1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 #include <linux/compat.h> 117 118 #include <linux/uaccess.h> 119 120 #include <linux/netdevice.h> 121 #include <net/protocol.h> 122 #include <linux/skbuff.h> 123 #include <net/net_namespace.h> 124 #include <net/request_sock.h> 125 #include <net/sock.h> 126 #include <linux/net_tstamp.h> 127 #include <net/xfrm.h> 128 #include <linux/ipsec.h> 129 #include <net/cls_cgroup.h> 130 #include <net/netprio_cgroup.h> 131 #include <linux/sock_diag.h> 132 133 #include <linux/filter.h> 134 #include <net/sock_reuseport.h> 135 #include <net/bpf_sk_storage.h> 136 137 #include <trace/events/sock.h> 138 139 #include <net/tcp.h> 140 #include <net/busy_poll.h> 141 142 #include <linux/ethtool.h> 143 144 #include "dev.h" 145 146 static DEFINE_MUTEX(proto_list_mutex); 147 static LIST_HEAD(proto_list); 148 149 /** 150 * sk_ns_capable - General socket capability test 151 * @sk: Socket to use a capability on or through 152 * @user_ns: The user namespace of the capability to use 153 * @cap: The capability to use 154 * 155 * Test to see if the opener of the socket had when the socket was 156 * created and the current process has the capability @cap in the user 157 * namespace @user_ns. 158 */ 159 bool sk_ns_capable(const struct sock *sk, 160 struct user_namespace *user_ns, int cap) 161 { 162 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 163 ns_capable(user_ns, cap); 164 } 165 EXPORT_SYMBOL(sk_ns_capable); 166 167 /** 168 * sk_capable - Socket global capability test 169 * @sk: Socket to use a capability on or through 170 * @cap: The global capability to use 171 * 172 * Test to see if the opener of the socket had when the socket was 173 * created and the current process has the capability @cap in all user 174 * namespaces. 175 */ 176 bool sk_capable(const struct sock *sk, int cap) 177 { 178 return sk_ns_capable(sk, &init_user_ns, cap); 179 } 180 EXPORT_SYMBOL(sk_capable); 181 182 /** 183 * sk_net_capable - Network namespace socket capability test 184 * @sk: Socket to use a capability on or through 185 * @cap: The capability to use 186 * 187 * Test to see if the opener of the socket had when the socket was created 188 * and the current process has the capability @cap over the network namespace 189 * the socket is a member of. 190 */ 191 bool sk_net_capable(const struct sock *sk, int cap) 192 { 193 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 194 } 195 EXPORT_SYMBOL(sk_net_capable); 196 197 /* 198 * Each address family might have different locking rules, so we have 199 * one slock key per address family and separate keys for internal and 200 * userspace sockets. 201 */ 202 static struct lock_class_key af_family_keys[AF_MAX]; 203 static struct lock_class_key af_family_kern_keys[AF_MAX]; 204 static struct lock_class_key af_family_slock_keys[AF_MAX]; 205 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 206 207 /* 208 * Make lock validator output more readable. (we pre-construct these 209 * strings build-time, so that runtime initialization of socket 210 * locks is fast): 211 */ 212 213 #define _sock_locks(x) \ 214 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 215 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 216 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 217 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 218 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 219 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 220 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 221 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 222 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 223 x "27" , x "28" , x "AF_CAN" , \ 224 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 225 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 226 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 227 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 228 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 229 x "AF_MCTP" , \ 230 x "AF_MAX" 231 232 static const char *const af_family_key_strings[AF_MAX+1] = { 233 _sock_locks("sk_lock-") 234 }; 235 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 236 _sock_locks("slock-") 237 }; 238 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 239 _sock_locks("clock-") 240 }; 241 242 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 243 _sock_locks("k-sk_lock-") 244 }; 245 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 246 _sock_locks("k-slock-") 247 }; 248 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 249 _sock_locks("k-clock-") 250 }; 251 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 252 _sock_locks("rlock-") 253 }; 254 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 255 _sock_locks("wlock-") 256 }; 257 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 258 _sock_locks("elock-") 259 }; 260 261 /* 262 * sk_callback_lock and sk queues locking rules are per-address-family, 263 * so split the lock classes by using a per-AF key: 264 */ 265 static struct lock_class_key af_callback_keys[AF_MAX]; 266 static struct lock_class_key af_rlock_keys[AF_MAX]; 267 static struct lock_class_key af_wlock_keys[AF_MAX]; 268 static struct lock_class_key af_elock_keys[AF_MAX]; 269 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 270 271 /* Run time adjustable parameters. */ 272 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 273 EXPORT_SYMBOL(sysctl_wmem_max); 274 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 275 EXPORT_SYMBOL(sysctl_rmem_max); 276 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 277 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 278 279 /* Maximal space eaten by iovec or ancillary data plus some space */ 280 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 281 EXPORT_SYMBOL(sysctl_optmem_max); 282 283 int sysctl_tstamp_allow_data __read_mostly = 1; 284 285 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 286 EXPORT_SYMBOL_GPL(memalloc_socks_key); 287 288 /** 289 * sk_set_memalloc - sets %SOCK_MEMALLOC 290 * @sk: socket to set it on 291 * 292 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 293 * It's the responsibility of the admin to adjust min_free_kbytes 294 * to meet the requirements 295 */ 296 void sk_set_memalloc(struct sock *sk) 297 { 298 sock_set_flag(sk, SOCK_MEMALLOC); 299 sk->sk_allocation |= __GFP_MEMALLOC; 300 static_branch_inc(&memalloc_socks_key); 301 } 302 EXPORT_SYMBOL_GPL(sk_set_memalloc); 303 304 void sk_clear_memalloc(struct sock *sk) 305 { 306 sock_reset_flag(sk, SOCK_MEMALLOC); 307 sk->sk_allocation &= ~__GFP_MEMALLOC; 308 static_branch_dec(&memalloc_socks_key); 309 310 /* 311 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 312 * progress of swapping. SOCK_MEMALLOC may be cleared while 313 * it has rmem allocations due to the last swapfile being deactivated 314 * but there is a risk that the socket is unusable due to exceeding 315 * the rmem limits. Reclaim the reserves and obey rmem limits again. 316 */ 317 sk_mem_reclaim(sk); 318 } 319 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 320 321 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 322 { 323 int ret; 324 unsigned int noreclaim_flag; 325 326 /* these should have been dropped before queueing */ 327 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 328 329 noreclaim_flag = memalloc_noreclaim_save(); 330 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, 331 tcp_v6_do_rcv, 332 tcp_v4_do_rcv, 333 sk, skb); 334 memalloc_noreclaim_restore(noreclaim_flag); 335 336 return ret; 337 } 338 EXPORT_SYMBOL(__sk_backlog_rcv); 339 340 void sk_error_report(struct sock *sk) 341 { 342 sk->sk_error_report(sk); 343 344 switch (sk->sk_family) { 345 case AF_INET: 346 fallthrough; 347 case AF_INET6: 348 trace_inet_sk_error_report(sk); 349 break; 350 default: 351 break; 352 } 353 } 354 EXPORT_SYMBOL(sk_error_report); 355 356 int sock_get_timeout(long timeo, void *optval, bool old_timeval) 357 { 358 struct __kernel_sock_timeval tv; 359 360 if (timeo == MAX_SCHEDULE_TIMEOUT) { 361 tv.tv_sec = 0; 362 tv.tv_usec = 0; 363 } else { 364 tv.tv_sec = timeo / HZ; 365 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 366 } 367 368 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 369 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 370 *(struct old_timeval32 *)optval = tv32; 371 return sizeof(tv32); 372 } 373 374 if (old_timeval) { 375 struct __kernel_old_timeval old_tv; 376 old_tv.tv_sec = tv.tv_sec; 377 old_tv.tv_usec = tv.tv_usec; 378 *(struct __kernel_old_timeval *)optval = old_tv; 379 return sizeof(old_tv); 380 } 381 382 *(struct __kernel_sock_timeval *)optval = tv; 383 return sizeof(tv); 384 } 385 EXPORT_SYMBOL(sock_get_timeout); 386 387 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 388 sockptr_t optval, int optlen, bool old_timeval) 389 { 390 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 391 struct old_timeval32 tv32; 392 393 if (optlen < sizeof(tv32)) 394 return -EINVAL; 395 396 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 397 return -EFAULT; 398 tv->tv_sec = tv32.tv_sec; 399 tv->tv_usec = tv32.tv_usec; 400 } else if (old_timeval) { 401 struct __kernel_old_timeval old_tv; 402 403 if (optlen < sizeof(old_tv)) 404 return -EINVAL; 405 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 406 return -EFAULT; 407 tv->tv_sec = old_tv.tv_sec; 408 tv->tv_usec = old_tv.tv_usec; 409 } else { 410 if (optlen < sizeof(*tv)) 411 return -EINVAL; 412 if (copy_from_sockptr(tv, optval, sizeof(*tv))) 413 return -EFAULT; 414 } 415 416 return 0; 417 } 418 EXPORT_SYMBOL(sock_copy_user_timeval); 419 420 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 421 bool old_timeval) 422 { 423 struct __kernel_sock_timeval tv; 424 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); 425 426 if (err) 427 return err; 428 429 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 430 return -EDOM; 431 432 if (tv.tv_sec < 0) { 433 static int warned __read_mostly; 434 435 *timeo_p = 0; 436 if (warned < 10 && net_ratelimit()) { 437 warned++; 438 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 439 __func__, current->comm, task_pid_nr(current)); 440 } 441 return 0; 442 } 443 *timeo_p = MAX_SCHEDULE_TIMEOUT; 444 if (tv.tv_sec == 0 && tv.tv_usec == 0) 445 return 0; 446 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 447 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 448 return 0; 449 } 450 451 static bool sock_needs_netstamp(const struct sock *sk) 452 { 453 switch (sk->sk_family) { 454 case AF_UNSPEC: 455 case AF_UNIX: 456 return false; 457 default: 458 return true; 459 } 460 } 461 462 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 463 { 464 if (sk->sk_flags & flags) { 465 sk->sk_flags &= ~flags; 466 if (sock_needs_netstamp(sk) && 467 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 468 net_disable_timestamp(); 469 } 470 } 471 472 473 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 474 { 475 unsigned long flags; 476 struct sk_buff_head *list = &sk->sk_receive_queue; 477 478 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 479 atomic_inc(&sk->sk_drops); 480 trace_sock_rcvqueue_full(sk, skb); 481 return -ENOMEM; 482 } 483 484 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 485 atomic_inc(&sk->sk_drops); 486 return -ENOBUFS; 487 } 488 489 skb->dev = NULL; 490 skb_set_owner_r(skb, sk); 491 492 /* we escape from rcu protected region, make sure we dont leak 493 * a norefcounted dst 494 */ 495 skb_dst_force(skb); 496 497 spin_lock_irqsave(&list->lock, flags); 498 sock_skb_set_dropcount(sk, skb); 499 __skb_queue_tail(list, skb); 500 spin_unlock_irqrestore(&list->lock, flags); 501 502 if (!sock_flag(sk, SOCK_DEAD)) 503 sk->sk_data_ready(sk); 504 return 0; 505 } 506 EXPORT_SYMBOL(__sock_queue_rcv_skb); 507 508 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 509 enum skb_drop_reason *reason) 510 { 511 enum skb_drop_reason drop_reason; 512 int err; 513 514 