&sk->sk_peer_lock);
1571 	cred = get_cred(sk->sk_peer_cred);
1572 	spin_unlock(&sk->sk_peer_lock);
1573 
1574 	return cred;
1575 }
1576 
1577 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1578 			  struct ucred *ucred)
1579 {
1580 	ucred->pid = pid_vnr(pid);
1581 	ucred->uid = ucred->gid = -1;
1582 	if (cred) {
1583 		struct user_namespace *current_ns = current_user_ns();
1584 
1585 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1586 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1587 	}
1588 }
1589 
1590 static int groups_to_user(sockptr_t dst, const struct group_info *src)
1591 {
1592 	struct user_namespace *user_ns = current_user_ns();
1593 	int i;
1594 
1595 	for (i = 0; i < src->ngroups; i++) {
1596 		gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1597 
1598 		if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1599 			return -EFAULT;
1600 	}
1601 
1602 	return 0;
1603 }
1604 
1605 int sk_getsockopt(struct sock *sk, int level, int optname,
1606 		  sockptr_t optval, sockptr_t optlen)
1607 {
1608 	struct socket *sock = sk->sk_socket;
1609 
1610 	union {
1611 		int val;
1612 		u64 val64;
1613 		unsigned long ulval;
1614 		struct linger ling;
1615 		struct old_timeval32 tm32;
1616 		struct __kernel_old_timeval tm;
1617 		struct  __kernel_sock_timeval stm;
1618 		struct sock_txtime txtime;
1619 		struct so_timestamping timestamping;
1620 	} v;
1621 
1622 	int lv = sizeof(int);
1623 	int len;
1624 
1625 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
1626 		return -EFAULT;
1627 	if (len < 0)
1628 		return -EINVAL;
1629 
1630 	memset(&v, 0, sizeof(v));
1631 
1632 	switch (optname) {
1633 	case SO_DEBUG:
1634 		v.val = sock_flag(sk, SOCK_DBG);
1635 		break;
1636 
1637 	case SO_DONTROUTE:
1638 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1639 		break;
1640 
1641 	case SO_BROADCAST:
1642 		v.val = sock_flag(sk, SOCK_BROADCAST);
1643 		break;
1644 
1645 	case SO_SNDBUF:
1646 		v.val = READ_ONCE(sk->sk_sndbuf);
1647 		break;
1648 
1649 	case SO_RCVBUF:
1650 		v.val = READ_ONCE(sk->sk_rcvbuf);
1651 		break;
1652 
1653 	case SO_REUSEADDR:
1654 		v.val = sk->sk_reuse;
1655 		break;
1656 
1657 	case SO_REUSEPORT:
1658 		v.val = sk->sk_reuseport;
1659 		break;
1660 
1661 	case SO_KEEPALIVE:
1662 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1663 		break;
1664 
1665 	case SO_TYPE:
1666 		v.val = sk->sk_type;
1667 		break;
1668 
1669 	case SO_PROTOCOL:
1670 		v.val = sk->sk_protocol;
1671 		break;
1672 
1673 	case SO_DOMAIN:
1674 		v.val = sk->sk_family;
1675 		break;
1676 
1677 	case SO_ERROR:
1678 		v.val = -sock_error(sk);
1679 		if (v.val == 0)
1680 			v.val = xchg(&sk->sk_err_soft, 0);
1681 		break;
1682 
1683 	case SO_OOBINLINE:
1684 		v.val = sock_flag(sk, SOCK_URGINLINE);
1685 		break;
1686 
1687 	case SO_NO_CHECK:
1688 		v.val = sk->sk_no_check_tx;
1689 		break;
1690 
1691 	case SO_PRIORITY:
1692 		v.val = READ_ONCE(sk->sk_priority);
1693 		break;
1694 
1695 	case SO_LINGER:
1696 		lv		= sizeof(v.ling);
1697 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1698 		v.ling.l_linger	= READ_ONCE(sk->sk_lingertime) / HZ;
1699 		break;
1700 
1701 	case SO_BSDCOMPAT:
1702 		break;
1703 
1704 	case SO_TIMESTAMP_OLD:
1705 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1706 				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1707 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1708 		break;
1709 
1710 	case SO_TIMESTAMPNS_OLD:
1711 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1712 		break;
1713 
1714 	case SO_TIMESTAMP_NEW:
1715 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1716 		break;
1717 
1718 	case SO_TIMESTAMPNS_NEW:
1719 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1720 		break;
1721 
1722 	case SO_TIMESTAMPING_OLD:
1723 	case SO_TIMESTAMPING_NEW:
1724 		lv = sizeof(v.timestamping);
1725 		/* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only
1726 		 * returning the flags when they were set through the same option.
1727 		 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD.
1728 		 */
1729 		if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) {
1730 			v.timestamping.flags = READ_ONCE(sk->sk_tsflags);
1731 			v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc);
1732 		}
1733 		break;
1734 
1735 	case SO_RCVTIMEO_OLD:
1736 	case SO_RCVTIMEO_NEW:
1737 		lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v,
1738 				      SO_RCVTIMEO_OLD == optname);
1739 		break;
1740 
1741 	case SO_SNDTIMEO_OLD:
1742 	case SO_SNDTIMEO_NEW:
1743 		lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v,
1744 				      SO_SNDTIMEO_OLD == optname);
1745 		break;
1746 
1747 	case SO_RCVLOWAT:
1748 		v.val = READ_ONCE(sk->sk_rcvlowat);
1749 		break;
1750 
1751 	case SO_SNDLOWAT:
1752 		v.val = 1;
1753 		break;
1754 
1755 	case SO_PASSCRED:
1756 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1757 		break;
1758 
1759 	case SO_PASSPIDFD:
1760 		v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags);
1761 		break;
1762 
1763 	case SO_PEERCRED:
1764 	{
1765 		struct ucred peercred;
1766 		if (len > sizeof(peercred))
1767 			len = sizeof(peercred);
1768 
1769 		spin_lock(&sk->sk_peer_lock);
1770 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1771 		spin_unlock(&sk->sk_peer_lock);
1772 
1773 		if (copy_to_sockptr(optval, &peercred, len))
1774 			return -EFAULT;
1775 		goto lenout;
1776 	}
1777 
1778 	case SO_PEERPIDFD:
1779 	{
1780 		struct pid *peer_pid;
1781 		struct file *pidfd_file = NULL;
1782 		int pidfd;
1783 
1784 		if (len > sizeof(pidfd))
1785 			len = sizeof(pidfd);
1786 
1787 		spin_lock(&sk->sk_peer_lock);
1788 		peer_pid = get_pid(sk->sk_peer_pid);
1789 		spin_unlock(&sk->sk_peer_lock);
1790 
1791 		if (!peer_pid)
1792 			return -ENODATA;
1793 
1794 		pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file);
1795 		put_pid(peer_pid);
1796 		if (pidfd < 0)
1797 			return pidfd;
1798 
1799 		if (copy_to_sockptr(optval, &pidfd, len) ||
1800 		    copy_to_sockptr(optlen, &len, sizeof(int))) {
1801 			put_unused_fd(pidfd);
1802 			fput(pidfd_file);
1803 
1804 			return -EFAULT;
1805 		}
1806 
1807 		fd_install(pidfd, pidfd_file);
1808 		return 0;
1809 	}
1810 
1811 	case SO_PEERGROUPS:
1812 	{
1813 		const struct cred *cred;
1814 		int ret, n;
1815 
1816 		cred = sk_get_peer_cred(sk);
1817 		if (!cred)
1818 			return -ENODATA;
1819 
1820 		n = cred->group_info->ngroups;
1821 		if (len < n * sizeof(gid_t)) {
1822 			len = n * sizeof(gid_t);
1823 			put_cred(cred);
1824 			return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1825 		}
1826 		len = n * sizeof(gid_t);
1827 
1828 		ret = groups_to_user(optval, cred->group_info);
1829 		put_cred(cred);
1830 		if (ret)
1831 			return ret;
1832 		goto lenout;
1833 	}
1834 
1835 	case SO_PEERNAME:
1836 	{
1837 		struct sockaddr_storage address;
1838 
1839 		lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2);
1840 		if (lv < 0)
1841 			return -ENOTCONN;
1842 		if (lv < len)
1843 			return -EINVAL;
1844 		if (copy_to_sockptr(optval, &address, len))
1845 			return -EFAULT;
1846 		goto lenout;
1847 	}
1848 
1849 	/* Dubious BSD thing... Probably nobody even uses it, but
1850 	 * the UNIX standard wants it for whatever reason... -DaveM
1851 	 */
1852 	case SO_ACCEPTCONN:
1853 		v.val = sk->sk_state == TCP_LISTEN;
1854 		break;
1855 
1856 	case SO_PASSSEC:
1857 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1858 		break;
1859 
1860 	case SO_PEERSEC:
1861 		return security_socket_getpeersec_stream(sock,
1862 							 optval, optlen, len);
1863 
1864 	case SO_MARK:
1865 		v.val = READ_ONCE(sk->sk_mark);
1866 		break;
1867 
1868 	case SO_RCVMARK:
1869 		v.val = sock_flag(sk, SOCK_RCVMARK);
1870 		break;
1871 
1872 	case SO_RXQ_OVFL:
1873 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1874 		break;
1875 
1876 	case SO_WIFI_STATUS:
1877 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1878 		break;
1879 
1880 	case SO_PEEK_OFF:
1881 		if (!READ_ONCE(sock->ops)->set_peek_off)
1882 			return -EOPNOTSUPP;
1883 
1884 		v.val = READ_ONCE(sk->sk_peek_off);
1885 		break;
1886 	case SO_NOFCS:
1887 		v.val = sock_flag(sk, SOCK_NOFCS);
1888 		break;
1889 
1890 	case SO_BINDTODEVICE:
1891 		return sock_getbindtodevice(sk, optval, optlen, len);
1892 
1893 	case SO_GET_FILTER:
1894 		len = sk_get_filter(sk, optval, len);
1895 		if (len < 0)
1896 			return len;
1897 
1898 		goto lenout;
1899 
1900 	case SO_LOCK_FILTER:
1901 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1902 		break;
1903 
1904 	case SO_BPF_EXTENSIONS:
1905 		v.val = bpf_tell_extensions();
1906 		break;
1907 
1908 	case SO_SELECT_ERR_QUEUE:
1909 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1910 		break;
1911 
1912 #ifdef CONFIG_NET_RX_BUSY_POLL
1913 	case SO_BUSY_POLL:
1914 		v.val = READ_ONCE(sk->sk_ll_usec);
1915 		break;
1916 	case SO_PREFER_BUSY_POLL:
1917 		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1918 		break;
1919 #endif
1920 
1921 	case SO_MAX_PACING_RATE:
1922 		/* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */
1923 		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1924 			lv = sizeof(v.ulval);
1925 			v.ulval = READ_ONCE(sk->sk_max_pacing_rate);
1926 		} else {
1927 			/* 32bit version */
1928 			v.val = min_t(unsigned long, ~0U,
1929 				      READ_ONCE(sk->sk_max_pacing_rate));
1930 		}
1931 		break;
1932 
1933 	case SO_INCOMING_CPU:
1934 		v.val = READ_ONCE(sk->sk_incoming_cpu);
1935 		break;
1936 
1937 	case SO_MEMINFO:
1938 	{
1939 		u32 meminfo[SK_MEMINFO_VARS];
1940 
1941 		sk_get_meminfo(sk, meminfo);
1942 
1943 		len = min_t(unsigned int, len, sizeof(meminfo));
1944 		if (copy_to_sockptr(optval, &meminfo, len))
1945 			return -EFAULT;
1946 
1947 		goto lenout;
1948 	}
1949 
1950 #ifdef CONFIG_NET_RX_BUSY_POLL
1951 	case SO_INCOMING_NAPI_ID:
1952 		v.val = READ_ONCE(sk->sk_napi_id);
1953 
1954 		/* aggregate non-NAPI IDs down to 0 */
1955 		if (v.val < MIN_NAPI_ID)
1956 			v.val = 0;
1957 
1958 		break;
1959 #endif
1960 
1961 	case SO_COOKIE:
1962 		lv = sizeof(u64);
1963 		if (len < lv)
1964 			return -EINVAL;
1965 		v.val64 = sock_gen_cookie(sk);
1966 		break;
1967 
1968 	case SO_ZEROCOPY:
1969 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1970 		break;
1971 
1972 	case SO_TXTIME:
1973 		lv = sizeof(v.txtime);
1974 		v.txtime.clockid = sk->sk_clockid;
1975 		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1976 				  SOF_TXTIME_DEADLINE_MODE : 0;
1977 		v.txtime.flags |= sk->sk_txtime_report_errors ?
