xref: /openbmc/linux/net/core/sock.c (revision e1f7c9ee)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120 
121 #include <asm/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 
135 #include <linux/filter.h>
136 
137 #include <trace/events/sock.h>
138 
139 #ifdef CONFIG_INET
140 #include <net/tcp.h>
141 #endif
142 
143 #include <net/busy_poll.h>
144 
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
147 
148 /**
149  * sk_ns_capable - General socket capability test
150  * @sk: Socket to use a capability on or through
151  * @user_ns: The user namespace of the capability to use
152  * @cap: The capability to use
153  *
154  * Test to see if the opener of the socket had when the socket was
155  * created and the current process has the capability @cap in the user
156  * namespace @user_ns.
157  */
158 bool sk_ns_capable(const struct sock *sk,
159 		   struct user_namespace *user_ns, int cap)
160 {
161 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162 		ns_capable(user_ns, cap);
163 }
164 EXPORT_SYMBOL(sk_ns_capable);
165 
166 /**
167  * sk_capable - Socket global capability test
168  * @sk: Socket to use a capability on or through
169  * @cap: The global capability to use
170  *
171  * Test to see if the opener of the socket had when the socket was
172  * created and the current process has the capability @cap in all user
173  * namespaces.
174  */
175 bool sk_capable(const struct sock *sk, int cap)
176 {
177 	return sk_ns_capable(sk, &init_user_ns, cap);
178 }
179 EXPORT_SYMBOL(sk_capable);
180 
181 /**
182  * sk_net_capable - Network namespace socket capability test
183  * @sk: Socket to use a capability on or through
184  * @cap: The capability to use
185  *
186  * Test to see if the opener of the socket had when the socket was created
187  * and the current process has the capability @cap over the network namespace
188  * the socket is a member of.
189  */
190 bool sk_net_capable(const struct sock *sk, int cap)
191 {
192 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193 }
194 EXPORT_SYMBOL(sk_net_capable);
195 
196 
197 #ifdef CONFIG_MEMCG_KMEM
198 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
199 {
200 	struct proto *proto;
201 	int ret = 0;
202 
203 	mutex_lock(&proto_list_mutex);
204 	list_for_each_entry(proto, &proto_list, node) {
205 		if (proto->init_cgroup) {
206 			ret = proto->init_cgroup(memcg, ss);
207 			if (ret)
208 				goto out;
209 		}
210 	}
211 
212 	mutex_unlock(&proto_list_mutex);
213 	return ret;
214 out:
215 	list_for_each_entry_continue_reverse(proto, &proto_list, node)
216 		if (proto->destroy_cgroup)
217 			proto->destroy_cgroup(memcg);
218 	mutex_unlock(&proto_list_mutex);
219 	return ret;
220 }
221 
222 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
223 {
224 	struct proto *proto;
225 
226 	mutex_lock(&proto_list_mutex);
227 	list_for_each_entry_reverse(proto, &proto_list, node)
228 		if (proto->destroy_cgroup)
229 			proto->destroy_cgroup(memcg);
230 	mutex_unlock(&proto_list_mutex);
231 }
232 #endif
233 
234 /*
235  * Each address family might have different locking rules, so we have
236  * one slock key per address family:
237  */
238 static struct lock_class_key af_family_keys[AF_MAX];
239 static struct lock_class_key af_family_slock_keys[AF_MAX];
240 
241 #if defined(CONFIG_MEMCG_KMEM)
242 struct static_key memcg_socket_limit_enabled;
243 EXPORT_SYMBOL(memcg_socket_limit_enabled);
244 #endif
245 
246 /*
247  * Make lock validator output more readable. (we pre-construct these
248  * strings build-time, so that runtime initialization of socket
249  * locks is fast):
250  */
251 static const char *const af_family_key_strings[AF_MAX+1] = {
252   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
253   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
254   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
255   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
256   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
257   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
258   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
259   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
260   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
261   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
262   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
263   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
264   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
265   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_MAX"
266 };
267 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
268   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
269   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
270   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
271   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
272   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
273   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
274   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
275   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
276   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
277   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
278   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
279   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
280   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
281   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_MAX"
282 };
283 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
284   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
285   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
286   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
287   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
288   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
289   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
290   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
291   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
292   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
293   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
294   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
295   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
296   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
297   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_MAX"
298 };
299 
300 /*
301  * sk_callback_lock locking rules are per-address-family,
302  * so split the lock classes by using a per-AF key:
303  */
304 static struct lock_class_key af_callback_keys[AF_MAX];
305 
306 /* Take into consideration the size of the struct sk_buff overhead in the
307  * determination of these values, since that is non-constant across
308  * platforms.  This makes socket queueing behavior and performance
309  * not depend upon such differences.
310  */
311 #define _SK_MEM_PACKETS		256
312 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
313 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
314 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315 
316 /* Run time adjustable parameters. */
317 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
318 EXPORT_SYMBOL(sysctl_wmem_max);
319 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
320 EXPORT_SYMBOL(sysctl_rmem_max);
321 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
322 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
323 
324 /* Maximal space eaten by iovec or ancillary data plus some space */
325 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
326 EXPORT_SYMBOL(sysctl_optmem_max);
327 
328 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
329 EXPORT_SYMBOL_GPL(memalloc_socks);
330 
331 /**
332  * sk_set_memalloc - sets %SOCK_MEMALLOC
333  * @sk: socket to set it on
334  *
335  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
336  * It's the responsibility of the admin to adjust min_free_kbytes
337  * to meet the requirements
338  */
339 void sk_set_memalloc(struct sock *sk)
340 {
341 	sock_set_flag(sk, SOCK_MEMALLOC);
342 	sk->sk_allocation |= __GFP_MEMALLOC;
343 	static_key_slow_inc(&memalloc_socks);
344 }
345 EXPORT_SYMBOL_GPL(sk_set_memalloc);
346 
347 void sk_clear_memalloc(struct sock *sk)
348 {
349 	sock_reset_flag(sk, SOCK_MEMALLOC);
350 	sk->sk_allocation &= ~__GFP_MEMALLOC;
351 	static_key_slow_dec(&memalloc_socks);
352 
353 	/*
354 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
355 	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
356 	 * it has rmem allocations there is a risk that the user of the
357 	 * socket cannot make forward progress due to exceeding the rmem
358 	 * limits. By rights, sk_clear_memalloc() should only be called
359 	 * on sockets being torn down but warn and reset the accounting if
360 	 * that assumption breaks.
361 	 */
362 	if (WARN_ON(sk->sk_forward_alloc))
363 		sk_mem_reclaim(sk);
364 }
365 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
366 
367 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
368 {
369 	int ret;
370 	unsigned long pflags = current->flags;
371 
372 	/* these should have been dropped before queueing */
373 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
374 
375 	current->flags |= PF_MEMALLOC;
376 	ret = sk->sk_backlog_rcv(sk, skb);
377 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
378 
379 	return ret;
380 }
381 EXPORT_SYMBOL(__sk_backlog_rcv);
382 
383 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
384 {
385 	struct timeval tv;
386 
387 	if (optlen < sizeof(tv))
388 		return -EINVAL;
389 	if (copy_from_user(&tv, optval, sizeof(tv)))
390 		return -EFAULT;
391 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
392 		return -EDOM;
393 
394 	if (tv.tv_sec < 0) {
395 		static int warned __read_mostly;
396 
397 		*timeo_p = 0;
398 		if (warned < 10 && net_ratelimit()) {
399 			warned++;
400 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
401 				__func__, current->comm, task_pid_nr(current));
402 		}
403 		return 0;
404 	}
405 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
406 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
407 		return 0;
408 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
409 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
410 	return 0;
411 }
412 
413 static void sock_warn_obsolete_bsdism(const char *name)
414 {
415 	static int warned;
416 	static char warncomm[TASK_COMM_LEN];
417 	if (strcmp(warncomm, current->comm) && warned < 5) {
418 		strcpy(warncomm,  current->comm);
419 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
420 			warncomm, name);
421 		warned++;
422 	}
423 }
424 
425 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
426 
427 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
428 {
429 	if (sk->sk_flags & flags) {
430 		sk->sk_flags &= ~flags;
431 		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
432 			net_disable_timestamp();
433 	}
434 }
435 
436 
437 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
438 {
439 	int err;
440 	unsigned long flags;
441 	struct sk_buff_head *list = &sk->sk_receive_queue;
442 
443 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
444 		atomic_inc(&sk->sk_drops);
445 		trace_sock_rcvqueue_full(sk, skb);
446 		return -ENOMEM;
447 	}
448 
449 	err = sk_filter(sk, skb);
450 	if (err)
451 		return err;
452 
453 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
454 		atomic_inc(&sk->sk_drops);
455 		return -ENOBUFS;
456 	}
457 
458 	skb->dev = NULL;
459 	skb_set_owner_r(skb, sk);
460 
461 	/* we escape from rcu protected region, make sure we dont leak
462 	 * a norefcounted dst
463 	 */
464 	skb_dst_force(skb);
465 
466 	spin_lock_irqsave(&list->lock, flags);
467 	skb->dropcount = atomic_read(&sk->sk_drops);
468 	__skb_queue_tail(list, skb);
469 	spin_unlock_irqrestore(&list->lock, flags);
470 
471 	if (!sock_flag(sk, SOCK_DEAD))
472 		sk->sk_data_ready(sk);
473 	return 0;
474 }
475 EXPORT_SYMBOL(sock_queue_rcv_skb);
476 
477 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
478 {
479 	int rc = NET_RX_SUCCESS;
480 
481 	if (sk_filter(sk, skb))
482 		goto discard_and_relse;
483 
484 	skb->dev = NULL;
485 
486 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
487 		atomic_inc(&sk->sk_drops);
488 		goto discard_and_relse;
489 	}
490 	if (nested)
491 		bh_lock_sock_nested(sk);
492 	else
493 		bh_lock_sock(sk);
494 	if (!sock_owned_by_user(sk)) {
495 		/*
496 		 * trylock + unlock semantics:
497 		 */
498 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
499 
500 		rc = sk_backlog_rcv(sk, skb);
501 
502 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
503 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
504 		bh_unlock_sock(sk);
505 		atomic_inc(&sk->sk_drops);
506 		goto discard_and_relse;
507 	}
508 
509 	bh_unlock_sock(sk);
510 out:
511 	sock_put(sk);
512 	return rc;
513 discard_and_relse:
514 	kfree_skb(skb);
515 	goto out;
516 }
517 EXPORT_SYMBOL(sk_receive_skb);
518 
519 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
520 {
521 	struct dst_entry *dst = __sk_dst_get(sk);
522 
523 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
524 		sk_tx_queue_clear(sk);
525 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
526 		dst_release(dst);
527 		return NULL;
528 	}
529 
530 	return dst;
531 }
532 EXPORT_SYMBOL(__sk_dst_check);
533 
534 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
535 {
536 	struct dst_entry *dst = sk_dst_get(sk);
537 
538 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
539 		sk_dst_reset(sk);
540 		dst_release(dst);
541 		return NULL;
542 	}
543 
544 	return dst;
545 }
546 EXPORT_SYMBOL(sk_dst_check);
547 
548 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
549 				int optlen)
550 {
551 	int ret = -ENOPROTOOPT;
552 #ifdef CONFIG_NETDEVICES
553 	struct net *net = sock_net(sk);
554 	char devname[IFNAMSIZ];
555 	int index;
556 
557 	/* Sorry... */
558 	ret = -EPERM;
559 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
560 		goto out;
561 
562 	ret = -EINVAL;
563 	if (optlen < 0)
564 		goto out;
565 
566 	/* Bind this socket to a particular device like "eth0",
567 	 * as specified in the passed interface name. If the
568 	 * name is "" or the option length is zero the socket
569 	 * is not bound.