err = sk_filter(sk, skb); 515 if (err) { 516 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 517 goto out; 518 } 519 err = __sock_queue_rcv_skb(sk, skb); 520 switch (err) { 521 case -ENOMEM: 522 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 523 break; 524 case -ENOBUFS: 525 drop_reason = SKB_DROP_REASON_PROTO_MEM; 526 break; 527 default: 528 drop_reason = SKB_NOT_DROPPED_YET; 529 break; 530 } 531 out: 532 if (reason) 533 *reason = drop_reason; 534 return err; 535 } 536 EXPORT_SYMBOL(sock_queue_rcv_skb_reason); 537 538 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 539 const int nested, unsigned int trim_cap, bool refcounted) 540 { 541 int rc = NET_RX_SUCCESS; 542 543 if (sk_filter_trim_cap(sk, skb, trim_cap)) 544 goto discard_and_relse; 545 546 skb->dev = NULL; 547 548 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 549 atomic_inc(&sk->sk_drops); 550 goto discard_and_relse; 551 } 552 if (nested) 553 bh_lock_sock_nested(sk); 554 else 555 bh_lock_sock(sk); 556 if (!sock_owned_by_user(sk)) { 557 /* 558 * trylock + unlock semantics: 559 */ 560 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 561 562 rc = sk_backlog_rcv(sk, skb); 563 564 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 565 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 566 bh_unlock_sock(sk); 567 atomic_inc(&sk->sk_drops); 568 goto discard_and_relse; 569 } 570 571 bh_unlock_sock(sk); 572 out: 573 if (refcounted) 574 sock_put(sk); 575 return rc; 576 discard_and_relse: 577 kfree_skb(skb); 578 goto out; 579 } 580 EXPORT_SYMBOL(__sk_receive_skb); 581 582 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 583 u32)); 584 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 585 u32)); 586 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 587 { 588 struct dst_entry *dst = __sk_dst_get(sk); 589 590 if (dst && dst->obsolete && 591 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 592 dst, cookie) == NULL) { 593 sk_tx_queue_clear(sk); 594 sk->sk_dst_pending_confirm = 0; 595 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 596 dst_release(dst); 597 return NULL; 598 } 599 600 return dst; 601 } 602 EXPORT_SYMBOL(__sk_dst_check); 603 604 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 605 { 606 struct dst_entry *dst = sk_dst_get(sk); 607 608 if (dst && dst->obsolete && 609 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 610 dst, cookie) == NULL) { 611 sk_dst_reset(sk); 612 dst_release(dst); 613 return NULL; 614 } 615 616 return dst; 617 } 618 EXPORT_SYMBOL(sk_dst_check); 619 620 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 621 { 622 int ret = -ENOPROTOOPT; 623 #ifdef CONFIG_NETDEVICES 624 struct net *net = sock_net(sk); 625 626 /* Sorry... */ 627 ret = -EPERM; 628 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 629 goto out; 630 631 ret = -EINVAL; 632 if (ifindex < 0) 633 goto out; 634 635 sk->sk_bound_dev_if = ifindex; 636 if (sk->sk_prot->rehash) 637 sk->sk_prot->rehash(sk); 638 sk_dst_reset(sk); 639 640 ret = 0; 641 642 out: 643 #endif 644 645 return ret; 646 } 647 648 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 649 { 650 int ret; 651 652 if (lock_sk) 653 lock_sock(sk); 654 ret = sock_bindtoindex_locked(sk, ifindex); 655 if (lock_sk) 656 release_sock(sk); 657 658 return ret; 659 } 660 EXPORT_SYMBOL(sock_bindtoindex); 661 662 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 663 { 664 int ret = -ENOPROTOOPT; 665 #ifdef CONFIG_NETDEVICES 666 struct net *net = sock_net(sk); 667 char devname[IFNAMSIZ]; 668 int index; 669 670 ret = -EINVAL; 671 if (optlen < 0) 672 goto out; 673 674 /* Bind this socket to a particular device like "eth0", 675 * as specified in the passed interface name. If the 676 * name is "" or the option length is zero the socket 677 * is not bound. 678 */ 679 if (optlen > IFNAMSIZ - 1) 680 optlen = IFNAMSIZ - 1; 681 memset(devname, 0, sizeof(devname)); 682 683 ret = -EFAULT; 684 if (copy_from_sockptr(devname, optval, optlen)) 685 goto out; 686 687 index = 0; 688 if (devname[0] != '\0') { 689 struct net_device *dev; 690 691 rcu_read_lock(); 692 dev = dev_get_by_name_rcu(net, devname); 693 if (dev) 694 index = dev->ifindex; 695 rcu_read_unlock(); 696 ret = -ENODEV; 697 if (!dev) 698 goto out; 699 } 700 701 return sock_bindtoindex(sk, index, true); 702 out: 703 #endif 704 705 return ret; 706 } 707 708 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 709 int __user *optlen, int len) 710 { 711 int ret = -ENOPROTOOPT; 712 #ifdef CONFIG_NETDEVICES 713 struct net *net = sock_net(sk); 714 char devname[IFNAMSIZ]; 715 716 if (sk->sk_bound_dev_if == 0) { 717 len = 0; 718 goto zero; 719 } 720 721 ret = -EINVAL; 722 if (len < IFNAMSIZ) 723 goto out; 724 725 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 726 if (ret) 727 goto out; 728 729 len = strlen(devname) + 1; 730 731 ret = -EFAULT; 732 if (copy_to_user(optval, devname, len)) 733 goto out; 734 735 zero: 736 ret = -EFAULT; 737 if (put_user(len, optlen)) 738 goto out; 739 740 ret = 0; 741 742 out: 743 #endif 744 745 return ret; 746 } 747 748 bool sk_mc_loop(struct sock *sk) 749 { 750 if (dev_recursion_level()) 751 return false; 752 if (!sk) 753 return true; 754 switch (sk->sk_family) { 755 case AF_INET: 756 return inet_sk(sk)->mc_loop; 757 #if IS_ENABLED(CONFIG_IPV6) 758 case AF_INET6: 759 return inet6_sk(sk)->mc_loop; 760 #endif 761 } 762 WARN_ON_ONCE(1); 763 return true; 764 } 765 EXPORT_SYMBOL(sk_mc_loop); 766 767 void sock_set_reuseaddr(struct sock *sk) 768 { 769 lock_sock(sk); 770 sk->sk_reuse = SK_CAN_REUSE; 771 release_sock(sk); 772 } 773 EXPORT_SYMBOL(sock_set_reuseaddr); 774 775 void sock_set_reuseport(struct sock *sk) 776 { 777 lock_sock(sk); 778 sk->sk_reuseport = true; 779 release_sock(sk); 780 } 781 EXPORT_SYMBOL(sock_set_reuseport); 782 783 void sock_no_linger(struct sock *sk) 784 { 785 lock_sock(sk); 786 sk->sk_lingertime = 0; 787 sock_set_flag(sk, SOCK_LINGER); 788 release_sock(sk); 789 } 790 EXPORT_SYMBOL(sock_no_linger); 791 792 void sock_set_priority(struct sock *sk, u32 priority) 793 { 794 lock_sock(sk); 795 sk->sk_priority = priority; 796 release_sock(sk); 797 } 798 EXPORT_SYMBOL(sock_set_priority); 799 800 void sock_set_sndtimeo(struct sock *sk, s64 secs) 801 { 802 lock_sock(sk); 803 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 804 sk->sk_sndtimeo = secs * HZ; 805 else 806 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 807 release_sock(sk); 808 } 809 EXPORT_SYMBOL(sock_set_sndtimeo); 810 811 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 812 { 813 if (val) { 814 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 815 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 816 sock_set_flag(sk, SOCK_RCVTSTAMP); 817 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 818 } else { 819 sock_reset_flag(sk, SOCK_RCVTSTAMP); 820 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 821 } 822 } 823 824 void sock_enable_timestamps(struct sock *sk) 825 { 826 lock_sock(sk); 827 __sock_set_timestamps(sk, true, false, true); 828 release_sock(sk); 829 } 830 EXPORT_SYMBOL(sock_enable_timestamps); 831 832 void sock_set_timestamp(struct sock *sk, int optname, bool valbool) 833 { 834 switch (optname) { 835 case SO_TIMESTAMP_OLD: 836 __sock_set_timestamps(sk, valbool, false, false); 837 break; 838 case SO_TIMESTAMP_NEW: 839 __sock_set_timestamps(sk, valbool, true, false); 840 break; 841 case SO_TIMESTAMPNS_OLD: 842 __sock_set_timestamps(sk, valbool, false, true); 843 break; 844 case SO_TIMESTAMPNS_NEW: 845 __sock_set_timestamps(sk, valbool, true, true); 846 break; 847 } 848 } 849 850 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) 851 { 852 struct net *net = sock_net(sk); 853 struct net_device *dev = NULL; 854 bool match = false; 855 int *vclock_index; 856 int i, num; 857 858 if (sk->sk_bound_dev_if) 859 dev = dev_get_by_index(net, sk->sk_bound_dev_if); 860 861 if (!dev) { 862 pr_err("%s: sock not bind to device\n", __func__); 863 return -EOPNOTSUPP; 864 } 865 866 num = ethtool_get_phc_vclocks(dev, &vclock_index); 867 dev_put(dev); 868 869 for (i = 0; i < num; i++) { 870 if (*(vclock_index + i) == phc_index) { 871 match = true; 872 break; 873 } 874 } 875 876 if (num > 0) 877 kfree(vclock_index); 878 879 if (!match) 880 return -EINVAL; 881 882 sk->sk_bind_phc = phc_index; 883 884 return 0; 885 } 886 887 int sock_set_timestamping(struct sock *sk, int optname, 888 struct so_timestamping timestamping) 889 { 890 int val = timestamping.flags; 891 int ret; 892 893 if (val & ~SOF_TIMESTAMPING_MASK) 894 return -EINVAL; 895 896 if (val & SOF_TIMESTAMPING_OPT_ID && 897 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 898 if (sk_is_tcp(sk)) { 899 if ((1 << sk->sk_state) & 900 (TCPF_CLOSE | TCPF_LISTEN)) 901 return -EINVAL; 902 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); 903 } else { 904 atomic_set(&sk->sk_tskey, 0); 905 } 906 } 907 908 if (val & SOF_TIMESTAMPING_OPT_STATS && 909 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) 910 return -EINVAL; 911 912 if (val & SOF_TIMESTAMPING_BIND_PHC) { 913 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); 914 if (ret) 915 return ret; 916 } 917 918 sk->sk_tsflags = val; 919 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 920 921 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 922 sock_enable_timestamp(sk, 923 SOCK_TIMESTAMPING_RX_SOFTWARE); 924 else 925 sock_disable_timestamp(sk, 926 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 927 return 0; 928 } 929 930 void sock_set_keepalive(struct sock *sk) 931 { 932 lock_sock(sk); 933 if (sk->sk_prot->keepalive) 934 sk->sk_prot->keepalive(sk, true); 935 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 936 release_sock(sk); 937 } 938 EXPORT_SYMBOL(sock_set_keepalive); 939 940 static void __sock_set_rcvbuf(struct sock *sk, int val) 941 { 942 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 943 * as a negative value. 944 */ 945 val = min_t(int, val, INT_MAX / 2); 946 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 947 948 /* We double it on the way in to account for "struct sk_buff" etc. 949 * overhead. Applications assume that the SO_RCVBUF setting they make 950 * will allow that much actual data to be received on that socket. 951 * 952 * Applications are unaware that "struct sk_buff" and other overheads 953 * allocate from the receive buffer during socket buffer allocation. 954 * 955 * And after considering the possible alternatives, returning the value 956 * we actually used in getsockopt is the most desirable behavior. 957 */ 958 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 959 } 960 961 void sock_set_rcvbuf(struct sock *sk, int val) 962 { 963 lock_sock(sk); 964 __sock_set_rcvbuf(sk, val); 965 release_sock(sk); 966 } 967 EXPORT_SYMBOL(sock_set_rcvbuf); 968 969 static void __sock_set_mark(struct sock *sk, u32 val) 970 { 971 if (val != sk->sk_mark) { 972 sk->sk_mark = val; 973 sk_dst_reset(sk); 974 } 975 } 976 977 void sock_set_mark(struct sock *sk, u32 val) 978 { 979 lock_sock(sk); 980 __sock_set_mark(sk, val); 981 release_sock(sk); 982 } 983 EXPORT_SYMBOL(sock_set_mark); 984 985 static void sock_release_reserved_memory(struct sock *sk, int bytes) 986 { 987 /* Round down bytes to multiple of pages */ 988 bytes &= ~(SK_MEM_QUANTUM - 1); 989 990 WARN_ON(bytes > sk->sk_reserved_mem); 991 sk->sk_reserved_mem -= bytes; 992 sk_mem_reclaim(sk); 993 } 994 995 static int sock_reserve_memory(struct sock *sk, int bytes) 996 { 997 long allocated; 998 bool charged; 999 int pages; 1000 1001 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) 1002 return -EOPNOTSUPP; 1003 1004 if (!bytes) 1005 return 0; 1006 1007 pages = sk_mem_pages(bytes); 1008 1009 /* pre-charge to memcg */ 1010 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, 1011 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1012 if (!charged) 1013 return -ENOMEM; 1014 1015 /* pre-charge to forward_alloc */ 1016 allocated = sk_memory_allocated_add(sk, pages); 1017 /* If the system goes into memory pressure with this 1018 * precharge, give up and return error. 