1978 				  SOF_TXTIME_REPORT_ERRORS : 0;
1979 		break;
1980 
1981 	case SO_BINDTOIFINDEX:
1982 		v.val = READ_ONCE(sk->sk_bound_dev_if);
1983 		break;
1984 
1985 	case SO_NETNS_COOKIE:
1986 		lv = sizeof(u64);
1987 		if (len != lv)
1988 			return -EINVAL;
1989 		v.val64 = sock_net(sk)->net_cookie;
1990 		break;
1991 
1992 	case SO_BUF_LOCK:
1993 		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1994 		break;
1995 
1996 	case SO_RESERVE_MEM:
1997 		v.val = READ_ONCE(sk->sk_reserved_mem);
1998 		break;
1999 
2000 	case SO_TXREHASH:
2001 		/* Paired with WRITE_ONCE() in sk_setsockopt() */
2002 		v.val = READ_ONCE(sk->sk_txrehash);
2003 		break;
2004 
2005 	default:
2006 		/* We implement the SO_SNDLOWAT etc to not be settable
2007 		 * (1003.1g 7).
2008 		 */
2009 		return -ENOPROTOOPT;
2010 	}
2011 
2012 	if (len > lv)
2013 		len = lv;
2014 	if (copy_to_sockptr(optval, &v, len))
2015 		return -EFAULT;
2016 lenout:
2017 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
2018 		return -EFAULT;
2019 	return 0;
2020 }
2021 
2022 /*
2023  * Initialize an sk_lock.
2024  *
2025  * (We also register the sk_lock with the lock validator.)
2026  */
2027 static inline void sock_lock_init(struct sock *sk)
2028 {
2029 	if (sk->sk_kern_sock)
2030 		sock_lock_init_class_and_name(
2031 			sk,
2032 			af_family_kern_slock_key_strings[sk->sk_family],
2033 			af_family_kern_slock_keys + sk->sk_family,
2034 			af_family_kern_key_strings[sk->sk_family],
2035 			af_family_kern_keys + sk->sk_family);
2036 	else
2037 		sock_lock_init_class_and_name(
2038 			sk,
2039 			af_family_slock_key_strings[sk->sk_family],
2040 			af_family_slock_keys + sk->sk_family,
2041 			af_family_key_strings[sk->sk_family],
2042 			af_family_keys + sk->sk_family);
2043 }
2044 
2045 /*
2046  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
2047  * even temporarly, because of RCU lookups. sk_node should also be left as is.
2048  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
2049  */
2050 static void sock_copy(struct sock *nsk, const struct sock *osk)
2051 {
2052 	const struct proto *prot = READ_ONCE(osk->sk_prot);
2053 #ifdef CONFIG_SECURITY_NETWORK
2054 	void *sptr = nsk->sk_security;
2055 #endif
2056 
2057 	/* If we move sk_tx_queue_mapping out of the private section,
2058 	 * we must check if sk_tx_queue_clear() is called after
2059 	 * sock_copy() in sk_clone_lock().
2060 	 */
2061 	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2062 		     offsetof(struct sock, sk_dontcopy_begin) ||
2063 		     offsetof(struct sock, sk_tx_queue_mapping) >=
2064 		     offsetof(struct sock, sk_dontcopy_end));
2065 
2066 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2067 
2068 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2069 	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
2070 
2071 #ifdef CONFIG_SECURITY_NETWORK
2072 	nsk->sk_security = sptr;
2073 	security_sk_clone(osk, nsk);
2074 #endif
2075 }
2076 
2077 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2078 		int family)
2079 {
2080 	struct sock *sk;
2081 	struct kmem_cache *slab;
2082 
2083 	slab = prot->slab;
2084 	if (slab != NULL) {
2085 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2086 		if (!sk)
2087 			return sk;
2088 		if (want_init_on_alloc(priority))
2089 			sk_prot_clear_nulls(sk, prot->obj_size);
2090 	} else
2091 		sk = kmalloc(prot->obj_size, priority);
2092 
2093 	if (sk != NULL) {
2094 		if (security_sk_alloc(sk, family, priority))
2095 			goto out_free;
2096 
2097 		if (!try_module_get(prot->owner))
2098 			goto out_free_sec;
2099 	}
2100 
2101 	return sk;
2102 
2103 out_free_sec:
2104 	security_sk_free(sk);
2105 out_free:
2106 	if (slab != NULL)
2107 		kmem_cache_free(slab, sk);
2108 	else
2109 		kfree(sk);
2110 	return NULL;
2111 }
2112 
2113 static void sk_prot_free(struct proto *prot, struct sock *sk)
2114 {
2115 	struct kmem_cache *slab;
2116 	struct module *owner;
2117 
2118 	owner = prot->owner;
2119 	slab = prot->slab;
2120 
2121 	cgroup_sk_free(&sk->sk_cgrp_data);
2122 	mem_cgroup_sk_free(sk);
2123 	security_sk_free(sk);
2124 	if (slab != NULL)
2125 		kmem_cache_free(slab, sk);
2126 	else
2127 		kfree(sk);
2128 	module_put(owner);
2129 }
2130 
2131 /**
2132  *	sk_alloc - All socket objects are allocated here
2133  *	@net: the applicable net namespace
2134  *	@family: protocol family
2135  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2136  *	@prot: struct proto associated with this new sock instance
2137  *	@kern: is this to be a kernel socket?
2138  */
2139 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2140 		      struct proto *prot, int kern)
2141 {
2142 	struct sock *sk;
2143 
2144 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2145 	if (sk) {
2146 		sk->sk_family = family;
2147 		/*
2148 		 * See comment in struct sock definition to understand
2149 		 * why we need sk_prot_creator -acme
2150 		 */
2151 		sk->sk_prot = sk->sk_prot_creator = prot;
2152 		sk->sk_kern_sock = kern;
2153 		sock_lock_init(sk);
2154 		sk->sk_net_refcnt = kern ? 0 : 1;
2155 		if (likely(sk->sk_net_refcnt)) {
2156 			get_net_track(net, &sk->ns_tracker, priority);
2157 			sock_inuse_add(net, 1);
2158 		} else {
2159 			__netns_tracker_alloc(net, &sk->ns_tracker,
2160 					      false, priority);
2161 		}
2162 
2163 		sock_net_set(sk, net);
2164 		refcount_set(&sk->sk_wmem_alloc, 1);
2165 
2166 		mem_cgroup_sk_alloc(sk);
2167 		cgroup_sk_alloc(&sk->sk_cgrp_data);
2168 		sock_update_classid(&sk->sk_cgrp_data);
2169 		sock_update_netprioidx(&sk->sk_cgrp_data);
2170 		sk_tx_queue_clear(sk);
2171 	}
2172 
2173 	return sk;
2174 }
2175 EXPORT_SYMBOL(sk_alloc);
2176 
2177 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
2178  * grace period. This is the case for UDP sockets and TCP listeners.
2179  */
2180 static void __sk_destruct(struct rcu_head *head)
2181 {
2182 	struct sock *sk = container_of(head, struct sock, sk_rcu);
2183 	struct sk_filter *filter;
2184 
2185 	if (sk->sk_destruct)
2186 		sk->sk_destruct(sk);
2187 
2188 	filter = rcu_dereference_check(sk->sk_filter,
2189 				       refcount_read(&sk->sk_wmem_alloc) == 0);
2190 	if (filter) {
2191 		sk_filter_uncharge(sk, filter);
2192 		RCU_INIT_POINTER(sk->sk_filter, NULL);
2193 	}
2194 
2195 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2196 
2197 #ifdef CONFIG_BPF_SYSCALL
2198 	bpf_sk_storage_free(sk);
2199 #endif
2200 
2201 	if (atomic_read(&sk->sk_omem_alloc))
2202 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2203 			 __func__, atomic_read(&sk->sk_omem_alloc));
2204 
2205 	if (sk->sk_frag.page) {
2206 		put_page(sk->sk_frag.page);
2207 		sk->sk_frag.page = NULL;
2208 	}
2209 
2210 	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2211 	put_cred(sk->sk_peer_cred);
2212 	put_pid(sk->sk_peer_pid);
2213 
2214 	if (likely(sk->sk_net_refcnt))
2215 		put_net_track(sock_net(sk), &sk->ns_tracker);
2216 	else
2217 		__netns_tracker_free(sock_net(sk), &sk->ns_tracker, false);
2218 
2219 	sk_prot_free(sk->sk_prot_creator, sk);
2220 }
2221 
2222 void sk_destruct(struct sock *sk)
2223 {
2224 	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2225 
2226 	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2227 		reuseport_detach_sock(sk);
2228 		use_call_rcu = true;
2229 	}
2230 
2231 	if (use_call_rcu)
2232 		call_rcu(&sk->sk_rcu, __sk_destruct);
2233 	else
2234 		__sk_destruct(&sk->sk_rcu);
2235 }
2236 
2237 static void __sk_free(struct sock *sk)
2238 {
2239 	if (likely(sk->sk_net_refcnt))
2240 		sock_inuse_add(sock_net(sk), -1);
2241 
2242 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2243 		sock_diag_broadcast_destroy(sk);
2244 	else
2245 		sk_destruct(sk);
2246 }
2247 
2248 void sk_free(struct sock *sk)
2249 {
2250 	/*
2251 	 * We subtract one from sk_wmem_alloc and can know if
2252 	 * some packets are still in some tx queue.