570 	 */
571 	if (optlen > IFNAMSIZ - 1)
572 		optlen = IFNAMSIZ - 1;
573 	memset(devname, 0, sizeof(devname));
574 
575 	ret = -EFAULT;
576 	if (copy_from_user(devname, optval, optlen))
577 		goto out;
578 
579 	index = 0;
580 	if (devname[0] != '\0') {
581 		struct net_device *dev;
582 
583 		rcu_read_lock();
584 		dev = dev_get_by_name_rcu(net, devname);
585 		if (dev)
586 			index = dev->ifindex;
587 		rcu_read_unlock();
588 		ret = -ENODEV;
589 		if (!dev)
590 			goto out;
591 	}
592 
593 	lock_sock(sk);
594 	sk->sk_bound_dev_if = index;
595 	sk_dst_reset(sk);
596 	release_sock(sk);
597 
598 	ret = 0;
599 
600 out:
601 #endif
602 
603 	return ret;
604 }
605 
606 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
607 				int __user *optlen, int len)
608 {
609 	int ret = -ENOPROTOOPT;
610 #ifdef CONFIG_NETDEVICES
611 	struct net *net = sock_net(sk);
612 	char devname[IFNAMSIZ];
613 
614 	if (sk->sk_bound_dev_if == 0) {
615 		len = 0;
616 		goto zero;
617 	}
618 
619 	ret = -EINVAL;
620 	if (len < IFNAMSIZ)
621 		goto out;
622 
623 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
624 	if (ret)
625 		goto out;
626 
627 	len = strlen(devname) + 1;
628 
629 	ret = -EFAULT;
630 	if (copy_to_user(optval, devname, len))
631 		goto out;
632 
633 zero:
634 	ret = -EFAULT;
635 	if (put_user(len, optlen))
636 		goto out;
637 
638 	ret = 0;
639 
640 out:
641 #endif
642 
643 	return ret;
644 }
645 
646 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
647 {
648 	if (valbool)
649 		sock_set_flag(sk, bit);
650 	else
651 		sock_reset_flag(sk, bit);
652 }
653 
654 /*
655  *	This is meant for all protocols to use and covers goings on
656  *	at the socket level. Everything here is generic.
657  */
658 
659 int sock_setsockopt(struct socket *sock, int level, int optname,
660 		    char __user *optval, unsigned int optlen)
661 {
662 	struct sock *sk = sock->sk;
663 	int val;
664 	int valbool;
665 	struct linger ling;
666 	int ret = 0;
667 
668 	/*
669 	 *	Options without arguments
670 	 */
671 
672 	if (optname == SO_BINDTODEVICE)
673 		return sock_setbindtodevice(sk, optval, optlen);
674 
675 	if (optlen < sizeof(int))
676 		return -EINVAL;
677 
678 	if (get_user(val, (int __user *)optval))
679 		return -EFAULT;
680 
681 	valbool = val ? 1 : 0;
682 
683 	lock_sock(sk);
684 
685 	switch (optname) {
686 	case SO_DEBUG:
687 		if (val && !capable(CAP_NET_ADMIN))
688 			ret = -EACCES;
689 		else
690 			sock_valbool_flag(sk, SOCK_DBG, valbool);
691 		break;
692 	case SO_REUSEADDR:
693 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
694 		break;
695 	case SO_REUSEPORT:
696 		sk->sk_reuseport = valbool;
697 		break;
698 	case SO_TYPE:
699 	case SO_PROTOCOL:
700 	case SO_DOMAIN:
701 	case SO_ERROR:
702 		ret = -ENOPROTOOPT;
703 		break;
704 	case SO_DONTROUTE:
705 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
706 		break;
707 	case SO_BROADCAST:
708 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
709 		break;
710 	case SO_SNDBUF:
711 		/* Don't error on this BSD doesn't and if you think
712 		 * about it this is right. Otherwise apps have to
713 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
714 		 * are treated in BSD as hints
715 		 */
716 		val = min_t(u32, val, sysctl_wmem_max);
717 set_sndbuf:
718 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
719 		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
720 		/* Wake up sending tasks if we upped the value. */
721 		sk->sk_write_space(sk);
722 		break;
723 
724 	case SO_SNDBUFFORCE:
725 		if (!capable(CAP_NET_ADMIN)) {
726 			ret = -EPERM;
727 			break;
728 		}
729 		goto set_sndbuf;
730 
731 	case SO_RCVBUF:
732 		/* Don't error on this BSD doesn't and if you think
733 		 * about it this is right. Otherwise apps have to
734 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
735 		 * are treated in BSD as hints
736 		 */
737 		val = min_t(u32, val, sysctl_rmem_max);
738 set_rcvbuf:
739 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
740 		/*
741 		 * We double it on the way in to account for
742 		 * "struct sk_buff" etc. overhead.   Applications
743 		 * assume that the SO_RCVBUF setting they make will
744 		 * allow that much actual data to be received on that
745 		 * socket.
746 		 *
747 		 * Applications are unaware that "struct sk_buff" and
748 		 * other overheads allocate from the receive buffer
749 		 * during socket buffer allocation.
750 		 *
751 		 * And after considering the possible alternatives,
752 		 * returning the value we actually used in getsockopt
753 		 * is the most desirable behavior.
754 		 */
755 		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
756 		break;
757 
758 	case SO_RCVBUFFORCE:
759 		if (!capable(CAP_NET_ADMIN)) {
760 			ret = -EPERM;
761 			break;
762 		}
763 		goto set_rcvbuf;
764 
765 	case SO_KEEPALIVE:
766 #ifdef CONFIG_INET
767 		if (sk->sk_protocol == IPPROTO_TCP &&
768 		    sk->sk_type == SOCK_STREAM)
769 			tcp_set_keepalive(sk, valbool);
770 #endif
771 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
772 		break;
773 
774 	case SO_OOBINLINE:
775 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
776 		break;
777 
778 	case SO_NO_CHECK:
779 		sk->sk_no_check_tx = valbool;
780 		break;
781 
782 	case SO_PRIORITY:
783 		if ((val >= 0 && val <= 6) ||
784 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
785 			sk->sk_priority = val;
786 		else
787 			ret = -EPERM;
788 		break;
789 
790 	case SO_LINGER:
791 		if (optlen < sizeof(ling)) {
792 			ret = -EINVAL;	/* 1003.1g */
793 			break;
794 		}
795 		if (copy_from_user(&ling, optval, sizeof(ling))) {
796 			ret = -EFAULT;
797 			break;
798 		}
799 		if (!ling.l_onoff)
800 			sock_reset_flag(sk, SOCK_LINGER);
801 		else {
802 #if (BITS_PER_LONG == 32)
803 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
804 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
805 			else
806 #endif
807 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
808 			sock_set_flag(sk, SOCK_LINGER);
809 		}
810 		break;
811 
812 	case SO_BSDCOMPAT:
813 		sock_warn_obsolete_bsdism("setsockopt");
814 		break;
815 
816 	case SO_PASSCRED:
817 		if (valbool)
818 			set_bit(SOCK_PASSCRED, &sock->flags);
819 		else
820 			clear_bit(SOCK_PASSCRED, &sock->flags);
821 		break;
822 
823 	case SO_TIMESTAMP:
824 	case SO_TIMESTAMPNS:
825 		if (valbool)  {
826 			if (optname == SO_TIMESTAMP)
827 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
828 			else
829 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
830 			sock_set_flag(sk, SOCK_RCVTSTAMP);
831 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
832 		} else {
833 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
834 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
835 		}
836 		break;
837 
838 	case SO_TIMESTAMPING:
839 		if (val & ~SOF_TIMESTAMPING_MASK) {
840 			ret = -EINVAL;
841 			break;
842 		}
843 		if (val & SOF_TIMESTAMPING_OPT_ID &&
844 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
845 			if (sk->sk_protocol == IPPROTO_TCP) {
846 				if (sk->sk_state != TCP_ESTABLISHED) {
847 					ret = -EINVAL;
848 					break;
849 				}
850 				sk->sk_tskey = tcp_sk(sk)->snd_una;
851 			} else {
852 				sk->sk_tskey = 0;
853 			}
854 		}
855 		sk->sk_tsflags = val;
856 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
857 			sock_enable_timestamp(sk,
858 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
859 		else
860 			sock_disable_timestamp(sk,
861 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
862 		break;
863 
864 	case SO_RCVLOWAT:
865 		if (val < 0)
866 			val = INT_MAX;
867 		sk->sk_rcvlowat = val ? : 1;
868 		break;
869 
870 	case SO_RCVTIMEO:
871 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
872 		break;
873 
874 	case SO_SNDTIMEO:
875 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
876 		break;
877 
878 	case SO_ATTACH_FILTER:
879 		ret = -EINVAL;
880 		if (optlen == sizeof(struct sock_fprog)) {
881 			struct sock_fprog fprog;
882 
883 			ret = -EFAULT;
884 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
885 				break;
886 
887 			ret = sk_attach_filter(&fprog, sk);
888 		}
889 		break;
890 
891 	case SO_DETACH_FILTER:
892 		ret = sk_detach_filter(sk);
893 		break;
894 
895 	case SO_LOCK_FILTER:
896 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
897 			ret = -EPERM;
898 		else
899 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
900 		break;
901 
902 	case SO_PASSSEC:
903 		if (valbool)
904 			set_bit(SOCK_PASSSEC, &sock->flags);
905 		else
906 			clear_bit(SOCK_PASSSEC, &sock->flags);
907 		break;
908 	case SO_MARK:
909 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
910 			ret = -EPERM;
911 		else
912 			sk->sk_mark = val;
913 		break;
914 
915 		/* We implement the SO_SNDLOWAT etc to
916 		   not be settable (1003.1g 5.3) */
917 	case SO_RXQ_OVFL:
918 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
919 		break;
920 
921 	case SO_WIFI_STATUS:
922 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
923 		break;
924 
925 	case SO_PEEK_OFF:
926 		if (sock->ops->set_peek_off)
927 			ret = sock->ops->set_peek_off(sk, val);
928 		else
929 			ret = -EOPNOTSUPP;
930 		break;
931 
932 	case SO_NOFCS:
933 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
934 		break;
935 
936 	case SO_SELECT_ERR_QUEUE:
937 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
938 		break;
939 
940 #ifdef CONFIG_NET_RX_BUSY_POLL
941 	case SO_BUSY_POLL:
942 		/* allow unprivileged users to decrease the value */
943 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
944 			ret = -EPERM;
945 		else {
946 			if (val < 0)
947 				ret = -EINVAL;
948 			else
949 				sk->sk_ll_usec = val;
950 		}
951 		break;
952 #endif
953 
954 	case SO_MAX_PACING_RATE:
955 		sk->sk_max_pacing_rate = val;
956 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
957 					 sk->sk_max_pacing_rate);
958 		break;
959 
960 	default:
961 		ret = -ENOPROTOOPT;
962 		break;
963 	}
964 	release_sock(sk);
965 	return ret;
966 }
967 EXPORT_SYMBOL(sock_setsockopt);
968 
969 
970 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
971 			  struct ucred *ucred)
972 {
973 	ucred->pid = pid_vnr(pid);
974 	ucred->uid = ucred->gid = -1;
975 	if (cred) {
976 		struct user_namespace *current_ns = current_user_ns();
977 
978 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
979 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
980 	}
981 }
982 
983 int sock_getsockopt(struct socket *sock, int level, int optname,
984 		    char __user *optval, int __user *optlen)
985 {
986 	struct sock *sk = sock->sk;
987 
988 	union {
989 		int val;
990 		struct linger ling;
991 		struct timeval tm;
992 	} v;
993 
994 	int lv = sizeof(int);
995 	int len;
996 
997 	if (get_user(len, optlen))
998 		return -EFAULT;
999 	if (len < 0)
1000 		return -EINVAL;
1001 
1002 	memset(&v, 0, sizeof(v));
1003 
1004 	switch (optname) {
1005 	case SO_DEBUG:
1006 		v.val = sock_flag(sk, SOCK_DBG);
1007 		break;
1008 
1009 	case SO_DONTROUTE:
1010 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1011 		break;
1012 
1013 	case SO_BROADCAST:
1014 		v.val = sock_flag(sk, SOCK_BROADCAST);
1015 		break;
1016 
1017 	case SO_SNDBUF:
1018 		v.val = sk->sk_sndbuf;
1019 		break;
1020 
1021 	case SO_RCVBUF:
1022 		v.val = sk->sk_rcvbuf;
1023 		break;
1024 
1025 	case SO_REUSEADDR:
1026 		v.val = sk->sk_reuse;
1027 		break;
1028 
1029 	case SO_REUSEPORT:
1030 		v.val = sk->sk_reuseport;
1031 		break;
1032 
1033 	case SO_KEEPALIVE:
1034 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1035 		break;
1036 
1037 	case SO_TYPE:
1038 		v.val = sk->sk_type;
1039 		break;
1040 
1041 	case SO_PROTOCOL:
1042 		v.val = sk->sk_protocol;
1043 		break;
1044 
1045 	case SO_DOMAIN:
1046 		v.val = sk->sk_family;
1047 		break;
1048 
1049 	case SO_ERROR:
1050 		v.val = -sock_error(sk);
1051 		if (v.val == 0)
1052 			v.val = xchg(&sk->sk_err_soft, 0);
1053 		break;
1054 
1055 	case SO_OOBINLINE:
1056 		v.val = sock_flag(sk, SOCK_URGINLINE);
1057 		break;
1058 
1059 	case SO_NO_CHECK:
1060 		v.val = sk->sk_no_check_tx;
1061 		break;
1062 
1063 	case SO_PRIORITY:
1064 		v.val = sk->sk_priority;
1065 		break;
1066 
1067 	case SO_LINGER:
1068 		lv		= sizeof(v.ling);
1069 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1070 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1071 		break;
1072 
1073 	case SO_BSDCOMPAT:
1074 		sock_warn_obsolete_bsdism("getsockopt");
1075 		break;
1076 
1077 	case SO_TIMESTAMP:
1078 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1079 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1080 		break;
1081 
1082 	case SO_TIMESTAMPNS:
1083 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1084 		break;
1085 
1086 	case SO_TIMESTAMPING:
1087 		v.val = sk->sk_tsflags;
1088 		break;
1089 
1090 	case SO_RCVTIMEO:
1091 		lv = sizeof(struct timeval);
1092 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1093 			v.tm.tv_sec = 0;
1094 			v.tm.tv_usec = 0;
1095 		} else {
1096 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1097 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1098 		}
1099 		break;
1100 
1101 	case SO_SNDTIMEO:
1102 		lv = sizeof(struct timeval);
1103 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1104 			v.tm.tv_sec = 0;
1105 			v.tm.tv_usec = 0;
1106 		} else {
1107 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1108 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1109 		}
1110 		break;
1111 
1112 	case SO_RCVLOWAT:
1113 		v.val = sk->sk_rcvlowat;
1114 		break;
1115 
1116 	case SO_SNDLOWAT:
1117 		v.val = 1;
1118 		break;
1119 
1120 	case SO_PASSCRED:
1121 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1122 		break;
1123 
1124 	case SO_PEERCRED:
1125 	{
1126 		struct ucred peercred;
1127 		if (len > sizeof(peercred))
1128 			len = sizeof(peercred);
1129 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1130 		if (copy_to_user(optval, &peercred, len))
1131 			return -EFAULT;
1132 		goto lenout;
1133 	}
1134 
1135 	case SO_PEERNAME:
1136 	{
1137 		char address[128];
1138 
1139 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1140 			return -ENOTCONN;
1141 		if (lv < len)
1142 			return -EINVAL;
1143 		if (copy_to_user(optval, address, len))
1144 			return -EFAULT;
1145 		goto lenout;
1146 	}
1147 
1148 	/* Dubious BSD thing... Probably nobody even uses it, but
1149 	 * the UNIX standard wants it for whatever reason... -DaveM
1150 	 */
1151 	case SO_ACCEPTCONN:
1152 		v.val = sk->sk_state == TCP_LISTEN;
1153 		break;
1154 
1155 	case SO_PASSSEC:
1156 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1157 		break;
1158 
1159 	case SO_PEERSEC:
1160 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1161 
1162 	case SO_MARK:
1163 		v.val = sk->sk_mark;
1164 		break;
1165 
1166 	case SO_RXQ_OVFL:
1167 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1168 		break;
1169 
1170 	case SO_WIFI_STATUS:
1171 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1172 		break;
1173 
1174 	case SO_PEEK_OFF:
1175 		if (!sock->ops->set_peek_off)
1176 			return -EOPNOTSUPP;
1177 
1178 		v.val = sk->sk_peek_off;
1179 		break;
1180 	case SO_NOFCS:
1181 		v.val = sock_flag(sk, SOCK_NOFCS);
1182 		break;
1183 
1184 	case SO_BINDTODEVICE:
1185 		return sock_getbindtodevice(sk, optval, optlen, len);
1186 
1187 	case SO_GET_FILTER:
1188 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1189 		if (len < 0)
1190 			return len;
1191 
1192 		goto lenout;
1193 
1194 	case SO_LOCK_FILTER:
1195 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1196 		break;
1197 
1198 	case SO_BPF_EXTENSIONS:
1199 		v.val = bpf_tell_extensions();
1200 		break;
1201 
1202 	case SO_SELECT_ERR_QUEUE:
1203 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1204 		break;
1205 
1206 #ifdef CONFIG_NET_RX_BUSY_POLL
1207 	case SO_BUSY_POLL:
1208 		v.val = sk->sk_ll_usec;
1209 		break;
1210 #endif
1211 
1212 	case SO_MAX_PACING_RATE:
1213 		v.val = sk->sk_max_pacing_rate;
1214 		break;
1215 
1216 	default:
1217 		return -ENOPROTOOPT;
1218 	}
1219 
1220 	if (len > lv)
1221 		len = lv;
1222 	if (copy_to_user(optval, &v, len))
1223 		return -EFAULT;
1224 lenout:
1225 	if (put_user(len, optlen))
1226 		return -EFAULT;
1227 	return 0;
1228 }
1229 
1230 /*
1231  * Initialize an sk_lock.
1232  *
1233  * (We also register the sk_lock with the lock validator.)
