xref: /openbmc/linux/net/core/sock.c (revision e105007c)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
116 
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
126 
127 #include <linux/filter.h>
128 
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
132 
133 /*
134  * Each address family might have different locking rules, so we have
135  * one slock key per address family:
136  */
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
139 
140 /*
141  * Make lock validator output more readable. (we pre-construct these
142  * strings build-time, so that runtime initialization of socket
143  * locks is fast):
144  */
145 static const char *const af_family_key_strings[AF_MAX+1] = {
146   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
147   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
148   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
149   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
150   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
151   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
152   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
153   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
154   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
155   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
156   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
157   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
158   "sk_lock-AF_IEEE802154",
159   "sk_lock-AF_MAX"
160 };
161 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
162   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
172   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
174   "slock-AF_IEEE802154",
175   "slock-AF_MAX"
176 };
177 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
178   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
179   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
180   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
181   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
182   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
183   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
184   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
185   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
186   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
187   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
188   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
189   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
190   "clock-AF_IEEE802154",
191   "clock-AF_MAX"
192 };
193 
194 /*
195  * sk_callback_lock locking rules are per-address-family,
196  * so split the lock classes by using a per-AF key:
197  */
198 static struct lock_class_key af_callback_keys[AF_MAX];
199 
200 /* Take into consideration the size of the struct sk_buff overhead in the
201  * determination of these values, since that is non-constant across
202  * platforms.  This makes socket queueing behavior and performance
203  * not depend upon such differences.
204  */
205 #define _SK_MEM_PACKETS		256
206 #define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
209 
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
215 
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
219 
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
221 {
222 	struct timeval tv;
223 
224 	if (optlen < sizeof(tv))
225 		return -EINVAL;
226 	if (copy_from_user(&tv, optval, sizeof(tv)))
227 		return -EFAULT;
228 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
229 		return -EDOM;
230 
231 	if (tv.tv_sec < 0) {
232 		static int warned __read_mostly;
233 
234 		*timeo_p = 0;
235 		if (warned < 10 && net_ratelimit()) {
236 			warned++;
237 			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238 			       "tries to set negative timeout\n",
239 				current->comm, task_pid_nr(current));
240 		}
241 		return 0;
242 	}
243 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
244 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
245 		return 0;
246 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
248 	return 0;
249 }
250 
251 static void sock_warn_obsolete_bsdism(const char *name)
252 {
253 	static int warned;
254 	static char warncomm[TASK_COMM_LEN];
255 	if (strcmp(warncomm, current->comm) && warned < 5) {
256 		strcpy(warncomm,  current->comm);
257 		printk(KERN_WARNING "process `%s' is using obsolete "
258 		       "%s SO_BSDCOMPAT\n", warncomm, name);
259 		warned++;
260 	}
261 }
262 
263 static void sock_disable_timestamp(struct sock *sk, int flag)
264 {
265 	if (sock_flag(sk, flag)) {
266 		sock_reset_flag(sk, flag);
267 		if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268 		    !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269 			net_disable_timestamp();
270 		}
271 	}
272 }
273 
274 
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
276 {
277 	int err;
278 	int skb_len;
279 	unsigned long flags;
280 	struct sk_buff_head *list = &sk->sk_receive_queue;
281 
282 	/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
283 	   number of warnings when compiling with -W --ANK
284 	 */
285 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
286 	    (unsigned)sk->sk_rcvbuf) {
287 		atomic_inc(&sk->sk_drops);
288 		return -ENOMEM;
289 	}
290 
291 	err = sk_filter(sk, skb);
292 	if (err)
293 		return err;
294 
295 	if (!sk_rmem_schedule(sk, skb->truesize)) {
296 		atomic_inc(&sk->sk_drops);
297 		return -ENOBUFS;
298 	}
299 
300 	skb->dev = NULL;
301 	skb_set_owner_r(skb, sk);
302 
303 	/* Cache the SKB length before we tack it onto the receive
304 	 * queue.  Once it is added it no longer belongs to us and
305 	 * may be freed by other threads of control pulling packets
306 	 * from the queue.
307 	 */
308 	skb_len = skb->len;
309 
310 	spin_lock_irqsave(&list->lock, flags);
311 	skb->dropcount = atomic_read(&sk->sk_drops);
312 	__skb_queue_tail(list, skb);
313 	spin_unlock_irqrestore(&list->lock, flags);
314 
315 	if (!sock_flag(sk, SOCK_DEAD))
316 		sk->sk_data_ready(sk, skb_len);
317 	return 0;
318 }
319 EXPORT_SYMBOL(sock_queue_rcv_skb);
320 
321 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
322 {
323 	int rc = NET_RX_SUCCESS;
324 
325 	if (sk_filter(sk, skb))
326 		goto discard_and_relse;
327 
328 	skb->dev = NULL;
329 
330 	if (nested)
331 		bh_lock_sock_nested(sk);
332 	else
333 		bh_lock_sock(sk);
334 	if (!sock_owned_by_user(sk)) {
335 		/*
336 		 * trylock + unlock semantics:
337 		 */
338 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
339 
340 		rc = sk_backlog_rcv(sk, skb);
341 
342 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
343 	} else
344 		sk_add_backlog(sk, skb);
345 	bh_unlock_sock(sk);
346 out:
347 	sock_put(sk);
348 	return rc;
349 discard_and_relse:
350 	kfree_skb(skb);
351 	goto out;
352 }
353 EXPORT_SYMBOL(sk_receive_skb);
354 
355 void sk_reset_txq(struct sock *sk)
356 {
357 	sk_tx_queue_clear(sk);
358 }
359 EXPORT_SYMBOL(sk_reset_txq);
360 
361 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
362 {
363 	struct dst_entry *dst = sk->sk_dst_cache;
364 
365 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
366 		sk_tx_queue_clear(sk);
367 		sk->sk_dst_cache = NULL;
368 		dst_release(dst);
369 		return NULL;
370 	}
371 
372 	return dst;
373 }
374 EXPORT_SYMBOL(__sk_dst_check);
375 
376 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
377 {
378 	struct dst_entry *dst = sk_dst_get(sk);
379 
380 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
381 		sk_dst_reset(sk);
382 		dst_release(dst);
383 		return NULL;
384 	}
385 
386 	return dst;
387 }
388 EXPORT_SYMBOL(sk_dst_check);
389 
390 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
391 {
392 	int ret = -ENOPROTOOPT;
393 #ifdef CONFIG_NETDEVICES
394 	struct net *net = sock_net(sk);
395 	char devname[IFNAMSIZ];
396 	int index;
397 
398 	/* Sorry... */
399 	ret = -EPERM;
400 	if (!capable(CAP_NET_RAW))
401 		goto out;
402 
403 	ret = -EINVAL;
404 	if (optlen < 0)
405 		goto out;
406 
407 	/* Bind this socket to a particular device like "eth0",
408 	 * as specified in the passed interface name. If the
409 	 * name is "" or the option length is zero the socket
410 	 * is not bound.
411 	 */
412 	if (optlen > IFNAMSIZ - 1)
413 		optlen = IFNAMSIZ - 1;
414 	memset(devname, 0, sizeof(devname));
415 
416 	ret = -EFAULT;
417 	if (copy_from_user(devname, optval, optlen))
418 		goto out;
419 
420 	index = 0;
421 	if (devname[0] != '\0') {
422 		struct net_device *dev;
423 
424 		rcu_read_lock();
425 		dev = dev_get_by_name_rcu(net, devname);
426 		if (dev)
427 			index = dev->ifindex;
428 		rcu_read_unlock();
429 		ret = -ENODEV;
430 		if (!dev)
431 			goto out;
432 	}
433 
434 	lock_sock(sk);
435 	sk->sk_bound_dev_if = index;
436 	sk_dst_reset(sk);
437 	release_sock(sk);
438 
439 	ret = 0;
440 
441 out:
442 #endif
443 
444 	return ret;
445 }
446 
447 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
448 {
449 	if (valbool)
450 		sock_set_flag(sk, bit);
451 	else
452 		sock_reset_flag(sk, bit);
453 }
454 
455 /*
456  *	This is meant for all protocols to use and covers goings on
457  *	at the socket level. Everything here is generic.
