xref: /openbmc/linux/net/core/sock.c (revision e0bf6c5c)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120 
121 #include <asm/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 
135 #include <linux/filter.h>
136 
137 #include <trace/events/sock.h>
138 
139 #ifdef CONFIG_INET
140 #include <net/tcp.h>
141 #endif
142 
143 #include <net/busy_poll.h>
144 
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
147 
148 /**
149  * sk_ns_capable - General socket capability test
150  * @sk: Socket to use a capability on or through
151  * @user_ns: The user namespace of the capability to use
152  * @cap: The capability to use
153  *
154  * Test to see if the opener of the socket had when the socket was
155  * created and the current process has the capability @cap in the user
156  * namespace @user_ns.
157  */
158 bool sk_ns_capable(const struct sock *sk,
159 		   struct user_namespace *user_ns, int cap)
160 {
161 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162 		ns_capable(user_ns, cap);
163 }
164 EXPORT_SYMBOL(sk_ns_capable);
165 
166 /**
167  * sk_capable - Socket global capability test
168  * @sk: Socket to use a capability on or through
169  * @cap: The global capability to use
170  *
171  * Test to see if the opener of the socket had when the socket was
172  * created and the current process has the capability @cap in all user
173  * namespaces.
174  */
175 bool sk_capable(const struct sock *sk, int cap)
176 {
177 	return sk_ns_capable(sk, &init_user_ns, cap);
178 }
179 EXPORT_SYMBOL(sk_capable);
180 
181 /**
182  * sk_net_capable - Network namespace socket capability test
183  * @sk: Socket to use a capability on or through
184  * @cap: The capability to use
185  *
186  * Test to see if the opener of the socket had when the socket was created
187  * and the current process has the capability @cap over the network namespace
188  * the socket is a member of.
189  */
190 bool sk_net_capable(const struct sock *sk, int cap)
191 {
192 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193 }
194 EXPORT_SYMBOL(sk_net_capable);
195 
196 
197 #ifdef CONFIG_MEMCG_KMEM
198 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
199 {
200 	struct proto *proto;
201 	int ret = 0;
202 
203 	mutex_lock(&proto_list_mutex);
204 	list_for_each_entry(proto, &proto_list, node) {
205 		if (proto->init_cgroup) {
206 			ret = proto->init_cgroup(memcg, ss);
207 			if (ret)
208 				goto out;
209 		}
210 	}
211 
212 	mutex_unlock(&proto_list_mutex);
213 	return ret;
214 out:
215 	list_for_each_entry_continue_reverse(proto, &proto_list, node)
216 		if (proto->destroy_cgroup)
217 			proto->destroy_cgroup(memcg);
218 	mutex_unlock(&proto_list_mutex);
219 	return ret;
220 }
221 
222 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
223 {
224 	struct proto *proto;
225 
226 	mutex_lock(&proto_list_mutex);
227 	list_for_each_entry_reverse(proto, &proto_list, node)
228 		if (proto->destroy_cgroup)
229 			proto->destroy_cgroup(memcg);
230 	mutex_unlock(&proto_list_mutex);
231 }
232 #endif
233 
234 /*
235  * Each address family might have different locking rules, so we have
236  * one slock key per address family:
237  */
238 static struct lock_class_key af_family_keys[AF_MAX];
239 static struct lock_class_key af_family_slock_keys[AF_MAX];
240 
241 #if defined(CONFIG_MEMCG_KMEM)
242 struct static_key memcg_socket_limit_enabled;
243 EXPORT_SYMBOL(memcg_socket_limit_enabled);
244 #endif
245 
246 /*
247  * Make lock validator output more readable. (we pre-construct these
248  * strings build-time, so that runtime initialization of socket
249  * locks is fast):
250  */
251 static const char *const af_family_key_strings[AF_MAX+1] = {
252   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
253   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
254   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
255   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
256   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
257   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
258   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
259   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
260   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
261   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
262   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
263   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
264   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
265   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_MAX"
266 };
267 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
268   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
269   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
270   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
271   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
272   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
273   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
274   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
275   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
276   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
277   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
278   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
279   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
280   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
281   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_MAX"
282 };
283 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
284   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
285   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
286   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
287   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
288   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
289   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
290   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
291   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
292   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
293   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
294   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
295   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
296   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
297   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_MAX"
298 };
299 
300 /*
301  * sk_callback_lock locking rules are per-address-family,
302  * so split the lock classes by using a per-AF key:
303  */
304 static struct lock_class_key af_callback_keys[AF_MAX];
305 
306 /* Take into consideration the size of the struct sk_buff overhead in the
307  * determination of these values, since that is non-constant across
308  * platforms.  This makes socket queueing behavior and performance
309  * not depend upon such differences.
310  */
311 #define _SK_MEM_PACKETS		256
312 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
313 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
314 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315 
316 /* Run time adjustable parameters. */
317 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
318 EXPORT_SYMBOL(sysctl_wmem_max);
319 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
320 EXPORT_SYMBOL(sysctl_rmem_max);
321 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
322 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
323 
324 /* Maximal space eaten by iovec or ancillary data plus some space */
325 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
326 EXPORT_SYMBOL(sysctl_optmem_max);
327 
328 int sysctl_tstamp_allow_data __read_mostly = 1;
329 
330 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
331 EXPORT_SYMBOL_GPL(memalloc_socks);
332 
333 /**
334  * sk_set_memalloc - sets %SOCK_MEMALLOC
335  * @sk: socket to set it on
336  *
337  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
338  * It's the responsibility of the admin to adjust min_free_kbytes
339  * to meet the requirements
340  */
341 void sk_set_memalloc(struct sock *sk)
342 {
343 	sock_set_flag(sk, SOCK_MEMALLOC);
344 	sk->sk_allocation |= __GFP_MEMALLOC;
345 	static_key_slow_inc(&memalloc_socks);
346 }
347 EXPORT_SYMBOL_GPL(sk_set_memalloc);
348 
349 void sk_clear_memalloc(struct sock *sk)
350 {
351 	sock_reset_flag(sk, SOCK_MEMALLOC);
352 	sk->sk_allocation &= ~__GFP_MEMALLOC;
353 	static_key_slow_dec(&memalloc_socks);
354 
355 	/*
356 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
357 	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
358 	 * it has rmem allocations there is a risk that the user of the
359 	 * socket cannot make forward progress due to exceeding the rmem
360 	 * limits. By rights, sk_clear_memalloc() should only be called
361 	 * on sockets being torn down but warn and reset the accounting if
362 	 * that assumption breaks.
363 	 */
364 	if (WARN_ON(sk->sk_forward_alloc))
365 		sk_mem_reclaim(sk);
366 }
367 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
368 
369 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
370 {
371 	int ret;
372 	unsigned long pflags = current->flags;
373 
374 	/* these should have been dropped before queueing */
375 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
376 
377 	current->flags |= PF_MEMALLOC;
378 	ret = sk->sk_backlog_rcv(sk, skb);
379 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
380 
381 	return ret;
382 }
383 EXPORT_SYMBOL(__sk_backlog_rcv);
384 
385 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
386 {
387 	struct timeval tv;
388 
389 	if (optlen < sizeof(tv))
390 		return -EINVAL;
391 	if (copy_from_user(&tv, optval, sizeof(tv)))
392 		return -EFAULT;
393 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
394 		return -EDOM;
395 
396 	if (tv.tv_sec < 0) {
397 		static int warned __read_mostly;
398 
399 		*timeo_p = 0;
400 		if (warned < 10 && net_ratelimit()) {
401 			warned++;
402 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
403 				__func__, current->comm, task_pid_nr(current));
404 		}
405 		return 0;
406 	}
407 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
408 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
409 		return 0;
410 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
411 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
412 	return 0;
413 }
414 
415 static void sock_warn_obsolete_bsdism(const char *name)
416 {
417 	static int warned;
418 	static char warncomm[TASK_COMM_LEN];
419 	if (strcmp(warncomm, current->comm) && warned < 5) {
420 		strcpy(warncomm,  current->comm);
421 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
422 			warncomm, name);
423 		warned++;
424 	}
425 }
426 
427 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
428 
429 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
430 {
431 	if (sk->sk_flags & flags) {
432 		sk->sk_flags &= ~flags;
433 		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
434 			net_disable_timestamp();
435 	}
436 }
437 
438 
439 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
440 {
441 	int err;
442 	unsigned long flags;
443 	struct sk_buff_head *list = &sk->sk_receive_queue;
444 
445 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
446 		atomic_inc(&sk->sk_drops);
447 		trace_sock_rcvqueue_full(sk, skb);
448 		return -ENOMEM;
449 	}
450 
451 	err = sk_filter(sk, skb);
452 	if (err)
453 		return err;
454 
455 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
456 		atomic_inc(&sk->sk_drops);
457 		return -ENOBUFS;
458 	}
459 
460 	skb->dev = NULL;
461 	skb_set_owner_r(skb, sk);
462 
463 	/* we escape from rcu protected region, make sure we dont leak
464 	 * a norefcounted dst
465 	 */
466 	skb_dst_force(skb);
467 
468 	spin_lock_irqsave(&list->lock, flags);
469 	skb->dropcount = atomic_read(&sk->sk_drops);
470 	__skb_queue_tail(list, skb);
471 	spin_unlock_irqrestore(&list->lock, flags);
472 
473 	if (!sock_flag(sk, SOCK_DEAD))
474 		sk->sk_data_ready(sk);
475 	return 0;
476 }
477 EXPORT_SYMBOL(sock_queue_rcv_skb);
478 
479 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
480 {
481 	int rc = NET_RX_SUCCESS;
482 
483 	if (sk_filter(sk, skb))
484 		goto discard_and_relse;
485 
486 	skb->dev = NULL;
487 
488 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
489 		atomic_inc(&sk->sk_drops);
490 		goto discard_and_relse;
491 	}
492 	if (nested)
493 		bh_lock_sock_nested(sk);
494 	else
495 		bh_lock_sock(sk);
496 	if (!sock_owned_by_user(sk)) {
497 		/*
498 		 * trylock + unlock semantics:
499 		 */
500 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
501 
502 		rc = sk_backlog_rcv(sk, skb);
503 
504 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
505 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
506 		bh_unlock_sock(sk);
507 		atomic_inc(&sk->sk_drops);
508 		goto discard_and_relse;
509 	}
510 
511 	bh_unlock_sock(sk);
512 out:
513 	sock_put(sk);
514 	return rc;
515 discard_and_relse:
516 	kfree_skb(skb);
517 	goto out;
518 }
519 EXPORT_SYMBOL(sk_receive_skb);
520 
521 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
522 {
523 	struct dst_entry *dst = __sk_dst_get(sk);
524 
525 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
526 		sk_tx_queue_clear(sk);
527 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
528 		dst_release(dst);
529 		return NULL;
530 	}
531 
532 	return dst;
533 }
534 EXPORT_SYMBOL(__sk_dst_check);
535 
536 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
537 {
538 	struct dst_entry *dst = sk_dst_get(sk);
539 
540 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
541 		sk_dst_reset(sk);
542 		dst_release(dst);
543 		return NULL;
544 	}
545 
546 	return dst;
547 }
548 EXPORT_SYMBOL(sk_dst_check);
549 
550 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
551 				int optlen)
552 {
553 	int ret = -ENOPROTOOPT;
554 #ifdef CONFIG_NETDEVICES
555 	struct net *net = sock_net(sk);
556 	char devname[IFNAMSIZ];
557 	int index;
558 
559 	/* Sorry... */
560 	ret = -EPERM;
561 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
562 		goto out;
563 
564 	ret = -EINVAL;
565 	if (optlen < 0)
566 		goto out;
567 
568 	/* Bind this socket to a particular device like "eth0",
569 	 * as specified in the passed interface name. If the
570 	 * name is "" or the option length is zero the socket
571 	 * is not bound.