2253 	 * If not null, sock_wfree() will call __sk_free(sk) later
2254 	 */
2255 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2256 		__sk_free(sk);
2257 }
2258 EXPORT_SYMBOL(sk_free);
2259 
2260 static void sk_init_common(struct sock *sk)
2261 {
2262 	skb_queue_head_init(&sk->sk_receive_queue);
2263 	skb_queue_head_init(&sk->sk_write_queue);
2264 	skb_queue_head_init(&sk->sk_error_queue);
2265 
2266 	rwlock_init(&sk->sk_callback_lock);
2267 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2268 			af_rlock_keys + sk->sk_family,
2269 			af_family_rlock_key_strings[sk->sk_family]);
2270 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2271 			af_wlock_keys + sk->sk_family,
2272 			af_family_wlock_key_strings[sk->sk_family]);
2273 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2274 			af_elock_keys + sk->sk_family,
2275 			af_family_elock_key_strings[sk->sk_family]);
2276 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2277 			af_callback_keys + sk->sk_family,
2278 			af_family_clock_key_strings[sk->sk_family]);
2279 }
2280 
2281 /**
2282  *	sk_clone_lock - clone a socket, and lock its clone
2283  *	@sk: the socket to clone
2284  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2285  *
2286  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2287  */
2288 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2289 {
2290 	struct proto *prot = READ_ONCE(sk->sk_prot);
2291 	struct sk_filter *filter;
2292 	bool is_charged = true;
2293 	struct sock *newsk;
2294 
2295 	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2296 	if (!newsk)
2297 		goto out;
2298 
2299 	sock_copy(newsk, sk);
2300 
2301 	newsk->sk_prot_creator = prot;
2302 
2303 	/* SANITY */
2304 	if (likely(newsk->sk_net_refcnt)) {
2305 		get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2306 		sock_inuse_add(sock_net(newsk), 1);
2307 	} else {
2308 		/* Kernel sockets are not elevating the struct net refcount.
2309 		 * Instead, use a tracker to more easily detect if a layer
2310 		 * is not properly dismantling its kernel sockets at netns
2311 		 * destroy time.
2312 		 */
2313 		__netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2314 				      false, priority);
2315 	}
2316 	sk_node_init(&newsk->sk_node);
2317 	sock_lock_init(newsk);
2318 	bh_lock_sock(newsk);
2319 	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2320 	newsk->sk_backlog.len = 0;
2321 
2322 	atomic_set(&newsk->sk_rmem_alloc, 0);
2323 
2324 	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2325 	refcount_set(&newsk->sk_wmem_alloc, 1);
2326 
2327 	atomic_set(&newsk->sk_omem_alloc, 0);
2328 	sk_init_common(newsk);
2329 
2330 	newsk->sk_dst_cache	= NULL;
2331 	newsk->sk_dst_pending_confirm = 0;
2332 	newsk->sk_wmem_queued	= 0;
2333 	newsk->sk_forward_alloc = 0;
2334 	newsk->sk_reserved_mem  = 0;
2335 	atomic_set(&newsk->sk_drops, 0);
2336 	newsk->sk_send_head	= NULL;
2337 	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2338 	atomic_set(&newsk->sk_zckey, 0);
2339 
2340 	sock_reset_flag(newsk, SOCK_DONE);
2341 
2342 	/* sk->sk_memcg will be populated at accept() time */
2343 	newsk->sk_memcg = NULL;
2344 
2345 	cgroup_sk_clone(&newsk->sk_cgrp_data);
2346 
2347 	rcu_read_lock();
2348 	filter = rcu_dereference(sk->sk_filter);
2349 	if (filter != NULL)
2350 		/* though it's an empty new sock, the charging may fail
2351 		 * if sysctl_optmem_max was changed between creation of
2352 		 * original socket and cloning
2353 		 */
2354 		is_charged = sk_filter_charge(newsk, filter);
2355 	RCU_INIT_POINTER(newsk->sk_filter, filter);
2356 	rcu_read_unlock();
2357 
2358 	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2359 		/* We need to make sure that we don't uncharge the new
2360 		 * socket if we couldn't charge it in the first place
2361 		 * as otherwise we uncharge the parent's filter.
2362 		 */
2363 		if (!is_charged)
2364 			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2365 		sk_free_unlock_clone(newsk);
2366 		newsk = NULL;
2367 		goto out;
2368 	}
2369 	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2370 
2371 	if (bpf_sk_storage_clone(sk, newsk)) {
2372 		sk_free_unlock_clone(newsk);
2373 		newsk = NULL;
2374 		goto out;
2375 	}
2376 
2377 	/* Clear sk_user_data if parent had the pointer tagged
2378 	 * as not suitable for copying when cloning.
2379 	 */
2380 	if (sk_user_data_is_nocopy(newsk))
2381 		newsk->sk_user_data = NULL;
2382 
2383 	newsk->sk_err	   = 0;
2384 	newsk->sk_err_soft = 0;
2385 	newsk->sk_priority = 0;
2386 	newsk->sk_incoming_cpu = raw_smp_processor_id();
2387 
2388 	/* Before updating sk_refcnt, we must commit prior changes to memory
2389 	 * (Documentation/RCU/rculist_nulls.rst for details)
2390 	 */
2391 	smp_wmb();
2392 	refcount_set(&newsk->sk_refcnt, 2);
2393 
2394 	sk_set_socket(newsk, NULL);
2395 	sk_tx_queue_clear(newsk);
2396 	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2397 
2398 	if (newsk->sk_prot->sockets_allocated)
2399 		sk_sockets_allocated_inc(newsk);
2400 
2401 	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2402 		net_enable_timestamp();
2403 out:
2404 	return newsk;
2405 }
2406 EXPORT_SYMBOL_GPL(sk_clone_lock);
2407 
2408 void sk_free_unlock_clone(struct sock *sk)
2409 {
2410 	/* It is still raw copy of parent, so invalidate
2411 	 * destructor and make plain sk_free() */
2412 	sk->sk_destruct = NULL;
2413 	bh_unlock_sock(sk);
2414 	sk_free(sk);
2415 }
2416 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2417 
2418 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
2419 {
2420 	bool is_ipv6 = false;
2421 	u32 max_size;
2422 
2423 #if IS_ENABLED(CONFIG_IPV6)
2424 	is_ipv6 = (sk->sk_family == AF_INET6 &&
2425 		   !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr));
2426 #endif
2427 	/* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
2428 	max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) :
2429 			READ_ONCE(dst->dev->gso_ipv4_max_size);
2430 	if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk))
2431 		max_size = GSO_LEGACY_MAX_SIZE;
2432 
2433 	return max_size - (MAX_TCP_HEADER + 1);
2434 }
2435 
2436 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2437 {
2438 	u32 max_segs = 1;
2439 
2440 	sk->sk_route_caps = dst->dev->features;
2441 	if (sk_is_tcp(sk))
2442 		sk->sk_route_caps |= NETIF_F_GSO;
2443 	if (sk->sk_route_caps & NETIF_F_GSO)
2444 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2445 	if (unlikely(sk->sk_gso_disabled))
2446 		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2447 	if (sk_can_gso(sk)) {
2448 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2449 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2450 		} else {
2451 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2452 			sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst);
2453 			/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2454 			max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2455 		}
2456 	}
2457 	sk->sk_gso_max_segs = max_segs;
2458 	sk_dst_set(sk, dst);
2459 }
2460 EXPORT_SYMBOL_GPL(sk_setup_caps);
2461 
2462 /*
2463  *	Simple resource managers for sockets.
2464  */
2465 
2466 
2467 /*
2468  * Write buffer destructor automatically called from kfree_skb.
2469  */
2470 void sock_wfree(struct sk_buff *skb)
2471 {
2472 	struct sock *sk = skb->sk;
2473 	unsigned int len = skb->truesize;
2474 	bool free;
2475 
2476 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2477 		if (sock_flag(sk, SOCK_RCU_FREE) &&
2478 		    sk->sk_write_space == sock_def_write_space) {
2479 			rcu_read_lock();
2480 			free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2481 			sock_def_write_space_wfree(sk);
2482 			rcu_read_unlock();
2483 			if (unlikely(free))
2484 				__sk_free(sk);
2485 			return;
2486 		}
2487 
2488 		/*
2489 		 * Keep a reference on sk_wmem_alloc, this will be released
2490 		 * after sk_write_space() call
2491 		 */
2492 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2493 		sk->sk_write_space(sk);
2494 		len = 1;
2495 	}
2496 	/*
2497 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2498 	 * could not do because of in-flight packets
2499 	 */
2500 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2501 		__sk_free(sk);
2502 }
2503 EXPORT_SYMBOL(sock_wfree);
2504 
2505 /* This variant of sock_wfree() is used by TCP,
2506  * since it sets SOCK_USE_WRITE_QUEUE.
2507  */
2508 void __sock_wfree(struct sk_buff *skb)
2509 {
2510 	struct sock *sk = skb->sk;
2511 
2512 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2513 		__sk_free(sk);
2514 }
2515 
2516 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2517 {
2518 	skb_orphan(skb);
2519 	skb->sk = sk;
2520 #ifdef CONFIG_INET
2521 	if (unlikely(!sk_fullsock(sk))) {
2522 		skb->destructor = sock_edemux;
2523 		sock_hold(sk);
2524 		return;
2525 	}
2526 #endif
2527 	skb->destructor = sock_wfree;
2528 	skb_set_hash_from_sk(skb, sk);
2529 	/*
2530 	 * We used to take a refcount on sk, but following operation
2531 	 * is enough to guarantee sk_free() wont free this sock until
2532 	 * all in-flight packets are completed
2533 	 */
2534 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2535 }
2536 EXPORT_SYMBOL(skb_set_owner_w);
2537 
2538 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2539 {
2540 #ifdef CONFIG_TLS_DEVICE
2541 	/* Drivers depend on in-order delivery for crypto offload,
2542 	 * partial orphan breaks out-of-order-OK logic.