458  */
459 
460 int sock_setsockopt(struct socket *sock, int level, int optname,
461 		    char __user *optval, unsigned int optlen)
462 {
463 	struct sock *sk = sock->sk;
464 	int val;
465 	int valbool;
466 	struct linger ling;
467 	int ret = 0;
468 
469 	/*
470 	 *	Options without arguments
471 	 */
472 
473 	if (optname == SO_BINDTODEVICE)
474 		return sock_bindtodevice(sk, optval, optlen);
475 
476 	if (optlen < sizeof(int))
477 		return -EINVAL;
478 
479 	if (get_user(val, (int __user *)optval))
480 		return -EFAULT;
481 
482 	valbool = val ? 1 : 0;
483 
484 	lock_sock(sk);
485 
486 	switch (optname) {
487 	case SO_DEBUG:
488 		if (val && !capable(CAP_NET_ADMIN))
489 			ret = -EACCES;
490 		else
491 			sock_valbool_flag(sk, SOCK_DBG, valbool);
492 		break;
493 	case SO_REUSEADDR:
494 		sk->sk_reuse = valbool;
495 		break;
496 	case SO_TYPE:
497 	case SO_PROTOCOL:
498 	case SO_DOMAIN:
499 	case SO_ERROR:
500 		ret = -ENOPROTOOPT;
501 		break;
502 	case SO_DONTROUTE:
503 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
504 		break;
505 	case SO_BROADCAST:
506 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
507 		break;
508 	case SO_SNDBUF:
509 		/* Don't error on this BSD doesn't and if you think
510 		   about it this is right. Otherwise apps have to
511 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
512 		   are treated in BSD as hints */
513 
514 		if (val > sysctl_wmem_max)
515 			val = sysctl_wmem_max;
516 set_sndbuf:
517 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
518 		if ((val * 2) < SOCK_MIN_SNDBUF)
519 			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
520 		else
521 			sk->sk_sndbuf = val * 2;
522 
523 		/*
524 		 *	Wake up sending tasks if we
525 		 *	upped the value.
526 		 */
527 		sk->sk_write_space(sk);
528 		break;
529 
530 	case SO_SNDBUFFORCE:
531 		if (!capable(CAP_NET_ADMIN)) {
532 			ret = -EPERM;
533 			break;
534 		}
535 		goto set_sndbuf;
536 
537 	case SO_RCVBUF:
538 		/* Don't error on this BSD doesn't and if you think
539 		   about it this is right. Otherwise apps have to
540 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
541 		   are treated in BSD as hints */
542 
543 		if (val > sysctl_rmem_max)
544 			val = sysctl_rmem_max;
545 set_rcvbuf:
546 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
547 		/*
548 		 * We double it on the way in to account for
549 		 * "struct sk_buff" etc. overhead.   Applications
550 		 * assume that the SO_RCVBUF setting they make will
551 		 * allow that much actual data to be received on that
552 		 * socket.
553 		 *
554 		 * Applications are unaware that "struct sk_buff" and
555 		 * other overheads allocate from the receive buffer
556 		 * during socket buffer allocation.
557 		 *
558 		 * And after considering the possible alternatives,
559 		 * returning the value we actually used in getsockopt
560 		 * is the most desirable behavior.
561 		 */
562 		if ((val * 2) < SOCK_MIN_RCVBUF)
563 			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
564 		else
565 			sk->sk_rcvbuf = val * 2;
566 		break;
567 
568 	case SO_RCVBUFFORCE:
569 		if (!capable(CAP_NET_ADMIN)) {
570 			ret = -EPERM;
571 			break;
572 		}
573 		goto set_rcvbuf;
574 
575 	case SO_KEEPALIVE:
576 #ifdef CONFIG_INET
577 		if (sk->sk_protocol == IPPROTO_TCP)
578 			tcp_set_keepalive(sk, valbool);
579 #endif
580 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
581 		break;
582 
583 	case SO_OOBINLINE:
584 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
585 		break;
586 
587 	case SO_NO_CHECK:
588 		sk->sk_no_check = valbool;
589 		break;
590 
591 	case SO_PRIORITY:
592 		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
593 			sk->sk_priority = val;
594 		else
595 			ret = -EPERM;
596 		break;
597 
598 	case SO_LINGER:
599 		if (optlen < sizeof(ling)) {
600 			ret = -EINVAL;	/* 1003.1g */
601 			break;
602 		}
603 		if (copy_from_user(&ling, optval, sizeof(ling))) {
604 			ret = -EFAULT;
605 			break;
606 		}
607 		if (!ling.l_onoff)
608 			sock_reset_flag(sk, SOCK_LINGER);
609 		else {
610 #if (BITS_PER_LONG == 32)
611 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
612 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
613 			else
614 #endif
615 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
616 			sock_set_flag(sk, SOCK_LINGER);
617 		}
618 		break;
619 
620 	case SO_BSDCOMPAT:
621 		sock_warn_obsolete_bsdism("setsockopt");
622 		break;
623 
624 	case SO_PASSCRED:
625 		if (valbool)
626 			set_bit(SOCK_PASSCRED, &sock->flags);
627 		else
628 			clear_bit(SOCK_PASSCRED, &sock->flags);
629 		break;
630 
631 	case SO_TIMESTAMP:
632 	case SO_TIMESTAMPNS:
633 		if (valbool)  {
634 			if (optname == SO_TIMESTAMP)
635 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
636 			else
637 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
638 			sock_set_flag(sk, SOCK_RCVTSTAMP);
639 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
640 		} else {
641 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
642 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
643 		}
644 		break;
645 
646 	case SO_TIMESTAMPING:
647 		if (val & ~SOF_TIMESTAMPING_MASK) {
648 			ret = -EINVAL;
649 			break;
650 		}
651 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
652 				  val & SOF_TIMESTAMPING_TX_HARDWARE);
653 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
654 				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
655 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
656 				  val & SOF_TIMESTAMPING_RX_HARDWARE);
657 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
658 			sock_enable_timestamp(sk,
659 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
660 		else
661 			sock_disable_timestamp(sk,
662 					       SOCK_TIMESTAMPING_RX_SOFTWARE);
663 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
664 				  val & SOF_TIMESTAMPING_SOFTWARE);
665 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
666 				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
667 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
668 				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
669 		break;
670 
671 	case SO_RCVLOWAT:
672 		if (val < 0)
673 			val = INT_MAX;
674 		sk->sk_rcvlowat = val ? : 1;
675 		break;
676 
677 	case SO_RCVTIMEO:
678 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
679 		break;
680 
681 	case SO_SNDTIMEO:
682 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
683 		break;
684 
685 	case SO_ATTACH_FILTER:
686 		ret = -EINVAL;
687 		if (optlen == sizeof(struct sock_fprog)) {
688 			struct sock_fprog fprog;
689 
690 			ret = -EFAULT;
691 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
692 				break;
693 
694 			ret = sk_attach_filter(&fprog, sk);
695 		}
696 		break;
697 
698 	case SO_DETACH_FILTER:
699 		ret = sk_detach_filter(sk);
700 		break;
701 
702 	case SO_PASSSEC:
703 		if (valbool)
704 			set_bit(SOCK_PASSSEC, &sock->flags);
705 		else
706 			clear_bit(SOCK_PASSSEC, &sock->flags);
707 		break;
708 	case SO_MARK:
709 		if (!capable(CAP_NET_ADMIN))
710 			ret = -EPERM;
711 		else
712 			sk->sk_mark = val;
713 		break;
714 
715 		/* We implement the SO_SNDLOWAT etc to
716 		   not be settable (1003.1g 5.3) */
717 	case SO_RXQ_OVFL:
718 		if (valbool)
719 			sock_set_flag(sk, SOCK_RXQ_OVFL);
720 		else
721 			sock_reset_flag(sk, SOCK_RXQ_OVFL);
722 		break;
723 	default:
724 		ret = -ENOPROTOOPT;
725 		break;
726 	}
727 	release_sock(sk);
728 	return ret;
729 }
730 EXPORT_SYMBOL(sock_setsockopt);
731 
732 
733 int sock_getsockopt(struct socket *sock, int level, int optname,
734 		    char __user *optval, int __user *optlen)
735 {
736 	struct sock *sk = sock->sk;
737 
738 	union {
739 		int val;
740 		struct linger ling;
741 		struct timeval tm;
742 	} v;
743 
744 	unsigned int lv = sizeof(int);
745 	int len;
746 
747 	if (get_user(len, optlen))
748 		return -EFAULT;
749 	if (len < 0)
750 		return -EINVAL;
751 
752 	memset(&v, 0, sizeof(v));
753 
754 	switch (optname) {
755 	case SO_DEBUG:
756 		v.val = sock_flag(sk, SOCK_DBG);
757 		break;
758 
759 	case SO_DONTROUTE:
760 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
761 		break;
762 
763 	case SO_BROADCAST:
764 		v.val = !!sock_flag(sk, SOCK_BROADCAST);
765 		break;
766 
767 	case SO_SNDBUF:
768 		v.val = sk->sk_sndbuf;
769 		break;
770 
771 	case SO_RCVBUF:
772 		v.val = sk->sk_rcvbuf;
773 		break;
774 
775 	case SO_REUSEADDR:
776 		v.val = sk->sk_reuse;
777 		break;
778 
779 	case SO_KEEPALIVE:
780 		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
781 		break;
782 
783 	case SO_TYPE:
784 		v.val = sk->sk_type;