572 	 */
573 	if (optlen > IFNAMSIZ - 1)
574 		optlen = IFNAMSIZ - 1;
575 	memset(devname, 0, sizeof(devname));
576 
577 	ret = -EFAULT;
578 	if (copy_from_user(devname, optval, optlen))
579 		goto out;
580 
581 	index = 0;
582 	if (devname[0] != '\0') {
583 		struct net_device *dev;
584 
585 		rcu_read_lock();
586 		dev = dev_get_by_name_rcu(net, devname);
587 		if (dev)
588 			index = dev->ifindex;
589 		rcu_read_unlock();
590 		ret = -ENODEV;
591 		if (!dev)
592 			goto out;
593 	}
594 
595 	lock_sock(sk);
596 	sk->sk_bound_dev_if = index;
597 	sk_dst_reset(sk);
598 	release_sock(sk);
599 
600 	ret = 0;
601 
602 out:
603 #endif
604 
605 	return ret;
606 }
607 
608 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
609 				int __user *optlen, int len)
610 {
611 	int ret = -ENOPROTOOPT;
612 #ifdef CONFIG_NETDEVICES
613 	struct net *net = sock_net(sk);
614 	char devname[IFNAMSIZ];
615 
616 	if (sk->sk_bound_dev_if == 0) {
617 		len = 0;
618 		goto zero;
619 	}
620 
621 	ret = -EINVAL;
622 	if (len < IFNAMSIZ)
623 		goto out;
624 
625 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
626 	if (ret)
627 		goto out;
628 
629 	len = strlen(devname) + 1;
630 
631 	ret = -EFAULT;
632 	if (copy_to_user(optval, devname, len))
633 		goto out;
634 
635 zero:
636 	ret = -EFAULT;
637 	if (put_user(len, optlen))
638 		goto out;
639 
640 	ret = 0;
641 
642 out:
643 #endif
644 
645 	return ret;
646 }
647 
648 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
649 {
650 	if (valbool)
651 		sock_set_flag(sk, bit);
652 	else
653 		sock_reset_flag(sk, bit);
654 }
655 
656 bool sk_mc_loop(struct sock *sk)
657 {
658 	if (dev_recursion_level())
659 		return false;
660 	if (!sk)
661 		return true;
662 	switch (sk->sk_family) {
663 	case AF_INET:
664 		return inet_sk(sk)->mc_loop;
665 #if IS_ENABLED(CONFIG_IPV6)
666 	case AF_INET6:
667 		return inet6_sk(sk)->mc_loop;
668 #endif
669 	}
670 	WARN_ON(1);
671 	return true;
672 }
673 EXPORT_SYMBOL(sk_mc_loop);
674 
675 /*
676  *	This is meant for all protocols to use and covers goings on
677  *	at the socket level. Everything here is generic.
678  */
679 
680 int sock_setsockopt(struct socket *sock, int level, int optname,
681 		    char __user *optval, unsigned int optlen)
682 {
683 	struct sock *sk = sock->sk;
684 	int val;
685 	int valbool;
686 	struct linger ling;
687 	int ret = 0;
688 
689 	/*
690 	 *	Options without arguments
691 	 */
692 
693 	if (optname == SO_BINDTODEVICE)
694 		return sock_setbindtodevice(sk, optval, optlen);
695 
696 	if (optlen < sizeof(int))
697 		return -EINVAL;
698 
699 	if (get_user(val, (int __user *)optval))
700 		return -EFAULT;
701 
702 	valbool = val ? 1 : 0;
703 
704 	lock_sock(sk);
705 
706 	switch (optname) {
707 	case SO_DEBUG:
708 		if (val && !capable(CAP_NET_ADMIN))
709 			ret = -EACCES;
710 		else
711 			sock_valbool_flag(sk, SOCK_DBG, valbool);
712 		break;
713 	case SO_REUSEADDR:
714 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
715 		break;
716 	case SO_REUSEPORT:
717 		sk->sk_reuseport = valbool;
718 		break;
719 	case SO_TYPE:
720 	case SO_PROTOCOL:
721 	case SO_DOMAIN:
722 	case SO_ERROR:
723 		ret = -ENOPROTOOPT;
724 		break;
725 	case SO_DONTROUTE:
726 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
727 		break;
728 	case SO_BROADCAST:
729 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
730 		break;
731 	case SO_SNDBUF:
732 		/* Don't error on this BSD doesn't and if you think
733 		 * about it this is right. Otherwise apps have to
734 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
735 		 * are treated in BSD as hints
736 		 */
737 		val = min_t(u32, val, sysctl_wmem_max);
738 set_sndbuf:
739 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
740 		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
741 		/* Wake up sending tasks if we upped the value. */
742 		sk->sk_write_space(sk);
743 		break;
744 
745 	case SO_SNDBUFFORCE:
746 		if (!capable(CAP_NET_ADMIN)) {
747 			ret = -EPERM;
748 			break;
749 		}
750 		goto set_sndbuf;
751 
752 	case SO_RCVBUF:
753 		/* Don't error on this BSD doesn't and if you think
754 		 * about it this is right. Otherwise apps have to
755 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
756 		 * are treated in BSD as hints
757 		 */
758 		val = min_t(u32, val, sysctl_rmem_max);
759 set_rcvbuf:
760 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
761 		/*
762 		 * We double it on the way in to account for
763 		 * "struct sk_buff" etc. overhead.   Applications
764 		 * assume that the SO_RCVBUF setting they make will
765 		 * allow that much actual data to be received on that
766 		 * socket.
767 		 *
768 		 * Applications are unaware that "struct sk_buff" and
769 		 * other overheads allocate from the receive buffer
770 		 * during socket buffer allocation.
771 		 *
772 		 * And after considering the possible alternatives,
773 		 * returning the value we actually used in getsockopt
774 		 * is the most desirable behavior.
775 		 */
776 		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
777 		break;
778 
779 	case SO_RCVBUFFORCE:
780 		if (!capable(CAP_NET_ADMIN)) {
781 			ret = -EPERM;
782 			break;
783 		}
784 		goto set_rcvbuf;
785 
786 	case SO_KEEPALIVE:
787 #ifdef CONFIG_INET
788 		if (sk->sk_protocol == IPPROTO_TCP &&
789 		    sk->sk_type == SOCK_STREAM)
790 			tcp_set_keepalive(sk, valbool);
791 #endif
792 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
793 		break;
794 
795 	case SO_OOBINLINE:
796 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
797 		break;
798 
799 	case SO_NO_CHECK:
800 		sk->sk_no_check_tx = valbool;
801 		break;
802 
803 	case SO_PRIORITY:
804 		if ((val >= 0 && val <= 6) ||
805 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
806 			sk->sk_priority = val;
807 		else
808 			ret = -EPERM;
809 		break;
810 
811 	case SO_LINGER:
812 		if (optlen < sizeof(ling)) {
813 			ret = -EINVAL;	/* 1003.1g */
814 			break;
815 		}
816 		if (copy_from_user(&ling, optval, sizeof(ling))) {
817 			ret = -EFAULT;
818 			break;
819 		}
820 		if (!ling.l_onoff)
821 			sock_reset_flag(sk, SOCK_LINGER);
822 		else {
823 #if (BITS_PER_LONG == 32)
824 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
825 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
826 			else
827 #endif
828 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
829 			sock_set_flag(sk, SOCK_LINGER);
830 		}
831 		break;
832 
833 	case SO_BSDCOMPAT:
834 		sock_warn_obsolete_bsdism("setsockopt");
835 		break;
836 
837 	case SO_PASSCRED:
838 		if (valbool)
839 			set_bit(SOCK_PASSCRED, &sock->flags);
840 		else
841 			clear_bit(SOCK_PASSCRED, &sock->flags);
842 		break;
843 
844 	case SO_TIMESTAMP:
845 	case SO_TIMESTAMPNS:
846 		if (valbool)  {
847 			if (optname == SO_TIMESTAMP)
848 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
849 			else
850 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
851 			sock_set_flag(sk, SOCK_RCVTSTAMP);
852 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
853 		} else {
854 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
855 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
856 		}
857 		break;
858 
859 	case SO_TIMESTAMPING:
860 		if (val & ~SOF_TIMESTAMPING_MASK) {
861 			ret = -EINVAL;
862 			break;
863 		}
864 
865 		if (val & SOF_TIMESTAMPING_OPT_ID &&
866 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
867 			if (sk->sk_protocol == IPPROTO_TCP) {
868 				if (sk->sk_state != TCP_ESTABLISHED) {
869 					ret = -EINVAL;
870 					break;
871 				}
872 				sk->sk_tskey = tcp_sk(sk)->snd_una;
873 			} else {
874 				sk->sk_tskey = 0;
875 			}
876 		}
877 		sk->sk_tsflags = val;
878 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
879 			sock_enable_timestamp(sk,
880 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
881 		else
882 			sock_disable_timestamp(sk,
883 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
884 		break;
885 
886 	case SO_RCVLOWAT:
887 		if (val < 0)
888 			val = INT_MAX;
889 		sk->sk_rcvlowat = val ? : 1;
890 		break;
891 
892 	case SO_RCVTIMEO:
893 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
894 		break;
895 
896 	case SO_SNDTIMEO:
897 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
898 		break;
899 
900 	case SO_ATTACH_FILTER:
901 		ret = -EINVAL;
902 		if (optlen == sizeof(struct sock_fprog)) {
903 			struct sock_fprog fprog;
904 
905 			ret = -EFAULT;
906 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
907 				break;
908 
909 			ret = sk_attach_filter(&fprog, sk);
910 		}
911 		break;
912 
913 	case SO_ATTACH_BPF:
914 		ret = -EINVAL;
915 		if (optlen == sizeof(u32)) {
916 			u32 ufd;
917 
918 			ret = -EFAULT;
919 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
920 				break;
921 
922 			ret = sk_attach_bpf(ufd, sk);
923 		}
924 		break;
925 
926 	case SO_DETACH_FILTER:
927 		ret = sk_detach_filter(sk);
928 		break;
929 
930 	case SO_LOCK_FILTER:
931 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
932 			ret = -EPERM;
933 		else
934 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
935 		break;
936 
937 	case SO_PASSSEC:
938 		if (valbool)
939 			set_bit(SOCK_PASSSEC, &sock->flags);
940 		else
941 			clear_bit(SOCK_PASSSEC, &sock->flags);
942 		break;
943 	case SO_MARK:
944 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
945 			ret = -EPERM;
946 		else
947 			sk->sk_mark = val;
948 		break;
949 
950 		/* We implement the SO_SNDLOWAT etc to
951 		   not be settable (1003.1g 5.3) */
952 	case SO_RXQ_OVFL:
953 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
954 		break;
955 
956 	case SO_WIFI_STATUS:
957 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
958 		break;
959 
960 	case SO_PEEK_OFF:
961 		if (sock->ops->set_peek_off)
962 			ret = sock->ops->set_peek_off(sk, val);
963 		else
964 			ret = -EOPNOTSUPP;
965 		break;
966 
967 	case SO_NOFCS:
968 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
969 		break;
970 
971 	case SO_SELECT_ERR_QUEUE:
972 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
973 		break;
974 
975 #ifdef CONFIG_NET_RX_BUSY_POLL
976 	case SO_BUSY_POLL:
977 		/* allow unprivileged users to decrease the value */
978 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
979 			ret = -EPERM;
980 		else {
981 			if (val < 0)
982 				ret = -EINVAL;
983 			else
984 				sk->sk_ll_usec = val;
985 		}
986 		break;
987 #endif
988 
989 	case SO_MAX_PACING_RATE:
990 		sk->sk_max_pacing_rate = val;
991 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
992 					 sk->sk_max_pacing_rate);
993 		break;
994 
995 	default:
996 		ret = -ENOPROTOOPT;
997 		break;
998 	}
999 	release_sock(sk);
1000 	return ret;
1001 }
1002 EXPORT_SYMBOL(sock_setsockopt);
1003 
1004 
1005 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1006 			  struct ucred *ucred)
1007 {
1008 	ucred->pid = pid_vnr(pid);
1009 	ucred->uid = ucred->gid = -1;
1010 	if (cred) {
1011 		struct user_namespace *current_ns = current_user_ns();
1012 
1013 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1014 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1015 	}
1016 }
1017 
1018 int sock_getsockopt(struct socket *sock, int level, int optname,
1019 		    char __user *optval, int __user *optlen)
1020 {
1021 	struct sock *sk = sock->sk;
1022 
1023 	union {
1024 		int val;
1025 		struct linger ling;
1026 		struct timeval tm;
1027 	} v;
1028 
1029 	int lv = sizeof(int);
1030 	int len;
1031 
1032 	if (get_user(len, optlen))
1033 		return -EFAULT;
1034 	if (len < 0)
1035 		return -EINVAL;
1036 
1037 	memset(&v, 0, sizeof(v));
1038 
1039 	switch (optname) {
1040 	case SO_DEBUG:
1041 		v.val = sock_flag(sk, SOCK_DBG);
1042 		break;
1043 
1044 	case SO_DONTROUTE:
1045 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1046 		break;
1047 
1048 	case SO_BROADCAST:
1049 		v.val = sock_flag(sk, SOCK_BROADCAST);
1050 		break;
1051 
1052 	case SO_SNDBUF:
1053 		v.val = sk->sk_sndbuf;
1054 		break;
1055 
1056 	case SO_RCVBUF:
1057 		v.val = sk->sk_rcvbuf;
1058 		break;
1059 
1060 	case SO_REUSEADDR:
1061 		v.val = sk->sk_reuse;
1062 		break;
1063 
1064 	case SO_REUSEPORT:
1065 		v.val = sk->sk_reuseport;
1066 		break;
1067 
1068 	case SO_KEEPALIVE:
1069 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1070 		break;
1071 
1072 	case SO_TYPE:
1073 		v.val = sk->sk_type;
1074 		break;
1075 
1076 	case SO_PROTOCOL:
1077 		v.val = sk->sk_protocol;
1078 		break;
1079 
1080 	case SO_DOMAIN:
1081 		v.val = sk->sk_family;
1082 		break;
1083 
1084 	case SO_ERROR:
1085 		v.val = -sock_error(sk);
1086 		if (v.val == 0)
1087 			v.val = xchg(&sk->sk_err_soft, 0);
1088 		break;
1089 
1090 	case SO_OOBINLINE:
1091 		v.val = sock_flag(sk, SOCK_URGINLINE);
1092 		break;
1093 
1094 	case SO_NO_CHECK:
1095 		v.val = sk->sk_no_check_tx;
1096 		break;
1097 
1098 	case SO_PRIORITY:
1099 		v.val = sk->sk_priority;
1100 		break;
1101 
1102 	case SO_LINGER:
1103 		lv		= sizeof(v.ling);
1104 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1105 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1106 		break;
1107 
1108 	case SO_BSDCOMPAT:
1109 		sock_warn_obsolete_bsdism("getsockopt");
1110 		break;
1111 
1112 	case SO_TIMESTAMP:
1113 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1114 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1115 		break;
1116 
1117 	case SO_TIMESTAMPNS:
1118 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1119 		break;
1120 
1121 	case SO_TIMESTAMPING:
1122 		v.val = sk->sk_tsflags;
1123 		break;
1124 
1125 	case SO_RCVTIMEO:
1126 		lv = sizeof(struct timeval);
1127 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1128 			v.tm.tv_sec = 0;
1129 			v.tm.tv_usec = 0;
1130 		} else {
1131 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1132 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1133 		}
1134 		break;
1135 
1136 	case SO_SNDTIMEO:
1137 		lv = sizeof(struct timeval);
1138 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1139 			v.tm.tv_sec = 0;
1140 			v.tm.tv_usec = 0;
1141 		} else {
1142 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1143 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1144 		}
1145 		break;
1146 
1147 	case SO_RCVLOWAT:
1148 		v.val = sk->sk_rcvlowat;
1149 		break;
1150 
1151 	case SO_SNDLOWAT:
1152 		v.val = 1;
1153 		break;
1154 
1155 	case SO_PASSCRED:
1156 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1157 		break;
1158 
1159 	case SO_PEERCRED:
1160 	{
1161 		struct ucred peercred;
1162 		if (len > sizeof(peercred))
1163 			len = sizeof(peercred);
1164 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1165 		if (copy_to_user(optval, &peercred, len))
1166 			return -EFAULT;
1167 		goto lenout;
1168 	}
1169 
1170 	case SO_PEERNAME:
1171 	{
1172 		char address[128];
1173 
1174 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1175 			return -ENOTCONN;
1176 		if (lv < len)
1177 			return -EINVAL;
1178 		if (copy_to_user(optval, address, len))
1179 			return -EFAULT;
1180 		goto lenout;
1181 	}
1182 
1183 	/* Dubious BSD thing... Probably nobody even uses it, but
1184 	 * the UNIX standard wants it for whatever reason... -DaveM
1185 	 */
1186 	case SO_ACCEPTCONN:
1187 		v.val = sk->sk_state == TCP_LISTEN;
1188 		break;
1189 
1190 	case SO_PASSSEC:
1191 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1192 		break;
1193 
1194 	case SO_PEERSEC:
1195 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1196 
1197 	case SO_MARK:
1198 		v.val = sk->sk_mark;
1199 		break;
1200 
1201 	case SO_RXQ_OVFL:
1202 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1203 		break;
1204 
1205 	case SO_WIFI_STATUS:
1206 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1207 		break;
1208 
1209 	case SO_PEEK_OFF:
1210 		if (!sock->ops->set_peek_off)
1211 			return -EOPNOTSUPP;
1212 
1213 		v.val = sk->sk_peek_off;
1214 		break;
1215 	case SO_NOFCS:
1216 		v.val = sock_flag(sk, SOCK_NOFCS);
1217 		break;
1218 
1219 	case SO_BINDTODEVICE:
1220 		return sock_getbindtodevice(sk, optval, optlen, len);
1221 
1222 	case SO_GET_FILTER:
1223 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1224 		if (len < 0)
1225 			return len;
1226 
1227 		goto lenout;
1228 
1229 	case SO_LOCK_FILTER:
1230 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1231 		break;
1232 
1233 	case SO_BPF_EXTENSIONS:
1234 		v.val = bpf_tell_extensions();
1235 		break;
1236 
1237 	case SO_SELECT_ERR_QUEUE:
1238 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1239 		break;
1240 
1241 #ifdef CONFIG_NET_RX_BUSY_POLL
1242 	case SO_BUSY_POLL:
1243 		v.val = sk->sk_ll_usec;
1244 		break;
1245 #endif
1246 
1247 	case SO_MAX_PACING_RATE:
1248 		v.val = sk->sk_max_pacing_rate;
1249 		break;
1250 
1251 	case SO_INCOMING_CPU:
1252 		v.val = sk->sk_incoming_cpu;
1253 		break;
1254 
1255 	default:
1256 		return -ENOPROTOOPT;
1257 	}
1258 
1259 	if (len > lv)
1260 		len = lv;
1261 	if (copy_to_user(optval, &v, len))
1262 		return -EFAULT;
1263 lenout:
1264 	if (put_user(len, optlen))
1265 		return -EFAULT;
1266 	return 0;
1267 }
1268 
1269 /*
1270  * Initialize an sk_lock.
1271  *
1272  * (We also register the sk_lock with the lock validator.)