1019 */ 1020 if (allocated > sk_prot_mem_limits(sk, 1)) { 1021 sk_memory_allocated_sub(sk, pages); 1022 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); 1023 return -ENOMEM; 1024 } 1025 sk->sk_forward_alloc += pages << SK_MEM_QUANTUM_SHIFT; 1026 1027 sk->sk_reserved_mem += pages << SK_MEM_QUANTUM_SHIFT; 1028 1029 return 0; 1030 } 1031 1032 /* 1033 * This is meant for all protocols to use and covers goings on 1034 * at the socket level. Everything here is generic. 1035 */ 1036 1037 int sock_setsockopt(struct socket *sock, int level, int optname, 1038 sockptr_t optval, unsigned int optlen) 1039 { 1040 struct so_timestamping timestamping; 1041 struct sock_txtime sk_txtime; 1042 struct sock *sk = sock->sk; 1043 int val; 1044 int valbool; 1045 struct linger ling; 1046 int ret = 0; 1047 1048 /* 1049 * Options without arguments 1050 */ 1051 1052 if (optname == SO_BINDTODEVICE) 1053 return sock_setbindtodevice(sk, optval, optlen); 1054 1055 if (optlen < sizeof(int)) 1056 return -EINVAL; 1057 1058 if (copy_from_sockptr(&val, optval, sizeof(val))) 1059 return -EFAULT; 1060 1061 valbool = val ? 1 : 0; 1062 1063 lock_sock(sk); 1064 1065 switch (optname) { 1066 case SO_DEBUG: 1067 if (val && !capable(CAP_NET_ADMIN)) 1068 ret = -EACCES; 1069 else 1070 sock_valbool_flag(sk, SOCK_DBG, valbool); 1071 break; 1072 case SO_REUSEADDR: 1073 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 1074 break; 1075 case SO_REUSEPORT: 1076 sk->sk_reuseport = valbool; 1077 break; 1078 case SO_TYPE: 1079 case SO_PROTOCOL: 1080 case SO_DOMAIN: 1081 case SO_ERROR: 1082 ret = -ENOPROTOOPT; 1083 break; 1084 case SO_DONTROUTE: 1085 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 1086 sk_dst_reset(sk); 1087 break; 1088 case SO_BROADCAST: 1089 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 1090 break; 1091 case SO_SNDBUF: 1092 /* Don't error on this BSD doesn't and if you think 1093 * about it this is right. Otherwise apps have to 1094 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1095 * are treated in BSD as hints 1096 */ 1097 val = min_t(u32, val, sysctl_wmem_max); 1098 set_sndbuf: 1099 /* Ensure val * 2 fits into an int, to prevent max_t() 1100 * from treating it as a negative value. 1101 */ 1102 val = min_t(int, val, INT_MAX / 2); 1103 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1104 WRITE_ONCE(sk->sk_sndbuf, 1105 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 1106 /* Wake up sending tasks if we upped the value. */ 1107 sk->sk_write_space(sk); 1108 break; 1109 1110 case SO_SNDBUFFORCE: 1111 if (!capable(CAP_NET_ADMIN)) { 1112 ret = -EPERM; 1113 break; 1114 } 1115 1116 /* No negative values (to prevent underflow, as val will be 1117 * multiplied by 2). 1118 */ 1119 if (val < 0) 1120 val = 0; 1121 goto set_sndbuf; 1122 1123 case SO_RCVBUF: 1124 /* Don't error on this BSD doesn't and if you think 1125 * about it this is right. Otherwise apps have to 1126 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1127 * are treated in BSD as hints 1128 */ 1129 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max)); 1130 break; 1131 1132 case SO_RCVBUFFORCE: 1133 if (!capable(CAP_NET_ADMIN)) { 1134 ret = -EPERM; 1135 break; 1136 } 1137 1138 /* No negative values (to prevent underflow, as val will be 1139 * multiplied by 2). 1140 */ 1141 __sock_set_rcvbuf(sk, max(val, 0)); 1142 break; 1143 1144 case SO_KEEPALIVE: 1145 if (sk->sk_prot->keepalive) 1146 sk->sk_prot->keepalive(sk, valbool); 1147 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 1148 break; 1149 1150 case SO_OOBINLINE: 1151 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 1152 break; 1153 1154 case SO_NO_CHECK: 1155 sk->sk_no_check_tx = valbool; 1156 break; 1157 1158 case SO_PRIORITY: 1159 if ((val >= 0 && val <= 6) || 1160 ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || 1161 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 1162 sk->sk_priority = val; 1163 else 1164 ret = -EPERM; 1165 break; 1166 1167 case SO_LINGER: 1168 if (optlen < sizeof(ling)) { 1169 ret = -EINVAL; /* 1003.1g */ 1170 break; 1171 } 1172 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 1173 ret = -EFAULT; 1174 break; 1175 } 1176 if (!ling.l_onoff) 1177 sock_reset_flag(sk, SOCK_LINGER); 1178 else { 1179 #if (BITS_PER_LONG == 32) 1180 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 1181 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 1182 else 1183 #endif 1184 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 1185 sock_set_flag(sk, SOCK_LINGER); 1186 } 1187 break; 1188 1189 case SO_BSDCOMPAT: 1190 break; 1191 1192 case SO_PASSCRED: 1193 if (valbool) 1194 set_bit(SOCK_PASSCRED, &sock->flags); 1195 else 1196 clear_bit(SOCK_PASSCRED, &sock->flags); 1197 break; 1198 1199 case SO_TIMESTAMP_OLD: 1200 case SO_TIMESTAMP_NEW: 1201 case SO_TIMESTAMPNS_OLD: 1202 case SO_TIMESTAMPNS_NEW: 1203 sock_set_timestamp(sk, optname, valbool); 1204 break; 1205 1206 case SO_TIMESTAMPING_NEW: 1207 case SO_TIMESTAMPING_OLD: 1208 if (optlen == sizeof(timestamping)) { 1209 if (copy_from_sockptr(×tamping, optval, 1210 sizeof(timestamping))) { 1211 ret = -EFAULT; 1212 break; 1213 } 1214 } else { 1215 memset(×tamping, 0, sizeof(timestamping)); 1216 timestamping.flags = val; 1217 } 1218 ret = sock_set_timestamping(sk, optname, timestamping); 1219 break; 1220 1221 case SO_RCVLOWAT: 1222 if (val < 0) 1223 val = INT_MAX; 1224 if (sock->ops->set_rcvlowat) 1225 ret = sock->ops->set_rcvlowat(sk, val); 1226 else 1227 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1228 break; 1229 1230 case SO_RCVTIMEO_OLD: 1231 case SO_RCVTIMEO_NEW: 1232 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1233 optlen, optname == SO_RCVTIMEO_OLD); 1234 break; 1235 1236 case SO_SNDTIMEO_OLD: 1237 case SO_SNDTIMEO_NEW: 1238 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1239 optlen, optname == SO_SNDTIMEO_OLD); 1240 break; 1241 1242 case SO_ATTACH_FILTER: { 1243 struct sock_fprog fprog; 1244 1245 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1246 if (!ret) 1247 ret = sk_attach_filter(&fprog, sk); 1248 break; 1249 } 1250 case SO_ATTACH_BPF: 1251 ret = -EINVAL; 1252 if (optlen == sizeof(u32)) { 1253 u32 ufd; 1254 1255 ret = -EFAULT; 1256 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1257 break; 1258 1259 ret = sk_attach_bpf(ufd, sk); 1260 } 1261 break; 1262 1263 case SO_ATTACH_REUSEPORT_CBPF: { 1264 struct sock_fprog fprog; 1265 1266 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1267 if (!ret) 1268 ret = sk_reuseport_attach_filter(&fprog, sk); 1269 break; 1270 } 1271 case SO_ATTACH_REUSEPORT_EBPF: 1272 ret = -EINVAL; 1273 if (optlen == sizeof(u32)) { 1274 u32 ufd; 1275 1276 ret = -EFAULT; 1277 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1278 break; 1279 1280 ret = sk_reuseport_attach_bpf(ufd, sk); 1281 } 1282 break; 1283 1284 case SO_DETACH_REUSEPORT_BPF: 1285 ret = reuseport_detach_prog(sk); 1286 break; 1287 1288 case SO_DETACH_FILTER: 1289 ret = sk_detach_filter(sk); 1290 break; 1291 1292 case SO_LOCK_FILTER: 1293 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1294 ret = -EPERM; 1295 else 1296 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1297 break; 1298 1299 case SO_PASSSEC: 1300 if (valbool) 1301 set_bit(SOCK_PASSSEC, &sock->flags); 1302 else 1303 clear_bit(SOCK_PASSSEC, &sock->flags); 1304 break; 1305 case SO_MARK: 1306 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1307 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1308 ret = -EPERM; 1309 break; 1310 } 1311 1312 __sock_set_mark(sk, val); 1313 break; 1314 case SO_RCVMARK: 1315 sock_valbool_flag(sk, SOCK_RCVMARK, valbool); 1316 break; 1317 1318 case SO_RXQ_OVFL: 1319 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1320 break; 1321 1322 case SO_WIFI_STATUS: 1323 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1324 break; 1325 1326 case SO_PEEK_OFF: 1327 if (sock->ops->set_peek_off) 1328 ret = sock->ops->set_peek_off(sk, val); 1329 else 1330 ret = -EOPNOTSUPP; 1331 break; 1332 1333 case SO_NOFCS: 1334 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1335 break; 1336 1337 case SO_SELECT_ERR_QUEUE: 1338 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1339 break; 1340 1341 #ifdef CONFIG_NET_RX_BUSY_POLL 1342 case SO_BUSY_POLL: 1343 /* allow unprivileged users to decrease the value */ 1344 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1345 ret = -EPERM; 1346 else { 1347 if (val < 0) 1348 ret = -EINVAL; 1349 else 1350 WRITE_ONCE(sk->sk_ll_usec, val); 1351 } 1352 break; 1353 case SO_PREFER_BUSY_POLL: 1354 if (valbool && !capable(CAP_NET_ADMIN)) 1355 ret = -EPERM; 1356 else 1357 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1358 break; 1359 case SO_BUSY_POLL_BUDGET: 1360 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) { 1361 ret = -EPERM; 1362 } else { 1363 if (val < 0 || val > U16_MAX) 1364 ret = -EINVAL; 1365 else 1366 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1367 } 1368 break; 1369 #endif 1370 1371 case SO_MAX_PACING_RATE: 1372 { 1373 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1374 1375 if (sizeof(ulval) != sizeof(val) && 1376 optlen >= sizeof(ulval) && 1377 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1378 ret = -EFAULT; 1379 break; 1380 } 1381 if (ulval != ~0UL) 1382 cmpxchg(&sk->sk_pacing_status, 1383 SK_PACING_NONE, 1384 SK_PACING_NEEDED); 1385 sk->sk_max_pacing_rate = ulval; 1386 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1387 break; 1388 } 1389 case SO_INCOMING_CPU: 1390 WRITE_ONCE(sk->sk_incoming_cpu, val); 1391 break; 1392 1393 case SO_CNX_ADVICE: 1394 if (val == 1) 1395 dst_negative_advice(sk); 1396 break; 1397 1398 case SO_ZEROCOPY: 1399 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1400 if (!(sk_is_tcp(sk) || 1401 (sk->sk_type == SOCK_DGRAM && 1402 sk->sk_protocol == IPPROTO_UDP))) 1403 ret = -EOPNOTSUPP; 1404 } else if (sk->sk_family != PF_RDS) { 1405 ret = -EOPNOTSUPP; 1406 } 1407 if (!ret) { 1408 if (val < 0 || val > 1) 1409 ret = -EINVAL; 1410 else 1411 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1412 } 1413 break; 1414 1415 case SO_TXTIME: 1416 if (optlen != sizeof(struct sock_txtime)) { 1417 ret = -EINVAL; 1418 break; 1419 } else if (copy_from_sockptr(&sk_txtime, optval, 1420 sizeof(struct sock_txtime))) { 1421 ret = -EFAULT; 1422 break; 1423 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1424 ret = -EINVAL; 1425 break; 1426 } 1427 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1428 * scheduler has enough safe guards. 