1234  */
1235 static inline void sock_lock_init(struct sock *sk)
1236 {
1237 	sock_lock_init_class_and_name(sk,
1238 			af_family_slock_key_strings[sk->sk_family],
1239 			af_family_slock_keys + sk->sk_family,
1240 			af_family_key_strings[sk->sk_family],
1241 			af_family_keys + sk->sk_family);
1242 }
1243 
1244 /*
1245  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1246  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1247  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1248  */
1249 static void sock_copy(struct sock *nsk, const struct sock *osk)
1250 {
1251 #ifdef CONFIG_SECURITY_NETWORK
1252 	void *sptr = nsk->sk_security;
1253 #endif
1254 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1255 
1256 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1257 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1258 
1259 #ifdef CONFIG_SECURITY_NETWORK
1260 	nsk->sk_security = sptr;
1261 	security_sk_clone(osk, nsk);
1262 #endif
1263 }
1264 
1265 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1266 {
1267 	unsigned long nulls1, nulls2;
1268 
1269 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1270 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1271 	if (nulls1 > nulls2)
1272 		swap(nulls1, nulls2);
1273 
1274 	if (nulls1 != 0)
1275 		memset((char *)sk, 0, nulls1);
1276 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1277 	       nulls2 - nulls1 - sizeof(void *));
1278 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1279 	       size - nulls2 - sizeof(void *));
1280 }
1281 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1282 
1283 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1284 		int family)
1285 {
1286 	struct sock *sk;
1287 	struct kmem_cache *slab;
1288 
1289 	slab = prot->slab;
1290 	if (slab != NULL) {
1291 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1292 		if (!sk)
1293 			return sk;
1294 		if (priority & __GFP_ZERO) {
1295 			if (prot->clear_sk)
1296 				prot->clear_sk(sk, prot->obj_size);
1297 			else
1298 				sk_prot_clear_nulls(sk, prot->obj_size);
1299 		}
1300 	} else
1301 		sk = kmalloc(prot->obj_size, priority);
1302 
1303 	if (sk != NULL) {
1304 		kmemcheck_annotate_bitfield(sk, flags);
1305 
1306 		if (security_sk_alloc(sk, family, priority))
1307 			goto out_free;
1308 
1309 		if (!try_module_get(prot->owner))
1310 			goto out_free_sec;
1311 		sk_tx_queue_clear(sk);
1312 	}
1313 
1314 	return sk;
1315 
1316 out_free_sec:
1317 	security_sk_free(sk);
1318 out_free:
1319 	if (slab != NULL)
1320 		kmem_cache_free(slab, sk);
1321 	else
1322 		kfree(sk);
1323 	return NULL;
1324 }
1325 
1326 static void sk_prot_free(struct proto *prot, struct sock *sk)
1327 {
1328 	struct kmem_cache *slab;
1329 	struct module *owner;
1330 
1331 	owner = prot->owner;
1332 	slab = prot->slab;
1333 
1334 	security_sk_free(sk);
1335 	if (slab != NULL)
1336 		kmem_cache_free(slab, sk);
1337 	else
1338 		kfree(sk);
1339 	module_put(owner);
1340 }
1341 
1342 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1343 void sock_update_netprioidx(struct sock *sk)
1344 {
1345 	if (in_interrupt())
1346 		return;
1347 
1348 	sk->sk_cgrp_prioidx = task_netprioidx(current);
1349 }
1350 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1351 #endif
1352 
1353 /**
1354  *	sk_alloc - All socket objects are allocated here
1355  *	@net: the applicable net namespace
1356  *	@family: protocol family
1357  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1358  *	@prot: struct proto associated with this new sock instance
1359  */
1360 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1361 		      struct proto *prot)
1362 {
1363 	struct sock *sk;
1364 
1365 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1366 	if (sk) {
1367 		sk->sk_family = family;
1368 		/*
1369 		 * See comment in struct sock definition to understand
1370 		 * why we need sk_prot_creator -acme
1371 		 */
1372 		sk->sk_prot = sk->sk_prot_creator = prot;
1373 		sock_lock_init(sk);
1374 		sock_net_set(sk, get_net(net));
1375 		atomic_set(&sk->sk_wmem_alloc, 1);
1376 
1377 		sock_update_classid(sk);
1378 		sock_update_netprioidx(sk);
1379 	}
1380 
1381 	return sk;
1382 }
1383 EXPORT_SYMBOL(sk_alloc);
1384 
1385 static void __sk_free(struct sock *sk)
1386 {
1387 	struct sk_filter *filter;
1388 
1389 	if (sk->sk_destruct)
1390 		sk->sk_destruct(sk);
1391 
1392 	filter = rcu_dereference_check(sk->sk_filter,
1393 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1394 	if (filter) {
1395 		sk_filter_uncharge(sk, filter);
1396 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1397 	}
1398 
1399 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1400 
1401 	if (atomic_read(&sk->sk_omem_alloc))
1402 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1403 			 __func__, atomic_read(&sk->sk_omem_alloc));
1404 
1405 	if (sk->sk_peer_cred)
1406 		put_cred(sk->sk_peer_cred);
1407 	put_pid(sk->sk_peer_pid);
1408 	put_net(sock_net(sk));
1409 	sk_prot_free(sk->sk_prot_creator, sk);
1410 }
1411 
1412 void sk_free(struct sock *sk)
1413 {
1414 	/*
1415 	 * We subtract one from sk_wmem_alloc and can know if
1416 	 * some packets are still in some tx queue.
1417 	 * If not null, sock_wfree() will call __sk_free(sk) later
1418 	 */
1419 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1420 		__sk_free(sk);
1421 }
1422 EXPORT_SYMBOL(sk_free);
1423 
1424 /*
1425  * Last sock_put should drop reference to sk->sk_net. It has already
1426  * been dropped in sk_change_net. Taking reference to stopping namespace
1427  * is not an option.
1428  * Take reference to a socket to remove it from hash _alive_ and after that
1429  * destroy it in the context of init_net.
1430  */
1431 void sk_release_kernel(struct sock *sk)
1432 {
1433 	if (sk == NULL || sk->sk_socket == NULL)
1434 		return;
1435 
1436 	sock_hold(sk);
1437 	sock_release(sk->sk_socket);
1438 	release_net(sock_net(sk));
1439 	sock_net_set(sk, get_net(&init_net));
1440 	sock_put(sk);
1441 }
1442 EXPORT_SYMBOL(sk_release_kernel);
1443 
1444 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1445 {
1446 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1447 		sock_update_memcg(newsk);
1448 }
1449 
1450 /**
1451  *	sk_clone_lock - clone a socket, and lock its clone
1452  *	@sk: the socket to clone
1453  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1454  *
1455  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1456  */
1457 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1458 {
1459 	struct sock *newsk;
1460 	bool is_charged = true;
1461 
1462 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1463 	if (newsk != NULL) {
1464 		struct sk_filter *filter;
1465 
1466 		sock_copy(newsk, sk);
1467 
1468 		/* SANITY */
1469 		get_net(sock_net(newsk));
1470 		sk_node_init(&newsk->sk_node);
1471 		sock_lock_init(newsk);
1472 		bh_lock_sock(newsk);
1473 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1474 		newsk->sk_backlog.len = 0;
1475 
1476 		atomic_set(&newsk->sk_rmem_alloc, 0);
1477 		/*
1478 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1479 		 */
1480 		atomic_set(&newsk->sk_wmem_alloc, 1);
1481 		atomic_set(&newsk->sk_omem_alloc, 0);
1482 		skb_queue_head_init(&newsk->sk_receive_queue);
1483 		skb_queue_head_init(&newsk->sk_write_queue);
1484 
1485 		spin_lock_init(&newsk->sk_dst_lock);
1486 		rwlock_init(&newsk->sk_callback_lock);
1487 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1488 				af_callback_keys + newsk->sk_family,
1489 				af_family_clock_key_strings[newsk->sk_family]);
1490 
1491 		newsk->sk_dst_cache	= NULL;
1492 		newsk->sk_wmem_queued	= 0;
1493 		newsk->sk_forward_alloc = 0;
1494 		newsk->sk_send_head	= NULL;
1495 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1496 
1497 		sock_reset_flag(newsk, SOCK_DONE);
1498 		skb_queue_head_init(&newsk->sk_error_queue);
1499 
1500 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1501 		if (filter != NULL)
1502 			/* though it's an empty new sock, the charging may fail
1503 			 * if sysctl_optmem_max was changed between creation of
1504 			 * original socket and cloning
1505 			 */
1506 			is_charged = sk_filter_charge(newsk, filter);
1507 
1508 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
1509 			/* It is still raw copy of parent, so invalidate
1510 			 * destructor and make plain sk_free() */
1511 			newsk->sk_destruct = NULL;
1512 			bh_unlock_sock(newsk);
1513 			sk_free(newsk);
1514 			newsk = NULL;
1515 			goto out;
1516 		}
1517 
1518 		newsk->sk_err	   = 0;
1519 		newsk->sk_priority = 0;
1520 		/*
1521 		 * Before updating sk_refcnt, we must commit prior changes to memory
1522 		 * (Documentation/RCU/rculist_nulls.txt for details)
1523 		 */
1524 		smp_wmb();
1525 		atomic_set(&newsk->sk_refcnt, 2);
1526 
1527 		/*
1528 		 * Increment the counter in the same struct proto as the master
1529 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1530 		 * is the same as sk->sk_prot->socks, as this field was copied
1531 		 * with memcpy).
1532 		 *
1533 		 * This _changes_ the previous behaviour, where
1534 		 * tcp_create_openreq_child always was incrementing the
1535 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1536 		 * to be taken into account in all callers. -acme
1537 		 */
1538 		sk_refcnt_debug_inc(newsk);
1539 		sk_set_socket(newsk, NULL);
1540 		newsk->sk_wq = NULL;
1541 
1542 		sk_update_clone(sk, newsk);
1543 
1544 		if (newsk->sk_prot->sockets_allocated)
1545 			sk_sockets_allocated_inc(newsk);
1546 
1547 		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1548 			net_enable_timestamp();
1549 	}
1550 out:
1551 	return newsk;
1552 }
1553 EXPORT_SYMBOL_GPL(sk_clone_lock);
1554 
1555 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1556 {
1557 	__sk_dst_set(sk, dst);
1558 	sk->sk_route_caps = dst->dev->features;
1559 	if (sk->sk_route_caps & NETIF_F_GSO)
1560 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1561 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1562 	if (sk_can_gso(sk)) {
1563 		if (dst->header_len) {
1564 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1565 		} else {
1566 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1567 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1568 			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1569 		}
1570 	}
1571 }
1572 EXPORT_SYMBOL_GPL(sk_setup_caps);
1573 
1574 /*
1575  *	Simple resource managers for sockets.
1576  */
1577 
1578 
1579 /*
1580  * Write buffer destructor automatically called from kfree_skb.
1581  */
1582 void sock_wfree(struct sk_buff *skb)
1583 {
1584 	struct sock *sk = skb->sk;
1585 	unsigned int len = skb->truesize;
1586 
1587 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1588 		/*
1589 		 * Keep a reference on sk_wmem_alloc, this will be released
1590 		 * after sk_write_space() call
1591 		 */
1592 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1593 		sk->sk_write_space(sk);
1594 		len = 1;
1595 	}
1596 	/*
1597 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1598 	 * could not do because of in-flight packets
1599 	 */
1600 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1601 		__sk_free(sk);
1602 }
1603 EXPORT_SYMBOL(sock_wfree);
1604 
1605 void skb_orphan_partial(struct sk_buff *skb)
1606 {
1607 	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1608 	 * so we do not completely orphan skb, but transfert all
1609 	 * accounted bytes but one, to avoid unexpected reorders.