1273  */
1274 static inline void sock_lock_init(struct sock *sk)
1275 {
1276 	sock_lock_init_class_and_name(sk,
1277 			af_family_slock_key_strings[sk->sk_family],
1278 			af_family_slock_keys + sk->sk_family,
1279 			af_family_key_strings[sk->sk_family],
1280 			af_family_keys + sk->sk_family);
1281 }
1282 
1283 /*
1284  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1285  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1286  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1287  */
1288 static void sock_copy(struct sock *nsk, const struct sock *osk)
1289 {
1290 #ifdef CONFIG_SECURITY_NETWORK
1291 	void *sptr = nsk->sk_security;
1292 #endif
1293 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1294 
1295 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1296 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1297 
1298 #ifdef CONFIG_SECURITY_NETWORK
1299 	nsk->sk_security = sptr;
1300 	security_sk_clone(osk, nsk);
1301 #endif
1302 }
1303 
1304 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1305 {
1306 	unsigned long nulls1, nulls2;
1307 
1308 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1309 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1310 	if (nulls1 > nulls2)
1311 		swap(nulls1, nulls2);
1312 
1313 	if (nulls1 != 0)
1314 		memset((char *)sk, 0, nulls1);
1315 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1316 	       nulls2 - nulls1 - sizeof(void *));
1317 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1318 	       size - nulls2 - sizeof(void *));
1319 }
1320 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1321 
1322 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1323 		int family)
1324 {
1325 	struct sock *sk;
1326 	struct kmem_cache *slab;
1327 
1328 	slab = prot->slab;
1329 	if (slab != NULL) {
1330 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1331 		if (!sk)
1332 			return sk;
1333 		if (priority & __GFP_ZERO) {
1334 			if (prot->clear_sk)
1335 				prot->clear_sk(sk, prot->obj_size);
1336 			else
1337 				sk_prot_clear_nulls(sk, prot->obj_size);
1338 		}
1339 	} else
1340 		sk = kmalloc(prot->obj_size, priority);
1341 
1342 	if (sk != NULL) {
1343 		kmemcheck_annotate_bitfield(sk, flags);
1344 
1345 		if (security_sk_alloc(sk, family, priority))
1346 			goto out_free;
1347 
1348 		if (!try_module_get(prot->owner))
1349 			goto out_free_sec;
1350 		sk_tx_queue_clear(sk);
1351 	}
1352 
1353 	return sk;
1354 
1355 out_free_sec:
1356 	security_sk_free(sk);
1357 out_free:
1358 	if (slab != NULL)
1359 		kmem_cache_free(slab, sk);
1360 	else
1361 		kfree(sk);
1362 	return NULL;
1363 }
1364 
1365 static void sk_prot_free(struct proto *prot, struct sock *sk)
1366 {
1367 	struct kmem_cache *slab;
1368 	struct module *owner;
1369 
1370 	owner = prot->owner;
1371 	slab = prot->slab;
1372 
1373 	security_sk_free(sk);
1374 	if (slab != NULL)
1375 		kmem_cache_free(slab, sk);
1376 	else
1377 		kfree(sk);
1378 	module_put(owner);
1379 }
1380 
1381 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1382 void sock_update_netprioidx(struct sock *sk)
1383 {
1384 	if (in_interrupt())
1385 		return;
1386 
1387 	sk->sk_cgrp_prioidx = task_netprioidx(current);
1388 }
1389 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1390 #endif
1391 
1392 /**
1393  *	sk_alloc - All socket objects are allocated here
1394  *	@net: the applicable net namespace
1395  *	@family: protocol family
1396  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1397  *	@prot: struct proto associated with this new sock instance
1398  */
1399 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1400 		      struct proto *prot)
1401 {
1402 	struct sock *sk;
1403 
1404 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1405 	if (sk) {
1406 		sk->sk_family = family;
1407 		/*
1408 		 * See comment in struct sock definition to understand
1409 		 * why we need sk_prot_creator -acme
1410 		 */
1411 		sk->sk_prot = sk->sk_prot_creator = prot;
1412 		sock_lock_init(sk);
1413 		sock_net_set(sk, get_net(net));
1414 		atomic_set(&sk->sk_wmem_alloc, 1);
1415 
1416 		sock_update_classid(sk);
1417 		sock_update_netprioidx(sk);
1418 	}
1419 
1420 	return sk;
1421 }
1422 EXPORT_SYMBOL(sk_alloc);
1423 
1424 static void __sk_free(struct sock *sk)
1425 {
1426 	struct sk_filter *filter;
1427 
1428 	if (sk->sk_destruct)
1429 		sk->sk_destruct(sk);
1430 
1431 	filter = rcu_dereference_check(sk->sk_filter,
1432 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1433 	if (filter) {
1434 		sk_filter_uncharge(sk, filter);
1435 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1436 	}
1437 
1438 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1439 
1440 	if (atomic_read(&sk->sk_omem_alloc))
1441 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1442 			 __func__, atomic_read(&sk->sk_omem_alloc));
1443 
1444 	if (sk->sk_peer_cred)
1445 		put_cred(sk->sk_peer_cred);
1446 	put_pid(sk->sk_peer_pid);
1447 	put_net(sock_net(sk));
1448 	sk_prot_free(sk->sk_prot_creator, sk);
1449 }
1450 
1451 void sk_free(struct sock *sk)
1452 {
1453 	/*
1454 	 * We subtract one from sk_wmem_alloc and can know if
1455 	 * some packets are still in some tx queue.
1456 	 * If not null, sock_wfree() will call __sk_free(sk) later
1457 	 */
1458 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1459 		__sk_free(sk);
1460 }
1461 EXPORT_SYMBOL(sk_free);
1462 
1463 /*
1464  * Last sock_put should drop reference to sk->sk_net. It has already
1465  * been dropped in sk_change_net. Taking reference to stopping namespace
1466  * is not an option.
1467  * Take reference to a socket to remove it from hash _alive_ and after that
1468  * destroy it in the context of init_net.
1469  */
1470 void sk_release_kernel(struct sock *sk)
1471 {
1472 	if (sk == NULL || sk->sk_socket == NULL)
1473 		return;
1474 
1475 	sock_hold(sk);
1476 	sock_release(sk->sk_socket);
1477 	release_net(sock_net(sk));
1478 	sock_net_set(sk, get_net(&init_net));
1479 	sock_put(sk);
1480 }
1481 EXPORT_SYMBOL(sk_release_kernel);
1482 
1483 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1484 {
1485 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1486 		sock_update_memcg(newsk);
1487 }
1488 
1489 /**
1490  *	sk_clone_lock - clone a socket, and lock its clone
1491  *	@sk: the socket to clone
1492  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1493  *
1494  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1495  */
1496 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1497 {
1498 	struct sock *newsk;
1499 	bool is_charged = true;
1500 
1501 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1502 	if (newsk != NULL) {
1503 		struct sk_filter *filter;
1504 
1505 		sock_copy(newsk, sk);
1506 
1507 		/* SANITY */
1508 		get_net(sock_net(newsk));
1509 		sk_node_init(&newsk->sk_node);
1510 		sock_lock_init(newsk);
1511 		bh_lock_sock(newsk);
1512 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1513 		newsk->sk_backlog.len = 0;
1514 
1515 		atomic_set(&newsk->sk_rmem_alloc, 0);
1516 		/*
1517 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1518 		 */
1519 		atomic_set(&newsk->sk_wmem_alloc, 1);
1520 		atomic_set(&newsk->sk_omem_alloc, 0);
1521 		skb_queue_head_init(&newsk->sk_receive_queue);
1522 		skb_queue_head_init(&newsk->sk_write_queue);
1523 
1524 		spin_lock_init(&newsk->sk_dst_lock);
1525 		rwlock_init(&newsk->sk_callback_lock);
1526 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1527 				af_callback_keys + newsk->sk_family,
1528 				af_family_clock_key_strings[newsk->sk_family]);
1529 
1530 		newsk->sk_dst_cache	= NULL;
1531 		newsk->sk_wmem_queued	= 0;
1532 		newsk->sk_forward_alloc = 0;
1533 		newsk->sk_send_head	= NULL;
1534 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1535 
1536 		sock_reset_flag(newsk, SOCK_DONE);
1537 		skb_queue_head_init(&newsk->sk_error_queue);
1538 
1539 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1540 		if (filter != NULL)
1541 			/* though it's an empty new sock, the charging may fail
1542 			 * if sysctl_optmem_max was changed between creation of
1543 			 * original socket and cloning
1544 			 */
1545 			is_charged = sk_filter_charge(newsk, filter);
1546 
1547 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
1548 			/* It is still raw copy of parent, so invalidate
1549 			 * destructor and make plain sk_free() */
1550 			newsk->sk_destruct = NULL;
1551 			bh_unlock_sock(newsk);
1552 			sk_free(newsk);
1553 			newsk = NULL;
1554 			goto out;
1555 		}
1556 
1557 		newsk->sk_err	   = 0;
1558 		newsk->sk_priority = 0;
1559 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1560 		/*
1561 		 * Before updating sk_refcnt, we must commit prior changes to memory
1562 		 * (Documentation/RCU/rculist_nulls.txt for details)
1563 		 */
1564 		smp_wmb();
1565 		atomic_set(&newsk->sk_refcnt, 2);
1566 
1567 		/*
1568 		 * Increment the counter in the same struct proto as the master
1569 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1570 		 * is the same as sk->sk_prot->socks, as this field was copied
1571 		 * with memcpy).
1572 		 *
1573 		 * This _changes_ the previous behaviour, where
1574 		 * tcp_create_openreq_child always was incrementing the
1575 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1576 		 * to be taken into account in all callers. -acme
1577 		 */
1578 		sk_refcnt_debug_inc(newsk);
1579 		sk_set_socket(newsk, NULL);
1580 		newsk->sk_wq = NULL;
1581 
1582 		sk_update_clone(sk, newsk);
1583 
1584 		if (newsk->sk_prot->sockets_allocated)
1585 			sk_sockets_allocated_inc(newsk);
1586 
1587 		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1588 			net_enable_timestamp();
1589 	}
1590 out:
1591 	return newsk;
1592 }
1593 EXPORT_SYMBOL_GPL(sk_clone_lock);
1594 
1595 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1596 {
1597 	__sk_dst_set(sk, dst);
1598 	sk->sk_route_caps = dst->dev->features;
1599 	if (sk->sk_route_caps & NETIF_F_GSO)
1600 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1601 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1602 	if (sk_can_gso(sk)) {
1603 		if (dst->header_len) {
1604 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1605 		} else {
1606 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1607 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1608 			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1609 		}
1610 	}
1611 }
1612 EXPORT_SYMBOL_GPL(sk_setup_caps);
1613 
1614 /*
1615  *	Simple resource managers for sockets.
1616  */
1617 
1618 
1619 /*
1620  * Write buffer destructor automatically called from kfree_skb.