785 		break;
786 
787 	case SO_PROTOCOL:
788 		v.val = sk->sk_protocol;
789 		break;
790 
791 	case SO_DOMAIN:
792 		v.val = sk->sk_family;
793 		break;
794 
795 	case SO_ERROR:
796 		v.val = -sock_error(sk);
797 		if (v.val == 0)
798 			v.val = xchg(&sk->sk_err_soft, 0);
799 		break;
800 
801 	case SO_OOBINLINE:
802 		v.val = !!sock_flag(sk, SOCK_URGINLINE);
803 		break;
804 
805 	case SO_NO_CHECK:
806 		v.val = sk->sk_no_check;
807 		break;
808 
809 	case SO_PRIORITY:
810 		v.val = sk->sk_priority;
811 		break;
812 
813 	case SO_LINGER:
814 		lv		= sizeof(v.ling);
815 		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
816 		v.ling.l_linger	= sk->sk_lingertime / HZ;
817 		break;
818 
819 	case SO_BSDCOMPAT:
820 		sock_warn_obsolete_bsdism("getsockopt");
821 		break;
822 
823 	case SO_TIMESTAMP:
824 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
825 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
826 		break;
827 
828 	case SO_TIMESTAMPNS:
829 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
830 		break;
831 
832 	case SO_TIMESTAMPING:
833 		v.val = 0;
834 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
835 			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
836 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
837 			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
838 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
839 			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
840 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
841 			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
842 		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
843 			v.val |= SOF_TIMESTAMPING_SOFTWARE;
844 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
845 			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
846 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
847 			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
848 		break;
849 
850 	case SO_RCVTIMEO:
851 		lv = sizeof(struct timeval);
852 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
853 			v.tm.tv_sec = 0;
854 			v.tm.tv_usec = 0;
855 		} else {
856 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
857 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
858 		}
859 		break;
860 
861 	case SO_SNDTIMEO:
862 		lv = sizeof(struct timeval);
863 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
864 			v.tm.tv_sec = 0;
865 			v.tm.tv_usec = 0;
866 		} else {
867 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
868 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
869 		}
870 		break;
871 
872 	case SO_RCVLOWAT:
873 		v.val = sk->sk_rcvlowat;
874 		break;
875 
876 	case SO_SNDLOWAT:
877 		v.val = 1;
878 		break;
879 
880 	case SO_PASSCRED:
881 		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
882 		break;
883 
884 	case SO_PEERCRED:
885 		if (len > sizeof(sk->sk_peercred))
886 			len = sizeof(sk->sk_peercred);
887 		if (copy_to_user(optval, &sk->sk_peercred, len))
888 			return -EFAULT;
889 		goto lenout;
890 
891 	case SO_PEERNAME:
892 	{
893 		char address[128];
894 
895 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
896 			return -ENOTCONN;
897 		if (lv < len)
898 			return -EINVAL;
899 		if (copy_to_user(optval, address, len))
900 			return -EFAULT;
901 		goto lenout;
902 	}
903 
904 	/* Dubious BSD thing... Probably nobody even uses it, but
905 	 * the UNIX standard wants it for whatever reason... -DaveM
906 	 */
907 	case SO_ACCEPTCONN:
908 		v.val = sk->sk_state == TCP_LISTEN;
909 		break;
910 
911 	case SO_PASSSEC:
912 		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
913 		break;
914 
915 	case SO_PEERSEC:
916 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
917 
918 	case SO_MARK:
919 		v.val = sk->sk_mark;
920 		break;
921 
922 	case SO_RXQ_OVFL:
923 		v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
924 		break;
925 
926 	default:
927 		return -ENOPROTOOPT;
928 	}
929 
930 	if (len > lv)
931 		len = lv;
932 	if (copy_to_user(optval, &v, len))
933 		return -EFAULT;
934 lenout:
935 	if (put_user(len, optlen))
936 		return -EFAULT;
937 	return 0;
938 }
939 
940 /*
941  * Initialize an sk_lock.
942  *
943  * (We also register the sk_lock with the lock validator.)
944  */
945 static inline void sock_lock_init(struct sock *sk)
946 {
947 	sock_lock_init_class_and_name(sk,
948 			af_family_slock_key_strings[sk->sk_family],
949 			af_family_slock_keys + sk->sk_family,
950 			af_family_key_strings[sk->sk_family],
951 			af_family_keys + sk->sk_family);
952 }
953 
954 /*
955  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
956  * even temporarly, because of RCU lookups. sk_node should also be left as is.
957  */
958 static void sock_copy(struct sock *nsk, const struct sock *osk)
959 {
960 #ifdef CONFIG_SECURITY_NETWORK
961 	void *sptr = nsk->sk_security;
962 #endif
963 	BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
964 		     sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) +
965 		     sizeof(osk->sk_tx_queue_mapping));
966 	memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
967 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
968 #ifdef CONFIG_SECURITY_NETWORK
969 	nsk->sk_security = sptr;
970 	security_sk_clone(osk, nsk);
971 #endif
972 }
973 
974 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
975 		int family)
976 {
977 	struct sock *sk;
978 	struct kmem_cache *slab;
979 
980 	slab = prot->slab;
981 	if (slab != NULL) {
982 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
983 		if (!sk)
984 			return sk;
985 		if (priority & __GFP_ZERO) {
986 			/*
987 			 * caches using SLAB_DESTROY_BY_RCU should let
988 			 * sk_node.next un-modified. Special care is taken
989 			 * when initializing object to zero.
990 			 */
991 			if (offsetof(struct sock, sk_node.next) != 0)
992 				memset(sk, 0, offsetof(struct sock, sk_node.next));
993 			memset(&sk->sk_node.pprev, 0,
994 			       prot->obj_size - offsetof(struct sock,
995 							 sk_node.pprev));
996 		}
997 	}
998 	else
999 		sk = kmalloc(prot->obj_size, priority);
1000 
1001 	if (sk != NULL) {
1002 		kmemcheck_annotate_bitfield(sk, flags);
1003 
1004 		if (security_sk_alloc(sk, family, priority))
1005 			goto out_free;
1006 
1007 		if (!try_module_get(prot->owner))
1008 			goto out_free_sec;
1009 		sk_tx_queue_clear(sk);
1010 	}
1011 
1012 	return sk;
1013 
1014 out_free_sec:
1015 	security_sk_free(sk);
1016 out_free:
1017 	if (slab != NULL)
1018 		kmem_cache_free(slab, sk);
1019 	else
1020 		kfree(sk);
1021 	return NULL;
1022 }
1023 
1024 static void sk_prot_free(struct proto *prot, struct sock *sk)
1025 {
1026 	struct kmem_cache *slab;
1027 	struct module *owner;
1028 
1029 	owner = prot->owner;
1030 	slab = prot->slab;
1031 
1032 	security_sk_free(sk);
1033 	if (slab != NULL)
1034 		kmem_cache_free(slab, sk);
1035 	else
1036 		kfree(sk);
1037 	module_put(owner);
1038 }
1039 
1040 /**
1041  *	sk_alloc - All socket objects are allocated here
1042  *	@net: the applicable net namespace
1043  *	@family: protocol family
1044  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1045  *	@prot: struct proto associated with this new sock instance
1046  */
1047 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1048 		      struct proto *prot)
1049 {
1050 	struct sock *sk;
1051 
1052 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1053 	if (sk) {
1054 		sk->sk_family = family;
1055 		/*
1056 		 * See comment in struct sock definition to understand
1057 		 * why we need sk_prot_creator -acme
1058 		 */
1059 		sk->sk_prot = sk->sk_prot_creator = prot;
1060 		sock_lock_init(sk);
1061 		sock_net_set(sk, get_net(net));
1062 		atomic_set(&sk->sk_wmem_alloc, 1);
1063 	}
1064 
1065 	return sk;
1066 }
1067 EXPORT_SYMBOL(sk_alloc);
1068 
1069 static void __sk_free(struct sock *sk)
1070 {
1071 	struct sk_filter *filter;
1072 
1073 	if (sk->sk_destruct)
1074 		sk->sk_destruct(sk);
1075 
1076 	filter = rcu_dereference(sk->sk_filter);
1077 	if (filter) {
1078 		sk_filter_uncharge(sk, filter);
1079 		rcu_assign_pointer(sk->sk_filter, NULL);
1080 	}
1081 
1082 	sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1083 	sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1084 
1085 	if (atomic_read(&sk->sk_omem_alloc))
1086 		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1087 		       __func__, atomic_read(&sk->sk_omem_alloc));
1088 
1089 	put_net(sock_net(sk));
1090 	sk_prot_free(sk->sk_prot_creator, sk);
1091 }
1092 
1093 void sk_free(struct sock *sk)
1094 {
1095 	/*
1096 	 * We substract one from sk_wmem_alloc and can know if
1097 	 * some packets are still in some tx queue.