1610 	 */
1611 	if (skb->destructor == sock_wfree
1612 #ifdef CONFIG_INET
1613 	    || skb->destructor == tcp_wfree
1614 #endif
1615 		) {
1616 		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1617 		skb->truesize = 1;
1618 	} else {
1619 		skb_orphan(skb);
1620 	}
1621 }
1622 EXPORT_SYMBOL(skb_orphan_partial);
1623 
1624 /*
1625  * Read buffer destructor automatically called from kfree_skb.
1626  */
1627 void sock_rfree(struct sk_buff *skb)
1628 {
1629 	struct sock *sk = skb->sk;
1630 	unsigned int len = skb->truesize;
1631 
1632 	atomic_sub(len, &sk->sk_rmem_alloc);
1633 	sk_mem_uncharge(sk, len);
1634 }
1635 EXPORT_SYMBOL(sock_rfree);
1636 
1637 void sock_efree(struct sk_buff *skb)
1638 {
1639 	sock_put(skb->sk);
1640 }
1641 EXPORT_SYMBOL(sock_efree);
1642 
1643 #ifdef CONFIG_INET
1644 void sock_edemux(struct sk_buff *skb)
1645 {
1646 	struct sock *sk = skb->sk;
1647 
1648 	if (sk->sk_state == TCP_TIME_WAIT)
1649 		inet_twsk_put(inet_twsk(sk));
1650 	else
1651 		sock_put(sk);
1652 }
1653 EXPORT_SYMBOL(sock_edemux);
1654 #endif
1655 
1656 kuid_t sock_i_uid(struct sock *sk)
1657 {
1658 	kuid_t uid;
1659 
1660 	read_lock_bh(&sk->sk_callback_lock);
1661 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1662 	read_unlock_bh(&sk->sk_callback_lock);
1663 	return uid;
1664 }
1665 EXPORT_SYMBOL(sock_i_uid);
1666 
1667 unsigned long sock_i_ino(struct sock *sk)
1668 {
1669 	unsigned long ino;
1670 
1671 	read_lock_bh(&sk->sk_callback_lock);
1672 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1673 	read_unlock_bh(&sk->sk_callback_lock);
1674 	return ino;
1675 }
1676 EXPORT_SYMBOL(sock_i_ino);
1677 
1678 /*
1679  * Allocate a skb from the socket's send buffer.
1680  */
1681 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1682 			     gfp_t priority)
1683 {
1684 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1685 		struct sk_buff *skb = alloc_skb(size, priority);
1686 		if (skb) {
1687 			skb_set_owner_w(skb, sk);
1688 			return skb;
1689 		}
1690 	}
1691 	return NULL;
1692 }
1693 EXPORT_SYMBOL(sock_wmalloc);
1694 
1695 /*
1696  * Allocate a memory block from the socket's option memory buffer.
1697  */
1698 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1699 {
1700 	if ((unsigned int)size <= sysctl_optmem_max &&
1701 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1702 		void *mem;
1703 		/* First do the add, to avoid the race if kmalloc
1704 		 * might sleep.
1705 		 */
1706 		atomic_add(size, &sk->sk_omem_alloc);
1707 		mem = kmalloc(size, priority);
1708 		if (mem)
1709 			return mem;
1710 		atomic_sub(size, &sk->sk_omem_alloc);
1711 	}
1712 	return NULL;
1713 }
1714 EXPORT_SYMBOL(sock_kmalloc);
1715 
1716 /*
1717  * Free an option memory block.
1718  */
1719 void sock_kfree_s(struct sock *sk, void *mem, int size)
1720 {
1721 	if (WARN_ON_ONCE(!mem))
1722 		return;
1723 	kfree(mem);
1724 	atomic_sub(size, &sk->sk_omem_alloc);
1725 }
1726 EXPORT_SYMBOL(sock_kfree_s);
1727 
1728 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1729    I think, these locks should be removed for datagram sockets.
1730  */
1731 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1732 {
1733 	DEFINE_WAIT(wait);
1734 
1735 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1736 	for (;;) {
1737 		if (!timeo)
1738 			break;
1739 		if (signal_pending(current))
1740 			break;
1741 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1742 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1743 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1744 			break;
1745 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1746 			break;
1747 		if (sk->sk_err)
1748 			break;
1749 		timeo = schedule_timeout(timeo);
1750 	}
1751 	finish_wait(sk_sleep(sk), &wait);
1752 	return timeo;
1753 }
1754 
1755 
1756 /*
1757  *	Generic send/receive buffer handlers
1758  */
1759 
1760 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1761 				     unsigned long data_len, int noblock,
1762 				     int *errcode, int max_page_order)
1763 {
1764 	struct sk_buff *skb;
1765 	long timeo;
1766 	int err;
1767 
1768 	timeo = sock_sndtimeo(sk, noblock);
1769 	for (;;) {
1770 		err = sock_error(sk);
1771 		if (err != 0)
1772 			goto failure;
1773 
1774 		err = -EPIPE;
1775 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1776 			goto failure;
1777 
1778 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1779 			break;
1780 
1781 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1782 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1783 		err = -EAGAIN;
1784 		if (!timeo)
1785 			goto failure;
1786 		if (signal_pending(current))
1787 			goto interrupted;
1788 		timeo = sock_wait_for_wmem(sk, timeo);
1789 	}
1790 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1791 				   errcode, sk->sk_allocation);
1792 	if (skb)
1793 		skb_set_owner_w(skb, sk);
1794 	return skb;
1795 
1796 interrupted:
1797 	err = sock_intr_errno(timeo);
1798 failure:
1799 	*errcode = err;
1800 	return NULL;
1801 }
1802 EXPORT_SYMBOL(sock_alloc_send_pskb);
1803 
1804 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1805 				    int noblock, int *errcode)
1806 {
1807 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1808 }
1809 EXPORT_SYMBOL(sock_alloc_send_skb);
1810 
1811 /* On 32bit arches, an skb frag is limited to 2^15 */
1812 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1813 
1814 /**
1815  * skb_page_frag_refill - check that a page_frag contains enough room
1816  * @sz: minimum size of the fragment we want to get
1817  * @pfrag: pointer to page_frag
1818  * @gfp: priority for memory allocation
1819  *
1820  * Note: While this allocator tries to use high order pages, there is
1821  * no guarantee that allocations succeed. Therefore, @sz MUST be
1822  * less or equal than PAGE_SIZE.
1823  */
1824 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1825 {
1826 	if (pfrag->page) {
1827 		if (atomic_read(&pfrag->page->_count) == 1) {
1828 			pfrag->offset = 0;
1829 			return true;
1830 		}
1831 		if (pfrag->offset + sz <= pfrag->size)
1832 			return true;
1833 		put_page(pfrag->page);
1834 	}
1835 
1836 	pfrag->offset = 0;
1837 	if (SKB_FRAG_PAGE_ORDER) {
1838 		pfrag->page = alloc_pages(gfp | __GFP_COMP |
1839 					  __GFP_NOWARN | __GFP_NORETRY,
1840 					  SKB_FRAG_PAGE_ORDER);
1841 		if (likely(pfrag->page)) {
1842 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1843 			return true;
1844 		}
1845 	}
1846 	pfrag->page = alloc_page(gfp);
1847 	if (likely(pfrag->page)) {
1848 		pfrag->size = PAGE_SIZE;
1849 		return true;
1850 	}
1851 	return false;
1852 }
1853 EXPORT_SYMBOL(skb_page_frag_refill);
1854 
1855 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1856 {
1857 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1858 		return true;
1859 
1860 	sk_enter_memory_pressure(sk);
1861 	sk_stream_moderate_sndbuf(sk);
1862 	return false;
1863 }
1864 EXPORT_SYMBOL(sk_page_frag_refill);
1865 
1866 static void __lock_sock(struct sock *sk)
1867 	__releases(&sk->sk_lock.slock)
1868 	__acquires(&sk->sk_lock.slock)
1869 {
1870 	DEFINE_WAIT(wait);
1871 
1872 	for (;;) {
1873 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1874 					TASK_UNINTERRUPTIBLE);
1875 		spin_unlock_bh(&sk->sk_lock.slock);
1876 		schedule();
1877 		spin_lock_bh(&sk->sk_lock.slock);
1878 		if (!sock_owned_by_user(sk))
1879 			break;
1880 	}
1881 	finish_wait(&sk->sk_lock.wq, &wait);
1882 }
1883 
1884 static void __release_sock(struct sock *sk)
1885 	__releases(&sk->sk_lock.slock)
1886 	__acquires(&sk->sk_lock.slock)
1887 {
1888 	struct sk_buff *skb = sk->sk_backlog.head;
1889 
1890 	do {
1891 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1892 		bh_unlock_sock(sk);
1893 
1894 		do {
1895 			struct sk_buff *next = skb->next;
1896 
1897 			prefetch(next);
1898 			WARN_ON_ONCE(skb_dst_is_noref(skb));
1899 			skb->next = NULL;
1900 			sk_backlog_rcv(sk, skb);
1901 
1902 			/*
1903 			 * We are in process context here with softirqs
1904 			 * disabled, use cond_resched_softirq() to preempt.
1905 			 * This is safe to do because we've taken the backlog
1906 			 * queue private:
1907 			 */
1908 			cond_resched_softirq();
1909 
1910 			skb = next;
1911 		} while (skb != NULL);
1912 
1913 		bh_lock_sock(sk);
1914 	} while ((skb = sk->sk_backlog.head) != NULL);
1915 
1916 	/*
1917 	 * Doing the zeroing here guarantee we can not loop forever
1918 	 * while a wild producer attempts to flood us.
1919 	 */
1920 	sk->sk_backlog.len = 0;
1921 }
1922 
1923 /**
1924  * sk_wait_data - wait for data to arrive at sk_receive_queue
1925  * @sk:    sock to wait on
1926  * @timeo: for how long
1927  *
1928  * Now socket state including sk->sk_err is changed only under lock,
1929  * hence we may omit checks after joining wait queue.
1930  * We check receive queue before schedule() only as optimization;
1931  * it is very likely that release_sock() added new data.