1621  */
1622 void sock_wfree(struct sk_buff *skb)
1623 {
1624 	struct sock *sk = skb->sk;
1625 	unsigned int len = skb->truesize;
1626 
1627 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1628 		/*
1629 		 * Keep a reference on sk_wmem_alloc, this will be released
1630 		 * after sk_write_space() call
1631 		 */
1632 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1633 		sk->sk_write_space(sk);
1634 		len = 1;
1635 	}
1636 	/*
1637 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1638 	 * could not do because of in-flight packets
1639 	 */
1640 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1641 		__sk_free(sk);
1642 }
1643 EXPORT_SYMBOL(sock_wfree);
1644 
1645 void skb_orphan_partial(struct sk_buff *skb)
1646 {
1647 	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1648 	 * so we do not completely orphan skb, but transfert all
1649 	 * accounted bytes but one, to avoid unexpected reorders.
1650 	 */
1651 	if (skb->destructor == sock_wfree
1652 #ifdef CONFIG_INET
1653 	    || skb->destructor == tcp_wfree
1654 #endif
1655 		) {
1656 		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1657 		skb->truesize = 1;
1658 	} else {
1659 		skb_orphan(skb);
1660 	}
1661 }
1662 EXPORT_SYMBOL(skb_orphan_partial);
1663 
1664 /*
1665  * Read buffer destructor automatically called from kfree_skb.
1666  */
1667 void sock_rfree(struct sk_buff *skb)
1668 {
1669 	struct sock *sk = skb->sk;
1670 	unsigned int len = skb->truesize;
1671 
1672 	atomic_sub(len, &sk->sk_rmem_alloc);
1673 	sk_mem_uncharge(sk, len);
1674 }
1675 EXPORT_SYMBOL(sock_rfree);
1676 
1677 /*
1678  * Buffer destructor for skbs that are not used directly in read or write
1679  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1680  */
1681 void sock_efree(struct sk_buff *skb)
1682 {
1683 	sock_put(skb->sk);
1684 }
1685 EXPORT_SYMBOL(sock_efree);
1686 
1687 #ifdef CONFIG_INET
1688 void sock_edemux(struct sk_buff *skb)
1689 {
1690 	struct sock *sk = skb->sk;
1691 
1692 	if (sk->sk_state == TCP_TIME_WAIT)
1693 		inet_twsk_put(inet_twsk(sk));
1694 	else
1695 		sock_put(sk);
1696 }
1697 EXPORT_SYMBOL(sock_edemux);
1698 #endif
1699 
1700 kuid_t sock_i_uid(struct sock *sk)
1701 {
1702 	kuid_t uid;
1703 
1704 	read_lock_bh(&sk->sk_callback_lock);
1705 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1706 	read_unlock_bh(&sk->sk_callback_lock);
1707 	return uid;
1708 }
1709 EXPORT_SYMBOL(sock_i_uid);
1710 
1711 unsigned long sock_i_ino(struct sock *sk)
1712 {
1713 	unsigned long ino;
1714 
1715 	read_lock_bh(&sk->sk_callback_lock);
1716 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1717 	read_unlock_bh(&sk->sk_callback_lock);
1718 	return ino;
1719 }
1720 EXPORT_SYMBOL(sock_i_ino);
1721 
1722 /*
1723  * Allocate a skb from the socket's send buffer.
1724  */
1725 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1726 			     gfp_t priority)
1727 {
1728 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1729 		struct sk_buff *skb = alloc_skb(size, priority);
1730 		if (skb) {
1731 			skb_set_owner_w(skb, sk);
1732 			return skb;
1733 		}
1734 	}
1735 	return NULL;
1736 }
1737 EXPORT_SYMBOL(sock_wmalloc);
1738 
1739 /*
1740  * Allocate a memory block from the socket's option memory buffer.
1741  */
1742 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1743 {
1744 	if ((unsigned int)size <= sysctl_optmem_max &&
1745 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1746 		void *mem;
1747 		/* First do the add, to avoid the race if kmalloc
1748 		 * might sleep.
1749 		 */
1750 		atomic_add(size, &sk->sk_omem_alloc);
1751 		mem = kmalloc(size, priority);
1752 		if (mem)
1753 			return mem;
1754 		atomic_sub(size, &sk->sk_omem_alloc);
1755 	}
1756 	return NULL;
1757 }
1758 EXPORT_SYMBOL(sock_kmalloc);
1759 
1760 /* Free an option memory block. Note, we actually want the inline
1761  * here as this allows gcc to detect the nullify and fold away the
1762  * condition entirely.
1763  */
1764 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1765 				  const bool nullify)
1766 {
1767 	if (WARN_ON_ONCE(!mem))
1768 		return;
1769 	if (nullify)
1770 		kzfree(mem);
1771 	else
1772 		kfree(mem);
1773 	atomic_sub(size, &sk->sk_omem_alloc);
1774 }
1775 
1776 void sock_kfree_s(struct sock *sk, void *mem, int size)
1777 {
1778 	__sock_kfree_s(sk, mem, size, false);
1779 }
1780 EXPORT_SYMBOL(sock_kfree_s);
1781 
1782 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1783 {
1784 	__sock_kfree_s(sk, mem, size, true);
1785 }
1786 EXPORT_SYMBOL(sock_kzfree_s);
1787 
1788 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1789    I think, these locks should be removed for datagram sockets.
1790  */
1791 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1792 {
1793 	DEFINE_WAIT(wait);
1794 
1795 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1796 	for (;;) {
1797 		if (!timeo)
1798 			break;
1799 		if (signal_pending(current))
1800 			break;
1801 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1802 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1803 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1804 			break;
1805 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1806 			break;
1807 		if (sk->sk_err)
1808 			break;
1809 		timeo = schedule_timeout(timeo);
1810 	}
1811 	finish_wait(sk_sleep(sk), &wait);
1812 	return timeo;
1813 }
1814 
1815 
1816 /*
1817  *	Generic send/receive buffer handlers
1818  */
1819 
1820 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1821 				     unsigned long data_len, int noblock,
1822 				     int *errcode, int max_page_order)
1823 {
1824 	struct sk_buff *skb;
1825 	long timeo;
1826 	int err;
1827 
1828 	timeo = sock_sndtimeo(sk, noblock);
1829 	for (;;) {
1830 		err = sock_error(sk);
1831 		if (err != 0)
1832 			goto failure;
1833 
1834 		err = -EPIPE;
1835 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1836 			goto failure;
1837 
1838 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1839 			break;
1840 
1841 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1842 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1843 		err = -EAGAIN;
1844 		if (!timeo)
1845 			goto failure;
1846 		if (signal_pending(current))
1847 			goto interrupted;
1848 		timeo = sock_wait_for_wmem(sk, timeo);
1849 	}
1850 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1851 				   errcode, sk->sk_allocation);
1852 	if (skb)
1853 		skb_set_owner_w(skb, sk);
1854 	return skb;
1855 
1856 interrupted:
1857 	err = sock_intr_errno(timeo);
1858 failure:
1859 	*errcode = err;
1860 	return NULL;
1861 }
1862 EXPORT_SYMBOL(sock_alloc_send_pskb);
1863 
1864 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1865 				    int noblock, int *errcode)
1866 {
1867 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1868 }
1869 EXPORT_SYMBOL(sock_alloc_send_skb);
1870 
1871 /* On 32bit arches, an skb frag is limited to 2^15 */
1872 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1873 
1874 /**
1875  * skb_page_frag_refill - check that a page_frag contains enough room
1876  * @sz: minimum size of the fragment we want to get
1877  * @pfrag: pointer to page_frag
1878  * @gfp: priority for memory allocation
1879  *
1880  * Note: While this allocator tries to use high order pages, there is
1881  * no guarantee that allocations succeed. Therefore, @sz MUST be
1882  * less or equal than PAGE_SIZE.
1883  */
1884 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1885 {
1886 	if (pfrag->page) {
1887 		if (atomic_read(&pfrag->page->_count) == 1) {
1888 			pfrag->offset = 0;
1889 			return true;
1890 		}
1891 		if (pfrag->offset + sz <= pfrag->size)
1892 			return true;
1893 		put_page(pfrag->page);
1894 	}
1895 
1896 	pfrag->offset = 0;
1897 	if (SKB_FRAG_PAGE_ORDER) {
1898 		pfrag->page = alloc_pages(gfp | __GFP_COMP |
1899 					  __GFP_NOWARN | __GFP_NORETRY,
1900 					  SKB_FRAG_PAGE_ORDER);
1901 		if (likely(pfrag->page)) {
1902 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1903 			return true;
1904 		}
1905 	}
1906 	pfrag->page = alloc_page(gfp);
1907 	if (likely(pfrag->page)) {
1908 		pfrag->size = PAGE_SIZE;
1909 		return true;
1910 	}
1911 	return false;
1912 }
1913 EXPORT_SYMBOL(skb_page_frag_refill);
1914 
1915 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1916 {
1917 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1918 		return true;
1919 
1920 	sk_enter_memory_pressure(sk);
1921 	sk_stream_moderate_sndbuf(sk);
1922 	return false;
1923 }
1924 EXPORT_SYMBOL(sk_page_frag_refill);
1925 
1926 static void __lock_sock(struct sock *sk)
1927 	__releases(&sk->sk_lock.slock)
1928 	__acquires(&sk->sk_lock.slock)
1929 {
1930 	DEFINE_WAIT(wait);
1931 
1932 	for (;;) {
1933 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1934 					TASK_UNINTERRUPTIBLE);
1935 		spin_unlock_bh(&sk->sk_lock.slock);
1936 		schedule();
1937 		spin_lock_bh(&sk->sk_lock.slock);
1938 		if (!sock_owned_by_user(sk))
1939 			break;
1940 	}
1941 	finish_wait(&sk->sk_lock.wq, &wait);
1942 }
1943 
1944 static void __release_sock(struct sock *sk)
1945 	__releases(&sk->sk_lock.slock)
1946 	__acquires(&sk->sk_lock.slock)
1947 {
1948 	struct sk_buff *skb = sk->sk_backlog.head;
1949 
1950 	do {
1951 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1952 		bh_unlock_sock(sk);
1953 
1954 		do {
1955 			struct sk_buff *next = skb->next;
1956 
1957 			prefetch(next);
1958 			WARN_ON_ONCE(skb_dst_is_noref(skb));
1959 			skb->next = NULL;
1960 			sk_backlog_rcv(sk, skb);
1961 
1962 			/*
1963 			 * We are in process context here with softirqs
1964 			 * disabled, use cond_resched_softirq() to preempt.
1965 			 * This is safe to do because we've taken the backlog
1966 			 * queue private:
1967 			 */
1968 			cond_resched_softirq();
1969 
1970 			skb = next;
1971 		} while (skb != NULL);
1972 
1973 		bh_lock_sock(sk);
1974 	} while ((skb = sk->sk_backlog.head) != NULL);
1975 
1976 	/*
1977 	 * Doing the zeroing here guarantee we can not loop forever
1978 	 * while a wild producer attempts to flood us.