1098 	 * If not null, sock_wfree() will call __sk_free(sk) later
1099 	 */
1100 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1101 		__sk_free(sk);
1102 }
1103 EXPORT_SYMBOL(sk_free);
1104 
1105 /*
1106  * Last sock_put should drop referrence to sk->sk_net. It has already
1107  * been dropped in sk_change_net. Taking referrence to stopping namespace
1108  * is not an option.
1109  * Take referrence to a socket to remove it from hash _alive_ and after that
1110  * destroy it in the context of init_net.
1111  */
1112 void sk_release_kernel(struct sock *sk)
1113 {
1114 	if (sk == NULL || sk->sk_socket == NULL)
1115 		return;
1116 
1117 	sock_hold(sk);
1118 	sock_release(sk->sk_socket);
1119 	release_net(sock_net(sk));
1120 	sock_net_set(sk, get_net(&init_net));
1121 	sock_put(sk);
1122 }
1123 EXPORT_SYMBOL(sk_release_kernel);
1124 
1125 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1126 {
1127 	struct sock *newsk;
1128 
1129 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1130 	if (newsk != NULL) {
1131 		struct sk_filter *filter;
1132 
1133 		sock_copy(newsk, sk);
1134 
1135 		/* SANITY */
1136 		get_net(sock_net(newsk));
1137 		sk_node_init(&newsk->sk_node);
1138 		sock_lock_init(newsk);
1139 		bh_lock_sock(newsk);
1140 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1141 
1142 		atomic_set(&newsk->sk_rmem_alloc, 0);
1143 		/*
1144 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1145 		 */
1146 		atomic_set(&newsk->sk_wmem_alloc, 1);
1147 		atomic_set(&newsk->sk_omem_alloc, 0);
1148 		skb_queue_head_init(&newsk->sk_receive_queue);
1149 		skb_queue_head_init(&newsk->sk_write_queue);
1150 #ifdef CONFIG_NET_DMA
1151 		skb_queue_head_init(&newsk->sk_async_wait_queue);
1152 #endif
1153 
1154 		rwlock_init(&newsk->sk_dst_lock);
1155 		rwlock_init(&newsk->sk_callback_lock);
1156 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1157 				af_callback_keys + newsk->sk_family,
1158 				af_family_clock_key_strings[newsk->sk_family]);
1159 
1160 		newsk->sk_dst_cache	= NULL;
1161 		newsk->sk_wmem_queued	= 0;
1162 		newsk->sk_forward_alloc = 0;
1163 		newsk->sk_send_head	= NULL;
1164 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1165 
1166 		sock_reset_flag(newsk, SOCK_DONE);
1167 		skb_queue_head_init(&newsk->sk_error_queue);
1168 
1169 		filter = newsk->sk_filter;
1170 		if (filter != NULL)
1171 			sk_filter_charge(newsk, filter);
1172 
1173 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1174 			/* It is still raw copy of parent, so invalidate
1175 			 * destructor and make plain sk_free() */
1176 			newsk->sk_destruct = NULL;
1177 			sk_free(newsk);
1178 			newsk = NULL;
1179 			goto out;
1180 		}
1181 
1182 		newsk->sk_err	   = 0;
1183 		newsk->sk_priority = 0;
1184 		/*
1185 		 * Before updating sk_refcnt, we must commit prior changes to memory
1186 		 * (Documentation/RCU/rculist_nulls.txt for details)
1187 		 */
1188 		smp_wmb();
1189 		atomic_set(&newsk->sk_refcnt, 2);
1190 
1191 		/*
1192 		 * Increment the counter in the same struct proto as the master
1193 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1194 		 * is the same as sk->sk_prot->socks, as this field was copied
1195 		 * with memcpy).
1196 		 *
1197 		 * This _changes_ the previous behaviour, where
1198 		 * tcp_create_openreq_child always was incrementing the
1199 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1200 		 * to be taken into account in all callers. -acme
1201 		 */
1202 		sk_refcnt_debug_inc(newsk);
1203 		sk_set_socket(newsk, NULL);
1204 		newsk->sk_sleep	 = NULL;
1205 
1206 		if (newsk->sk_prot->sockets_allocated)
1207 			percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1208 
1209 		if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1210 		    sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1211 			net_enable_timestamp();
1212 	}
1213 out:
1214 	return newsk;
1215 }
1216 EXPORT_SYMBOL_GPL(sk_clone);
1217 
1218 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1219 {
1220 	__sk_dst_set(sk, dst);
1221 	sk->sk_route_caps = dst->dev->features;
1222 	if (sk->sk_route_caps & NETIF_F_GSO)
1223 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1224 	if (sk_can_gso(sk)) {
1225 		if (dst->header_len) {
1226 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1227 		} else {
1228 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1229 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1230 		}
1231 	}
1232 }
1233 EXPORT_SYMBOL_GPL(sk_setup_caps);
1234 
1235 void __init sk_init(void)
1236 {
1237 	if (totalram_pages <= 4096) {
1238 		sysctl_wmem_max = 32767;
1239 		sysctl_rmem_max = 32767;
1240 		sysctl_wmem_default = 32767;
1241 		sysctl_rmem_default = 32767;
1242 	} else if (totalram_pages >= 131072) {
1243 		sysctl_wmem_max = 131071;
1244 		sysctl_rmem_max = 131071;
1245 	}
1246 }
1247 
1248 /*
1249  *	Simple resource managers for sockets.
1250  */
1251 
1252 
1253 /*
1254  * Write buffer destructor automatically called from kfree_skb.
1255  */
1256 void sock_wfree(struct sk_buff *skb)
1257 {
1258 	struct sock *sk = skb->sk;
1259 	unsigned int len = skb->truesize;
1260 
1261 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1262 		/*
1263 		 * Keep a reference on sk_wmem_alloc, this will be released
1264 		 * after sk_write_space() call
1265 		 */
1266 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1267 		sk->sk_write_space(sk);
1268 		len = 1;
1269 	}
1270 	/*
1271 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1272 	 * could not do because of in-flight packets
1273 	 */
1274 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1275 		__sk_free(sk);
1276 }
1277 EXPORT_SYMBOL(sock_wfree);
1278 
1279 /*
1280  * Read buffer destructor automatically called from kfree_skb.
1281  */
1282 void sock_rfree(struct sk_buff *skb)
1283 {
1284 	struct sock *sk = skb->sk;
1285 
1286 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1287 	sk_mem_uncharge(skb->sk, skb->truesize);
1288 }
1289 EXPORT_SYMBOL(sock_rfree);
1290 
1291 
1292 int sock_i_uid(struct sock *sk)
1293 {
1294 	int uid;
1295 
1296 	read_lock(&sk->sk_callback_lock);
1297 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1298 	read_unlock(&sk->sk_callback_lock);
1299 	return uid;
1300 }
1301 EXPORT_SYMBOL(sock_i_uid);
1302 
1303 unsigned long sock_i_ino(struct sock *sk)
1304 {
1305 	unsigned long ino;
1306 
1307 	read_lock(&sk->sk_callback_lock);
1308 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1309 	read_unlock(&sk->sk_callback_lock);
1310 	return ino;
1311 }
1312 EXPORT_SYMBOL(sock_i_ino);
1313 
1314 /*
1315  * Allocate a skb from the socket's send buffer.
1316  */
1317 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1318 			     gfp_t priority)
1319 {
1320 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1321 		struct sk_buff *skb = alloc_skb(size, priority);
1322 		if (skb) {
1323 			skb_set_owner_w(skb, sk);
1324 			return skb;
1325 		}
1326 	}
1327 	return NULL;
1328 }
1329 EXPORT_SYMBOL(sock_wmalloc);
1330 
1331 /*
1332  * Allocate a skb from the socket's receive buffer.
1333  */
1334 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1335 			     gfp_t priority)
1336 {
1337 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1338 		struct sk_buff *skb = alloc_skb(size, priority);
1339 		if (skb) {
1340 			skb_set_owner_r(skb, sk);
1341 			return skb;
1342 		}
1343 	}
1344 	return NULL;
1345 }
1346 
1347 /*
1348  * Allocate a memory block from the socket's option memory buffer.