2543 	 */
2544 	if (skb->decrypted)
2545 		return false;
2546 #endif
2547 	return (skb->destructor == sock_wfree ||
2548 		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2549 }
2550 
2551 /* This helper is used by netem, as it can hold packets in its
2552  * delay queue. We want to allow the owner socket to send more
2553  * packets, as if they were already TX completed by a typical driver.
2554  * But we also want to keep skb->sk set because some packet schedulers
2555  * rely on it (sch_fq for example).
2556  */
2557 void skb_orphan_partial(struct sk_buff *skb)
2558 {
2559 	if (skb_is_tcp_pure_ack(skb))
2560 		return;
2561 
2562 	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2563 		return;
2564 
2565 	skb_orphan(skb);
2566 }
2567 EXPORT_SYMBOL(skb_orphan_partial);
2568 
2569 /*
2570  * Read buffer destructor automatically called from kfree_skb.
2571  */
2572 void sock_rfree(struct sk_buff *skb)
2573 {
2574 	struct sock *sk = skb->sk;
2575 	unsigned int len = skb->truesize;
2576 
2577 	atomic_sub(len, &sk->sk_rmem_alloc);
2578 	sk_mem_uncharge(sk, len);
2579 }
2580 EXPORT_SYMBOL(sock_rfree);
2581 
2582 /*
2583  * Buffer destructor for skbs that are not used directly in read or write
2584  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2585  */
2586 void sock_efree(struct sk_buff *skb)
2587 {
2588 	sock_put(skb->sk);
2589 }
2590 EXPORT_SYMBOL(sock_efree);
2591 
2592 /* Buffer destructor for prefetch/receive path where reference count may
2593  * not be held, e.g. for listen sockets.
2594  */
2595 #ifdef CONFIG_INET
2596 void sock_pfree(struct sk_buff *skb)
2597 {
2598 	if (sk_is_refcounted(skb->sk))
2599 		sock_gen_put(skb->sk);
2600 }
2601 EXPORT_SYMBOL(sock_pfree);
2602 #endif /* CONFIG_INET */
2603 
2604 kuid_t sock_i_uid(struct sock *sk)
2605 {
2606 	kuid_t uid;
2607 
2608 	read_lock_bh(&sk->sk_callback_lock);
2609 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2610 	read_unlock_bh(&sk->sk_callback_lock);
2611 	return uid;
2612 }
2613 EXPORT_SYMBOL(sock_i_uid);
2614 
2615 unsigned long __sock_i_ino(struct sock *sk)
2616 {
2617 	unsigned long ino;
2618 
2619 	read_lock(&sk->sk_callback_lock);
2620 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2621 	read_unlock(&sk->sk_callback_lock);
2622 	return ino;
2623 }
2624 EXPORT_SYMBOL(__sock_i_ino);
2625 
2626 unsigned long sock_i_ino(struct sock *sk)
2627 {
2628 	unsigned long ino;
2629 
2630 	local_bh_disable();
2631 	ino = __sock_i_ino(sk);
2632 	local_bh_enable();
2633 	return ino;
2634 }
2635 EXPORT_SYMBOL(sock_i_ino);
2636 
2637 /*
2638  * Allocate a skb from the socket's send buffer.
2639  */
2640 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2641 			     gfp_t priority)
2642 {
2643 	if (force ||
2644 	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2645 		struct sk_buff *skb = alloc_skb(size, priority);
2646 
2647 		if (skb) {
2648 			skb_set_owner_w(skb, sk);
2649 			return skb;
2650 		}
2651 	}
2652 	return NULL;
2653 }
2654 EXPORT_SYMBOL(sock_wmalloc);
2655 
2656 static void sock_ofree(struct sk_buff *skb)
2657 {
2658 	struct sock *sk = skb->sk;
2659 
2660 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2661 }
2662 
2663 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2664 			     gfp_t priority)
2665 {
2666 	struct sk_buff *skb;
2667 
2668 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2669 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2670 	    READ_ONCE(sysctl_optmem_max))
2671 		return NULL;
2672 
2673 	skb = alloc_skb(size, priority);
2674 	if (!skb)
2675 		return NULL;
2676 
2677 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2678 	skb->sk = sk;
2679 	skb->destructor = sock_ofree;
2680 	return skb;
2681 }
2682 
2683 /*
2684  * Allocate a memory block from the socket's option memory buffer.
2685  */
2686 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2687 {
2688 	int optmem_max = READ_ONCE(sysctl_optmem_max);
2689 
2690 	if ((unsigned int)size <= optmem_max &&
2691 	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2692 		void *mem;
2693 		/* First do the add, to avoid the race if kmalloc
2694 		 * might sleep.
2695 		 */
2696 		atomic_add(size, &sk->sk_omem_alloc);
2697 		mem = kmalloc(size, priority);
2698 		if (mem)
2699 			return mem;
2700 		atomic_sub(size, &sk->sk_omem_alloc);
2701 	}
2702 	return NULL;
2703 }
2704 EXPORT_SYMBOL(sock_kmalloc);
2705 
2706 /* Free an option memory block. Note, we actually want the inline
2707  * here as this allows gcc to detect the nullify and fold away the
2708  * condition entirely.
2709  */
2710 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2711 				  const bool nullify)
2712 {
2713 	if (WARN_ON_ONCE(!mem))
2714 		return;
2715 	if (nullify)
2716 		kfree_sensitive(mem);
2717 	else
2718 		kfree(mem);
2719 	atomic_sub(size, &sk->sk_omem_alloc);
2720 }
2721 
2722 void sock_kfree_s(struct sock *sk, void *mem, int size)
2723 {
2724 	__sock_kfree_s(sk, mem, size, false);
2725 }
2726 EXPORT_SYMBOL(sock_kfree_s);
2727 
2728 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2729 {
2730 	__sock_kfree_s(sk, mem, size, true);
2731 }
2732 EXPORT_SYMBOL(sock_kzfree_s);
2733 
2734 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2735    I think, these locks should be removed for datagram sockets.
2736  */
2737 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2738 {
2739 	DEFINE_WAIT(wait);
2740 
2741 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2742 	for (;;) {
2743 		if (!timeo)
2744 			break;
2745 		if (signal_pending(current))
2746 			break;
2747 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2748 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2749 		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2750 			break;
2751 		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2752 			break;
2753 		if (READ_ONCE(sk->sk_err))
2754 			break;
2755 		timeo = schedule_timeout(timeo);
2756 	}
2757 	finish_wait(sk_sleep(sk), &wait);
2758 	return timeo;
2759 }
2760 
2761 
2762 /*
2763  *	Generic send/receive buffer handlers
2764  */
2765 
2766 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2767 				     unsigned long data_len, int noblock,
2768 				     int *errcode, int max_page_order)
2769 {
2770 	struct sk_buff *skb;
2771 	long timeo;
2772 	int err;
2773 
2774 	timeo = sock_sndtimeo(sk, noblock);
2775 	for (;;) {
2776 		err = sock_error(sk);
2777 		if (err != 0)
2778 			goto failure;
2779 
2780 		err = -EPIPE;
2781 		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2782 			goto failure;
2783 
2784 		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2785 			break;
2786 
2787 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2788 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2789 		err = -EAGAIN;
2790 		if (!timeo)
2791 			goto failure;
2792 		if (signal_pending(current))
2793 			goto interrupted;
2794 		timeo = sock_wait_for_wmem(sk, timeo);
2795 	}
2796 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2797 				   errcode, sk->sk_allocation);
2798 	if (skb)
2799 		skb_set_owner_w(skb, sk);
2800 	return skb;
2801 
2802 interrupted:
2803 	err = sock_intr_errno(timeo);
2804 failure:
2805 	*errcode = err;
2806 	return NULL;
2807 }
2808 EXPORT_SYMBOL(sock_alloc_send_pskb);
2809 
2810 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2811 		     struct sockcm_cookie *sockc)
2812 {
2813 	u32 tsflags;
2814 
2815 	switch (cmsg->cmsg_type) {
2816 	case SO_MARK:
2817 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2818 		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2819 			return -EPERM;
2820 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2821 			return -EINVAL;
2822 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2823 		break;
2824 	case SO_TIMESTAMPING_OLD:
2825 	case SO_TIMESTAMPING_NEW:
2826 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2827 			return -EINVAL;
2828 
2829 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2830 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2831 			return -EINVAL;
2832 
2833 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2834 		sockc->tsflags |= tsflags;
2835 		break;
2836 	case SCM_TXTIME:
2837 		if (!sock_flag(sk, SOCK_TXTIME))
2838 			return -EINVAL;
2839 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2840 			return -EINVAL;
2841 		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2842 		break;
2843 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2844 	case SCM_RIGHTS:
2845 	case SCM_CREDENTIALS:
2846 		break;
2847 	default:
2848 		return -EINVAL;
2849 	}
2850 	return 0;
2851 }
2852 EXPORT_SYMBOL(__sock_cmsg_send);
2853 
2854 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2855 		   struct sockcm_cookie *sockc)
2856 {
2857 	struct cmsghdr *cmsg;
2858 	int ret;
2859 
2860 	for_each_cmsghdr(cmsg, msg) {
2861 		if (!CMSG_OK(msg, cmsg))
2862 			return -EINVAL;
2863 		if (cmsg->cmsg_level != SOL_SOCKET)
2864 			continue;
2865 		ret = __sock_cmsg_send(sk, cmsg, sockc);
2866 		if (ret)
2867 			return ret;
2868 	}
2869 	return 0;
2870 }
2871 EXPORT_SYMBOL(sock_cmsg_send);
2872 
2873 static void sk_enter_memory_pressure(struct sock *sk)
2874 {
2875 	if (!sk->sk_prot->enter_memory_pressure)
2876 		return;
2877 
2878 	sk->sk_prot->enter_memory_pressure(sk);
2879 }
2880 
2881 static void sk_leave_memory_pressure(struct sock *sk)
2882 {
2883 	if (sk->sk_prot->leave_memory_pressure) {
2884 		INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
2885 				     tcp_leave_memory_pressure, sk);
2886 	} else {
2887 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2888 
2889 		if (memory_pressure && READ_ONCE(*memory_pressure))
2890 			WRITE_ONCE(*memory_pressure, 0);
2891 	}
2892 }
2893 
2894 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2895 
2896 /**
2897  * skb_page_frag_refill - check that a page_frag contains enough room
2898  * @sz: minimum size of the fragment we want to get
2899  * @pfrag: pointer to page_frag
2900  * @gfp: priority for memory allocation
2901  *
2902  * Note: While this allocator tries to use high order pages, there is
2903  * no guarantee that allocations succeed. Therefore, @sz MUST be
2904  * less or equal than PAGE_SIZE.