1979 	 */
1980 	sk->sk_backlog.len = 0;
1981 }
1982 
1983 /**
1984  * sk_wait_data - wait for data to arrive at sk_receive_queue
1985  * @sk:    sock to wait on
1986  * @timeo: for how long
1987  *
1988  * Now socket state including sk->sk_err is changed only under lock,
1989  * hence we may omit checks after joining wait queue.
1990  * We check receive queue before schedule() only as optimization;
1991  * it is very likely that release_sock() added new data.
1992  */
1993 int sk_wait_data(struct sock *sk, long *timeo)
1994 {
1995 	int rc;
1996 	DEFINE_WAIT(wait);
1997 
1998 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1999 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
2000 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
2001 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
2002 	finish_wait(sk_sleep(sk), &wait);
2003 	return rc;
2004 }
2005 EXPORT_SYMBOL(sk_wait_data);
2006 
2007 /**
2008  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2009  *	@sk: socket
2010  *	@size: memory size to allocate
2011  *	@kind: allocation type
2012  *
2013  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2014  *	rmem allocation. This function assumes that protocols which have
2015  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2016  */
2017 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2018 {
2019 	struct proto *prot = sk->sk_prot;
2020 	int amt = sk_mem_pages(size);
2021 	long allocated;
2022 	int parent_status = UNDER_LIMIT;
2023 
2024 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2025 
2026 	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
2027 
2028 	/* Under limit. */
2029 	if (parent_status == UNDER_LIMIT &&
2030 			allocated <= sk_prot_mem_limits(sk, 0)) {
2031 		sk_leave_memory_pressure(sk);
2032 		return 1;
2033 	}
2034 
2035 	/* Under pressure. (we or our parents) */
2036 	if ((parent_status > SOFT_LIMIT) ||
2037 			allocated > sk_prot_mem_limits(sk, 1))
2038 		sk_enter_memory_pressure(sk);
2039 
2040 	/* Over hard limit (we or our parents) */
2041 	if ((parent_status == OVER_LIMIT) ||
2042 			(allocated > sk_prot_mem_limits(sk, 2)))
2043 		goto suppress_allocation;
2044 
2045 	/* guarantee minimum buffer size under pressure */
2046 	if (kind == SK_MEM_RECV) {
2047 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2048 			return 1;
2049 
2050 	} else { /* SK_MEM_SEND */
2051 		if (sk->sk_type == SOCK_STREAM) {
2052 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2053 				return 1;
2054 		} else if (atomic_read(&sk->sk_wmem_alloc) <
2055 			   prot->sysctl_wmem[0])
2056 				return 1;
2057 	}
2058 
2059 	if (sk_has_memory_pressure(sk)) {
2060 		int alloc;
2061 
2062 		if (!sk_under_memory_pressure(sk))
2063 			return 1;
2064 		alloc = sk_sockets_allocated_read_positive(sk);
2065 		if (sk_prot_mem_limits(sk, 2) > alloc *
2066 		    sk_mem_pages(sk->sk_wmem_queued +
2067 				 atomic_read(&sk->sk_rmem_alloc) +
2068 				 sk->sk_forward_alloc))
2069 			return 1;
2070 	}
2071 
2072 suppress_allocation:
2073 
2074 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2075 		sk_stream_moderate_sndbuf(sk);
2076 
2077 		/* Fail only if socket is _under_ its sndbuf.
2078 		 * In this case we cannot block, so that we have to fail.
2079 		 */
2080 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2081 			return 1;
2082 	}
2083 
2084 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2085 
2086 	/* Alas. Undo changes. */
2087 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2088 
2089 	sk_memory_allocated_sub(sk, amt);
2090 
2091 	return 0;
2092 }
2093 EXPORT_SYMBOL(__sk_mem_schedule);
2094 
2095 /**
2096  *	__sk_reclaim - reclaim memory_allocated
2097  *	@sk: socket
2098  */
2099 void __sk_mem_reclaim(struct sock *sk)
2100 {
2101 	sk_memory_allocated_sub(sk,
2102 				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2103 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2104 
2105 	if (sk_under_memory_pressure(sk) &&
2106 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2107 		sk_leave_memory_pressure(sk);
2108 }
2109 EXPORT_SYMBOL(__sk_mem_reclaim);
2110 
2111 
2112 /*
2113  * Set of default routines for initialising struct proto_ops when
2114  * the protocol does not support a particular function. In certain
2115  * cases where it makes no sense for a protocol to have a "do nothing"
2116  * function, some default processing is provided.
2117  */
2118 
2119 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2120 {
2121 	return -EOPNOTSUPP;
2122 }
2123 EXPORT_SYMBOL(sock_no_bind);
2124 
2125 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2126 		    int len, int flags)
2127 {
2128 	return -EOPNOTSUPP;
2129 }
2130 EXPORT_SYMBOL(sock_no_connect);
2131 
2132 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2133 {
2134 	return -EOPNOTSUPP;
2135 }
2136 EXPORT_SYMBOL(sock_no_socketpair);
2137 
2138 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2139 {
2140 	return -EOPNOTSUPP;
2141 }
2142 EXPORT_SYMBOL(sock_no_accept);
2143 
2144 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2145 		    int *len, int peer)
2146 {
2147 	return -EOPNOTSUPP;
2148 }
2149 EXPORT_SYMBOL(sock_no_getname);
2150 
2151 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2152 {
2153 	return 0;
2154 }
2155 EXPORT_SYMBOL(sock_no_poll);
2156 
2157 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2158 {
2159 	return -EOPNOTSUPP;
2160 }
2161 EXPORT_SYMBOL(sock_no_ioctl);
2162 
2163 int sock_no_listen(struct socket *sock, int backlog)
2164 {
2165 	return -EOPNOTSUPP;
2166 }
2167 EXPORT_SYMBOL(sock_no_listen);
2168 
2169 int sock_no_shutdown(struct socket *sock, int how)
2170 {
2171 	return -EOPNOTSUPP;
2172 }
2173 EXPORT_SYMBOL(sock_no_shutdown);
2174 
2175 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2176 		    char __user *optval, unsigned int optlen)
2177 {
2178 	return -EOPNOTSUPP;
2179 }
2180 EXPORT_SYMBOL(sock_no_setsockopt);
2181 
2182 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2183 		    char __user *optval, int __user *optlen)
2184 {
2185 	return -EOPNOTSUPP;
2186 }
2187 EXPORT_SYMBOL(sock_no_getsockopt);
2188 
2189 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2190 		    size_t len)
2191 {
2192 	return -EOPNOTSUPP;
2193 }
2194 EXPORT_SYMBOL(sock_no_sendmsg);
2195 
2196 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2197 		    size_t len, int flags)
2198 {
2199 	return -EOPNOTSUPP;
2200 }
2201 EXPORT_SYMBOL(sock_no_recvmsg);
2202 
2203 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2204 {
2205 	/* Mirror missing mmap method error code */
2206 	return -ENODEV;
2207 }
2208 EXPORT_SYMBOL(sock_no_mmap);
2209 
2210 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2211 {
2212 	ssize_t res;
2213 	struct msghdr msg = {.msg_flags = flags};
2214 	struct kvec iov;
2215 	char *kaddr = kmap(page);
2216 	iov.iov_base = kaddr + offset;
2217 	iov.iov_len = size;
2218 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2219 	kunmap(page);
2220 	return res;
2221 }
2222 EXPORT_SYMBOL(sock_no_sendpage);
2223 
2224 /*
2225  *	Default Socket Callbacks
2226  */
2227 
2228 static void sock_def_wakeup(struct sock *sk)
2229 {
2230 	struct socket_wq *wq;
2231 
2232 	rcu_read_lock();
2233 	wq = rcu_dereference(sk->sk_wq);
2234 	if (wq_has_sleeper(wq))
2235 		wake_up_interruptible_all(&wq->wait);
2236 	rcu_read_unlock();
2237 }
2238 
2239 static void sock_def_error_report(struct sock *sk)
2240 {
2241 	struct socket_wq *wq;
2242 
2243 	rcu_read_lock();
2244 	wq = rcu_dereference(sk->sk_wq);
2245 	if (wq_has_sleeper(wq))
2246 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2247 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2248 	rcu_read_unlock();
2249 }
2250 
2251 static void sock_def_readable(struct sock *sk)
2252 {
2253 	struct socket_wq *wq;
2254 
2255 	rcu_read_lock();
2256 	wq = rcu_dereference(sk->sk_wq);
2257 	if (wq_has_sleeper(wq))
2258 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2259 						POLLRDNORM | POLLRDBAND);
2260 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2261 	rcu_read_unlock();
2262 }
2263 
2264 static void sock_def_write_space(struct sock *sk)
2265 {
2266 	struct socket_wq *wq;
2267 
2268 	rcu_read_lock();
2269 
2270 	/* Do not wake up a writer until he can make "significant"
2271 	 * progress.  --DaveM
2272 	 */
2273 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2274 		wq = rcu_dereference(sk->sk_wq);
2275 		if (wq_has_sleeper(wq))
2276 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2277 						POLLWRNORM | POLLWRBAND);
2278 
2279 		/* Should agree with poll, otherwise some programs break */
2280 		if (sock_writeable(sk))
2281 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2282 	}
2283 
2284 	rcu_read_unlock();
2285 }
2286 
2287 static void sock_def_destruct(struct sock *sk)
2288 {
2289 	kfree(sk->sk_protinfo);
2290 }
2291 
2292 void sk_send_sigurg(struct sock *sk)
2293 {
2294 	if (sk->sk_socket && sk->sk_socket->file)
2295 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2296 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2297 }
2298 EXPORT_SYMBOL(sk_send_sigurg);
2299 
2300 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2301 		    unsigned long expires)
2302 {
2303 	if (!mod_timer(timer, expires))
2304 		sock_hold(sk);
2305 }
2306 EXPORT_SYMBOL(sk_reset_timer);
2307 
2308 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2309 {
2310 	if (del_timer(timer))
2311 		__sock_put(sk);
2312 }
2313 EXPORT_SYMBOL(sk_stop_timer);
2314 
2315 void sock_init_data(struct socket *sock, struct sock *sk)
2316 {
2317 	skb_queue_head_init(&sk->sk_receive_queue);