1429 */ 1430 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1431 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1432 ret = -EPERM; 1433 break; 1434 } 1435 sock_valbool_flag(sk, SOCK_TXTIME, true); 1436 sk->sk_clockid = sk_txtime.clockid; 1437 sk->sk_txtime_deadline_mode = 1438 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1439 sk->sk_txtime_report_errors = 1440 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1441 break; 1442 1443 case SO_BINDTOIFINDEX: 1444 ret = sock_bindtoindex_locked(sk, val); 1445 break; 1446 1447 case SO_BUF_LOCK: 1448 if (val & ~SOCK_BUF_LOCK_MASK) { 1449 ret = -EINVAL; 1450 break; 1451 } 1452 sk->sk_userlocks = val | (sk->sk_userlocks & 1453 ~SOCK_BUF_LOCK_MASK); 1454 break; 1455 1456 case SO_RESERVE_MEM: 1457 { 1458 int delta; 1459 1460 if (val < 0) { 1461 ret = -EINVAL; 1462 break; 1463 } 1464 1465 delta = val - sk->sk_reserved_mem; 1466 if (delta < 0) 1467 sock_release_reserved_memory(sk, -delta); 1468 else 1469 ret = sock_reserve_memory(sk, delta); 1470 break; 1471 } 1472 1473 case SO_TXREHASH: 1474 if (val < -1 || val > 1) { 1475 ret = -EINVAL; 1476 break; 1477 } 1478 /* Paired with READ_ONCE() in tcp_rtx_synack() */ 1479 WRITE_ONCE(sk->sk_txrehash, (u8)val); 1480 break; 1481 1482 default: 1483 ret = -ENOPROTOOPT; 1484 break; 1485 } 1486 release_sock(sk); 1487 return ret; 1488 } 1489 EXPORT_SYMBOL(sock_setsockopt); 1490 1491 static const struct cred *sk_get_peer_cred(struct sock *sk) 1492 { 1493 const struct cred *cred; 1494 1495 spin_lock(&sk->sk_peer_lock); 1496 cred = get_cred(sk->sk_peer_cred); 1497 spin_unlock(&sk->sk_peer_lock); 1498 1499 return cred; 1500 } 1501 1502 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1503 struct ucred *ucred) 1504 { 1505 ucred->pid = pid_vnr(pid); 1506 ucred->uid = ucred->gid = -1; 1507 if (cred) { 1508 struct user_namespace *current_ns = current_user_ns(); 1509 1510 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1511 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1512 } 1513 } 1514 1515 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1516 { 1517 struct user_namespace *user_ns = current_user_ns(); 1518 int i; 1519 1520 for (i = 0; i < src->ngroups; i++) 1521 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1522 return -EFAULT; 1523 1524 return 0; 1525 } 1526 1527 int sock_getsockopt(struct socket *sock, int level, int optname, 1528 char __user *optval, int __user *optlen) 1529 { 1530 struct sock *sk = sock->sk; 1531 1532 union { 1533 int val; 1534 u64 val64; 1535 unsigned long ulval; 1536 struct linger ling; 1537 struct old_timeval32 tm32; 1538 struct __kernel_old_timeval tm; 1539 struct __kernel_sock_timeval stm; 1540 struct sock_txtime txtime; 1541 struct so_timestamping timestamping; 1542 } v; 1543 1544 int lv = sizeof(int); 1545 int len; 1546 1547 if (get_user(len, optlen)) 1548 return -EFAULT; 1549 if (len < 0) 1550 return -EINVAL; 1551 1552 memset(&v, 0, sizeof(v)); 1553 1554 switch (optname) { 1555 case SO_DEBUG: 1556 v.val = sock_flag(sk, SOCK_DBG); 1557 break; 1558 1559 case SO_DONTROUTE: 1560 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1561 break; 1562 1563 case SO_BROADCAST: 1564 v.val = sock_flag(sk, SOCK_BROADCAST); 1565 break; 1566 1567 case SO_SNDBUF: 1568 v.val = sk->sk_sndbuf; 1569 break; 1570 1571 case SO_RCVBUF: 1572 v.val = sk->sk_rcvbuf; 1573 break; 1574 1575 case SO_REUSEADDR: 1576 v.val = sk->sk_reuse; 1577 break; 1578 1579 case SO_REUSEPORT: 1580 v.val = sk->sk_reuseport; 1581 break; 1582 1583 case SO_KEEPALIVE: 1584 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1585 break; 1586 1587 case SO_TYPE: 1588 v.val = sk->sk_type; 1589 break; 1590 1591 case SO_PROTOCOL: 1592 v.val = sk->sk_protocol; 1593 break; 1594 1595 case SO_DOMAIN: 1596 v.val = sk->sk_family; 1597 break; 1598 1599 case SO_ERROR: 1600 v.val = -sock_error(sk); 1601 if (v.val == 0) 1602 v.val = xchg(&sk->sk_err_soft, 0); 1603 break; 1604 1605 case SO_OOBINLINE: 1606 v.val = sock_flag(sk, SOCK_URGINLINE); 1607 break; 1608 1609 case SO_NO_CHECK: 1610 v.val = sk->sk_no_check_tx; 1611 break; 1612 1613 case SO_PRIORITY: 1614 v.val = sk->sk_priority; 1615 break; 1616 1617 case SO_LINGER: 1618 lv = sizeof(v.ling); 1619 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1620 v.ling.l_linger = sk->sk_lingertime / HZ; 1621 break; 1622 1623 case SO_BSDCOMPAT: 1624 break; 1625 1626 case SO_TIMESTAMP_OLD: 1627 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1628 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1629 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1630 break; 1631 1632 case SO_TIMESTAMPNS_OLD: 1633 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1634 break; 1635 1636 case SO_TIMESTAMP_NEW: 1637 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1638 break; 1639 1640 case SO_TIMESTAMPNS_NEW: 1641 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1642 break; 1643 1644 case SO_TIMESTAMPING_OLD: 1645 lv = sizeof(v.timestamping); 1646 v.timestamping.flags = sk->sk_tsflags; 1647 v.timestamping.bind_phc = sk->sk_bind_phc; 1648 break; 1649 1650 case SO_RCVTIMEO_OLD: 1651 case SO_RCVTIMEO_NEW: 1652 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1653 break; 1654 1655 case SO_SNDTIMEO_OLD: 1656 case SO_SNDTIMEO_NEW: 1657 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1658 break; 1659 1660 case SO_RCVLOWAT: 1661 v.val = sk->sk_rcvlowat; 1662 break; 1663 1664 case SO_SNDLOWAT: 1665 v.val = 1; 1666 break; 1667 1668 case SO_PASSCRED: 1669 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1670 break; 1671 1672 case SO_PEERCRED: 1673 { 1674 struct ucred peercred; 1675 if (len > sizeof(peercred)) 1676 len = sizeof(peercred); 1677 1678 spin_lock(&sk->sk_peer_lock); 1679 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1680 spin_unlock(&sk->sk_peer_lock); 1681 1682 if (copy_to_user(optval, &peercred, len)) 1683 return -EFAULT; 1684 goto lenout; 1685 } 1686 1687 case SO_PEERGROUPS: 1688 { 1689 const struct cred *cred; 1690 int ret, n; 1691 1692 cred = sk_get_peer_cred(sk); 1693 if (!cred) 1694 return -ENODATA; 1695 1696 n = cred->group_info->ngroups; 1697 if (len < n * sizeof(gid_t)) { 1698 len = n * sizeof(gid_t); 1699 put_cred(cred); 1700 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1701 } 1702 len = n * sizeof(gid_t); 1703 1704 ret = groups_to_user((gid_t __user *)optval, cred->group_info); 1705 put_cred(cred); 1706 if (ret) 1707 return ret; 1708 goto lenout; 1709 } 1710 1711 case SO_PEERNAME: 1712 { 1713 char address[128]; 1714 1715 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1716 if (lv < 0) 1717 return -ENOTCONN; 1718 if (lv < len) 1719 return -EINVAL; 1720 if (copy_to_user(optval, address, len)) 1721 return -EFAULT; 1722 goto lenout; 1723 } 1724 1725 /* Dubious BSD thing... Probably nobody even uses it, but 1726 * the UNIX standard wants it for whatever reason... -DaveM 1727 */ 1728 case SO_ACCEPTCONN: 1729 v.val = sk->sk_state == TCP_LISTEN; 1730 break; 1731 1732 case SO_PASSSEC: 1733 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1734 break; 1735 1736 case SO_PEERSEC: 1737 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1738 1739 case SO_MARK: 1740 v.val = sk->sk_mark; 1741 break; 1742 1743 case SO_RCVMARK: 1744 v.val = sock_flag(sk, SOCK_RCVMARK); 1745 break; 1746 1747 case SO_RXQ_OVFL: 1748 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1749 break; 1750 1751 case SO_WIFI_STATUS: 1752 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1753 break; 1754 1755 case SO_PEEK_OFF: 1756 if (!sock->ops->set_peek_off) 1757 return -EOPNOTSUPP; 1758 1759 v.val = sk->sk_peek_off; 1760 break; 1761 case SO_NOFCS: 1762 v.val = sock_flag(sk, SOCK_NOFCS); 1763 break; 1764 1765 case SO_BINDTODEVICE: 1766 return sock_getbindtodevice(sk, optval, optlen, len); 1767 1768 case SO_GET_FILTER: 1769 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1770 if (len < 0) 1771 return len; 1772 1773 goto lenout; 1774 1775 case SO_LOCK_FILTER: 1776 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1777 break; 1778 1779 case SO_BPF_EXTENSIONS: 1780 v.val = bpf_tell_extensions(); 1781 break; 1782 1783 case SO_SELECT_ERR_QUEUE: 1784 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1785 break; 1786 1787 #ifdef CONFIG_NET_RX_BUSY_POLL 1788 case SO_BUSY_POLL: 1789 v.val = sk->sk_ll_usec; 1790 break; 1791 case SO_PREFER_BUSY_POLL: 1792 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1793 break; 1794 #endif 1795 1796 case SO_MAX_PACING_RATE: 1797 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1798 lv = sizeof(v.ulval); 1799 v.ulval = sk->sk_max_pacing_rate; 1800 } else { 1801 /* 32bit version */ 1802 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1803 } 1804 break; 1805 1806 case SO_INCOMING_CPU: 1807 v.val = READ_ONCE(sk->sk_incoming_cpu); 1808 break; 1809 1810 case SO_MEMINFO: 1811 { 1812 u32 meminfo[SK_MEMINFO_VARS]; 1813 1814 sk_get_meminfo(sk, meminfo); 1815 1816 len = min_t(unsigned int, len, sizeof(meminfo)); 1817 if (copy_to_user(optval, &meminfo, len)) 1818 return -EFAULT; 1819 1820 goto lenout; 1821 } 1822 1823 #ifdef CONFIG_NET_RX_BUSY_POLL 1824 case SO_INCOMING_NAPI_ID: 1825 v.val = READ_ONCE(sk->sk_napi_id); 1826 1827 /* aggregate non-NAPI IDs down to 0 */ 1828 if (v.val < MIN_NAPI_ID) 1829 v.val = 0; 1830 1831 break; 1832 #endif 1833 1834 case SO_COOKIE: 1835 lv = sizeof(u64); 1836 if (len < lv) 1837 return -EINVAL; 1838 v.val64 = sock_gen_cookie(sk); 1839 break; 1840 1841 case SO_ZEROCOPY: 1842 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1843 break; 1844 1845 case SO_TXTIME: 1846 lv = sizeof(v.txtime); 1847 v.txtime.clockid = sk->sk_clockid; 1848 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1849 SOF_TXTIME_DEADLINE_MODE : 0; 1850 v.txtime.flags |= sk->sk_txtime_report_errors ? 1851 SOF_TXTIME_REPORT_ERRORS : 0; 1852 break; 1853 1854 case SO_BINDTOIFINDEX: 1855 v.val = sk->sk_bound_dev_if; 1856 break; 1857 1858 case SO_NETNS_COOKIE: 1859 lv = sizeof(u64); 1860 if (len != lv) 1861 return -EINVAL; 1862 v.val64 = sock_net(sk)->net_cookie; 1863 break; 1864 1865 case SO_BUF_LOCK: 1866 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; 1867 break; 1868 1869 case SO_RESERVE_MEM: 1870 v.val = sk->sk_reserved_mem; 1871 break; 1872 1873 case SO_TXREHASH: 1874 v.val = sk->sk_txrehash; 1875 break; 1876 1877 default: 1878 /* We implement the SO_SNDLOWAT etc to not be settable 1879 * (1003.1g 7). 1880 */ 1881 return -ENOPROTOOPT; 1882 } 1883 1884 if (len > lv) 1885 len = lv; 1886 if (copy_to_user(optval, &v, len)) 1887 return -EFAULT; 1888 lenout: 1889 if (put_user(len, optlen)) 1890 return -EFAULT; 1891 return 0; 1892 } 1893 1894 /* 1895 * Initialize an sk_lock. 1896 * 1897 * (We also register the sk_lock with the lock validator.) 1898 */ 1899 static inline void sock_lock_init(struct sock *sk) 1900 { 1901 if (sk->sk_kern_sock) 1902 sock_lock_init_class_and_name( 1903 sk, 1904 af_family_kern_slock_key_strings[sk->sk_family], 1905 af_family_kern_slock_keys + sk->sk_family, 1906 af_family_kern_key_strings[sk->sk_family], 1907 af_family_kern_keys + sk->sk_family); 1908 else 1909 sock_lock_init_class_and_name( 1910 sk, 1911 af_family_slock_key_strings[sk->sk_family], 1912 af_family_slock_keys + sk->sk_family, 1913 af_family_key_strings[sk->sk_family], 1914 af_family_keys + sk->sk_family); 1915 } 1916 1917 /* 1918 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1919 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1920 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1921 */ 1922 static void sock_copy(struct sock *nsk, const struct sock *osk) 1923 { 1924 const struct proto *prot = READ_ONCE(osk->sk_prot); 1925 #ifdef CONFIG_SECURITY_NETWORK 1926 void *sptr = nsk->sk_security; 1927 #endif 1928 1929 /* If we move sk_tx_queue_mapping out of the private section, 1930 * we must check if sk_tx_queue_clear() is called after 1931 * sock_copy() in sk_clone_lock(). 1932 */ 1933 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 1934 offsetof(struct sock, sk_dontcopy_begin) || 1935 offsetof(struct sock, sk_tx_queue_mapping) >= 1936 offsetof(struct sock, sk_dontcopy_end)); 1937 1938 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1939 1940 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1941 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1942 1943 #ifdef CONFIG_SECURITY_NETWORK 1944 nsk->sk_security = sptr; 1945 security_sk_clone(osk, nsk); 1946 #endif 1947 } 1948 1949 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1950 int family) 1951 { 1952 struct sock *sk; 1953 struct kmem_cache *slab; 1954 1955 slab = prot->slab; 1956 if (slab != NULL) { 1957 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1958 if (!sk) 1959 return sk; 1960 if (want_init_on_alloc(priority)) 1961 sk_prot_clear_nulls(sk, prot->obj_size); 1962 } else 1963 sk = kmalloc(prot->obj_size, priority); 1964 1965 if (sk != NULL) { 1966 if (security_sk_alloc(sk, family, priority)) 1967 goto out_free; 1968 1969 if (!try_module_get(prot->owner)) 1970 goto out_free_sec; 1971 } 1972 1973 return sk; 1974 1975 out_free_sec: 1976 security_sk_free(sk); 1977 out_free: 1978 if (slab != NULL) 1979 kmem_cache_free(slab, sk); 1980 else 1981 kfree(sk); 1982 return NULL; 1983 } 1984 1985 static void sk_prot_free(struct proto *prot, struct sock *sk) 1986 { 1987 struct kmem_cache *slab; 1988 struct module *owner; 1989 1990 owner = prot->owner; 1991 slab = prot->slab; 1992 1993 cgroup_sk_free(&sk->sk_cgrp_data); 1994 mem_cgroup_sk_free(sk); 1995 security_sk_free(sk); 1996 if (slab != NULL) 1997 kmem_cache_free(slab, sk); 1998 else 1999 kfree(sk); 2000 module_put(owner); 2001 } 2002 2003 /** 2004 * sk_alloc - All socket objects are allocated here 2005 * @net: the applicable net namespace 2006 * @family: protocol family 2007 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2008 * @prot: struct proto associated with this new sock instance 2009 * @kern: is this to be a kernel socket? 