2905  */
2906 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2907 {
2908 	if (pfrag->page) {
2909 		if (page_ref_count(pfrag->page) == 1) {
2910 			pfrag->offset = 0;
2911 			return true;
2912 		}
2913 		if (pfrag->offset + sz <= pfrag->size)
2914 			return true;
2915 		put_page(pfrag->page);
2916 	}
2917 
2918 	pfrag->offset = 0;
2919 	if (SKB_FRAG_PAGE_ORDER &&
2920 	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2921 		/* Avoid direct reclaim but allow kswapd to wake */
2922 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2923 					  __GFP_COMP | __GFP_NOWARN |
2924 					  __GFP_NORETRY,
2925 					  SKB_FRAG_PAGE_ORDER);
2926 		if (likely(pfrag->page)) {
2927 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2928 			return true;
2929 		}
2930 	}
2931 	pfrag->page = alloc_page(gfp);
2932 	if (likely(pfrag->page)) {
2933 		pfrag->size = PAGE_SIZE;
2934 		return true;
2935 	}
2936 	return false;
2937 }
2938 EXPORT_SYMBOL(skb_page_frag_refill);
2939 
2940 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2941 {
2942 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2943 		return true;
2944 
2945 	sk_enter_memory_pressure(sk);
2946 	sk_stream_moderate_sndbuf(sk);
2947 	return false;
2948 }
2949 EXPORT_SYMBOL(sk_page_frag_refill);
2950 
2951 void __lock_sock(struct sock *sk)
2952 	__releases(&sk->sk_lock.slock)
2953 	__acquires(&sk->sk_lock.slock)
2954 {
2955 	DEFINE_WAIT(wait);
2956 
2957 	for (;;) {
2958 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2959 					TASK_UNINTERRUPTIBLE);
2960 		spin_unlock_bh(&sk->sk_lock.slock);
2961 		schedule();
2962 		spin_lock_bh(&sk->sk_lock.slock);
2963 		if (!sock_owned_by_user(sk))
2964 			break;
2965 	}
2966 	finish_wait(&sk->sk_lock.wq, &wait);
2967 }
2968 
2969 void __release_sock(struct sock *sk)
2970 	__releases(&sk->sk_lock.slock)
2971 	__acquires(&sk->sk_lock.slock)
2972 {
2973 	struct sk_buff *skb, *next;
2974 
2975 	while ((skb = sk->sk_backlog.head) != NULL) {
2976 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2977 
2978 		spin_unlock_bh(&sk->sk_lock.slock);
2979 
2980 		do {
2981 			next = skb->next;
2982 			prefetch(next);
2983 			DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
2984 			skb_mark_not_on_list(skb);
2985 			sk_backlog_rcv(sk, skb);
2986 
2987 			cond_resched();
2988 
2989 			skb = next;
2990 		} while (skb != NULL);
2991 
2992 		spin_lock_bh(&sk->sk_lock.slock);
2993 	}
2994 
2995 	/*
2996 	 * Doing the zeroing here guarantee we can not loop forever
2997 	 * while a wild producer attempts to flood us.
2998 	 */
2999 	sk->sk_backlog.len = 0;
3000 }
3001 
3002 void __sk_flush_backlog(struct sock *sk)
3003 {
3004 	spin_lock_bh(&sk->sk_lock.slock);
3005 	__release_sock(sk);
3006 	spin_unlock_bh(&sk->sk_lock.slock);
3007 }
3008 EXPORT_SYMBOL_GPL(__sk_flush_backlog);
3009 
3010 /**
3011  * sk_wait_data - wait for data to arrive at sk_receive_queue
3012  * @sk:    sock to wait on
3013  * @timeo: for how long
3014  * @skb:   last skb seen on sk_receive_queue
3015  *
3016  * Now socket state including sk->sk_err is changed only under lock,
3017  * hence we may omit checks after joining wait queue.
3018  * We check receive queue before schedule() only as optimization;
3019  * it is very likely that release_sock() added new data.
3020  */
3021 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
3022 {
3023 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
3024 	int rc;
3025 
3026 	add_wait_queue(sk_sleep(sk), &wait);
3027 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3028 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
3029 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3030 	remove_wait_queue(sk_sleep(sk), &wait);
3031 	return rc;
3032 }
3033 EXPORT_SYMBOL(sk_wait_data);
3034 
3035 /**
3036  *	__sk_mem_raise_allocated - increase memory_allocated
3037  *	@sk: socket
3038  *	@size: memory size to allocate
3039  *	@amt: pages to allocate
3040  *	@kind: allocation type
3041  *
3042  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
3043  */
3044 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
3045 {
3046 	bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg;
3047 	struct proto *prot = sk->sk_prot;
3048 	bool charged = true;
3049 	long allocated;
3050 
3051 	sk_memory_allocated_add(sk, amt);
3052 	allocated = sk_memory_allocated(sk);
3053 	if (memcg_charge &&
3054 	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3055 						gfp_memcg_charge())))
3056 		goto suppress_allocation;
3057 
3058 	/* Under limit. */
3059 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
3060 		sk_leave_memory_pressure(sk);
3061 		return 1;
3062 	}
3063 
3064 	/* Under pressure. */
3065 	if (allocated > sk_prot_mem_limits(sk, 1))
3066 		sk_enter_memory_pressure(sk);
3067 
3068 	/* Over hard limit. */
3069 	if (allocated > sk_prot_mem_limits(sk, 2))
3070 		goto suppress_allocation;
3071 
3072 	/* guarantee minimum buffer size under pressure */
3073 	if (kind == SK_MEM_RECV) {
3074 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3075 			return 1;
3076 
3077 	} else { /* SK_MEM_SEND */
3078 		int wmem0 = sk_get_wmem0(sk, prot);
3079 
3080 		if (sk->sk_type == SOCK_STREAM) {
3081 			if (sk->sk_wmem_queued < wmem0)
3082 				return 1;
3083 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3084 				return 1;
3085 		}
3086 	}
3087 
3088 	if (sk_has_memory_pressure(sk)) {
3089 		u64 alloc;
3090 
3091 		if (!sk_under_memory_pressure(sk))
3092 			return 1;
3093 		alloc = sk_sockets_allocated_read_positive(sk);
3094 		if (sk_prot_mem_limits(sk, 2) > alloc *
3095 		    sk_mem_pages(sk->sk_wmem_queued +
3096 				 atomic_read(&sk->sk_rmem_alloc) +
3097 				 sk->sk_forward_alloc))
3098 			return 1;
3099 	}
3100 
3101 suppress_allocation:
3102 
3103 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3104 		sk_stream_moderate_sndbuf(sk);
3105 
3106 		/* Fail only if socket is _under_ its sndbuf.
3107 		 * In this case we cannot block, so that we have to fail.
3108 		 */
3109 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3110 			/* Force charge with __GFP_NOFAIL */
3111 			if (memcg_charge && !charged) {
3112 				mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3113 					gfp_memcg_charge() | __GFP_NOFAIL);
3114 			}
3115 			return 1;
3116 		}
3117 	}
3118 
3119 	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3120 		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3121 
3122 	sk_memory_allocated_sub(sk, amt);
3123 
3124 	if (memcg_charge && charged)
3125 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
3126 
3127 	return 0;
3128 }
3129 
3130 /**
3131  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3132  *	@sk: socket
3133  *	@size: memory size to allocate
3134  *	@kind: allocation type
3135  *
3136  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3137  *	rmem allocation. This function assumes that protocols which have
3138  *	memory_pressure use sk_wmem_queued as write buffer accounting.
3139  */
3140 int __sk_mem_schedule(struct sock *sk, int size, int kind)
3141 {
3142 	int ret, amt = sk_mem_pages(size);
3143 
3144 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3145 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3146 	if (!ret)
3147 		sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT));
3148 	return ret;
3149 }
3150 EXPORT_SYMBOL(__sk_mem_schedule);
3151 
3152 /**
3153  *	__sk_mem_reduce_allocated - reclaim memory_allocated
3154  *	@sk: socket
3155  *	@amount: number of quanta
3156  *
3157  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3158  */
3159 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3160 {
3161 	sk_memory_allocated_sub(sk, amount);
3162 
3163 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3164 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3165 
3166 	if (sk_under_global_memory_pressure(sk) &&
3167 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3168 		sk_leave_memory_pressure(sk);
3169 }
3170 
3171 /**
3172  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3173  *	@sk: socket
3174  *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3175  */
3176 void __sk_mem_reclaim(struct sock *sk, int amount)
3177 {
3178 	amount >>= PAGE_SHIFT;
3179 	sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT));
3180 	__sk_mem_reduce_allocated(sk, amount);
3181 }
3182 EXPORT_SYMBOL(__sk_mem_reclaim);
3183 
3184 int sk_set_peek_off(struct sock *sk, int val)
3185 {
3186 	WRITE_ONCE(sk->sk_peek_off, val);
3187 	return 0;
3188 }
3189 EXPORT_SYMBOL_GPL(sk_set_peek_off);
3190 
3191 /*
3192  * Set of default routines for initialising struct proto_ops when
3193  * the protocol does not support a particular function. In certain
3194  * cases where it makes no sense for a protocol to have a "do nothing"
3195  * function, some default processing is provided.