1349  */
1350 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1351 {
1352 	if ((unsigned)size <= sysctl_optmem_max &&
1353 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1354 		void *mem;
1355 		/* First do the add, to avoid the race if kmalloc
1356 		 * might sleep.
1357 		 */
1358 		atomic_add(size, &sk->sk_omem_alloc);
1359 		mem = kmalloc(size, priority);
1360 		if (mem)
1361 			return mem;
1362 		atomic_sub(size, &sk->sk_omem_alloc);
1363 	}
1364 	return NULL;
1365 }
1366 EXPORT_SYMBOL(sock_kmalloc);
1367 
1368 /*
1369  * Free an option memory block.
1370  */
1371 void sock_kfree_s(struct sock *sk, void *mem, int size)
1372 {
1373 	kfree(mem);
1374 	atomic_sub(size, &sk->sk_omem_alloc);
1375 }
1376 EXPORT_SYMBOL(sock_kfree_s);
1377 
1378 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1379    I think, these locks should be removed for datagram sockets.
1380  */
1381 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1382 {
1383 	DEFINE_WAIT(wait);
1384 
1385 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1386 	for (;;) {
1387 		if (!timeo)
1388 			break;
1389 		if (signal_pending(current))
1390 			break;
1391 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1392 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1393 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1394 			break;
1395 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1396 			break;
1397 		if (sk->sk_err)
1398 			break;
1399 		timeo = schedule_timeout(timeo);
1400 	}
1401 	finish_wait(sk->sk_sleep, &wait);
1402 	return timeo;
1403 }
1404 
1405 
1406 /*
1407  *	Generic send/receive buffer handlers
1408  */
1409 
1410 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1411 				     unsigned long data_len, int noblock,
1412 				     int *errcode)
1413 {
1414 	struct sk_buff *skb;
1415 	gfp_t gfp_mask;
1416 	long timeo;
1417 	int err;
1418 
1419 	gfp_mask = sk->sk_allocation;
1420 	if (gfp_mask & __GFP_WAIT)
1421 		gfp_mask |= __GFP_REPEAT;
1422 
1423 	timeo = sock_sndtimeo(sk, noblock);
1424 	while (1) {
1425 		err = sock_error(sk);
1426 		if (err != 0)
1427 			goto failure;
1428 
1429 		err = -EPIPE;
1430 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1431 			goto failure;
1432 
1433 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1434 			skb = alloc_skb(header_len, gfp_mask);
1435 			if (skb) {
1436 				int npages;
1437 				int i;
1438 
1439 				/* No pages, we're done... */
1440 				if (!data_len)
1441 					break;
1442 
1443 				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1444 				skb->truesize += data_len;
1445 				skb_shinfo(skb)->nr_frags = npages;
1446 				for (i = 0; i < npages; i++) {
1447 					struct page *page;
1448 					skb_frag_t *frag;
1449 
1450 					page = alloc_pages(sk->sk_allocation, 0);
1451 					if (!page) {
1452 						err = -ENOBUFS;
1453 						skb_shinfo(skb)->nr_frags = i;
1454 						kfree_skb(skb);
1455 						goto failure;
1456 					}
1457 
1458 					frag = &skb_shinfo(skb)->frags[i];
1459 					frag->page = page;
1460 					frag->page_offset = 0;
1461 					frag->size = (data_len >= PAGE_SIZE ?
1462 						      PAGE_SIZE :
1463 						      data_len);
1464 					data_len -= PAGE_SIZE;
1465 				}
1466 
1467 				/* Full success... */
1468 				break;
1469 			}
1470 			err = -ENOBUFS;
1471 			goto failure;
1472 		}
1473 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1474 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1475 		err = -EAGAIN;
1476 		if (!timeo)
1477 			goto failure;
1478 		if (signal_pending(current))
1479 			goto interrupted;
1480 		timeo = sock_wait_for_wmem(sk, timeo);
1481 	}
1482 
1483 	skb_set_owner_w(skb, sk);
1484 	return skb;
1485 
1486 interrupted:
1487 	err = sock_intr_errno(timeo);
1488 failure:
1489 	*errcode = err;
1490 	return NULL;
1491 }
1492 EXPORT_SYMBOL(sock_alloc_send_pskb);
1493 
1494 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1495 				    int noblock, int *errcode)
1496 {
1497 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1498 }
1499 EXPORT_SYMBOL(sock_alloc_send_skb);
1500 
1501 static void __lock_sock(struct sock *sk)
1502 {
1503 	DEFINE_WAIT(wait);
1504 
1505 	for (;;) {
1506 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1507 					TASK_UNINTERRUPTIBLE);
1508 		spin_unlock_bh(&sk->sk_lock.slock);
1509 		schedule();
1510 		spin_lock_bh(&sk->sk_lock.slock);
1511 		if (!sock_owned_by_user(sk))
1512 			break;
1513 	}
1514 	finish_wait(&sk->sk_lock.wq, &wait);
1515 }
1516 
1517 static void __release_sock(struct sock *sk)
1518 {
1519 	struct sk_buff *skb = sk->sk_backlog.head;
1520 
1521 	do {
1522 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1523 		bh_unlock_sock(sk);
1524 
1525 		do {
1526 			struct sk_buff *next = skb->next;
1527 
1528 			skb->next = NULL;
1529 			sk_backlog_rcv(sk, skb);
1530 
1531 			/*
1532 			 * We are in process context here with softirqs
1533 			 * disabled, use cond_resched_softirq() to preempt.
1534 			 * This is safe to do because we've taken the backlog
1535 			 * queue private:
1536 			 */
1537 			cond_resched_softirq();
1538 
1539 			skb = next;
1540 		} while (skb != NULL);
1541 
1542 		bh_lock_sock(sk);
1543 	} while ((skb = sk->sk_backlog.head) != NULL);
1544 }
1545 
1546 /**
1547  * sk_wait_data - wait for data to arrive at sk_receive_queue
1548  * @sk:    sock to wait on
1549  * @timeo: for how long
1550  *
1551  * Now socket state including sk->sk_err is changed only under lock,
1552  * hence we may omit checks after joining wait queue.
1553  * We check receive queue before schedule() only as optimization;
1554  * it is very likely that release_sock() added new data.
1555  */
1556 int sk_wait_data(struct sock *sk, long *timeo)
1557 {
1558 	int rc;
1559 	DEFINE_WAIT(wait);
1560 
1561 	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1562 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1563 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1564 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1565 	finish_wait(sk->sk_sleep, &wait);
1566 	return rc;
1567 }
1568 EXPORT_SYMBOL(sk_wait_data);
1569 
1570 /**
1571  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1572  *	@sk: socket
1573  *	@size: memory size to allocate
1574  *	@kind: allocation type
1575  *
1576  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1577  *	rmem allocation. This function assumes that protocols which have
1578  *	memory_pressure use sk_wmem_queued as write buffer accounting.
1579  */
1580 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1581 {
1582 	struct proto *prot = sk->sk_prot;
1583 	int amt = sk_mem_pages(size);
1584 	int allocated;
1585 
1586 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1587 	allocated = atomic_add_return(amt, prot->memory_allocated);
1588 
1589 	/* Under limit. */
1590 	if (allocated <= prot->sysctl_mem[0]) {
1591 		if (prot->memory_pressure && *prot->memory_pressure)
1592 			*prot->memory_pressure = 0;
1593 		return 1;
1594 	}
1595 
1596 	/* Under pressure. */
1597 	if (allocated > prot->sysctl_mem[1])
1598 		if (prot->enter_memory_pressure)
1599 			prot->enter_memory_pressure(sk);
1600 
1601 	/* Over hard limit. */
1602 	if (allocated > prot->sysctl_mem[2])
1603 		goto suppress_allocation;
1604 
1605 	/* guarantee minimum buffer size under pressure */
1606 	if (kind == SK_MEM_RECV) {
1607 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1608 			return 1;
1609 	} else { /* SK_MEM_SEND */
1610 		if (sk->sk_type == SOCK_STREAM) {
1611 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1612 				return 1;
1613 		} else if (atomic_read(&sk->sk_wmem_alloc) <
1614 			   prot->sysctl_wmem[0])
1615 				return 1;
1616 	}
1617 
1618 	if (prot->memory_pressure) {
1619 		int alloc;
1620 
1621 		if (!*prot->memory_pressure)
1622 			return 1;
1623 		alloc = percpu_counter_read_positive(prot->sockets_allocated);
1624 		if (prot->sysctl_mem[2] > alloc *
1625 		    sk_mem_pages(sk->sk_wmem_queued +
1626 				 atomic_read(&sk->sk_rmem_alloc) +
1627 				 sk->sk_forward_alloc))
1628 			return 1;
1629 	}
1630 
1631 suppress_allocation:
1632 
1633 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1634 		sk_stream_moderate_sndbuf(sk);
1635 
1636 		/* Fail only if socket is _under_ its sndbuf.