2010 */ 2011 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 2012 struct proto *prot, int kern) 2013 { 2014 struct sock *sk; 2015 2016 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 2017 if (sk) { 2018 sk->sk_family = family; 2019 /* 2020 * See comment in struct sock definition to understand 2021 * why we need sk_prot_creator -acme 2022 */ 2023 sk->sk_prot = sk->sk_prot_creator = prot; 2024 sk->sk_kern_sock = kern; 2025 sock_lock_init(sk); 2026 sk->sk_net_refcnt = kern ? 0 : 1; 2027 if (likely(sk->sk_net_refcnt)) { 2028 get_net_track(net, &sk->ns_tracker, priority); 2029 sock_inuse_add(net, 1); 2030 } 2031 2032 sock_net_set(sk, net); 2033 refcount_set(&sk->sk_wmem_alloc, 1); 2034 2035 mem_cgroup_sk_alloc(sk); 2036 cgroup_sk_alloc(&sk->sk_cgrp_data); 2037 sock_update_classid(&sk->sk_cgrp_data); 2038 sock_update_netprioidx(&sk->sk_cgrp_data); 2039 sk_tx_queue_clear(sk); 2040 } 2041 2042 return sk; 2043 } 2044 EXPORT_SYMBOL(sk_alloc); 2045 2046 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 2047 * grace period. This is the case for UDP sockets and TCP listeners. 2048 */ 2049 static void __sk_destruct(struct rcu_head *head) 2050 { 2051 struct sock *sk = container_of(head, struct sock, sk_rcu); 2052 struct sk_filter *filter; 2053 2054 if (sk->sk_destruct) 2055 sk->sk_destruct(sk); 2056 2057 filter = rcu_dereference_check(sk->sk_filter, 2058 refcount_read(&sk->sk_wmem_alloc) == 0); 2059 if (filter) { 2060 sk_filter_uncharge(sk, filter); 2061 RCU_INIT_POINTER(sk->sk_filter, NULL); 2062 } 2063 2064 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 2065 2066 #ifdef CONFIG_BPF_SYSCALL 2067 bpf_sk_storage_free(sk); 2068 #endif 2069 2070 if (atomic_read(&sk->sk_omem_alloc)) 2071 pr_debug("%s: optmem leakage (%d bytes) detected\n", 2072 __func__, atomic_read(&sk->sk_omem_alloc)); 2073 2074 if (sk->sk_frag.page) { 2075 put_page(sk->sk_frag.page); 2076 sk->sk_frag.page = NULL; 2077 } 2078 2079 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ 2080 put_cred(sk->sk_peer_cred); 2081 put_pid(sk->sk_peer_pid); 2082 2083 if (likely(sk->sk_net_refcnt)) 2084 put_net_track(sock_net(sk), &sk->ns_tracker); 2085 sk_prot_free(sk->sk_prot_creator, sk); 2086 } 2087 2088 void sk_destruct(struct sock *sk) 2089 { 2090 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 2091 2092 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 2093 reuseport_detach_sock(sk); 2094 use_call_rcu = true; 2095 } 2096 2097 if (use_call_rcu) 2098 call_rcu(&sk->sk_rcu, __sk_destruct); 2099 else 2100 __sk_destruct(&sk->sk_rcu); 2101 } 2102 2103 static void __sk_free(struct sock *sk) 2104 { 2105 if (likely(sk->sk_net_refcnt)) 2106 sock_inuse_add(sock_net(sk), -1); 2107 2108 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 2109 sock_diag_broadcast_destroy(sk); 2110 else 2111 sk_destruct(sk); 2112 } 2113 2114 void sk_free(struct sock *sk) 2115 { 2116 /* 2117 * We subtract one from sk_wmem_alloc and can know if 2118 * some packets are still in some tx queue. 2119 * If not null, sock_wfree() will call __sk_free(sk) later 2120 */ 2121 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 2122 __sk_free(sk); 2123 } 2124 EXPORT_SYMBOL(sk_free); 2125 2126 static void sk_init_common(struct sock *sk) 2127 { 2128 skb_queue_head_init(&sk->sk_receive_queue); 2129 skb_queue_head_init(&sk->sk_write_queue); 2130 skb_queue_head_init(&sk->sk_error_queue); 2131 2132 rwlock_init(&sk->sk_callback_lock); 2133 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 2134 af_rlock_keys + sk->sk_family, 2135 af_family_rlock_key_strings[sk->sk_family]); 2136 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 2137 af_wlock_keys + sk->sk_family, 2138 af_family_wlock_key_strings[sk->sk_family]); 2139 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 2140 af_elock_keys + sk->sk_family, 2141 af_family_elock_key_strings[sk->sk_family]); 2142 lockdep_set_class_and_name(&sk->sk_callback_lock, 2143 af_callback_keys + sk->sk_family, 2144 af_family_clock_key_strings[sk->sk_family]); 2145 } 2146 2147 /** 2148 * sk_clone_lock - clone a socket, and lock its clone 2149 * @sk: the socket to clone 2150 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2151 * 2152 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 2153 */ 2154 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 2155 { 2156 struct proto *prot = READ_ONCE(sk->sk_prot); 2157 struct sk_filter *filter; 2158 bool is_charged = true; 2159 struct sock *newsk; 2160 2161 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 2162 if (!newsk) 2163 goto out; 2164 2165 sock_copy(newsk, sk); 2166 2167 newsk->sk_prot_creator = prot; 2168 2169 /* SANITY */ 2170 if (likely(newsk->sk_net_refcnt)) { 2171 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); 2172 sock_inuse_add(sock_net(newsk), 1); 2173 } 2174 sk_node_init(&newsk->sk_node); 2175 sock_lock_init(newsk); 2176 bh_lock_sock(newsk); 2177 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 2178 newsk->sk_backlog.len = 0; 2179 2180 atomic_set(&newsk->sk_rmem_alloc, 0); 2181 2182 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 2183 refcount_set(&newsk->sk_wmem_alloc, 1); 2184 2185 atomic_set(&newsk->sk_omem_alloc, 0); 2186 sk_init_common(newsk); 2187 2188 newsk->sk_dst_cache = NULL; 2189 newsk->sk_dst_pending_confirm = 0; 2190 newsk->sk_wmem_queued = 0; 2191 newsk->sk_forward_alloc = 0; 2192 newsk->sk_reserved_mem = 0; 2193 atomic_set(&newsk->sk_drops, 0); 2194 newsk->sk_send_head = NULL; 2195 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 2196 atomic_set(&newsk->sk_zckey, 0); 2197 2198 sock_reset_flag(newsk, SOCK_DONE); 2199 2200 /* sk->sk_memcg will be populated at accept() time */ 2201 newsk->sk_memcg = NULL; 2202 2203 cgroup_sk_clone(&newsk->sk_cgrp_data); 2204 2205 rcu_read_lock(); 2206 filter = rcu_dereference(sk->sk_filter); 2207 if (filter != NULL) 2208 /* though it's an empty new sock, the charging may fail 2209 * if sysctl_optmem_max was changed between creation of 2210 * original socket and cloning 2211 */ 2212 is_charged = sk_filter_charge(newsk, filter); 2213 RCU_INIT_POINTER(newsk->sk_filter, filter); 2214 rcu_read_unlock(); 2215 2216 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 2217 /* We need to make sure that we don't uncharge the new 2218 * socket if we couldn't charge it in the first place 2219 * as otherwise we uncharge the parent's filter. 2220 */ 2221 if (!is_charged) 2222 RCU_INIT_POINTER(newsk->sk_filter, NULL); 2223 sk_free_unlock_clone(newsk); 2224 newsk = NULL; 2225 goto out; 2226 } 2227 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 2228 2229 if (bpf_sk_storage_clone(sk, newsk)) { 2230 sk_free_unlock_clone(newsk); 2231 newsk = NULL; 2232 goto out; 2233 } 2234 2235 /* Clear sk_user_data if parent had the pointer tagged 2236 * as not suitable for copying when cloning. 2237 */ 2238 if (sk_user_data_is_nocopy(newsk)) 2239 newsk->sk_user_data = NULL; 2240 2241 newsk->sk_err = 0; 2242 newsk->sk_err_soft = 0; 2243 newsk->sk_priority = 0; 2244 newsk->sk_incoming_cpu = raw_smp_processor_id(); 2245 2246 /* Before updating sk_refcnt, we must commit prior changes to memory 2247 * (Documentation/RCU/rculist_nulls.rst for details) 2248 */ 2249 smp_wmb(); 2250 refcount_set(&newsk->sk_refcnt, 2); 2251 2252 /* Increment the counter in the same struct proto as the master 2253 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 2254 * is the same as sk->sk_prot->socks, as this field was copied 2255 * with memcpy). 2256 * 2257 * This _changes_ the previous behaviour, where 2258 * tcp_create_openreq_child always was incrementing the 2259 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 2260 * to be taken into account in all callers. -acme 2261 */ 2262 sk_refcnt_debug_inc(newsk); 2263 sk_set_socket(newsk, NULL); 2264 sk_tx_queue_clear(newsk); 2265 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2266 2267 if (newsk->sk_prot->sockets_allocated) 2268 sk_sockets_allocated_inc(newsk); 2269 2270 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2271 net_enable_timestamp(); 2272 out: 2273 return newsk; 2274 } 2275 EXPORT_SYMBOL_GPL(sk_clone_lock); 2276 2277 void sk_free_unlock_clone(struct sock *sk) 2278 { 2279 /* It is still raw copy of parent, so invalidate 2280 * destructor and make plain sk_free() */ 2281 sk->sk_destruct = NULL; 2282 bh_unlock_sock(sk); 2283 sk_free(sk); 2284 } 2285 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2286 2287 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2288 { 2289 u32 max_segs = 1; 2290 2291 sk_dst_set(sk, dst); 2292 sk->sk_route_caps = dst->dev->features; 2293 if (sk_is_tcp(sk)) 2294 sk->sk_route_caps |= NETIF_F_GSO; 2295 if (sk->sk_route_caps & NETIF_F_GSO) 2296 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2297 if (unlikely(sk->sk_gso_disabled)) 2298 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2299 if (sk_can_gso(sk)) { 2300 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2301 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2302 } else { 2303 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2304 /* pairs with the WRITE_ONCE() in netif_set_gso_max_size() */ 2305 sk->sk_gso_max_size = READ_ONCE(dst->dev->gso_max_size); 2306 sk->sk_gso_max_size -= (MAX_TCP_HEADER + 1); 2307 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ 2308 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); 2309 } 2310 } 2311 sk->sk_gso_max_segs = max_segs; 2312 } 2313 EXPORT_SYMBOL_GPL(sk_setup_caps); 2314 2315 /* 2316 * Simple resource managers for sockets. 2317 */ 2318 2319 2320 /* 2321 * Write buffer destructor automatically called from kfree_skb. 2322 */ 2323 void sock_wfree(struct sk_buff *skb) 2324 { 2325 struct sock *sk = skb->sk; 2326 unsigned int len = skb->truesize; 2327 2328 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2329 /* 2330 * Keep a reference on sk_wmem_alloc, this will be released 2331 * after sk_write_space() call 2332 */ 2333 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2334 sk->sk_write_space(sk); 2335 len = 1; 2336 } 2337 /* 2338 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2339 * could not do because of in-flight packets 2340 */ 2341 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2342 __sk_free(sk); 2343 } 2344 EXPORT_SYMBOL(sock_wfree); 2345 2346 /* This variant of sock_wfree() is used by TCP, 2347 * since it sets SOCK_USE_WRITE_QUEUE. 2348 */ 2349 void __sock_wfree(struct sk_buff *skb) 2350 { 2351 struct sock *sk = skb->sk; 2352 2353 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2354 __sk_free(sk); 2355 } 2356 2357 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2358 { 2359 skb_orphan(skb); 2360 skb->sk = sk; 2361 #ifdef CONFIG_INET 2362 if (unlikely(!sk_fullsock(sk))) { 2363 skb->destructor = sock_edemux; 2364 sock_hold(sk); 2365 return; 2366 } 2367 #endif 2368 skb->destructor = sock_wfree; 2369 skb_set_hash_from_sk(skb, sk); 2370 /* 2371 * We used to take a refcount on sk, but following operation 2372 * is enough to guarantee sk_free() wont free this sock until 2373 * all in-flight packets are completed 2374 */ 2375 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2376 } 2377 EXPORT_SYMBOL(skb_set_owner_w); 2378 2379 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2380 { 2381 #ifdef CONFIG_TLS_DEVICE 2382 /* Drivers depend on in-order delivery for crypto offload, 2383 * partial orphan breaks out-of-order-OK logic. 