3196  */
3197 
3198 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3199 {
3200 	return -EOPNOTSUPP;
3201 }
3202 EXPORT_SYMBOL(sock_no_bind);
3203 
3204 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3205 		    int len, int flags)
3206 {
3207 	return -EOPNOTSUPP;
3208 }
3209 EXPORT_SYMBOL(sock_no_connect);
3210 
3211 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3212 {
3213 	return -EOPNOTSUPP;
3214 }
3215 EXPORT_SYMBOL(sock_no_socketpair);
3216 
3217 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3218 		   bool kern)
3219 {
3220 	return -EOPNOTSUPP;
3221 }
3222 EXPORT_SYMBOL(sock_no_accept);
3223 
3224 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3225 		    int peer)
3226 {
3227 	return -EOPNOTSUPP;
3228 }
3229 EXPORT_SYMBOL(sock_no_getname);
3230 
3231 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3232 {
3233 	return -EOPNOTSUPP;
3234 }
3235 EXPORT_SYMBOL(sock_no_ioctl);
3236 
3237 int sock_no_listen(struct socket *sock, int backlog)
3238 {
3239 	return -EOPNOTSUPP;
3240 }
3241 EXPORT_SYMBOL(sock_no_listen);
3242 
3243 int sock_no_shutdown(struct socket *sock, int how)
3244 {
3245 	return -EOPNOTSUPP;
3246 }
3247 EXPORT_SYMBOL(sock_no_shutdown);
3248 
3249 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3250 {
3251 	return -EOPNOTSUPP;
3252 }
3253 EXPORT_SYMBOL(sock_no_sendmsg);
3254 
3255 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3256 {
3257 	return -EOPNOTSUPP;
3258 }
3259 EXPORT_SYMBOL(sock_no_sendmsg_locked);
3260 
3261 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3262 		    int flags)
3263 {
3264 	return -EOPNOTSUPP;
3265 }
3266 EXPORT_SYMBOL(sock_no_recvmsg);
3267 
3268 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3269 {
3270 	/* Mirror missing mmap method error code */
3271 	return -ENODEV;
3272 }
3273 EXPORT_SYMBOL(sock_no_mmap);
3274 
3275 /*
3276  * When a file is received (via SCM_RIGHTS, etc), we must bump the
3277  * various sock-based usage counts.
3278  */
3279 void __receive_sock(struct file *file)
3280 {
3281 	struct socket *sock;
3282 
3283 	sock = sock_from_file(file);
3284 	if (sock) {
3285 		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3286 		sock_update_classid(&sock->sk->sk_cgrp_data);
3287 	}
3288 }
3289 
3290 /*
3291  *	Default Socket Callbacks
3292  */
3293 
3294 static void sock_def_wakeup(struct sock *sk)
3295 {
3296 	struct socket_wq *wq;
3297 
3298 	rcu_read_lock();
3299 	wq = rcu_dereference(sk->sk_wq);
3300 	if (skwq_has_sleeper(wq))
3301 		wake_up_interruptible_all(&wq->wait);
3302 	rcu_read_unlock();
3303 }
3304 
3305 static void sock_def_error_report(struct sock *sk)
3306 {
3307 	struct socket_wq *wq;
3308 
3309 	rcu_read_lock();
3310 	wq = rcu_dereference(sk->sk_wq);
3311 	if (skwq_has_sleeper(wq))
3312 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3313 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3314 	rcu_read_unlock();
3315 }
3316 
3317 void sock_def_readable(struct sock *sk)
3318 {
3319 	struct socket_wq *wq;
3320 
3321 	trace_sk_data_ready(sk);
3322 
3323 	rcu_read_lock();
3324 	wq = rcu_dereference(sk->sk_wq);
3325 	if (skwq_has_sleeper(wq))
3326 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3327 						EPOLLRDNORM | EPOLLRDBAND);
3328 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3329 	rcu_read_unlock();
3330 }
3331 
3332 static void sock_def_write_space(struct sock *sk)
3333 {
3334 	struct socket_wq *wq;
3335 
3336 	rcu_read_lock();
3337 
3338 	/* Do not wake up a writer until he can make "significant"
3339 	 * progress.  --DaveM
3340 	 */
3341 	if (sock_writeable(sk)) {
3342 		wq = rcu_dereference(sk->sk_wq);
3343 		if (skwq_has_sleeper(wq))
3344 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3345 						EPOLLWRNORM | EPOLLWRBAND);
3346 
3347 		/* Should agree with poll, otherwise some programs break */
3348 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3349 	}
3350 
3351 	rcu_read_unlock();
3352 }
3353 
3354 /* An optimised version of sock_def_write_space(), should only be called
3355  * for SOCK_RCU_FREE sockets under RCU read section and after putting
3356  * ->sk_wmem_alloc.
3357  */
3358 static void sock_def_write_space_wfree(struct sock *sk)
3359 {
3360 	/* Do not wake up a writer until he can make "significant"
3361 	 * progress.  --DaveM
3362 	 */
3363 	if (sock_writeable(sk)) {
3364 		struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3365 
3366 		/* rely on refcount_sub from sock_wfree() */
3367 		smp_mb__after_atomic();
3368 		if (wq && waitqueue_active(&wq->wait))
3369 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3370 						EPOLLWRNORM | EPOLLWRBAND);
3371 
3372 		/* Should agree with poll, otherwise some programs break */
3373 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3374 	}
3375 }
3376 
3377 static void sock_def_destruct(struct sock *sk)
3378 {
3379 }
3380 
3381 void sk_send_sigurg(struct sock *sk)
3382 {
3383 	if (sk->sk_socket && sk->sk_socket->file)
3384 		if (send_sigurg(&sk->sk_socket->file->f_owner))
3385 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3386 }
3387 EXPORT_SYMBOL(sk_send_sigurg);
3388 
3389 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3390 		    unsigned long expires)
3391 {
3392 	if (!mod_timer(timer, expires))
3393 		sock_hold(sk);
3394 }
3395 EXPORT_SYMBOL(sk_reset_timer);
3396 
3397 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3398 {
3399 	if (del_timer(timer))
3400 		__sock_put(sk);
3401 }
3402 EXPORT_SYMBOL(sk_stop_timer);
3403 
3404 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3405 {
3406 	if (del_timer_sync(timer))
3407 		__sock_put(sk);
3408 }
3409 EXPORT_SYMBOL(sk_stop_timer_sync);
3410 
3411 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
3412 {
3413 	sk_init_common(sk);
3414 	sk->sk_send_head	=	NULL;
3415 
3416 	timer_setup(&sk->sk_timer, NULL, 0);
3417 
3418 	sk->sk_allocation	=	GFP_KERNEL;
3419 	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
3420 	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
3421 	sk->sk_state		=	TCP_CLOSE;
3422 	sk->sk_use_task_frag	=	true;
3423 	sk_set_socket(sk, sock);
3424 
3425 	sock_set_flag(sk, SOCK_ZAPPED);
3426 
3427 	if (sock) {
3428 		sk->sk_type	=	sock->type;
3429 		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3430 		sock->sk	=	sk;
3431 	} else {
3432 		RCU_INIT_POINTER(sk->sk_wq, NULL);
3433 	}
3434 	sk->sk_uid	=	uid;
3435 
3436 	rwlock_init(&sk->sk_callback_lock);
3437 	if (sk->sk_kern_sock)
3438 		lockdep_set_class_and_name(
3439 			&sk->sk_callback_lock,
3440 			af_kern_callback_keys + sk->sk_family,
3441 			af_family_kern_clock_key_strings[sk->sk_family]);
3442 	else
3443 		lockdep_set_class_and_name(
3444 			&sk->sk_callback_lock,
3445 			af_callback_keys + sk->sk_family,
3446 			af_family_clock_key_strings[sk->sk_family]);
3447 
3448 	sk->sk_state_change	=	sock_def_wakeup;
3449 	sk->sk_data_ready	=	sock_def_readable;
3450 	sk->sk_write_space	=	sock_def_write_space;
3451 	sk->sk_error_report	=	sock_def_error_report;
3452 	sk->sk_destruct		=	sock_def_destruct;
3453 
3454 	sk->sk_frag.page	=	NULL;
3455 	sk->sk_frag.offset	=	0;
3456 	sk->sk_peek_off		=	-1;
3457 
3458 	sk->sk_peer_pid 	=	NULL;
3459 	sk->sk_peer_cred	=	NULL;
3460 	spin_lock_init(&sk->sk_peer_lock);
3461 
3462 	sk->sk_write_pending	=	0;
3463 	sk->sk_rcvlowat		=	1;
3464 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3465 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3466 
3467 	sk->sk_stamp = SK_DEFAULT_STAMP;
3468 #if BITS_PER_LONG==32
3469 	seqlock_init(&sk->sk_stamp_seq);
3470 #endif
3471 	atomic_set(&sk->sk_zckey, 0);
3472 
3473 #ifdef CONFIG_NET_RX_BUSY_POLL
3474 	sk->sk_napi_id		=	0;
3475 	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3476 #endif
3477 
3478 	sk->sk_max_pacing_rate = ~0UL;
3479 	sk->sk_pacing_rate = ~0UL;
3480 	WRITE_ONCE(sk->sk_pacing_shift, 10);
3481 	sk->sk_incoming_cpu = -1;
3482 
3483 	sk_rx_queue_clear(sk);
3484 	/*
3485 	 * Before updating sk_refcnt, we must commit prior changes to memory
3486 	 * (Documentation/RCU/rculist_nulls.rst for details)
3487 	 */
3488 	smp_wmb();
3489 	refcount_set(&sk->sk_refcnt, 1);
3490 	atomic_set(&sk->sk_drops, 0);
3491 }
3492 EXPORT_SYMBOL(sock_init_data_uid);
3493 
3494 void sock_init_data(struct socket *sock, struct sock *sk)
3495 {
3496 	kuid_t uid = sock ?
3497 		SOCK_INODE(sock)->i_uid :
3498 		make_kuid(sock_net(sk)->user_ns, 0);
3499 
3500 	sock_init_data_uid(sock, sk, uid);
3501 }
3502 EXPORT_SYMBOL(sock_init_data);
3503 
3504 void lock_sock_nested(struct sock *sk, int subclass)
3505 {
3506 	/* The sk_lock has mutex_lock() semantics here. */
3507 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3508 
3509 	might_sleep();
3510 	spin_lock_bh(&sk->sk_lock.slock);
3511 	if (sock_owned_by_user_nocheck(sk))
3512 		__lock_sock(sk);
3513 	sk->sk_lock.owned = 1;
3514 	spin_unlock_bh(&sk->sk_lock.slock);
3515 }
3516 EXPORT_SYMBOL(lock_sock_nested);
3517 
3518 void release_sock(struct sock *sk)
3519 {
3520 	spin_lock_bh(&sk->sk_lock.slock);
3521 	if (sk->sk_backlog.tail)
3522 		__release_sock(sk);
3523 
3524 	/* Warning : release_cb() might need to release sk ownership,
3525 	 * ie call sock_release_ownership(sk) before us.
3526 	 */
3527 	if (sk->sk_prot->release_cb)
3528 		sk->sk_prot->release_cb(sk);
3529 
3530 	sock_release_ownership(sk);
3531 	if (waitqueue_active(&sk->sk_lock.wq))
3532 		wake_up(&sk->sk_lock.wq);
3533 	spin_unlock_bh(&sk->sk_lock.slock);
3534 }
3535 EXPORT_SYMBOL(release_sock);
3536 
3537 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3538 {
3539 	might_sleep();
3540 	spin_lock_bh(&sk->sk_lock.slock);
3541 
3542 	if (!sock_owned_by_user_nocheck(sk)) {
3543 		/*
3544 		 * Fast path return with bottom halves disabled and
3545 		 * sock::sk_lock.slock held.