2318 	skb_queue_head_init(&sk->sk_write_queue);
2319 	skb_queue_head_init(&sk->sk_error_queue);
2320 
2321 	sk->sk_send_head	=	NULL;
2322 
2323 	init_timer(&sk->sk_timer);
2324 
2325 	sk->sk_allocation	=	GFP_KERNEL;
2326 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2327 	sk->sk_sndbuf		=	sysctl_wmem_default;
2328 	sk->sk_state		=	TCP_CLOSE;
2329 	sk_set_socket(sk, sock);
2330 
2331 	sock_set_flag(sk, SOCK_ZAPPED);
2332 
2333 	if (sock) {
2334 		sk->sk_type	=	sock->type;
2335 		sk->sk_wq	=	sock->wq;
2336 		sock->sk	=	sk;
2337 	} else
2338 		sk->sk_wq	=	NULL;
2339 
2340 	spin_lock_init(&sk->sk_dst_lock);
2341 	rwlock_init(&sk->sk_callback_lock);
2342 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2343 			af_callback_keys + sk->sk_family,
2344 			af_family_clock_key_strings[sk->sk_family]);
2345 
2346 	sk->sk_state_change	=	sock_def_wakeup;
2347 	sk->sk_data_ready	=	sock_def_readable;
2348 	sk->sk_write_space	=	sock_def_write_space;
2349 	sk->sk_error_report	=	sock_def_error_report;
2350 	sk->sk_destruct		=	sock_def_destruct;
2351 
2352 	sk->sk_frag.page	=	NULL;
2353 	sk->sk_frag.offset	=	0;
2354 	sk->sk_peek_off		=	-1;
2355 
2356 	sk->sk_peer_pid 	=	NULL;
2357 	sk->sk_peer_cred	=	NULL;
2358 	sk->sk_write_pending	=	0;
2359 	sk->sk_rcvlowat		=	1;
2360 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2361 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2362 
2363 	sk->sk_stamp = ktime_set(-1L, 0);
2364 
2365 #ifdef CONFIG_NET_RX_BUSY_POLL
2366 	sk->sk_napi_id		=	0;
2367 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2368 #endif
2369 
2370 	sk->sk_max_pacing_rate = ~0U;
2371 	sk->sk_pacing_rate = ~0U;
2372 	/*
2373 	 * Before updating sk_refcnt, we must commit prior changes to memory
2374 	 * (Documentation/RCU/rculist_nulls.txt for details)
2375 	 */
2376 	smp_wmb();
2377 	atomic_set(&sk->sk_refcnt, 1);
2378 	atomic_set(&sk->sk_drops, 0);
2379 }
2380 EXPORT_SYMBOL(sock_init_data);
2381 
2382 void lock_sock_nested(struct sock *sk, int subclass)
2383 {
2384 	might_sleep();
2385 	spin_lock_bh(&sk->sk_lock.slock);
2386 	if (sk->sk_lock.owned)
2387 		__lock_sock(sk);
2388 	sk->sk_lock.owned = 1;
2389 	spin_unlock(&sk->sk_lock.slock);
2390 	/*
2391 	 * The sk_lock has mutex_lock() semantics here:
2392 	 */
2393 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2394 	local_bh_enable();
2395 }
2396 EXPORT_SYMBOL(lock_sock_nested);
2397 
2398 void release_sock(struct sock *sk)
2399 {
2400 	/*
2401 	 * The sk_lock has mutex_unlock() semantics:
2402 	 */
2403 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2404 
2405 	spin_lock_bh(&sk->sk_lock.slock);
2406 	if (sk->sk_backlog.tail)
2407 		__release_sock(sk);
2408 
2409 	/* Warning : release_cb() might need to release sk ownership,
2410 	 * ie call sock_release_ownership(sk) before us.
2411 	 */
2412 	if (sk->sk_prot->release_cb)
2413 		sk->sk_prot->release_cb(sk);
2414 
2415 	sock_release_ownership(sk);
2416 	if (waitqueue_active(&sk->sk_lock.wq))
2417 		wake_up(&sk->sk_lock.wq);
2418 	spin_unlock_bh(&sk->sk_lock.slock);
2419 }
2420 EXPORT_SYMBOL(release_sock);
2421 
2422 /**
2423  * lock_sock_fast - fast version of lock_sock
2424  * @sk: socket
2425  *
2426  * This version should be used for very small section, where process wont block
2427  * return false if fast path is taken
2428  *   sk_lock.slock locked, owned = 0, BH disabled
2429  * return true if slow path is taken
2430  *   sk_lock.slock unlocked, owned = 1, BH enabled
2431  */
2432 bool lock_sock_fast(struct sock *sk)
2433 {
2434 	might_sleep();
2435 	spin_lock_bh(&sk->sk_lock.slock);
2436 
2437 	if (!sk->sk_lock.owned)
2438 		/*
2439 		 * Note : We must disable BH
2440 		 */
2441 		return false;
2442 
2443 	__lock_sock(sk);
2444 	sk->sk_lock.owned = 1;
2445 	spin_unlock(&sk->sk_lock.slock);
2446 	/*
2447 	 * The sk_lock has mutex_lock() semantics here:
2448 	 */
2449 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2450 	local_bh_enable();
2451 	return true;
2452 }
2453 EXPORT_SYMBOL(lock_sock_fast);
2454 
2455 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2456 {
2457 	struct timeval tv;
2458 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2459 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2460 	tv = ktime_to_timeval(sk->sk_stamp);
2461 	if (tv.tv_sec == -1)
2462 		return -ENOENT;
2463 	if (tv.tv_sec == 0) {
2464 		sk->sk_stamp = ktime_get_real();
2465 		tv = ktime_to_timeval(sk->sk_stamp);
2466 	}
2467 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2468 }
2469 EXPORT_SYMBOL(sock_get_timestamp);
2470 
2471 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2472 {
2473 	struct timespec ts;
2474 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2475 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2476 	ts = ktime_to_timespec(sk->sk_stamp);
2477 	if (ts.tv_sec == -1)
2478 		return -ENOENT;
2479 	if (ts.tv_sec == 0) {
2480 		sk->sk_stamp = ktime_get_real();
2481 		ts = ktime_to_timespec(sk->sk_stamp);
2482 	}
2483 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2484 }
2485 EXPORT_SYMBOL(sock_get_timestampns);
2486 
2487 void sock_enable_timestamp(struct sock *sk, int flag)
2488 {
2489 	if (!sock_flag(sk, flag)) {
2490 		unsigned long previous_flags = sk->sk_flags;
2491 
2492 		sock_set_flag(sk, flag);
2493 		/*
2494 		 * we just set one of the two flags which require net
2495 		 * time stamping, but time stamping might have been on
2496 		 * already because of the other one
2497 		 */
2498 		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2499 			net_enable_timestamp();
2500 	}
2501 }
2502 
2503 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2504 		       int level, int type)
2505 {
2506 	struct sock_exterr_skb *serr;
2507 	struct sk_buff *skb;
2508 	int copied, err;
2509 
2510 	err = -EAGAIN;
2511 	skb = sock_dequeue_err_skb(sk);
2512 	if (skb == NULL)
2513 		goto out;
2514 
2515 	copied = skb->len;
2516 	if (copied > len) {
2517 		msg->msg_flags |= MSG_TRUNC;
2518 		copied = len;
2519 	}
2520 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2521 	if (err)
2522 		goto out_free_skb;
2523 
2524 	sock_recv_timestamp(msg, sk, skb);
2525 
2526 	serr = SKB_EXT_ERR(skb);
2527 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2528 
2529 	msg->msg_flags |= MSG_ERRQUEUE;
2530 	err = copied;
2531 
2532 out_free_skb:
2533 	kfree_skb(skb);
2534 out:
2535 	return err;
2536 }
2537 EXPORT_SYMBOL(sock_recv_errqueue);
2538 
2539 /*
2540  *	Get a socket option on an socket.
2541  *
2542  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2543  *	asynchronous errors should be reported by getsockopt. We assume
2544  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2545  */
2546 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2547 			   char __user *optval, int __user *optlen)
2548 {
2549 	struct sock *sk = sock->sk;
2550 
2551 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2552 }
2553 EXPORT_SYMBOL(sock_common_getsockopt);
2554 
2555 #ifdef CONFIG_COMPAT
2556 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2557 				  char __user *optval, int __user *optlen)
2558 {
2559 	struct sock *sk = sock->sk;
2560 
2561 	if (sk->sk_prot->compat_getsockopt != NULL)
2562 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2563 						      optval, optlen);
2564 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2565 }
2566 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2567 #endif
2568 
2569 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2570 			struct msghdr *msg, size_t size, int flags)
2571 {
2572 	struct sock *sk = sock->sk;
2573 	int addr_len = 0;
2574 	int err;
2575 
2576 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2577 				   flags & ~MSG_DONTWAIT, &addr_len);
2578 	if (err >= 0)
2579 		msg->msg_namelen = addr_len;
2580 	return err;
2581 }
2582 EXPORT_SYMBOL(sock_common_recvmsg);
2583 
2584 /*
2585  *	Set socket options on an inet socket.
2586  */
2587 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2588 			   char __user *optval, unsigned int optlen)
2589 {
2590 	struct sock *sk = sock->sk;
2591 
2592 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2593 }
2594 EXPORT_SYMBOL(sock_common_setsockopt);
2595 
2596 #ifdef CONFIG_COMPAT
2597 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2598 				  char __user *optval, unsigned int optlen)
2599 {
2600 	struct sock *sk = sock->sk;
2601 
2602 	if (sk->sk_prot->compat_setsockopt != NULL)
2603 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2604 						      optval, optlen);
2605 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2606 }
2607 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2608 #endif
2609 
2610 void sk_common_release(struct sock *sk)
2611 {
2612 	if (sk->sk_prot->destroy)
2613 		sk->sk_prot->destroy(sk);
2614 
2615 	/*
2616 	 * Observation: when sock_common_release is called, processes have
2617 	 * no access to socket. But net still has.
2618 	 * Step one, detach it from networking:
2619 	 *
2620 	 * A. Remove from hash tables.
2621 	 */
2622 
2623 	sk->sk_prot->unhash(sk);
2624 
2625 	/*
2626 	 * In this point socket cannot receive new packets, but it is possible
2627 	 * that some packets are in flight because some CPU runs receiver and
2628 	 * did hash table lookup before we unhashed socket. They will achieve
2629 	 * receive queue and will be purged by socket destructor.
2630 	 *
2631 	 * Also we still have packets pending on receive queue and probably,
2632 	 * our own packets waiting in device queues. sock_destroy will drain
2633 	 * receive queue, but transmitted packets will delay socket destruction
2634 	 * until the last reference will be released.