2384 */ 2385 if (skb->decrypted) 2386 return false; 2387 #endif 2388 return (skb->destructor == sock_wfree || 2389 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2390 } 2391 2392 /* This helper is used by netem, as it can hold packets in its 2393 * delay queue. We want to allow the owner socket to send more 2394 * packets, as if they were already TX completed by a typical driver. 2395 * But we also want to keep skb->sk set because some packet schedulers 2396 * rely on it (sch_fq for example). 2397 */ 2398 void skb_orphan_partial(struct sk_buff *skb) 2399 { 2400 if (skb_is_tcp_pure_ack(skb)) 2401 return; 2402 2403 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2404 return; 2405 2406 skb_orphan(skb); 2407 } 2408 EXPORT_SYMBOL(skb_orphan_partial); 2409 2410 /* 2411 * Read buffer destructor automatically called from kfree_skb. 2412 */ 2413 void sock_rfree(struct sk_buff *skb) 2414 { 2415 struct sock *sk = skb->sk; 2416 unsigned int len = skb->truesize; 2417 2418 atomic_sub(len, &sk->sk_rmem_alloc); 2419 sk_mem_uncharge(sk, len); 2420 } 2421 EXPORT_SYMBOL(sock_rfree); 2422 2423 /* 2424 * Buffer destructor for skbs that are not used directly in read or write 2425 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2426 */ 2427 void sock_efree(struct sk_buff *skb) 2428 { 2429 sock_put(skb->sk); 2430 } 2431 EXPORT_SYMBOL(sock_efree); 2432 2433 /* Buffer destructor for prefetch/receive path where reference count may 2434 * not be held, e.g. for listen sockets. 2435 */ 2436 #ifdef CONFIG_INET 2437 void sock_pfree(struct sk_buff *skb) 2438 { 2439 if (sk_is_refcounted(skb->sk)) 2440 sock_gen_put(skb->sk); 2441 } 2442 EXPORT_SYMBOL(sock_pfree); 2443 #endif /* CONFIG_INET */ 2444 2445 kuid_t sock_i_uid(struct sock *sk) 2446 { 2447 kuid_t uid; 2448 2449 read_lock_bh(&sk->sk_callback_lock); 2450 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2451 read_unlock_bh(&sk->sk_callback_lock); 2452 return uid; 2453 } 2454 EXPORT_SYMBOL(sock_i_uid); 2455 2456 unsigned long sock_i_ino(struct sock *sk) 2457 { 2458 unsigned long ino; 2459 2460 read_lock_bh(&sk->sk_callback_lock); 2461 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2462 read_unlock_bh(&sk->sk_callback_lock); 2463 return ino; 2464 } 2465 EXPORT_SYMBOL(sock_i_ino); 2466 2467 /* 2468 * Allocate a skb from the socket's send buffer. 2469 */ 2470 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2471 gfp_t priority) 2472 { 2473 if (force || 2474 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2475 struct sk_buff *skb = alloc_skb(size, priority); 2476 2477 if (skb) { 2478 skb_set_owner_w(skb, sk); 2479 return skb; 2480 } 2481 } 2482 return NULL; 2483 } 2484 EXPORT_SYMBOL(sock_wmalloc); 2485 2486 static void sock_ofree(struct sk_buff *skb) 2487 { 2488 struct sock *sk = skb->sk; 2489 2490 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2491 } 2492 2493 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2494 gfp_t priority) 2495 { 2496 struct sk_buff *skb; 2497 2498 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2499 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2500 sysctl_optmem_max) 2501 return NULL; 2502 2503 skb = alloc_skb(size, priority); 2504 if (!skb) 2505 return NULL; 2506 2507 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2508 skb->sk = sk; 2509 skb->destructor = sock_ofree; 2510 return skb; 2511 } 2512 2513 /* 2514 * Allocate a memory block from the socket's option memory buffer. 2515 */ 2516 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2517 { 2518 if ((unsigned int)size <= sysctl_optmem_max && 2519 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 2520 void *mem; 2521 /* First do the add, to avoid the race if kmalloc 2522 * might sleep. 2523 */ 2524 atomic_add(size, &sk->sk_omem_alloc); 2525 mem = kmalloc(size, priority); 2526 if (mem) 2527 return mem; 2528 atomic_sub(size, &sk->sk_omem_alloc); 2529 } 2530 return NULL; 2531 } 2532 EXPORT_SYMBOL(sock_kmalloc); 2533 2534 /* Free an option memory block. Note, we actually want the inline 2535 * here as this allows gcc to detect the nullify and fold away the 2536 * condition entirely. 2537 */ 2538 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2539 const bool nullify) 2540 { 2541 if (WARN_ON_ONCE(!mem)) 2542 return; 2543 if (nullify) 2544 kfree_sensitive(mem); 2545 else 2546 kfree(mem); 2547 atomic_sub(size, &sk->sk_omem_alloc); 2548 } 2549 2550 void sock_kfree_s(struct sock *sk, void *mem, int size) 2551 { 2552 __sock_kfree_s(sk, mem, size, false); 2553 } 2554 EXPORT_SYMBOL(sock_kfree_s); 2555 2556 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2557 { 2558 __sock_kfree_s(sk, mem, size, true); 2559 } 2560 EXPORT_SYMBOL(sock_kzfree_s); 2561 2562 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2563 I think, these locks should be removed for datagram sockets. 2564 */ 2565 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2566 { 2567 DEFINE_WAIT(wait); 2568 2569 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2570 for (;;) { 2571 if (!timeo) 2572 break; 2573 if (signal_pending(current)) 2574 break; 2575 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2576 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2577 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2578 break; 2579 if (sk->sk_shutdown & SEND_SHUTDOWN) 2580 break; 2581 if (sk->sk_err) 2582 break; 2583 timeo = schedule_timeout(timeo); 2584 } 2585 finish_wait(sk_sleep(sk), &wait); 2586 return timeo; 2587 } 2588 2589 2590 /* 2591 * Generic send/receive buffer handlers 2592 */ 2593 2594 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2595 unsigned long data_len, int noblock, 2596 int *errcode, int max_page_order) 2597 { 2598 struct sk_buff *skb; 2599 long timeo; 2600 int err; 2601 2602 timeo = sock_sndtimeo(sk, noblock); 2603 for (;;) { 2604 err = sock_error(sk); 2605 if (err != 0) 2606 goto failure; 2607 2608 err = -EPIPE; 2609 if (sk->sk_shutdown & SEND_SHUTDOWN) 2610 goto failure; 2611 2612 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2613 break; 2614 2615 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2616 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2617 err = -EAGAIN; 2618 if (!timeo) 2619 goto failure; 2620 if (signal_pending(current)) 2621 goto interrupted; 2622 timeo = sock_wait_for_wmem(sk, timeo); 2623 } 2624 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2625 errcode, sk->sk_allocation); 2626 if (skb) 2627 skb_set_owner_w(skb, sk); 2628 return skb; 2629 2630 interrupted: 2631 err = sock_intr_errno(timeo); 2632 failure: 2633 *errcode = err; 2634 return NULL; 2635 } 2636 EXPORT_SYMBOL(sock_alloc_send_pskb); 2637 2638 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2639 int noblock, int *errcode) 2640 { 2641 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2642 } 2643 EXPORT_SYMBOL(sock_alloc_send_skb); 2644 2645 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2646 struct sockcm_cookie *sockc) 2647 { 2648 u32 tsflags; 2649 2650 switch (cmsg->cmsg_type) { 2651 case SO_MARK: 2652 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 2653 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2654 return -EPERM; 2655 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2656 return -EINVAL; 2657 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2658 break; 2659 case SO_TIMESTAMPING_OLD: 2660 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2661 return -EINVAL; 2662 2663 tsflags = *(u32 *)CMSG_DATA(cmsg); 2664 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2665 return -EINVAL; 2666 2667 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2668 sockc->tsflags |= tsflags; 2669 break; 2670 case SCM_TXTIME: 2671 if (!sock_flag(sk, SOCK_TXTIME)) 2672 return -EINVAL; 2673 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2674 return -EINVAL; 2675 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2676 break; 2677 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2678 case SCM_RIGHTS: 2679 case SCM_CREDENTIALS: 2680 break; 2681 default: 2682 return -EINVAL; 2683 } 2684 return 0; 2685 } 2686 EXPORT_SYMBOL(__sock_cmsg_send); 2687 2688 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2689 struct sockcm_cookie *sockc) 2690 { 2691 struct cmsghdr *cmsg; 2692 int ret; 2693 2694 for_each_cmsghdr(cmsg, msg) { 2695 if (!CMSG_OK(msg, cmsg)) 2696 return -EINVAL; 2697 if (cmsg->cmsg_level != SOL_SOCKET) 2698 continue; 2699 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2700 if (ret) 2701 return ret; 2702 } 2703 return 0; 2704 } 2705 EXPORT_SYMBOL(sock_cmsg_send); 2706 2707 static void sk_enter_memory_pressure(struct sock *sk) 2708 { 2709 if (!sk->sk_prot->enter_memory_pressure) 2710 return; 2711 2712 sk->sk_prot->enter_memory_pressure(sk); 2713 } 2714 2715 static void sk_leave_memory_pressure(struct sock *sk) 2716 { 2717 if (sk->sk_prot->leave_memory_pressure) { 2718 sk->sk_prot->leave_memory_pressure(sk); 2719 } else { 2720 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2721 2722 if (memory_pressure && READ_ONCE(*memory_pressure)) 2723 WRITE_ONCE(*memory_pressure, 0); 2724 } 2725 } 2726 2727 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2728 2729 /** 2730 * skb_page_frag_refill - check that a page_frag contains enough room 2731 * @sz: minimum size of the fragment we want to get 2732 * @pfrag: pointer to page_frag 2733 * @gfp: priority for memory allocation 2734 * 2735 * Note: While this allocator tries to use high order pages, there is 2736 * no guarantee that allocations succeed. Therefore, @sz MUST be 2737 * less or equal than PAGE_SIZE. 2738 */ 2739 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2740 { 2741 if (pfrag->page) { 2742 if (page_ref_count(pfrag->page) == 1) { 2743 pfrag->offset = 0; 2744 return true; 2745 } 2746 if (pfrag->offset + sz <= pfrag->size) 2747 return true; 2748 put_page(pfrag->page); 2749 } 2750 2751 pfrag->offset = 0; 2752 if (SKB_FRAG_PAGE_ORDER && 2753 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2754 /* Avoid direct reclaim but allow kswapd to wake */ 2755 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2756 __GFP_COMP | __GFP_NOWARN | 2757 __GFP_NORETRY, 2758 SKB_FRAG_PAGE_ORDER); 2759 if (likely(pfrag->page)) { 2760 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2761 return true; 2762 } 2763 } 2764 pfrag->page = alloc_page(gfp); 2765 if (likely(pfrag->page)) { 2766 pfrag->size = PAGE_SIZE; 2767 return true; 2768 } 2769 return false; 2770 } 2771 EXPORT_SYMBOL(skb_page_frag_refill); 2772 2773 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2774 { 2775 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2776 return true; 2777 2778 sk_enter_memory_pressure(sk); 2779 sk_stream_moderate_sndbuf(sk); 2780 return false; 2781 } 2782 EXPORT_SYMBOL(sk_page_frag_refill); 2783 2784 void __lock_sock(struct sock *sk) 2785 __releases(&sk->sk_lock.slock) 2786 __acquires(&sk->sk_lock.slock) 2787 { 2788 DEFINE_WAIT(wait); 2789 2790 for (;;) { 2791 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2792 TASK_UNINTERRUPTIBLE); 2793 spin_unlock_bh(&sk->sk_lock.slock); 2794 schedule(); 2795 spin_lock_bh(&sk->sk_lock.slock); 2796 if (!sock_owned_by_user(sk)) 2797 break; 2798 } 2799 finish_wait(&sk->sk_lock.wq, &wait); 2800 } 2801 2802 void __release_sock(struct sock *sk) 2803 __releases(&sk->sk_lock.slock) 2804 __acquires(&sk->sk_lock.slock) 2805 { 2806 struct sk_buff *skb, *next; 2807 2808 while ((skb = sk->sk_backlog.head) != NULL) { 2809 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2810 2811 spin_unlock_bh(&sk->sk_lock.slock); 2812 2813 do { 2814 next = skb->next; 2815 prefetch(next); 2816 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2817 skb_mark_not_on_list(skb); 2818 sk_backlog_rcv(sk, skb); 2819 2820 cond_resched(); 2821 2822 skb = next; 2823 } while (skb != NULL); 2824 2825 spin_lock_bh(&sk->sk_lock.slock); 2826 } 2827 2828 /* 2829 * Doing the zeroing here guarantee we can not loop forever 2830 * while a wild producer attempts to flood us. 2831 */ 2832 sk->sk_backlog.len = 0; 2833 } 2834 2835 void __sk_flush_backlog(struct sock *sk) 2836 { 2837 spin_lock_bh(&sk->sk_lock.slock); 2838 __release_sock(sk); 2839 spin_unlock_bh(&sk->sk_lock.slock); 2840 } 2841 2842 /** 2843 * sk_wait_data - wait for data to arrive at sk_receive_queue 2844 * @sk: sock to wait on 2845 * @timeo: for how long 2846 * @skb: last skb seen on sk_receive_queue 2847 * 2848 * Now socket state including sk->sk_err is changed only under lock, 2849 * hence we may omit checks after joining wait queue. 