3546 		 *
3547 		 * The 'mutex' is not contended and holding
3548 		 * sock::sk_lock.slock prevents all other lockers to
3549 		 * proceed so the corresponding unlock_sock_fast() can
3550 		 * avoid the slow path of release_sock() completely and
3551 		 * just release slock.
3552 		 *
3553 		 * From a semantical POV this is equivalent to 'acquiring'
3554 		 * the 'mutex', hence the corresponding lockdep
3555 		 * mutex_release() has to happen in the fast path of
3556 		 * unlock_sock_fast().
3557 		 */
3558 		return false;
3559 	}
3560 
3561 	__lock_sock(sk);
3562 	sk->sk_lock.owned = 1;
3563 	__acquire(&sk->sk_lock.slock);
3564 	spin_unlock_bh(&sk->sk_lock.slock);
3565 	return true;
3566 }
3567 EXPORT_SYMBOL(__lock_sock_fast);
3568 
3569 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3570 		   bool timeval, bool time32)
3571 {
3572 	struct sock *sk = sock->sk;
3573 	struct timespec64 ts;
3574 
3575 	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3576 	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3577 	if (ts.tv_sec == -1)
3578 		return -ENOENT;
3579 	if (ts.tv_sec == 0) {
3580 		ktime_t kt = ktime_get_real();
3581 		sock_write_timestamp(sk, kt);
3582 		ts = ktime_to_timespec64(kt);
3583 	}
3584 
3585 	if (timeval)
3586 		ts.tv_nsec /= 1000;
3587 
3588 #ifdef CONFIG_COMPAT_32BIT_TIME
3589 	if (time32)
3590 		return put_old_timespec32(&ts, userstamp);
3591 #endif
3592 #ifdef CONFIG_SPARC64
3593 	/* beware of padding in sparc64 timeval */
3594 	if (timeval && !in_compat_syscall()) {
3595 		struct __kernel_old_timeval __user tv = {
3596 			.tv_sec = ts.tv_sec,
3597 			.tv_usec = ts.tv_nsec,
3598 		};
3599 		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3600 			return -EFAULT;
3601 		return 0;
3602 	}
3603 #endif
3604 	return put_timespec64(&ts, userstamp);
3605 }
3606 EXPORT_SYMBOL(sock_gettstamp);
3607 
3608 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3609 {
3610 	if (!sock_flag(sk, flag)) {
3611 		unsigned long previous_flags = sk->sk_flags;
3612 
3613 		sock_set_flag(sk, flag);
3614 		/*
3615 		 * we just set one of the two flags which require net
3616 		 * time stamping, but time stamping might have been on
3617 		 * already because of the other one
3618 		 */
3619 		if (sock_needs_netstamp(sk) &&
3620 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3621 			net_enable_timestamp();
3622 	}
3623 }
3624 
3625 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3626 		       int level, int type)
3627 {
3628 	struct sock_exterr_skb *serr;
3629 	struct sk_buff *skb;
3630 	int copied, err;
3631 
3632 	err = -EAGAIN;
3633 	skb = sock_dequeue_err_skb(sk);
3634 	if (skb == NULL)
3635 		goto out;
3636 
3637 	copied = skb->len;
3638 	if (copied > len) {
3639 		msg->msg_flags |= MSG_TRUNC;
3640 		copied = len;
3641 	}
3642 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3643 	if (err)
3644 		goto out_free_skb;
3645 
3646 	sock_recv_timestamp(msg, sk, skb);
3647 
3648 	serr = SKB_EXT_ERR(skb);
3649 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3650 
3651 	msg->msg_flags |= MSG_ERRQUEUE;
3652 	err = copied;
3653 
3654 out_free_skb:
3655 	kfree_skb(skb);
3656 out:
3657 	return err;
3658 }
3659 EXPORT_SYMBOL(sock_recv_errqueue);
3660 
3661 /*
3662  *	Get a socket option on an socket.
3663  *
3664  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3665  *	asynchronous errors should be reported by getsockopt. We assume
3666  *	this means if you specify SO_ERROR (otherwise whats the point of it).
3667  */
3668 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3669 			   char __user *optval, int __user *optlen)
3670 {
3671 	struct sock *sk = sock->sk;
3672 
3673 	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3674 	return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3675 }
3676 EXPORT_SYMBOL(sock_common_getsockopt);
3677 
3678 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3679 			int flags)
3680 {
3681 	struct sock *sk = sock->sk;
3682 	int addr_len = 0;
3683 	int err;
3684 
3685 	err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3686 	if (err >= 0)
3687 		msg->msg_namelen = addr_len;
3688 	return err;
3689 }
3690 EXPORT_SYMBOL(sock_common_recvmsg);
3691 
3692 /*
3693  *	Set socket options on an inet socket.
3694  */
3695 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3696 			   sockptr_t optval, unsigned int optlen)
3697 {
3698 	struct sock *sk = sock->sk;
3699 
3700 	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3701 	return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3702 }
3703 EXPORT_SYMBOL(sock_common_setsockopt);
3704 
3705 void sk_common_release(struct sock *sk)
3706 {
3707 	if (sk->sk_prot->destroy)
3708 		sk->sk_prot->destroy(sk);
3709 
3710 	/*
3711 	 * Observation: when sk_common_release is called, processes have
3712 	 * no access to socket. But net still has.
3713 	 * Step one, detach it from networking:
3714 	 *
3715 	 * A. Remove from hash tables.
3716 	 */
3717 
3718 	sk->sk_prot->unhash(sk);
3719 
3720 	if (sk->sk_socket)
3721 		sk->sk_socket->sk = NULL;
3722 
3723 	/*
3724 	 * In this point socket cannot receive new packets, but it is possible
3725 	 * that some packets are in flight because some CPU runs receiver and
3726 	 * did hash table lookup before we unhashed socket. They will achieve
3727 	 * receive queue and will be purged by socket destructor.
3728 	 *
3729 	 * Also we still have packets pending on receive queue and probably,
3730 	 * our own packets waiting in device queues. sock_destroy will drain
3731 	 * receive queue, but transmitted packets will delay socket destruction
3732 	 * until the last reference will be released.
3733 	 */
3734 
3735 	sock_orphan(sk);
3736 
3737 	xfrm_sk_free_policy(sk);
3738 
3739 	sock_put(sk);
3740 }
3741 EXPORT_SYMBOL(sk_common_release);
3742 
3743 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3744 {
3745 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3746 
3747 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3748 	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3749 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3750 	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3751 	mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk);
3752 	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3753 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3754 	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3755 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3756 }
3757 
3758 #ifdef CONFIG_PROC_FS
3759 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3760 
3761 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3762 {
3763 	int cpu, idx = prot->inuse_idx;
3764 	int res = 0;
3765 
3766 	for_each_possible_cpu(cpu)
3767 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3768 
3769 	return res >= 0 ? res : 0;
3770 }
3771 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3772 
3773 int sock_inuse_get(struct net *net)
3774 {
3775 	int cpu, res = 0;
3776 
3777 	for_each_possible_cpu(cpu)
3778 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3779 
3780 	return res;
3781 }
3782 
3783 EXPORT_SYMBOL_GPL(sock_inuse_get);
3784 
3785 static int __net_init sock_inuse_init_net(struct net *net)
3786 {
3787 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3788 	if (net->core.prot_inuse == NULL)
3789 		return -ENOMEM;
3790 	return 0;
3791 }
3792 
3793 static void __net_exit sock_inuse_exit_net(struct net *net)
3794 {
3795 	free_percpu(net->core.prot_inuse);
3796 }
3797 
3798 static struct pernet_operations net_inuse_ops = {
3799 	.init = sock_inuse_init_net,
3800 	.exit = sock_inuse_exit_net,
3801 };
3802 
3803 static __init int net_inuse_init(void)
3804 {
3805 	if (register_pernet_subsys(&net_inuse_ops))
3806 		panic("Cannot initialize net inuse counters");
3807 
3808 	return 0;
3809 }
3810 
3811 core_initcall(net_inuse_init);
3812 
3813 static int assign_proto_idx(struct proto *prot)
3814 {
3815 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3816 
3817 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3818 		pr_err("PROTO_INUSE_NR exhausted\n");
3819 		return -ENOSPC;
3820 	}
3821 
3822 	set_bit(prot->inuse_idx, proto_inuse_idx);
3823 	return 0;
3824 }
3825 
3826 static void release_proto_idx(struct proto *prot)
3827 {
3828 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3829 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3830 }
3831 #else
3832 static inline int assign_proto_idx(struct proto *prot)
3833 {
3834 	return 0;
3835 }
3836 
3837 static inline void release_proto_idx(struct proto *prot)
3838 {
3839 }
3840 
3841 #endif
3842 
3843 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3844 {
3845 	if (!twsk_prot)
3846 		return;
3847 	kfree(twsk_prot->twsk_slab_name);
3848 	twsk_prot->twsk_slab_name = NULL;
3849 	kmem_cache_destroy(twsk_prot->twsk_slab);
3850 	twsk_prot->twsk_slab = NULL;
3851 }
3852 
3853 static int tw_prot_init(const struct proto *prot)
3854 {
3855 	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3856 
3857 	if (!twsk_prot)
3858 		return 0;
3859 
3860 	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3861 					      prot->name);
3862 	if (!twsk_prot->twsk_slab_name)
3863 		return -ENOMEM;
3864 
3865 	twsk_prot->twsk_slab =
3866 		kmem_cache_create(twsk_prot->twsk_slab_name,
3867 				  twsk_prot->twsk_obj_size, 0,
3868 				  SLAB_ACCOUNT | prot->slab_flags,
3869 				  NULL);
3870 	if (!twsk_prot->twsk_slab) {
3871 		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3872 			prot->name);
3873 		return -ENOMEM;
3874 	}
3875 
3876 	return 0;
3877 }
3878 
3879 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3880 {
3881 	if (!rsk_prot)
3882 		return;
3883 	kfree(rsk_prot->slab_name);
3884 	rsk_prot->slab_name = NULL;
3885 	kmem_cache_destroy(rsk_prot->slab);
3886 	rsk_prot->slab = NULL;