1932  */
1933 int sk_wait_data(struct sock *sk, long *timeo)
1934 {
1935 	int rc;
1936 	DEFINE_WAIT(wait);
1937 
1938 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1939 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1940 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1941 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1942 	finish_wait(sk_sleep(sk), &wait);
1943 	return rc;
1944 }
1945 EXPORT_SYMBOL(sk_wait_data);
1946 
1947 /**
1948  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1949  *	@sk: socket
1950  *	@size: memory size to allocate
1951  *	@kind: allocation type
1952  *
1953  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1954  *	rmem allocation. This function assumes that protocols which have
1955  *	memory_pressure use sk_wmem_queued as write buffer accounting.
1956  */
1957 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1958 {
1959 	struct proto *prot = sk->sk_prot;
1960 	int amt = sk_mem_pages(size);
1961 	long allocated;
1962 	int parent_status = UNDER_LIMIT;
1963 
1964 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1965 
1966 	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1967 
1968 	/* Under limit. */
1969 	if (parent_status == UNDER_LIMIT &&
1970 			allocated <= sk_prot_mem_limits(sk, 0)) {
1971 		sk_leave_memory_pressure(sk);
1972 		return 1;
1973 	}
1974 
1975 	/* Under pressure. (we or our parents) */
1976 	if ((parent_status > SOFT_LIMIT) ||
1977 			allocated > sk_prot_mem_limits(sk, 1))
1978 		sk_enter_memory_pressure(sk);
1979 
1980 	/* Over hard limit (we or our parents) */
1981 	if ((parent_status == OVER_LIMIT) ||
1982 			(allocated > sk_prot_mem_limits(sk, 2)))
1983 		goto suppress_allocation;
1984 
1985 	/* guarantee minimum buffer size under pressure */
1986 	if (kind == SK_MEM_RECV) {
1987 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1988 			return 1;
1989 
1990 	} else { /* SK_MEM_SEND */
1991 		if (sk->sk_type == SOCK_STREAM) {
1992 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1993 				return 1;
1994 		} else if (atomic_read(&sk->sk_wmem_alloc) <
1995 			   prot->sysctl_wmem[0])
1996 				return 1;
1997 	}
1998 
1999 	if (sk_has_memory_pressure(sk)) {
2000 		int alloc;
2001 
2002 		if (!sk_under_memory_pressure(sk))
2003 			return 1;
2004 		alloc = sk_sockets_allocated_read_positive(sk);
2005 		if (sk_prot_mem_limits(sk, 2) > alloc *
2006 		    sk_mem_pages(sk->sk_wmem_queued +
2007 				 atomic_read(&sk->sk_rmem_alloc) +
2008 				 sk->sk_forward_alloc))
2009 			return 1;
2010 	}
2011 
2012 suppress_allocation:
2013 
2014 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2015 		sk_stream_moderate_sndbuf(sk);
2016 
2017 		/* Fail only if socket is _under_ its sndbuf.
2018 		 * In this case we cannot block, so that we have to fail.
2019 		 */
2020 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2021 			return 1;
2022 	}
2023 
2024 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2025 
2026 	/* Alas. Undo changes. */
2027 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2028 
2029 	sk_memory_allocated_sub(sk, amt);
2030 
2031 	return 0;
2032 }
2033 EXPORT_SYMBOL(__sk_mem_schedule);
2034 
2035 /**
2036  *	__sk_reclaim - reclaim memory_allocated
2037  *	@sk: socket
2038  */
2039 void __sk_mem_reclaim(struct sock *sk)
2040 {
2041 	sk_memory_allocated_sub(sk,
2042 				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2043 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2044 
2045 	if (sk_under_memory_pressure(sk) &&
2046 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2047 		sk_leave_memory_pressure(sk);
2048 }
2049 EXPORT_SYMBOL(__sk_mem_reclaim);
2050 
2051 
2052 /*
2053  * Set of default routines for initialising struct proto_ops when
2054  * the protocol does not support a particular function. In certain
2055  * cases where it makes no sense for a protocol to have a "do nothing"
2056  * function, some default processing is provided.
2057  */
2058 
2059 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2060 {
2061 	return -EOPNOTSUPP;
2062 }
2063 EXPORT_SYMBOL(sock_no_bind);
2064 
2065 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2066 		    int len, int flags)
2067 {
2068 	return -EOPNOTSUPP;
2069 }
2070 EXPORT_SYMBOL(sock_no_connect);
2071 
2072 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2073 {
2074 	return -EOPNOTSUPP;
2075 }
2076 EXPORT_SYMBOL(sock_no_socketpair);
2077 
2078 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2079 {
2080 	return -EOPNOTSUPP;
2081 }
2082 EXPORT_SYMBOL(sock_no_accept);
2083 
2084 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2085 		    int *len, int peer)
2086 {
2087 	return -EOPNOTSUPP;
2088 }
2089 EXPORT_SYMBOL(sock_no_getname);
2090 
2091 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2092 {
2093 	return 0;
2094 }
2095 EXPORT_SYMBOL(sock_no_poll);
2096 
2097 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2098 {
2099 	return -EOPNOTSUPP;
2100 }
2101 EXPORT_SYMBOL(sock_no_ioctl);
2102 
2103 int sock_no_listen(struct socket *sock, int backlog)
2104 {
2105 	return -EOPNOTSUPP;
2106 }
2107 EXPORT_SYMBOL(sock_no_listen);
2108 
2109 int sock_no_shutdown(struct socket *sock, int how)
2110 {
2111 	return -EOPNOTSUPP;
2112 }
2113 EXPORT_SYMBOL(sock_no_shutdown);
2114 
2115 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2116 		    char __user *optval, unsigned int optlen)
2117 {
2118 	return -EOPNOTSUPP;
2119 }
2120 EXPORT_SYMBOL(sock_no_setsockopt);
2121 
2122 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2123 		    char __user *optval, int __user *optlen)
2124 {
2125 	return -EOPNOTSUPP;
2126 }
2127 EXPORT_SYMBOL(sock_no_getsockopt);
2128 
2129 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2130 		    size_t len)
2131 {
2132 	return -EOPNOTSUPP;
2133 }
2134 EXPORT_SYMBOL(sock_no_sendmsg);
2135 
2136 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2137 		    size_t len, int flags)
2138 {
2139 	return -EOPNOTSUPP;
2140 }
2141 EXPORT_SYMBOL(sock_no_recvmsg);
2142 
2143 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2144 {
2145 	/* Mirror missing mmap method error code */
2146 	return -ENODEV;
2147 }
2148 EXPORT_SYMBOL(sock_no_mmap);
2149 
2150 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2151 {
2152 	ssize_t res;
2153 	struct msghdr msg = {.msg_flags = flags};
2154 	struct kvec iov;
2155 	char *kaddr = kmap(page);
2156 	iov.iov_base = kaddr + offset;
2157 	iov.iov_len = size;
2158 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2159 	kunmap(page);
2160 	return res;
2161 }
2162 EXPORT_SYMBOL(sock_no_sendpage);
2163 
2164 /*
2165  *	Default Socket Callbacks
2166  */
2167 
2168 static void sock_def_wakeup(struct sock *sk)
2169 {
2170 	struct socket_wq *wq;
2171 
2172 	rcu_read_lock();
2173 	wq = rcu_dereference(sk->sk_wq);
2174 	if (wq_has_sleeper(wq))
2175 		wake_up_interruptible_all(&wq->wait);
2176 	rcu_read_unlock();
2177 }
2178 
2179 static void sock_def_error_report(struct sock *sk)
2180 {
2181 	struct socket_wq *wq;
2182 
2183 	rcu_read_lock();
2184 	wq = rcu_dereference(sk->sk_wq);
2185 	if (wq_has_sleeper(wq))
2186 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2187 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2188 	rcu_read_unlock();
2189 }
2190 
2191 static void sock_def_readable(struct sock *sk)
2192 {
2193 	struct socket_wq *wq;
2194 
2195 	rcu_read_lock();
2196 	wq = rcu_dereference(sk->sk_wq);
2197 	if (wq_has_sleeper(wq))
2198 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2199 						POLLRDNORM | POLLRDBAND);
2200 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2201 	rcu_read_unlock();
2202 }
2203 
2204 static void sock_def_write_space(struct sock *sk)
2205 {
2206 	struct socket_wq *wq;
2207 
2208 	rcu_read_lock();
2209 
2210 	/* Do not wake up a writer until he can make "significant"
2211 	 * progress.  --DaveM
2212 	 */
2213 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2214 		wq = rcu_dereference(sk->sk_wq);
2215 		if (wq_has_sleeper(wq))
2216 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2217 						POLLWRNORM | POLLWRBAND);
2218 
2219 		/* Should agree with poll, otherwise some programs break */
2220 		if (sock_writeable(sk))
2221 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2222 	}
2223 
2224 	rcu_read_unlock();
2225 }
2226 
2227 static void sock_def_destruct(struct sock *sk)
2228 {
2229 	kfree(sk->sk_protinfo);
2230 }
2231 
2232 void sk_send_sigurg(struct sock *sk)
2233 {
2234 	if (sk->sk_socket && sk->sk_socket->file)
2235 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2236 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2237 }
2238 EXPORT_SYMBOL(sk_send_sigurg);
2239 
2240 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2241 		    unsigned long expires)
2242 {
2243 	if (!mod_timer(timer, expires))
2244 		sock_hold(sk);
2245 }
2246 EXPORT_SYMBOL(sk_reset_timer);
2247 
2248 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2249 {
2250 	if (del_timer(timer))
2251 		__sock_put(sk);
2252 }
2253 EXPORT_SYMBOL(sk_stop_timer);
2254 
2255 void sock_init_data(struct socket *sock, struct sock *sk)
2256 {
2257 	skb_queue_head_init(&sk->sk_receive_queue);
2258 	skb_queue_head_init(&sk->sk_write_queue);
2259 	skb_queue_head_init(&sk->sk_error_queue);
2260 
2261 	sk->sk_send_head	=	NULL;
2262 
2263 	init_timer(&sk->sk_timer);
2264 
2265 	sk->sk_allocation	=	GFP_KERNEL;
2266 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2267 	sk->sk_sndbuf		=	sysctl_wmem_default;
2268 	sk->sk_state		=	TCP_CLOSE;
2269 	sk_set_socket(sk, sock);
2270 
2271 	sock_set_flag(sk, SOCK_ZAPPED);
2272 
2273 	if (sock) {
2274 		sk->sk_type	=	sock->type;
2275 		sk->sk_wq	=	sock->wq;
2276 		sock->sk	=	sk;
2277 	} else
2278 		sk->sk_wq	=	NULL;
2279 
2280 	spin_lock_init(&sk->sk_dst_lock);
2281 	rwlock_init(&sk->sk_callback_lock);
2282 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2283 			af_callback_keys + sk->sk_family,
2284 			af_family_clock_key_strings[sk->sk_family]);
2285 
2286 	sk->sk_state_change	=	sock_def_wakeup;
2287 	sk->sk_data_ready	=	sock_def_readable;
2288 	sk->sk_write_space	=	sock_def_write_space;
2289 	sk->sk_error_report	=	sock_def_error_report;
2290 	sk->sk_destruct		=	sock_def_destruct;
2291 
2292 	sk->sk_frag.page	=	NULL;
2293 	sk->sk_frag.offset	=	0;
2294 	sk->sk_peek_off		=	-1;
2295 
2296 	sk->sk_peer_pid 	=	NULL;
2297 	sk->sk_peer_cred	=	NULL;
2298 	sk->sk_write_pending	=	0;
2299 	sk->sk_rcvlowat		=	1;
2300 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2301 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2302 
2303 	sk->sk_stamp = ktime_set(-1L, 0);
2304 
2305 #ifdef CONFIG_NET_RX_BUSY_POLL
2306 	sk->sk_napi_id		=	0;
2307 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2308 #endif
2309 
2310 	sk->sk_max_pacing_rate = ~0U;
2311 	sk->sk_pacing_rate = ~0U;
2312 	/*
2313 	 * Before updating sk_refcnt, we must commit prior changes to memory
2314 	 * (Documentation/RCU/rculist_nulls.txt for details)
2315 	 */
2316 	smp_wmb();
2317 	atomic_set(&sk->sk_refcnt, 1);
2318 	atomic_set(&sk->sk_drops, 0);
2319 }
2320 EXPORT_SYMBOL(sock_init_data);
2321 
2322 void lock_sock_nested(struct sock *sk, int subclass)
2323 {
2324 	might_sleep();
2325 	spin_lock_bh(&sk->sk_lock.slock);
2326 	if (sk->sk_lock.owned)
2327 		__lock_sock(sk);
2328 	sk->sk_lock.owned = 1;
2329 	spin_unlock(&sk->sk_lock.slock);
2330 	/*
2331 	 * The sk_lock has mutex_lock() semantics here:
2332 	 */
2333 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2334 	local_bh_enable();
2335 }
2336 EXPORT_SYMBOL(lock_sock_nested);
2337 
2338 void release_sock(struct sock *sk)
2339 {
2340 	/*
2341 	 * The sk_lock has mutex_unlock() semantics:
2342 	 */
2343 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2344 
2345 	spin_lock_bh(&sk->sk_lock.slock);
2346 	if (sk->sk_backlog.tail)
2347 		__release_sock(sk);
2348 
2349 	/* Warning : release_cb() might need to release sk ownership,
2350 	 * ie call sock_release_ownership(sk) before us.