2635 	 */
2636 
2637 	sock_orphan(sk);
2638 
2639 	xfrm_sk_free_policy(sk);
2640 
2641 	sk_refcnt_debug_release(sk);
2642 
2643 	if (sk->sk_frag.page) {
2644 		put_page(sk->sk_frag.page);
2645 		sk->sk_frag.page = NULL;
2646 	}
2647 
2648 	sock_put(sk);
2649 }
2650 EXPORT_SYMBOL(sk_common_release);
2651 
2652 #ifdef CONFIG_PROC_FS
2653 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2654 struct prot_inuse {
2655 	int val[PROTO_INUSE_NR];
2656 };
2657 
2658 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2659 
2660 #ifdef CONFIG_NET_NS
2661 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2662 {
2663 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2664 }
2665 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2666 
2667 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2668 {
2669 	int cpu, idx = prot->inuse_idx;
2670 	int res = 0;
2671 
2672 	for_each_possible_cpu(cpu)
2673 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2674 
2675 	return res >= 0 ? res : 0;
2676 }
2677 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2678 
2679 static int __net_init sock_inuse_init_net(struct net *net)
2680 {
2681 	net->core.inuse = alloc_percpu(struct prot_inuse);
2682 	return net->core.inuse ? 0 : -ENOMEM;
2683 }
2684 
2685 static void __net_exit sock_inuse_exit_net(struct net *net)
2686 {
2687 	free_percpu(net->core.inuse);
2688 }
2689 
2690 static struct pernet_operations net_inuse_ops = {
2691 	.init = sock_inuse_init_net,
2692 	.exit = sock_inuse_exit_net,
2693 };
2694 
2695 static __init int net_inuse_init(void)
2696 {
2697 	if (register_pernet_subsys(&net_inuse_ops))
2698 		panic("Cannot initialize net inuse counters");
2699 
2700 	return 0;
2701 }
2702 
2703 core_initcall(net_inuse_init);
2704 #else
2705 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2706 
2707 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2708 {
2709 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2710 }
2711 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2712 
2713 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2714 {
2715 	int cpu, idx = prot->inuse_idx;
2716 	int res = 0;
2717 
2718 	for_each_possible_cpu(cpu)
2719 		res += per_cpu(prot_inuse, cpu).val[idx];
2720 
2721 	return res >= 0 ? res : 0;
2722 }
2723 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2724 #endif
2725 
2726 static void assign_proto_idx(struct proto *prot)
2727 {
2728 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2729 
2730 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2731 		pr_err("PROTO_INUSE_NR exhausted\n");
2732 		return;
2733 	}
2734 
2735 	set_bit(prot->inuse_idx, proto_inuse_idx);
2736 }
2737 
2738 static void release_proto_idx(struct proto *prot)
2739 {
2740 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2741 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2742 }
2743 #else
2744 static inline void assign_proto_idx(struct proto *prot)
2745 {
2746 }
2747 
2748 static inline void release_proto_idx(struct proto *prot)
2749 {
2750 }
2751 #endif
2752 
2753 int proto_register(struct proto *prot, int alloc_slab)
2754 {
2755 	if (alloc_slab) {
2756 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2757 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2758 					NULL);
2759 
2760 		if (prot->slab == NULL) {
2761 			pr_crit("%s: Can't create sock SLAB cache!\n",
2762 				prot->name);
2763 			goto out;
2764 		}
2765 
2766 		if (prot->rsk_prot != NULL) {
2767 			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2768 			if (prot->rsk_prot->slab_name == NULL)
2769 				goto out_free_sock_slab;
2770 
2771 			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2772 								 prot->rsk_prot->obj_size, 0,
2773 								 SLAB_HWCACHE_ALIGN, NULL);
2774 
2775 			if (prot->rsk_prot->slab == NULL) {
2776 				pr_crit("%s: Can't create request sock SLAB cache!\n",
2777 					prot->name);
2778 				goto out_free_request_sock_slab_name;
2779 			}
2780 		}
2781 
2782 		if (prot->twsk_prot != NULL) {
2783 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2784 
2785 			if (prot->twsk_prot->twsk_slab_name == NULL)
2786 				goto out_free_request_sock_slab;
2787 
2788 			prot->twsk_prot->twsk_slab =
2789 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2790 						  prot->twsk_prot->twsk_obj_size,
2791 						  0,
2792 						  SLAB_HWCACHE_ALIGN |
2793 							prot->slab_flags,
2794 						  NULL);
2795 			if (prot->twsk_prot->twsk_slab == NULL)
2796 				goto out_free_timewait_sock_slab_name;
2797 		}
2798 	}
2799 
2800 	mutex_lock(&proto_list_mutex);
2801 	list_add(&prot->node, &proto_list);
2802 	assign_proto_idx(prot);
2803 	mutex_unlock(&proto_list_mutex);
2804 	return 0;
2805 
2806 out_free_timewait_sock_slab_name:
2807 	kfree(prot->twsk_prot->twsk_slab_name);
2808 out_free_request_sock_slab:
2809 	if (prot->rsk_prot && prot->rsk_prot->slab) {
2810 		kmem_cache_destroy(prot->rsk_prot->slab);
2811 		prot->rsk_prot->slab = NULL;
2812 	}
2813 out_free_request_sock_slab_name:
2814 	if (prot->rsk_prot)
2815 		kfree(prot->rsk_prot->slab_name);
2816 out_free_sock_slab:
2817 	kmem_cache_destroy(prot->slab);
2818 	prot->slab = NULL;
2819 out:
2820 	return -ENOBUFS;
2821 }
2822 EXPORT_SYMBOL(proto_register);
2823 
2824 void proto_unregister(struct proto *prot)
2825 {
2826 	mutex_lock(&proto_list_mutex);
2827 	release_proto_idx(prot);
2828 	list_del(&prot->node);
2829 	mutex_unlock(&proto_list_mutex);
2830 
2831 	if (prot->slab != NULL) {
2832 		kmem_cache_destroy(prot->slab);
2833 		prot->slab = NULL;
2834 	}
2835 
2836 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2837 		kmem_cache_destroy(prot->rsk_prot->slab);
2838 		kfree(prot->rsk_prot->slab_name);
2839 		prot->rsk_prot->slab = NULL;
2840 	}
2841 
2842 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2843 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2844 		kfree(prot->twsk_prot->twsk_slab_name);
2845 		prot->twsk_prot->twsk_slab = NULL;
2846 	}
2847 }
2848 EXPORT_SYMBOL(proto_unregister);
2849 
2850 #ifdef CONFIG_PROC_FS
2851 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2852 	__acquires(proto_list_mutex)
2853 {
2854 	mutex_lock(&proto_list_mutex);
2855 	return seq_list_start_head(&proto_list, *pos);
2856 }
2857 
2858 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2859 {
2860 	return seq_list_next(v, &proto_list, pos);
2861 }
2862 
2863 static void proto_seq_stop(struct seq_file *seq, void *v)
2864 	__releases(proto_list_mutex)
2865 {
2866 	mutex_unlock(&proto_list_mutex);
2867 }
2868 
2869 static char proto_method_implemented(const void *method)
2870 {
2871 	return method == NULL ? 'n' : 'y';
2872 }
2873 static long sock_prot_memory_allocated(struct proto *proto)
2874 {
2875 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2876 }
2877 
2878 static char *sock_prot_memory_pressure(struct proto *proto)
2879 {
2880 	return proto->memory_pressure != NULL ?
2881 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2882 }
2883 
2884 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2885 {
2886 
2887 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2888 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2889 		   proto->name,
2890 		   proto->obj_size,
2891 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2892 		   sock_prot_memory_allocated(proto),
2893 		   sock_prot_memory_pressure(proto),
2894 		   proto->max_header,
2895 		   proto->slab == NULL ? "no" : "yes",
2896 		   module_name(proto->owner),
2897 		   proto_method_implemented(proto->close),
2898 		   proto_method_implemented(proto->connect),
2899 		   proto_method_implemented(proto->disconnect),
2900 		   proto_method_implemented(proto->accept),
2901 		   proto_method_implemented(proto->ioctl),
2902 		   proto_method_implemented(proto->init),
2903 		   proto_method_implemented(proto->destroy),
2904 		   proto_method_implemented(proto->shutdown),
2905 		   proto_method_implemented(proto->setsockopt),
2906 		   proto_method_implemented(proto->getsockopt),
2907 		   proto_method_implemented(proto->sendmsg),
2908 		   proto_method_implemented(proto->recvmsg),
2909 		   proto_method_implemented(proto->sendpage),
2910 		   proto_method_implemented(proto->bind),
2911 		   proto_method_implemented(proto->backlog_rcv),
2912 		   proto_method_implemented(proto->hash),
2913 		   proto_method_implemented(proto->unhash),
2914 		   proto_method_implemented(proto->get_port),
2915 		   proto_method_implemented(proto->enter_memory_pressure));
2916 }
2917 
2918 static int proto_seq_show(struct seq_file *seq, void *v)
2919 {
2920 	if (v == &proto_list)
2921 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2922 			   "protocol",
2923 			   "size",
2924 			   "sockets",
2925 			   "memory",
2926 			   "press",
2927 			   "maxhdr",
2928 			   "slab",
2929 			   "module",
2930 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2931 	else
2932 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2933 	return 0;
2934 }
2935 
2936 static const struct seq_operations proto_seq_ops = {
2937 	.start  = proto_seq_start,
2938 	.next   = proto_seq_next,
2939 	.stop   = proto_seq_stop,
2940 	.show   = proto_seq_show,
2941 };
2942 
2943 static int proto_seq_open(struct inode *inode, struct file *file)
2944 {
2945 	return seq_open_net(inode, file, &proto_seq_ops,
2946 			    sizeof(struct seq_net_private));
2947 }
2948 
2949 static const struct file_operations proto_seq_fops = {
2950 	.owner		= THIS_MODULE,
2951 	.open		= proto_seq_open,
2952 	.read		= seq_read,
2953 	.llseek		= seq_lseek,
2954 	.release	= seq_release_net,
2955 };
2956 
2957 static __net_init int proto_init_net(struct net *net)
2958 {
2959 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2960 		return -ENOMEM;
2961 
2962 	return 0;
2963 }
2964 
2965 static __net_exit void proto_exit_net(struct net *net)
2966 {
2967 	remove_proc_entry("protocols", net->proc_net);
2968 }
2969 
2970 
2971 static __net_initdata struct pernet_operations proto_net_ops = {
2972 	.init = proto_init_net,
2973 	.exit = proto_exit_net,
2974 };
2975 
2976 static int __init proto_init(void)
2977 {
2978 	return register_pernet_subsys(&proto_net_ops);
2979 }
2980 
2981 subsys_initcall(proto_init);
2982 
2983 #endif /* PROC_FS */
2984