3887 }
3888 
3889 static int req_prot_init(const struct proto *prot)
3890 {
3891 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3892 
3893 	if (!rsk_prot)
3894 		return 0;
3895 
3896 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3897 					prot->name);
3898 	if (!rsk_prot->slab_name)
3899 		return -ENOMEM;
3900 
3901 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3902 					   rsk_prot->obj_size, 0,
3903 					   SLAB_ACCOUNT | prot->slab_flags,
3904 					   NULL);
3905 
3906 	if (!rsk_prot->slab) {
3907 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3908 			prot->name);
3909 		return -ENOMEM;
3910 	}
3911 	return 0;
3912 }
3913 
3914 int proto_register(struct proto *prot, int alloc_slab)
3915 {
3916 	int ret = -ENOBUFS;
3917 
3918 	if (prot->memory_allocated && !prot->sysctl_mem) {
3919 		pr_err("%s: missing sysctl_mem\n", prot->name);
3920 		return -EINVAL;
3921 	}
3922 	if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3923 		pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3924 		return -EINVAL;
3925 	}
3926 	if (alloc_slab) {
3927 		prot->slab = kmem_cache_create_usercopy(prot->name,
3928 					prot->obj_size, 0,
3929 					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3930 					prot->slab_flags,
3931 					prot->useroffset, prot->usersize,
3932 					NULL);
3933 
3934 		if (prot->slab == NULL) {
3935 			pr_crit("%s: Can't create sock SLAB cache!\n",
3936 				prot->name);
3937 			goto out;
3938 		}
3939 
3940 		if (req_prot_init(prot))
3941 			goto out_free_request_sock_slab;
3942 
3943 		if (tw_prot_init(prot))
3944 			goto out_free_timewait_sock_slab;
3945 	}
3946 
3947 	mutex_lock(&proto_list_mutex);
3948 	ret = assign_proto_idx(prot);
3949 	if (ret) {
3950 		mutex_unlock(&proto_list_mutex);
3951 		goto out_free_timewait_sock_slab;
3952 	}
3953 	list_add(&prot->node, &proto_list);
3954 	mutex_unlock(&proto_list_mutex);
3955 	return ret;
3956 
3957 out_free_timewait_sock_slab:
3958 	if (alloc_slab)
3959 		tw_prot_cleanup(prot->twsk_prot);
3960 out_free_request_sock_slab:
3961 	if (alloc_slab) {
3962 		req_prot_cleanup(prot->rsk_prot);
3963 
3964 		kmem_cache_destroy(prot->slab);
3965 		prot->slab = NULL;
3966 	}
3967 out:
3968 	return ret;
3969 }
3970 EXPORT_SYMBOL(proto_register);
3971 
3972 void proto_unregister(struct proto *prot)
3973 {
3974 	mutex_lock(&proto_list_mutex);
3975 	release_proto_idx(prot);
3976 	list_del(&prot->node);
3977 	mutex_unlock(&proto_list_mutex);
3978 
3979 	kmem_cache_destroy(prot->slab);
3980 	prot->slab = NULL;
3981 
3982 	req_prot_cleanup(prot->rsk_prot);
3983 	tw_prot_cleanup(prot->twsk_prot);
3984 }
3985 EXPORT_SYMBOL(proto_unregister);
3986 
3987 int sock_load_diag_module(int family, int protocol)
3988 {
3989 	if (!protocol) {
3990 		if (!sock_is_registered(family))
3991 			return -ENOENT;
3992 
3993 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3994 				      NETLINK_SOCK_DIAG, family);
3995 	}
3996 
3997 #ifdef CONFIG_INET
3998 	if (family == AF_INET &&
3999 	    protocol != IPPROTO_RAW &&
4000 	    protocol < MAX_INET_PROTOS &&
4001 	    !rcu_access_pointer(inet_protos[protocol]))
4002 		return -ENOENT;
4003 #endif
4004 
4005 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
4006 			      NETLINK_SOCK_DIAG, family, protocol);
4007 }
4008 EXPORT_SYMBOL(sock_load_diag_module);
4009 
4010 #ifdef CONFIG_PROC_FS
4011 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
4012 	__acquires(proto_list_mutex)
4013 {
4014 	mutex_lock(&proto_list_mutex);
4015 	return seq_list_start_head(&proto_list, *pos);
4016 }
4017 
4018 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4019 {
4020 	return seq_list_next(v, &proto_list, pos);
4021 }
4022 
4023 static void proto_seq_stop(struct seq_file *seq, void *v)
4024 	__releases(proto_list_mutex)
4025 {
4026 	mutex_unlock(&proto_list_mutex);
4027 }
4028 
4029 static char proto_method_implemented(const void *method)
4030 {
4031 	return method == NULL ? 'n' : 'y';
4032 }
4033 static long sock_prot_memory_allocated(struct proto *proto)
4034 {
4035 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
4036 }
4037 
4038 static const char *sock_prot_memory_pressure(struct proto *proto)
4039 {
4040 	return proto->memory_pressure != NULL ?
4041 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4042 }
4043 
4044 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4045 {
4046 
4047 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
4048 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4049 		   proto->name,
4050 		   proto->obj_size,
4051 		   sock_prot_inuse_get(seq_file_net(seq), proto),
4052 		   sock_prot_memory_allocated(proto),
4053 		   sock_prot_memory_pressure(proto),
4054 		   proto->max_header,
4055 		   proto->slab == NULL ? "no" : "yes",
4056 		   module_name(proto->owner),
4057 		   proto_method_implemented(proto->close),
4058 		   proto_method_implemented(proto->connect),
4059 		   proto_method_implemented(proto->disconnect),
4060 		   proto_method_implemented(proto->accept),
4061 		   proto_method_implemented(proto->ioctl),
4062 		   proto_method_implemented(proto->init),
4063 		   proto_method_implemented(proto->destroy),
4064 		   proto_method_implemented(proto->shutdown),
4065 		   proto_method_implemented(proto->setsockopt),
4066 		   proto_method_implemented(proto->getsockopt),
4067 		   proto_method_implemented(proto->sendmsg),
4068 		   proto_method_implemented(proto->recvmsg),
4069 		   proto_method_implemented(proto->bind),
4070 		   proto_method_implemented(proto->backlog_rcv),
4071 		   proto_method_implemented(proto->hash),
4072 		   proto_method_implemented(proto->unhash),
4073 		   proto_method_implemented(proto->get_port),
4074 		   proto_method_implemented(proto->enter_memory_pressure));
4075 }
4076 
4077 static int proto_seq_show(struct seq_file *seq, void *v)
4078 {
4079 	if (v == &proto_list)
4080 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4081 			   "protocol",
4082 			   "size",
4083 			   "sockets",
4084 			   "memory",
4085 			   "press",
4086 			   "maxhdr",
4087 			   "slab",
4088 			   "module",
4089 			   "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n");
4090 	else
4091 		proto_seq_printf(seq, list_entry(v, struct proto, node));
4092 	return 0;
4093 }
4094 
4095 static const struct seq_operations proto_seq_ops = {
4096 	.start  = proto_seq_start,
4097 	.next   = proto_seq_next,
4098 	.stop   = proto_seq_stop,
4099 	.show   = proto_seq_show,
4100 };
4101 
4102 static __net_init int proto_init_net(struct net *net)
4103 {
4104 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4105 			sizeof(struct seq_net_private)))
4106 		return -ENOMEM;
4107 
4108 	return 0;
4109 }
4110 
4111 static __net_exit void proto_exit_net(struct net *net)
4112 {
4113 	remove_proc_entry("protocols", net->proc_net);
4114 }
4115 
4116 
4117 static __net_initdata struct pernet_operations proto_net_ops = {
4118 	.init = proto_init_net,
4119 	.exit = proto_exit_net,
4120 };
4121 
4122 static int __init proto_init(void)
4123 {
4124 	return register_pernet_subsys(&proto_net_ops);
4125 }
4126 
4127 subsys_initcall(proto_init);
4128 
4129 #endif /* PROC_FS */
4130 
4131 #ifdef CONFIG_NET_RX_BUSY_POLL
4132 bool sk_busy_loop_end(void *p, unsigned long start_time)
4133 {
4134 	struct sock *sk = p;
4135 
4136 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
4137 		return true;
4138 
4139 	if (sk_is_udp(sk) &&
4140 	    !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
4141 		return true;
4142 
4143 	return sk_busy_loop_timeout(sk, start_time);
4144 }
4145 EXPORT_SYMBOL(sk_busy_loop_end);
4146 #endif /* CONFIG_NET_RX_BUSY_POLL */
4147 
4148 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4149 {
4150 	if (!sk->sk_prot->bind_add)
4151 		return -EOPNOTSUPP;
4152 	return sk->sk_prot->bind_add(sk, addr, addr_len);
4153 }
4154 EXPORT_SYMBOL(sock_bind_add);
4155 
4156 /* Copy 'size' bytes from userspace and return `size` back to userspace */
4157 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
4158 		     void __user *arg, void *karg, size_t size)
4159 {
4160 	int ret;
4161 
4162 	if (copy_from_user(karg, arg, size))
4163 		return -EFAULT;
4164 
4165 	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg);
4166 	if (ret)
4167 		return ret;
4168 
4169 	if (copy_to_user(arg, karg, size))
4170 		return -EFAULT;
4171 
4172 	return 0;
4173 }
4174 EXPORT_SYMBOL(sock_ioctl_inout);
4175 
4176 /* This is the most common ioctl prep function, where the result (4 bytes) is
4177  * copied back to userspace if the ioctl() returns successfully. No input is
4178  * copied from userspace as input argument.
4179  */
4180 static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg)
4181 {
4182 	int ret, karg = 0;
4183 
4184 	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg);
4185 	if (ret)
4186 		return ret;
4187 
4188 	return put_user(karg, (int __user *)arg);
4189 }
4190 
4191 /* A wrapper around sock ioctls, which copies the data from userspace
4192  * (depending on the protocol/ioctl), and copies back the result to userspace.
4193  * The main motivation for this function is to pass kernel memory to the
4194  * protocol ioctl callbacks, instead of userspace memory.
4195  */
4196 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
4197 {
4198 	int rc = 1;
4199 
4200 	if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET)
4201 		rc = ipmr_sk_ioctl(sk, cmd, arg);
4202 	else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6)
4203 		rc = ip6mr_sk_ioctl(sk, cmd, arg);
4204 	else if (sk_is_phonet(sk))
4205 		rc = phonet_sk_ioctl(sk, cmd, arg);
4206 
4207 	/* If ioctl was processed, returns its value */
4208 	if (rc <= 0)
4209 		return rc;
4210 
4211 	/* Otherwise call the default handler */
4212 	return sock_ioctl_out(sk, cmd, arg);
4213 }
4214 EXPORT_SYMBOL(sk_ioctl);
4215