1637 		 * In this case we cannot block, so that we have to fail.
1638 		 */
1639 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1640 			return 1;
1641 	}
1642 
1643 	/* Alas. Undo changes. */
1644 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1645 	atomic_sub(amt, prot->memory_allocated);
1646 	return 0;
1647 }
1648 EXPORT_SYMBOL(__sk_mem_schedule);
1649 
1650 /**
1651  *	__sk_reclaim - reclaim memory_allocated
1652  *	@sk: socket
1653  */
1654 void __sk_mem_reclaim(struct sock *sk)
1655 {
1656 	struct proto *prot = sk->sk_prot;
1657 
1658 	atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1659 		   prot->memory_allocated);
1660 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1661 
1662 	if (prot->memory_pressure && *prot->memory_pressure &&
1663 	    (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1664 		*prot->memory_pressure = 0;
1665 }
1666 EXPORT_SYMBOL(__sk_mem_reclaim);
1667 
1668 
1669 /*
1670  * Set of default routines for initialising struct proto_ops when
1671  * the protocol does not support a particular function. In certain
1672  * cases where it makes no sense for a protocol to have a "do nothing"
1673  * function, some default processing is provided.
1674  */
1675 
1676 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1677 {
1678 	return -EOPNOTSUPP;
1679 }
1680 EXPORT_SYMBOL(sock_no_bind);
1681 
1682 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1683 		    int len, int flags)
1684 {
1685 	return -EOPNOTSUPP;
1686 }
1687 EXPORT_SYMBOL(sock_no_connect);
1688 
1689 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1690 {
1691 	return -EOPNOTSUPP;
1692 }
1693 EXPORT_SYMBOL(sock_no_socketpair);
1694 
1695 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1696 {
1697 	return -EOPNOTSUPP;
1698 }
1699 EXPORT_SYMBOL(sock_no_accept);
1700 
1701 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1702 		    int *len, int peer)
1703 {
1704 	return -EOPNOTSUPP;
1705 }
1706 EXPORT_SYMBOL(sock_no_getname);
1707 
1708 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1709 {
1710 	return 0;
1711 }
1712 EXPORT_SYMBOL(sock_no_poll);
1713 
1714 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1715 {
1716 	return -EOPNOTSUPP;
1717 }
1718 EXPORT_SYMBOL(sock_no_ioctl);
1719 
1720 int sock_no_listen(struct socket *sock, int backlog)
1721 {
1722 	return -EOPNOTSUPP;
1723 }
1724 EXPORT_SYMBOL(sock_no_listen);
1725 
1726 int sock_no_shutdown(struct socket *sock, int how)
1727 {
1728 	return -EOPNOTSUPP;
1729 }
1730 EXPORT_SYMBOL(sock_no_shutdown);
1731 
1732 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1733 		    char __user *optval, unsigned int optlen)
1734 {
1735 	return -EOPNOTSUPP;
1736 }
1737 EXPORT_SYMBOL(sock_no_setsockopt);
1738 
1739 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1740 		    char __user *optval, int __user *optlen)
1741 {
1742 	return -EOPNOTSUPP;
1743 }
1744 EXPORT_SYMBOL(sock_no_getsockopt);
1745 
1746 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1747 		    size_t len)
1748 {
1749 	return -EOPNOTSUPP;
1750 }
1751 EXPORT_SYMBOL(sock_no_sendmsg);
1752 
1753 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1754 		    size_t len, int flags)
1755 {
1756 	return -EOPNOTSUPP;
1757 }
1758 EXPORT_SYMBOL(sock_no_recvmsg);
1759 
1760 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1761 {
1762 	/* Mirror missing mmap method error code */
1763 	return -ENODEV;
1764 }
1765 EXPORT_SYMBOL(sock_no_mmap);
1766 
1767 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1768 {
1769 	ssize_t res;
1770 	struct msghdr msg = {.msg_flags = flags};
1771 	struct kvec iov;
1772 	char *kaddr = kmap(page);
1773 	iov.iov_base = kaddr + offset;
1774 	iov.iov_len = size;
1775 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1776 	kunmap(page);
1777 	return res;
1778 }
1779 EXPORT_SYMBOL(sock_no_sendpage);
1780 
1781 /*
1782  *	Default Socket Callbacks
1783  */
1784 
1785 static void sock_def_wakeup(struct sock *sk)
1786 {
1787 	read_lock(&sk->sk_callback_lock);
1788 	if (sk_has_sleeper(sk))
1789 		wake_up_interruptible_all(sk->sk_sleep);
1790 	read_unlock(&sk->sk_callback_lock);
1791 }
1792 
1793 static void sock_def_error_report(struct sock *sk)
1794 {
1795 	read_lock(&sk->sk_callback_lock);
1796 	if (sk_has_sleeper(sk))
1797 		wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1798 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1799 	read_unlock(&sk->sk_callback_lock);
1800 }
1801 
1802 static void sock_def_readable(struct sock *sk, int len)
1803 {
1804 	read_lock(&sk->sk_callback_lock);
1805 	if (sk_has_sleeper(sk))
1806 		wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1807 						POLLRDNORM | POLLRDBAND);
1808 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1809 	read_unlock(&sk->sk_callback_lock);
1810 }
1811 
1812 static void sock_def_write_space(struct sock *sk)
1813 {
1814 	read_lock(&sk->sk_callback_lock);
1815 
1816 	/* Do not wake up a writer until he can make "significant"
1817 	 * progress.  --DaveM
1818 	 */
1819 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1820 		if (sk_has_sleeper(sk))
1821 			wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1822 						POLLWRNORM | POLLWRBAND);
1823 
1824 		/* Should agree with poll, otherwise some programs break */
1825 		if (sock_writeable(sk))
1826 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1827 	}
1828 
1829 	read_unlock(&sk->sk_callback_lock);
1830 }
1831 
1832 static void sock_def_destruct(struct sock *sk)
1833 {
1834 	kfree(sk->sk_protinfo);
1835 }
1836 
1837 void sk_send_sigurg(struct sock *sk)
1838 {
1839 	if (sk->sk_socket && sk->sk_socket->file)
1840 		if (send_sigurg(&sk->sk_socket->file->f_owner))
1841 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1842 }
1843 EXPORT_SYMBOL(sk_send_sigurg);
1844 
1845 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1846 		    unsigned long expires)
1847 {
1848 	if (!mod_timer(timer, expires))
1849 		sock_hold(sk);
1850 }
1851 EXPORT_SYMBOL(sk_reset_timer);
1852 
1853 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1854 {
1855 	if (timer_pending(timer) && del_timer(timer))
1856 		__sock_put(sk);
1857 }
1858 EXPORT_SYMBOL(sk_stop_timer);
1859 
1860 void sock_init_data(struct socket *sock, struct sock *sk)
1861 {
1862 	skb_queue_head_init(&sk->sk_receive_queue);
1863 	skb_queue_head_init(&sk->sk_write_queue);
1864 	skb_queue_head_init(&sk->sk_error_queue);
1865 #ifdef CONFIG_NET_DMA
1866 	skb_queue_head_init(&sk->sk_async_wait_queue);
1867 #endif
1868 
1869 	sk->sk_send_head	=	NULL;
1870 
1871 	init_timer(&sk->sk_timer);
1872 
1873 	sk->sk_allocation	=	GFP_KERNEL;
1874 	sk->sk_rcvbuf		=	sysctl_rmem_default;
1875 	sk->sk_sndbuf		=	sysctl_wmem_default;
1876 	sk->sk_state		=	TCP_CLOSE;
1877 	sk_set_socket(sk, sock);
1878 
1879 	sock_set_flag(sk, SOCK_ZAPPED);
1880 
1881 	if (sock) {
1882 		sk->sk_type	=	sock->type;
1883 		sk->sk_sleep	=	&sock->wait;
1884 		sock->sk	=	sk;