2351 	 */
2352 	if (sk->sk_prot->release_cb)
2353 		sk->sk_prot->release_cb(sk);
2354 
2355 	sock_release_ownership(sk);
2356 	if (waitqueue_active(&sk->sk_lock.wq))
2357 		wake_up(&sk->sk_lock.wq);
2358 	spin_unlock_bh(&sk->sk_lock.slock);
2359 }
2360 EXPORT_SYMBOL(release_sock);
2361 
2362 /**
2363  * lock_sock_fast - fast version of lock_sock
2364  * @sk: socket
2365  *
2366  * This version should be used for very small section, where process wont block
2367  * return false if fast path is taken
2368  *   sk_lock.slock locked, owned = 0, BH disabled
2369  * return true if slow path is taken
2370  *   sk_lock.slock unlocked, owned = 1, BH enabled
2371  */
2372 bool lock_sock_fast(struct sock *sk)
2373 {
2374 	might_sleep();
2375 	spin_lock_bh(&sk->sk_lock.slock);
2376 
2377 	if (!sk->sk_lock.owned)
2378 		/*
2379 		 * Note : We must disable BH
2380 		 */
2381 		return false;
2382 
2383 	__lock_sock(sk);
2384 	sk->sk_lock.owned = 1;
2385 	spin_unlock(&sk->sk_lock.slock);
2386 	/*
2387 	 * The sk_lock has mutex_lock() semantics here:
2388 	 */
2389 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2390 	local_bh_enable();
2391 	return true;
2392 }
2393 EXPORT_SYMBOL(lock_sock_fast);
2394 
2395 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2396 {
2397 	struct timeval tv;
2398 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2399 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2400 	tv = ktime_to_timeval(sk->sk_stamp);
2401 	if (tv.tv_sec == -1)
2402 		return -ENOENT;
2403 	if (tv.tv_sec == 0) {
2404 		sk->sk_stamp = ktime_get_real();
2405 		tv = ktime_to_timeval(sk->sk_stamp);
2406 	}
2407 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2408 }
2409 EXPORT_SYMBOL(sock_get_timestamp);
2410 
2411 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2412 {
2413 	struct timespec ts;
2414 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2415 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2416 	ts = ktime_to_timespec(sk->sk_stamp);
2417 	if (ts.tv_sec == -1)
2418 		return -ENOENT;
2419 	if (ts.tv_sec == 0) {
2420 		sk->sk_stamp = ktime_get_real();
2421 		ts = ktime_to_timespec(sk->sk_stamp);
2422 	}
2423 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2424 }
2425 EXPORT_SYMBOL(sock_get_timestampns);
2426 
2427 void sock_enable_timestamp(struct sock *sk, int flag)
2428 {
2429 	if (!sock_flag(sk, flag)) {
2430 		unsigned long previous_flags = sk->sk_flags;
2431 
2432 		sock_set_flag(sk, flag);
2433 		/*
2434 		 * we just set one of the two flags which require net
2435 		 * time stamping, but time stamping might have been on
2436 		 * already because of the other one
2437 		 */
2438 		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2439 			net_enable_timestamp();
2440 	}
2441 }
2442 
2443 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2444 		       int level, int type)
2445 {
2446 	struct sock_exterr_skb *serr;
2447 	struct sk_buff *skb;
2448 	int copied, err;
2449 
2450 	err = -EAGAIN;
2451 	skb = sock_dequeue_err_skb(sk);
2452 	if (skb == NULL)
2453 		goto out;
2454 
2455 	copied = skb->len;
2456 	if (copied > len) {
2457 		msg->msg_flags |= MSG_TRUNC;
2458 		copied = len;
2459 	}
2460 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2461 	if (err)
2462 		goto out_free_skb;
2463 
2464 	sock_recv_timestamp(msg, sk, skb);
2465 
2466 	serr = SKB_EXT_ERR(skb);
2467 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2468 
2469 	msg->msg_flags |= MSG_ERRQUEUE;
2470 	err = copied;
2471 
2472 out_free_skb:
2473 	kfree_skb(skb);
2474 out:
2475 	return err;
2476 }
2477 EXPORT_SYMBOL(sock_recv_errqueue);
2478 
2479 /*
2480  *	Get a socket option on an socket.
2481  *
2482  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2483  *	asynchronous errors should be reported by getsockopt. We assume
2484  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2485  */
2486 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2487 			   char __user *optval, int __user *optlen)
2488 {
2489 	struct sock *sk = sock->sk;
2490 
2491 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2492 }
2493 EXPORT_SYMBOL(sock_common_getsockopt);
2494 
2495 #ifdef CONFIG_COMPAT
2496 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2497 				  char __user *optval, int __user *optlen)
2498 {
2499 	struct sock *sk = sock->sk;
2500 
2501 	if (sk->sk_prot->compat_getsockopt != NULL)
2502 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2503 						      optval, optlen);
2504 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2505 }
2506 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2507 #endif
2508 
2509 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2510 			struct msghdr *msg, size_t size, int flags)
2511 {
2512 	struct sock *sk = sock->sk;
2513 	int addr_len = 0;
2514 	int err;
2515 
2516 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2517 				   flags & ~MSG_DONTWAIT, &addr_len);
2518 	if (err >= 0)
2519 		msg->msg_namelen = addr_len;
2520 	return err;
2521 }
2522 EXPORT_SYMBOL(sock_common_recvmsg);
2523 
2524 /*
2525  *	Set socket options on an inet socket.
2526  */
2527 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2528 			   char __user *optval, unsigned int optlen)
2529 {
2530 	struct sock *sk = sock->sk;
2531 
2532 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2533 }
2534 EXPORT_SYMBOL(sock_common_setsockopt);
2535 
2536 #ifdef CONFIG_COMPAT
2537 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2538 				  char __user *optval, unsigned int optlen)
2539 {
2540 	struct sock *sk = sock->sk;
2541 
2542 	if (sk->sk_prot->compat_setsockopt != NULL)
2543 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2544 						      optval, optlen);
2545 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2546 }
2547 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2548 #endif
2549 
2550 void sk_common_release(struct sock *sk)
2551 {
2552 	if (sk->sk_prot->destroy)
2553 		sk->sk_prot->destroy(sk);
2554 
2555 	/*
2556 	 * Observation: when sock_common_release is called, processes have
2557 	 * no access to socket. But net still has.
2558 	 * Step one, detach it from networking:
2559 	 *
2560 	 * A. Remove from hash tables.
2561 	 */
2562 
2563 	sk->sk_prot->unhash(sk);
2564 
2565 	/*
2566 	 * In this point socket cannot receive new packets, but it is possible
2567 	 * that some packets are in flight because some CPU runs receiver and
2568 	 * did hash table lookup before we unhashed socket. They will achieve
2569 	 * receive queue and will be purged by socket destructor.
2570 	 *
2571 	 * Also we still have packets pending on receive queue and probably,
2572 	 * our own packets waiting in device queues. sock_destroy will drain
2573 	 * receive queue, but transmitted packets will delay socket destruction
2574 	 * until the last reference will be released.