2850 * We check receive queue before schedule() only as optimization; 2851 * it is very likely that release_sock() added new data. 2852 */ 2853 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2854 { 2855 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2856 int rc; 2857 2858 add_wait_queue(sk_sleep(sk), &wait); 2859 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2860 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2861 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2862 remove_wait_queue(sk_sleep(sk), &wait); 2863 return rc; 2864 } 2865 EXPORT_SYMBOL(sk_wait_data); 2866 2867 /** 2868 * __sk_mem_raise_allocated - increase memory_allocated 2869 * @sk: socket 2870 * @size: memory size to allocate 2871 * @amt: pages to allocate 2872 * @kind: allocation type 2873 * 2874 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2875 */ 2876 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2877 { 2878 struct proto *prot = sk->sk_prot; 2879 long allocated = sk_memory_allocated_add(sk, amt); 2880 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg; 2881 bool charged = true; 2882 2883 if (memcg_charge && 2884 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt, 2885 gfp_memcg_charge()))) 2886 goto suppress_allocation; 2887 2888 /* Under limit. */ 2889 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2890 sk_leave_memory_pressure(sk); 2891 return 1; 2892 } 2893 2894 /* Under pressure. */ 2895 if (allocated > sk_prot_mem_limits(sk, 1)) 2896 sk_enter_memory_pressure(sk); 2897 2898 /* Over hard limit. */ 2899 if (allocated > sk_prot_mem_limits(sk, 2)) 2900 goto suppress_allocation; 2901 2902 /* guarantee minimum buffer size under pressure */ 2903 if (kind == SK_MEM_RECV) { 2904 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2905 return 1; 2906 2907 } else { /* SK_MEM_SEND */ 2908 int wmem0 = sk_get_wmem0(sk, prot); 2909 2910 if (sk->sk_type == SOCK_STREAM) { 2911 if (sk->sk_wmem_queued < wmem0) 2912 return 1; 2913 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2914 return 1; 2915 } 2916 } 2917 2918 if (sk_has_memory_pressure(sk)) { 2919 u64 alloc; 2920 2921 if (!sk_under_memory_pressure(sk)) 2922 return 1; 2923 alloc = sk_sockets_allocated_read_positive(sk); 2924 if (sk_prot_mem_limits(sk, 2) > alloc * 2925 sk_mem_pages(sk->sk_wmem_queued + 2926 atomic_read(&sk->sk_rmem_alloc) + 2927 sk->sk_forward_alloc)) 2928 return 1; 2929 } 2930 2931 suppress_allocation: 2932 2933 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2934 sk_stream_moderate_sndbuf(sk); 2935 2936 /* Fail only if socket is _under_ its sndbuf. 2937 * In this case we cannot block, so that we have to fail. 2938 */ 2939 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { 2940 /* Force charge with __GFP_NOFAIL */ 2941 if (memcg_charge && !charged) { 2942 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 2943 gfp_memcg_charge() | __GFP_NOFAIL); 2944 } 2945 return 1; 2946 } 2947 } 2948 2949 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 2950 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 2951 2952 sk_memory_allocated_sub(sk, amt); 2953 2954 if (memcg_charge && charged) 2955 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2956 2957 return 0; 2958 } 2959 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2960 2961 /** 2962 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2963 * @sk: socket 2964 * @size: memory size to allocate 2965 * @kind: allocation type 2966 * 2967 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2968 * rmem allocation. This function assumes that protocols which have 2969 * memory_pressure use sk_wmem_queued as write buffer accounting. 2970 */ 2971 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2972 { 2973 int ret, amt = sk_mem_pages(size); 2974 2975 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2976 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2977 if (!ret) 2978 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2979 return ret; 2980 } 2981 EXPORT_SYMBOL(__sk_mem_schedule); 2982 2983 /** 2984 * __sk_mem_reduce_allocated - reclaim memory_allocated 2985 * @sk: socket 2986 * @amount: number of quanta 2987 * 2988 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2989 */ 2990 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2991 { 2992 sk_memory_allocated_sub(sk, amount); 2993 2994 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2995 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2996 2997 if (sk_under_memory_pressure(sk) && 2998 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2999 sk_leave_memory_pressure(sk); 3000 } 3001 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 3002 3003 /** 3004 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 3005 * @sk: socket 3006 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 3007 */ 3008 void __sk_mem_reclaim(struct sock *sk, int amount) 3009 { 3010 amount >>= SK_MEM_QUANTUM_SHIFT; 3011 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 3012 __sk_mem_reduce_allocated(sk, amount); 3013 } 3014 EXPORT_SYMBOL(__sk_mem_reclaim); 3015 3016 int sk_set_peek_off(struct sock *sk, int val) 3017 { 3018 sk->sk_peek_off = val; 3019 return 0; 3020 } 3021 EXPORT_SYMBOL_GPL(sk_set_peek_off); 3022 3023 /* 3024 * Set of default routines for initialising struct proto_ops when 3025 * the protocol does not support a particular function. In certain 3026 * cases where it makes no sense for a protocol to have a "do nothing" 3027 * function, some default processing is provided. 3028 */ 3029 3030 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 3031 { 3032 return -EOPNOTSUPP; 3033 } 3034 EXPORT_SYMBOL(sock_no_bind); 3035 3036 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 3037 int len, int flags) 3038 { 3039 return -EOPNOTSUPP; 3040 } 3041 EXPORT_SYMBOL(sock_no_connect); 3042 3043 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 3044 { 3045 return -EOPNOTSUPP; 3046 } 3047 EXPORT_SYMBOL(sock_no_socketpair); 3048 3049 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 3050 bool kern) 3051 { 3052 return -EOPNOTSUPP; 3053 } 3054 EXPORT_SYMBOL(sock_no_accept); 3055 3056 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 3057 int peer) 3058 { 3059 return -EOPNOTSUPP; 3060 } 3061 EXPORT_SYMBOL(sock_no_getname); 3062 3063 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3064 { 3065 return -EOPNOTSUPP; 3066 } 3067 EXPORT_SYMBOL(sock_no_ioctl); 3068 3069 int sock_no_listen(struct socket *sock, int backlog) 3070 { 3071 return -EOPNOTSUPP; 3072 } 3073 EXPORT_SYMBOL(sock_no_listen); 3074 3075 int sock_no_shutdown(struct socket *sock, int how) 3076 { 3077 return -EOPNOTSUPP; 3078 } 3079 EXPORT_SYMBOL(sock_no_shutdown); 3080 3081 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 3082 { 3083 return -EOPNOTSUPP; 3084 } 3085 EXPORT_SYMBOL(sock_no_sendmsg); 3086 3087 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 3088 { 3089 return -EOPNOTSUPP; 3090 } 3091 EXPORT_SYMBOL(sock_no_sendmsg_locked); 3092 3093 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 3094 int flags) 3095 { 3096 return -EOPNOTSUPP; 3097 } 3098 EXPORT_SYMBOL(sock_no_recvmsg); 3099 3100 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 3101 { 3102 /* Mirror missing mmap method error code */ 3103 return -ENODEV; 3104 } 3105 EXPORT_SYMBOL(sock_no_mmap); 3106 3107 /* 3108 * When a file is received (via SCM_RIGHTS, etc), we must bump the 3109 * various sock-based usage counts. 3110 */ 3111 void __receive_sock(struct file *file) 3112 { 3113 struct socket *sock; 3114 3115 sock = sock_from_file(file); 3116 if (sock) { 3117 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 3118 sock_update_classid(&sock->sk->sk_cgrp_data); 3119 } 3120 } 3121 3122 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 3123 { 3124 ssize_t res; 3125 struct msghdr msg = {.msg_flags = flags}; 3126 struct kvec iov; 3127 char *kaddr = kmap(page); 3128 iov.iov_base = kaddr + offset; 3129 iov.iov_len = size; 3130 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 3131 kunmap(page); 3132 return res; 3133 } 3134 EXPORT_SYMBOL(sock_no_sendpage); 3135 3136 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 3137 int offset, size_t size, int flags) 3138 { 3139 ssize_t res; 3140 struct msghdr msg = {.msg_flags = flags}; 3141 struct kvec iov; 3142 char *kaddr = kmap(page); 3143 3144 iov.iov_base = kaddr + offset; 3145 iov.iov_len = size; 3146 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 3147 kunmap(page); 3148 return res; 3149 } 3150 EXPORT_SYMBOL(sock_no_sendpage_locked); 3151 3152 /* 3153 * Default Socket Callbacks 3154 */ 3155 3156 static void sock_def_wakeup(struct sock *sk) 3157 { 3158 struct socket_wq *wq; 3159 3160 rcu_read_lock(); 3161 wq = rcu_dereference(sk->sk_wq); 3162 if (skwq_has_sleeper(wq)) 3163 wake_up_interruptible_all(&wq->wait); 3164 rcu_read_unlock(); 3165 } 3166 3167 static void sock_def_error_report(struct sock *sk) 3168 { 3169 struct socket_wq *wq; 3170 3171 rcu_read_lock(); 3172 wq = rcu_dereference(sk->sk_wq); 3173 if (skwq_has_sleeper(wq)) 3174 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 3175 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 3176 rcu_read_unlock(); 3177 } 3178 3179 void sock_def_readable(struct sock *sk) 3180 { 3181 struct socket_wq *wq; 3182 3183 rcu_read_lock(); 3184 wq = rcu_dereference(sk->sk_wq); 3185 if (skwq_has_sleeper(wq)) 3186 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 3187 EPOLLRDNORM | EPOLLRDBAND); 3188 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3189 rcu_read_unlock(); 3190 } 3191 3192 static void sock_def_write_space(struct sock *sk) 3193 { 3194 struct socket_wq *wq; 3195 3196 rcu_read_lock(); 3197 3198 /* Do not wake up a writer until he can make "significant" 3199 * progress. --DaveM 3200 */ 3201 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) { 3202 wq = rcu_dereference(sk->sk_wq); 3203 if (skwq_has_sleeper(wq)) 3204 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3205 EPOLLWRNORM | EPOLLWRBAND); 3206 3207 /* Should agree with poll, otherwise some programs break */ 3208 if (sock_writeable(sk)) 3209 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3210 } 3211 3212 rcu_read_unlock(); 3213 } 3214 3215 static void sock_def_destruct(struct sock *sk) 3216 { 3217 } 3218 3219 void sk_send_sigurg(struct sock *sk) 3220 { 3221 if (sk->sk_socket && sk->sk_socket->file) 3222 if (send_sigurg(&sk->sk_socket->file->f_owner)) 3223 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 3224 } 3225 EXPORT_SYMBOL(sk_send_sigurg); 3226 3227 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 3228 unsigned long expires) 3229 { 3230 if (!mod_timer(timer, expires)) 3231 sock_hold(sk); 3232 } 3233 EXPORT_SYMBOL(sk_reset_timer); 3234 3235 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 3236 { 3237 if (del_timer(timer)) 3238 __sock_put(sk); 3239 } 3240 EXPORT_SYMBOL(sk_stop_timer); 3241 3242 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 3243 { 3244 if (del_timer_sync(timer)) 3245 __sock_put(sk); 3246 } 3247 EXPORT_SYMBOL(sk_stop_timer_sync); 3248 3249 void sock_init_data(struct socket *sock, struct sock *sk) 3250 { 3251 sk_init_common(sk); 