1885 	} else
1886 		sk->sk_sleep	=	NULL;
1887 
1888 	rwlock_init(&sk->sk_dst_lock);
1889 	rwlock_init(&sk->sk_callback_lock);
1890 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1891 			af_callback_keys + sk->sk_family,
1892 			af_family_clock_key_strings[sk->sk_family]);
1893 
1894 	sk->sk_state_change	=	sock_def_wakeup;
1895 	sk->sk_data_ready	=	sock_def_readable;
1896 	sk->sk_write_space	=	sock_def_write_space;
1897 	sk->sk_error_report	=	sock_def_error_report;
1898 	sk->sk_destruct		=	sock_def_destruct;
1899 
1900 	sk->sk_sndmsg_page	=	NULL;
1901 	sk->sk_sndmsg_off	=	0;
1902 
1903 	sk->sk_peercred.pid 	=	0;
1904 	sk->sk_peercred.uid	=	-1;
1905 	sk->sk_peercred.gid	=	-1;
1906 	sk->sk_write_pending	=	0;
1907 	sk->sk_rcvlowat		=	1;
1908 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1909 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1910 
1911 	sk->sk_stamp = ktime_set(-1L, 0);
1912 
1913 	/*
1914 	 * Before updating sk_refcnt, we must commit prior changes to memory
1915 	 * (Documentation/RCU/rculist_nulls.txt for details)
1916 	 */
1917 	smp_wmb();
1918 	atomic_set(&sk->sk_refcnt, 1);
1919 	atomic_set(&sk->sk_drops, 0);
1920 }
1921 EXPORT_SYMBOL(sock_init_data);
1922 
1923 void lock_sock_nested(struct sock *sk, int subclass)
1924 {
1925 	might_sleep();
1926 	spin_lock_bh(&sk->sk_lock.slock);
1927 	if (sk->sk_lock.owned)
1928 		__lock_sock(sk);
1929 	sk->sk_lock.owned = 1;
1930 	spin_unlock(&sk->sk_lock.slock);
1931 	/*
1932 	 * The sk_lock has mutex_lock() semantics here:
1933 	 */
1934 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1935 	local_bh_enable();
1936 }
1937 EXPORT_SYMBOL(lock_sock_nested);
1938 
1939 void release_sock(struct sock *sk)
1940 {
1941 	/*
1942 	 * The sk_lock has mutex_unlock() semantics:
1943 	 */
1944 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1945 
1946 	spin_lock_bh(&sk->sk_lock.slock);
1947 	if (sk->sk_backlog.tail)
1948 		__release_sock(sk);
1949 	sk->sk_lock.owned = 0;
1950 	if (waitqueue_active(&sk->sk_lock.wq))
1951 		wake_up(&sk->sk_lock.wq);
1952 	spin_unlock_bh(&sk->sk_lock.slock);
1953 }
1954 EXPORT_SYMBOL(release_sock);
1955 
1956 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1957 {
1958 	struct timeval tv;
1959 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1960 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1961 	tv = ktime_to_timeval(sk->sk_stamp);
1962 	if (tv.tv_sec == -1)
1963 		return -ENOENT;
1964 	if (tv.tv_sec == 0) {
1965 		sk->sk_stamp = ktime_get_real();
1966 		tv = ktime_to_timeval(sk->sk_stamp);
1967 	}
1968 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1969 }
1970 EXPORT_SYMBOL(sock_get_timestamp);
1971 
1972 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1973 {
1974 	struct timespec ts;
1975 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1976 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1977 	ts = ktime_to_timespec(sk->sk_stamp);
1978 	if (ts.tv_sec == -1)
1979 		return -ENOENT;
1980 	if (ts.tv_sec == 0) {
1981 		sk->sk_stamp = ktime_get_real();
1982 		ts = ktime_to_timespec(sk->sk_stamp);
1983 	}
1984 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1985 }
1986 EXPORT_SYMBOL(sock_get_timestampns);
1987 
1988 void sock_enable_timestamp(struct sock *sk, int flag)
1989 {
1990 	if (!sock_flag(sk, flag)) {
1991 		sock_set_flag(sk, flag);
1992 		/*
1993 		 * we just set one of the two flags which require net
1994 		 * time stamping, but time stamping might have been on
1995 		 * already because of the other one
1996 		 */
1997 		if (!sock_flag(sk,
1998 				flag == SOCK_TIMESTAMP ?
1999 				SOCK_TIMESTAMPING_RX_SOFTWARE :
2000 				SOCK_TIMESTAMP))
2001 			net_enable_timestamp();
2002 	}
2003 }
2004 
2005 /*
2006  *	Get a socket option on an socket.
2007  *
2008  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2009  *	asynchronous errors should be reported by getsockopt. We assume
2010  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2011  */
2012 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2013 			   char __user *optval, int __user *optlen)
2014 {
2015 	struct sock *sk = sock->sk;
2016 
2017 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2018 }
2019 EXPORT_SYMBOL(sock_common_getsockopt);
2020 
2021 #ifdef CONFIG_COMPAT
2022 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2023 				  char __user *optval, int __user *optlen)
2024 {
2025 	struct sock *sk = sock->sk;
2026 
2027 	if (sk->sk_prot->compat_getsockopt != NULL)
2028 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2029 						      optval, optlen);
2030 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2031 }
2032 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2033 #endif
2034 
2035 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2036 			struct msghdr *msg, size_t size, int flags)
2037 {
2038 	struct sock *sk = sock->sk;
2039 	int addr_len = 0;
2040 	int err;
2041 
2042 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2043 				   flags & ~MSG_DONTWAIT, &addr_len);
2044 	if (err >= 0)
2045 		msg->msg_namelen = addr_len;
2046 	return err;
2047 }
2048 EXPORT_SYMBOL(sock_common_recvmsg);
2049 
2050 /*
2051  *	Set socket options on an inet socket.
2052  */
2053 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2054 			   char __user *optval, unsigned int optlen)
2055 {
2056 	struct sock *sk = sock->sk;
2057 
2058 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2059 }
2060 EXPORT_SYMBOL(sock_common_setsockopt);
2061 
2062 #ifdef CONFIG_COMPAT
2063 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2064 				  char __user *optval, unsigned int optlen)
2065 {
2066 	struct sock *sk = sock->sk;
2067 
2068 	if (sk->sk_prot->compat_setsockopt != NULL)
2069 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2070 						      optval, optlen);
2071 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2072 }
2073 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2074 #endif
2075 
2076 void sk_common_release(struct sock *sk)
2077 {
2078 	if (sk->sk_prot->destroy)
2079 		sk->sk_prot->destroy(sk);
2080 
2081 	/*
2082 	 * Observation: when sock_common_release is called, processes have
2083 	 * no access to socket. But net still has.
2084 	 * Step one, detach it from networking:
2085 	 *
2086 	 * A. Remove from hash tables.
2087 	 */
2088 
2089 	sk->sk_prot->unhash(sk);
2090 
2091 	/*
2092 	 * In this point socket cannot receive new packets, but it is possible
2093 	 * that some packets are in flight because some CPU runs receiver and
2094 	 * did hash table lookup before we unhashed socket. They will achieve
2095 	 * receive queue and will be purged by socket destructor.
2096 	 *
2097 	 * Also we still have packets pending on receive queue and probably,
2098 	 * our own packets waiting in device queues. sock_destroy will drain
2099 	 * receive queue, but transmitted packets will delay socket destruction
2100 	 * until the last reference will be released.