2575 	 */
2576 
2577 	sock_orphan(sk);
2578 
2579 	xfrm_sk_free_policy(sk);
2580 
2581 	sk_refcnt_debug_release(sk);
2582 
2583 	if (sk->sk_frag.page) {
2584 		put_page(sk->sk_frag.page);
2585 		sk->sk_frag.page = NULL;
2586 	}
2587 
2588 	sock_put(sk);
2589 }
2590 EXPORT_SYMBOL(sk_common_release);
2591 
2592 #ifdef CONFIG_PROC_FS
2593 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2594 struct prot_inuse {
2595 	int val[PROTO_INUSE_NR];
2596 };
2597 
2598 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2599 
2600 #ifdef CONFIG_NET_NS
2601 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2602 {
2603 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2604 }
2605 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2606 
2607 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2608 {
2609 	int cpu, idx = prot->inuse_idx;
2610 	int res = 0;
2611 
2612 	for_each_possible_cpu(cpu)
2613 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2614 
2615 	return res >= 0 ? res : 0;
2616 }
2617 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2618 
2619 static int __net_init sock_inuse_init_net(struct net *net)
2620 {
2621 	net->core.inuse = alloc_percpu(struct prot_inuse);
2622 	return net->core.inuse ? 0 : -ENOMEM;
2623 }
2624 
2625 static void __net_exit sock_inuse_exit_net(struct net *net)
2626 {
2627 	free_percpu(net->core.inuse);
2628 }
2629 
2630 static struct pernet_operations net_inuse_ops = {
2631 	.init = sock_inuse_init_net,
2632 	.exit = sock_inuse_exit_net,
2633 };
2634 
2635 static __init int net_inuse_init(void)
2636 {
2637 	if (register_pernet_subsys(&net_inuse_ops))
2638 		panic("Cannot initialize net inuse counters");
2639 
2640 	return 0;
2641 }
2642 
2643 core_initcall(net_inuse_init);
2644 #else
2645 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2646 
2647 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2648 {
2649 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2650 }
2651 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2652 
2653 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2654 {
2655 	int cpu, idx = prot->inuse_idx;
2656 	int res = 0;
2657 
2658 	for_each_possible_cpu(cpu)
2659 		res += per_cpu(prot_inuse, cpu).val[idx];
2660 
2661 	return res >= 0 ? res : 0;
2662 }
2663 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2664 #endif
2665 
2666 static void assign_proto_idx(struct proto *prot)
2667 {
2668 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2669 
2670 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2671 		pr_err("PROTO_INUSE_NR exhausted\n");
2672 		return;
2673 	}
2674 
2675 	set_bit(prot->inuse_idx, proto_inuse_idx);
2676 }
2677 
2678 static void release_proto_idx(struct proto *prot)
2679 {
2680 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2681 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2682 }
2683 #else
2684 static inline void assign_proto_idx(struct proto *prot)
2685 {
2686 }
2687 
2688 static inline void release_proto_idx(struct proto *prot)
2689 {
2690 }
2691 #endif
2692 
2693 int proto_register(struct proto *prot, int alloc_slab)
2694 {
2695 	if (alloc_slab) {
2696 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2697 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2698 					NULL);
2699 
2700 		if (prot->slab == NULL) {
2701 			pr_crit("%s: Can't create sock SLAB cache!\n",
2702 				prot->name);
2703 			goto out;
2704 		}
2705 
2706 		if (prot->rsk_prot != NULL) {
2707 			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2708 			if (prot->rsk_prot->slab_name == NULL)
2709 				goto out_free_sock_slab;
2710 
2711 			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2712 								 prot->rsk_prot->obj_size, 0,
2713 								 SLAB_HWCACHE_ALIGN, NULL);
2714 
2715 			if (prot->rsk_prot->slab == NULL) {
2716 				pr_crit("%s: Can't create request sock SLAB cache!\n",
2717 					prot->name);
2718 				goto out_free_request_sock_slab_name;
2719 			}
2720 		}
2721 
2722 		if (prot->twsk_prot != NULL) {
2723 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2724 
2725 			if (prot->twsk_prot->twsk_slab_name == NULL)
2726 				goto out_free_request_sock_slab;
2727 
2728 			prot->twsk_prot->twsk_slab =
2729 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2730 						  prot->twsk_prot->twsk_obj_size,
2731 						  0,
2732 						  SLAB_HWCACHE_ALIGN |
2733 							prot->slab_flags,
2734 						  NULL);
2735 			if (prot->twsk_prot->twsk_slab == NULL)
2736 				goto out_free_timewait_sock_slab_name;
2737 		}
2738 	}
2739 
2740 	mutex_lock(&proto_list_mutex);
2741 	list_add(&prot->node, &proto_list);
2742 	assign_proto_idx(prot);
2743 	mutex_unlock(&proto_list_mutex);
2744 	return 0;
2745 
2746 out_free_timewait_sock_slab_name:
2747 	kfree(prot->twsk_prot->twsk_slab_name);
2748 out_free_request_sock_slab:
2749 	if (prot->rsk_prot && prot->rsk_prot->slab) {
2750 		kmem_cache_destroy(prot->rsk_prot->slab);
2751 		prot->rsk_prot->slab = NULL;
2752 	}
2753 out_free_request_sock_slab_name:
2754 	if (prot->rsk_prot)
2755 		kfree(prot->rsk_prot->slab_name);
2756 out_free_sock_slab:
2757 	kmem_cache_destroy(prot->slab);
2758 	prot->slab = NULL;
2759 out:
2760 	return -ENOBUFS;
2761 }
2762 EXPORT_SYMBOL(proto_register);
2763 
2764 void proto_unregister(struct proto *prot)
2765 {
2766 	mutex_lock(&proto_list_mutex);
2767 	release_proto_idx(prot);
2768 	list_del(&prot->node);
2769 	mutex_unlock(&proto_list_mutex);
2770 
2771 	if (prot->slab != NULL) {
2772 		kmem_cache_destroy(prot->slab);
2773 		prot->slab = NULL;
2774 	}
2775 
2776 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2777 		kmem_cache_destroy(prot->rsk_prot->slab);
2778 		kfree(prot->rsk_prot->slab_name);
2779 		prot->rsk_prot->slab = NULL;
2780 	}
2781 
2782 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2783 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2784 		kfree(prot->twsk_prot->twsk_slab_name);
2785 		prot->twsk_prot->twsk_slab = NULL;
2786 	}
2787 }
2788 EXPORT_SYMBOL(proto_unregister);
2789 
2790 #ifdef CONFIG_PROC_FS
2791 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2792 	__acquires(proto_list_mutex)
2793 {
2794 	mutex_lock(&proto_list_mutex);
2795 	return seq_list_start_head(&proto_list, *pos);
2796 }
2797 
2798 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2799 {
2800 	return seq_list_next(v, &proto_list, pos);
2801 }
2802 
2803 static void proto_seq_stop(struct seq_file *seq, void *v)
2804 	__releases(proto_list_mutex)
2805 {
2806 	mutex_unlock(&proto_list_mutex);
2807 }
2808 
2809 static char proto_method_implemented(const void *method)
2810 {
2811 	return method == NULL ? 'n' : 'y';
2812 }
2813 static long sock_prot_memory_allocated(struct proto *proto)
2814 {
2815 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2816 }
2817 
2818 static char *sock_prot_memory_pressure(struct proto *proto)
2819 {
2820 	return proto->memory_pressure != NULL ?
2821 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2822 }
2823 
2824 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2825 {
2826 
2827 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2828 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2829 		   proto->name,
2830 		   proto->obj_size,
2831 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2832 		   sock_prot_memory_allocated(proto),
2833 		   sock_prot_memory_pressure(proto),
2834 		   proto->max_header,
2835 		   proto->slab == NULL ? "no" : "yes",
2836 		   module_name(proto->owner),
2837 		   proto_method_implemented(proto->close),
2838 		   proto_method_implemented(proto->connect),
2839 		   proto_method_implemented(proto->disconnect),
2840 		   proto_method_implemented(proto->accept),
2841 		   proto_method_implemented(proto->ioctl),
2842 		   proto_method_implemented(proto->init),
2843 		   proto_method_implemented(proto->destroy),
2844 		   proto_method_implemented(proto->shutdown),
2845 		   proto_method_implemented(proto->setsockopt),
2846 		   proto_method_implemented(proto->getsockopt),
2847 		   proto_method_implemented(proto->sendmsg),
2848 		   proto_method_implemented(proto->recvmsg),
2849 		   proto_method_implemented(proto->sendpage),
2850 		   proto_method_implemented(proto->bind),
2851 		   proto_method_implemented(proto->backlog_rcv),
2852 		   proto_method_implemented(proto->hash),
2853 		   proto_method_implemented(proto->unhash),
2854 		   proto_method_implemented(proto->get_port),
2855 		   proto_method_implemented(proto->enter_memory_pressure));
2856 }
2857 
2858 static int proto_seq_show(struct seq_file *seq, void *v)
2859 {
2860 	if (v == &proto_list)
2861 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2862 			   "protocol",
2863 			   "size",
2864 			   "sockets",
2865 			   "memory",
2866 			   "press",
2867 			   "maxhdr",
2868 			   "slab",
2869 			   "module",
2870 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2871 	else
2872 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2873 	return 0;
2874 }
2875 
2876 static const struct seq_operations proto_seq_ops = {
2877 	.start  = proto_seq_start,
2878 	.next   = proto_seq_next,
2879 	.stop   = proto_seq_stop,
2880 	.show   = proto_seq_show,
2881 };
2882 
2883 static int proto_seq_open(struct inode *inode, struct file *file)
2884 {
2885 	return seq_open_net(inode, file, &proto_seq_ops,
2886 			    sizeof(struct seq_net_private));
2887 }
2888 
2889 static const struct file_operations proto_seq_fops = {
2890 	.owner		= THIS_MODULE,
2891 	.open		= proto_seq_open,
2892 	.read		= seq_read,
2893 	.llseek		= seq_lseek,
2894 	.release	= seq_release_net,
2895 };
2896 
2897 static __net_init int proto_init_net(struct net *net)
2898 {
2899 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2900 		return -ENOMEM;
2901 
2902 	return 0;
2903 }
2904 
2905 static __net_exit void proto_exit_net(struct net *net)
2906 {
2907 	remove_proc_entry("protocols", net->proc_net);
2908 }
2909 
2910 
2911 static __net_initdata struct pernet_operations proto_net_ops = {
2912 	.init = proto_init_net,
2913 	.exit = proto_exit_net,
2914 };
2915 
2916 static int __init proto_init(void)
2917 {
2918 	return register_pernet_subsys(&proto_net_ops);
2919 }
2920 
2921 subsys_initcall(proto_init);
2922 
2923 #endif /* PROC_FS */
2924