2101 	 */
2102 
2103 	sock_orphan(sk);
2104 
2105 	xfrm_sk_free_policy(sk);
2106 
2107 	sk_refcnt_debug_release(sk);
2108 	sock_put(sk);
2109 }
2110 EXPORT_SYMBOL(sk_common_release);
2111 
2112 static DEFINE_RWLOCK(proto_list_lock);
2113 static LIST_HEAD(proto_list);
2114 
2115 #ifdef CONFIG_PROC_FS
2116 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2117 struct prot_inuse {
2118 	int val[PROTO_INUSE_NR];
2119 };
2120 
2121 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2122 
2123 #ifdef CONFIG_NET_NS
2124 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2125 {
2126 	int cpu = smp_processor_id();
2127 	per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2128 }
2129 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2130 
2131 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2132 {
2133 	int cpu, idx = prot->inuse_idx;
2134 	int res = 0;
2135 
2136 	for_each_possible_cpu(cpu)
2137 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2138 
2139 	return res >= 0 ? res : 0;
2140 }
2141 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2142 
2143 static int sock_inuse_init_net(struct net *net)
2144 {
2145 	net->core.inuse = alloc_percpu(struct prot_inuse);
2146 	return net->core.inuse ? 0 : -ENOMEM;
2147 }
2148 
2149 static void sock_inuse_exit_net(struct net *net)
2150 {
2151 	free_percpu(net->core.inuse);
2152 }
2153 
2154 static struct pernet_operations net_inuse_ops = {
2155 	.init = sock_inuse_init_net,
2156 	.exit = sock_inuse_exit_net,
2157 };
2158 
2159 static __init int net_inuse_init(void)
2160 {
2161 	if (register_pernet_subsys(&net_inuse_ops))
2162 		panic("Cannot initialize net inuse counters");
2163 
2164 	return 0;
2165 }
2166 
2167 core_initcall(net_inuse_init);
2168 #else
2169 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2170 
2171 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2172 {
2173 	__get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2174 }
2175 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2176 
2177 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2178 {
2179 	int cpu, idx = prot->inuse_idx;
2180 	int res = 0;
2181 
2182 	for_each_possible_cpu(cpu)
2183 		res += per_cpu(prot_inuse, cpu).val[idx];
2184 
2185 	return res >= 0 ? res : 0;
2186 }
2187 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2188 #endif
2189 
2190 static void assign_proto_idx(struct proto *prot)
2191 {
2192 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2193 
2194 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2195 		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2196 		return;
2197 	}
2198 
2199 	set_bit(prot->inuse_idx, proto_inuse_idx);
2200 }
2201 
2202 static void release_proto_idx(struct proto *prot)
2203 {
2204 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2205 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2206 }
2207 #else
2208 static inline void assign_proto_idx(struct proto *prot)
2209 {
2210 }
2211 
2212 static inline void release_proto_idx(struct proto *prot)
2213 {
2214 }
2215 #endif
2216 
2217 int proto_register(struct proto *prot, int alloc_slab)
2218 {
2219 	if (alloc_slab) {
2220 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2221 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2222 					NULL);
2223 
2224 		if (prot->slab == NULL) {
2225 			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2226 			       prot->name);
2227 			goto out;
2228 		}
2229 
2230 		if (prot->rsk_prot != NULL) {
2231 			static const char mask[] = "request_sock_%s";
2232 
2233 			prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2234 			if (prot->rsk_prot->slab_name == NULL)
2235 				goto out_free_sock_slab;
2236 
2237 			sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2238 			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2239 								 prot->rsk_prot->obj_size, 0,
2240 								 SLAB_HWCACHE_ALIGN, NULL);
2241 
2242 			if (prot->rsk_prot->slab == NULL) {
2243 				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2244 				       prot->name);
2245 				goto out_free_request_sock_slab_name;
2246 			}
2247 		}
2248 
2249 		if (prot->twsk_prot != NULL) {
2250 			static const char mask[] = "tw_sock_%s";
2251 
2252 			prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2253 
2254 			if (prot->twsk_prot->twsk_slab_name == NULL)
2255 				goto out_free_request_sock_slab;
2256 
2257 			sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2258 			prot->twsk_prot->twsk_slab =
2259 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2260 						  prot->twsk_prot->twsk_obj_size,
2261 						  0,
2262 						  SLAB_HWCACHE_ALIGN |
2263 							prot->slab_flags,
2264 						  NULL);
2265 			if (prot->twsk_prot->twsk_slab == NULL)
2266 				goto out_free_timewait_sock_slab_name;
2267 		}
2268 	}
2269 
2270 	write_lock(&proto_list_lock);
2271 	list_add(&prot->node, &proto_list);
2272 	assign_proto_idx(prot);
2273 	write_unlock(&proto_list_lock);
2274 	return 0;
2275 
2276 out_free_timewait_sock_slab_name:
2277 	kfree(prot->twsk_prot->twsk_slab_name);
2278 out_free_request_sock_slab:
2279 	if (prot->rsk_prot && prot->rsk_prot->slab) {
2280 		kmem_cache_destroy(prot->rsk_prot->slab);
2281 		prot->rsk_prot->slab = NULL;
2282 	}
2283 out_free_request_sock_slab_name:
2284 	kfree(prot->rsk_prot->slab_name);
2285 out_free_sock_slab:
2286 	kmem_cache_destroy(prot->slab);
2287 	prot->slab = NULL;
2288 out:
2289 	return -ENOBUFS;
2290 }
2291 EXPORT_SYMBOL(proto_register);
2292 
2293 void proto_unregister(struct proto *prot)
2294 {
2295 	write_lock(&proto_list_lock);
2296 	release_proto_idx(prot);
2297 	list_del(&prot->node);
2298 	write_unlock(&proto_list_lock);
2299 
2300 	if (prot->slab != NULL) {
2301 		kmem_cache_destroy(prot->slab);
2302 		prot->slab = NULL;
2303 	}
2304 
2305 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2306 		kmem_cache_destroy(prot->rsk_prot->slab);
2307 		kfree(prot->rsk_prot->slab_name);
2308 		prot->rsk_prot->slab = NULL;
2309 	}
2310 
2311 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2312 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2313 		kfree(prot->twsk_prot->twsk_slab_name);
2314 		prot->twsk_prot->twsk_slab = NULL;
2315 	}
2316 }
2317 EXPORT_SYMBOL(proto_unregister);
2318 
2319 #ifdef CONFIG_PROC_FS
2320 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2321 	__acquires(proto_list_lock)
2322 {
2323 	read_lock(&proto_list_lock);
2324 	return seq_list_start_head(&proto_list, *pos);
2325 }
2326 
2327 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2328 {
2329 	return seq_list_next(v, &proto_list, pos);
2330 }
2331 
2332 static void proto_seq_stop(struct seq_file *seq, void *v)
2333 	__releases(proto_list_lock)
2334 {
2335 	read_unlock(&proto_list_lock);
2336 }
2337 
2338 static char proto_method_implemented(const void *method)
2339 {
2340 	return method == NULL ? 'n' : 'y';
2341 }
2342 
2343 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2344 {
2345 	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2346 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2347 		   proto->name,
2348 		   proto->obj_size,
2349 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2350 		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2351 		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2352 		   proto->max_header,
2353 		   proto->slab == NULL ? "no" : "yes",
2354 		   module_name(proto->owner),
2355 		   proto_method_implemented(proto->close),
2356 		   proto_method_implemented(proto->connect),
2357 		   proto_method_implemented(proto->disconnect),
2358 		   proto_method_implemented(proto->accept),
2359 		   proto_method_implemented(proto->ioctl),
2360 		   proto_method_implemented(proto->init),
2361 		   proto_method_implemented(proto->destroy),
2362 		   proto_method_implemented(proto->shutdown),
2363 		   proto_method_implemented(proto->setsockopt),
2364 		   proto_method_implemented(proto->getsockopt),
2365 		   proto_method_implemented(proto->sendmsg),
2366 		   proto_method_implemented(proto->recvmsg),
2367 		   proto_method_implemented(proto->sendpage),
2368 		   proto_method_implemented(proto->bind),
2369 		   proto_method_implemented(proto->backlog_rcv),
2370 		   proto_method_implemented(proto->hash),
2371 		   proto_method_implemented(proto->unhash),
2372 		   proto_method_implemented(proto->get_port),
2373 		   proto_method_implemented(proto->enter_memory_pressure));
2374 }
2375 
2376 static int proto_seq_show(struct seq_file *seq, void *v)
2377 {
2378 	if (v == &proto_list)
2379 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2380 			   "protocol",
2381 			   "size",
2382 			   "sockets",
2383 			   "memory",
2384 			   "press",
2385 			   "maxhdr",
2386 			   "slab",
2387 			   "module",
2388 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2389 	else
2390 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2391 	return 0;
2392 }
2393 
2394 static const struct seq_operations proto_seq_ops = {
2395 	.start  = proto_seq_start,
2396 	.next   = proto_seq_next,
2397 	.stop   = proto_seq_stop,
2398 	.show   = proto_seq_show,
2399 };
2400 
2401 static int proto_seq_open(struct inode *inode, struct file *file)
2402 {
2403 	return seq_open_net(inode, file, &proto_seq_ops,
2404 			    sizeof(struct seq_net_private));
2405 }
2406 
2407 static const struct file_operations proto_seq_fops = {
2408 	.owner		= THIS_MODULE,
2409 	.open		= proto_seq_open,
2410 	.read		= seq_read,
2411 	.llseek		= seq_lseek,
2412 	.release	= seq_release_net,
2413 };
2414 
2415 static __net_init int proto_init_net(struct net *net)
2416 {
2417 	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2418 		return -ENOMEM;
2419 
2420 	return 0;
2421 }
2422 
2423 static __net_exit void proto_exit_net(struct net *net)
2424 {
2425 	proc_net_remove(net, "protocols");
2426 }
2427 
2428 
2429 static __net_initdata struct pernet_operations proto_net_ops = {
2430 	.init = proto_init_net,
2431 	.exit = proto_exit_net,
2432 };
2433 
2434 static int __init proto_init(void)
2435 {
2436 	return register_pernet_subsys(&proto_net_ops);
2437 }
2438 
2439 subsys_initcall(proto_init);
2440 
2441 #endif /* PROC_FS */
2442