3252 sk->sk_send_head = NULL; 3253 3254 timer_setup(&sk->sk_timer, NULL, 0); 3255 3256 sk->sk_allocation = GFP_KERNEL; 3257 sk->sk_rcvbuf = sysctl_rmem_default; 3258 sk->sk_sndbuf = sysctl_wmem_default; 3259 sk->sk_state = TCP_CLOSE; 3260 sk_set_socket(sk, sock); 3261 3262 sock_set_flag(sk, SOCK_ZAPPED); 3263 3264 if (sock) { 3265 sk->sk_type = sock->type; 3266 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 3267 sock->sk = sk; 3268 sk->sk_uid = SOCK_INODE(sock)->i_uid; 3269 } else { 3270 RCU_INIT_POINTER(sk->sk_wq, NULL); 3271 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 3272 } 3273 3274 rwlock_init(&sk->sk_callback_lock); 3275 if (sk->sk_kern_sock) 3276 lockdep_set_class_and_name( 3277 &sk->sk_callback_lock, 3278 af_kern_callback_keys + sk->sk_family, 3279 af_family_kern_clock_key_strings[sk->sk_family]); 3280 else 3281 lockdep_set_class_and_name( 3282 &sk->sk_callback_lock, 3283 af_callback_keys + sk->sk_family, 3284 af_family_clock_key_strings[sk->sk_family]); 3285 3286 sk->sk_state_change = sock_def_wakeup; 3287 sk->sk_data_ready = sock_def_readable; 3288 sk->sk_write_space = sock_def_write_space; 3289 sk->sk_error_report = sock_def_error_report; 3290 sk->sk_destruct = sock_def_destruct; 3291 3292 sk->sk_frag.page = NULL; 3293 sk->sk_frag.offset = 0; 3294 sk->sk_peek_off = -1; 3295 3296 sk->sk_peer_pid = NULL; 3297 sk->sk_peer_cred = NULL; 3298 spin_lock_init(&sk->sk_peer_lock); 3299 3300 sk->sk_write_pending = 0; 3301 sk->sk_rcvlowat = 1; 3302 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3303 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3304 3305 sk->sk_stamp = SK_DEFAULT_STAMP; 3306 #if BITS_PER_LONG==32 3307 seqlock_init(&sk->sk_stamp_seq); 3308 #endif 3309 atomic_set(&sk->sk_zckey, 0); 3310 3311 #ifdef CONFIG_NET_RX_BUSY_POLL 3312 sk->sk_napi_id = 0; 3313 sk->sk_ll_usec = sysctl_net_busy_read; 3314 #endif 3315 3316 sk->sk_max_pacing_rate = ~0UL; 3317 sk->sk_pacing_rate = ~0UL; 3318 WRITE_ONCE(sk->sk_pacing_shift, 10); 3319 sk->sk_incoming_cpu = -1; 3320 sk->sk_txrehash = SOCK_TXREHASH_DEFAULT; 3321 3322 sk_rx_queue_clear(sk); 3323 /* 3324 * Before updating sk_refcnt, we must commit prior changes to memory 3325 * (Documentation/RCU/rculist_nulls.rst for details) 3326 */ 3327 smp_wmb(); 3328 refcount_set(&sk->sk_refcnt, 1); 3329 atomic_set(&sk->sk_drops, 0); 3330 } 3331 EXPORT_SYMBOL(sock_init_data); 3332 3333 void lock_sock_nested(struct sock *sk, int subclass) 3334 { 3335 /* The sk_lock has mutex_lock() semantics here. */ 3336 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3337 3338 might_sleep(); 3339 spin_lock_bh(&sk->sk_lock.slock); 3340 if (sock_owned_by_user_nocheck(sk)) 3341 __lock_sock(sk); 3342 sk->sk_lock.owned = 1; 3343 spin_unlock_bh(&sk->sk_lock.slock); 3344 } 3345 EXPORT_SYMBOL(lock_sock_nested); 3346 3347 void release_sock(struct sock *sk) 3348 { 3349 spin_lock_bh(&sk->sk_lock.slock); 3350 if (sk->sk_backlog.tail) 3351 __release_sock(sk); 3352 3353 /* Warning : release_cb() might need to release sk ownership, 3354 * ie call sock_release_ownership(sk) before us. 3355 */ 3356 if (sk->sk_prot->release_cb) 3357 sk->sk_prot->release_cb(sk); 3358 3359 sock_release_ownership(sk); 3360 if (waitqueue_active(&sk->sk_lock.wq)) 3361 wake_up(&sk->sk_lock.wq); 3362 spin_unlock_bh(&sk->sk_lock.slock); 3363 } 3364 EXPORT_SYMBOL(release_sock); 3365 3366 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3367 { 3368 might_sleep(); 3369 spin_lock_bh(&sk->sk_lock.slock); 3370 3371 if (!sock_owned_by_user_nocheck(sk)) { 3372 /* 3373 * Fast path return with bottom halves disabled and 3374 * sock::sk_lock.slock held. 3375 * 3376 * The 'mutex' is not contended and holding 3377 * sock::sk_lock.slock prevents all other lockers to 3378 * proceed so the corresponding unlock_sock_fast() can 3379 * avoid the slow path of release_sock() completely and 3380 * just release slock. 3381 * 3382 * From a semantical POV this is equivalent to 'acquiring' 3383 * the 'mutex', hence the corresponding lockdep 3384 * mutex_release() has to happen in the fast path of 3385 * unlock_sock_fast(). 3386 */ 3387 return false; 3388 } 3389 3390 __lock_sock(sk); 3391 sk->sk_lock.owned = 1; 3392 __acquire(&sk->sk_lock.slock); 3393 spin_unlock_bh(&sk->sk_lock.slock); 3394 return true; 3395 } 3396 EXPORT_SYMBOL(__lock_sock_fast); 3397 3398 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3399 bool timeval, bool time32) 3400 { 3401 struct sock *sk = sock->sk; 3402 struct timespec64 ts; 3403 3404 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3405 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3406 if (ts.tv_sec == -1) 3407 return -ENOENT; 3408 if (ts.tv_sec == 0) { 3409 ktime_t kt = ktime_get_real(); 3410 sock_write_timestamp(sk, kt); 3411 ts = ktime_to_timespec64(kt); 3412 } 3413 3414 if (timeval) 3415 ts.tv_nsec /= 1000; 3416 3417 #ifdef CONFIG_COMPAT_32BIT_TIME 3418 if (time32) 3419 return put_old_timespec32(&ts, userstamp); 3420 #endif 3421 #ifdef CONFIG_SPARC64 3422 /* beware of padding in sparc64 timeval */ 3423 if (timeval && !in_compat_syscall()) { 3424 struct __kernel_old_timeval __user tv = { 3425 .tv_sec = ts.tv_sec, 3426 .tv_usec = ts.tv_nsec, 3427 }; 3428 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3429 return -EFAULT; 3430 return 0; 3431 } 3432 #endif 3433 return put_timespec64(&ts, userstamp); 3434 } 3435 EXPORT_SYMBOL(sock_gettstamp); 3436 3437 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3438 { 3439 if (!sock_flag(sk, flag)) { 3440 unsigned long previous_flags = sk->sk_flags; 3441 3442 sock_set_flag(sk, flag); 3443 /* 3444 * we just set one of the two flags which require net 3445 * time stamping, but time stamping might have been on 3446 * already because of the other one 3447 */ 3448 if (sock_needs_netstamp(sk) && 3449 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3450 net_enable_timestamp(); 3451 } 3452 } 3453 3454 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3455 int level, int type) 3456 { 3457 struct sock_exterr_skb *serr; 3458 struct sk_buff *skb; 3459 int copied, err; 3460 3461 err = -EAGAIN; 3462 skb = sock_dequeue_err_skb(sk); 3463 if (skb == NULL) 3464 goto out; 3465 3466 copied = skb->len; 3467 if (copied > len) { 3468 msg->msg_flags |= MSG_TRUNC; 3469 copied = len; 3470 } 3471 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3472 if (err) 3473 goto out_free_skb; 3474 3475 sock_recv_timestamp(msg, sk, skb); 3476 3477 serr = SKB_EXT_ERR(skb); 3478 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3479 3480 msg->msg_flags |= MSG_ERRQUEUE; 3481 err = copied; 3482 3483 out_free_skb: 3484 kfree_skb(skb); 3485 out: 3486 return err; 3487 } 3488 EXPORT_SYMBOL(sock_recv_errqueue); 3489 3490 /* 3491 * Get a socket option on an socket. 3492 * 3493 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3494 * asynchronous errors should be reported by getsockopt. We assume 3495 * this means if you specify SO_ERROR (otherwise whats the point of it). 3496 */ 3497 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3498 char __user *optval, int __user *optlen) 3499 { 3500 struct sock *sk = sock->sk; 3501 3502 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3503 } 3504 EXPORT_SYMBOL(sock_common_getsockopt); 3505 3506 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3507 int flags) 3508 { 3509 struct sock *sk = sock->sk; 3510 int addr_len = 0; 3511 int err; 3512 3513 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); 3514 if (err >= 0) 3515 msg->msg_namelen = addr_len; 3516 return err; 3517 } 3518 EXPORT_SYMBOL(sock_common_recvmsg); 3519 3520 /* 3521 * Set socket options on an inet socket. 3522 */ 3523 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3524 sockptr_t optval, unsigned int optlen) 3525 { 3526 struct sock *sk = sock->sk; 3527 3528 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3529 } 3530 EXPORT_SYMBOL(sock_common_setsockopt); 3531 3532 void sk_common_release(struct sock *sk) 3533 { 3534 if (sk->sk_prot->destroy) 3535 sk->sk_prot->destroy(sk); 3536 3537 /* 3538 * Observation: when sk_common_release is called, processes have 3539 * no access to socket. But net still has. 3540 * Step one, detach it from networking: 3541 * 3542 * A. Remove from hash tables. 3543 */ 3544 3545 sk->sk_prot->unhash(sk); 3546 3547 /* 3548 * In this point socket cannot receive new packets, but it is possible 3549 * that some packets are in flight because some CPU runs receiver and 3550 * did hash table lookup before we unhashed socket. They will achieve 3551 * receive queue and will be purged by socket destructor. 3552 * 3553 * Also we still have packets pending on receive queue and probably, 3554 * our own packets waiting in device queues. sock_destroy will drain 3555 * receive queue, but transmitted packets will delay socket destruction 3556 * until the last reference will be released. 3557 */ 3558 3559 sock_orphan(sk); 3560 3561 xfrm_sk_free_policy(sk); 3562 3563 sk_refcnt_debug_release(sk); 3564 3565 sock_put(sk); 3566 } 3567 EXPORT_SYMBOL(sk_common_release); 3568 3569 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3570 { 3571 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3572 3573 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3574 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3575 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3576 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3577 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3578 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3579 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3580 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3581 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3582 } 3583 3584 #ifdef CONFIG_PROC_FS 3585 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3586 3587 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3588 { 3589 int cpu, idx = prot->inuse_idx; 3590 int res = 0; 3591 3592 for_each_possible_cpu(cpu) 3593 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3594 3595 return res >= 0 ? res : 0; 3596 } 3597 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3598 3599 int sock_inuse_get(struct net *net) 3600 { 3601 int cpu, res = 0; 3602 3603 for_each_possible_cpu(cpu) 3604 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; 3605 3606 return res; 3607 } 3608 3609 EXPORT_SYMBOL_GPL(sock_inuse_get); 3610 3611 static int __net_init sock_inuse_init_net(struct net *net) 3612 { 3613 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3614 if (net->core.prot_inuse == NULL) 3615 return -ENOMEM; 3616 return 0; 3617 } 3618 3619 static void __net_exit sock_inuse_exit_net(struct net *net) 3620 { 3621 free_percpu(net->core.prot_inuse); 3622 } 3623 3624 static struct pernet_operations net_inuse_ops = { 3625 .init = sock_inuse_init_net, 3626 .exit = sock_inuse_exit_net, 3627 }; 3628 3629 static __init int net_inuse_init(void) 3630 { 3631 if (register_pernet_subsys(&net_inuse_ops)) 3632 panic("Cannot initialize net inuse counters"); 3633 3634 return 0; 3635 } 3636 3637 core_initcall(net_inuse_init); 3638 3639 static int assign_proto_idx(struct proto *prot) 3640 { 3641 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3642 3643 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3644 pr_err("PROTO_INUSE_NR exhausted\n"); 3645 return -ENOSPC; 3646 } 3647 3648 set_bit(prot->inuse_idx, proto_inuse_idx); 3649 return 0; 3650 } 3651 3652 static void release_proto_idx(struct proto *prot) 3653 { 3654 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3655 clear_bit(prot->inuse_idx, proto_inuse_idx); 3656 } 3657 #else 3658 static inline int assign_proto_idx(struct proto *prot) 3659 { 3660 return 0; 3661 } 3662 3663 static inline void release_proto_idx(struct proto *prot) 3664 { 3665 } 3666 3667 #endif 3668 3669 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3670 { 3671 if (!twsk_prot) 3672 return; 3673 kfree(twsk_prot->twsk_slab_name); 3674 twsk_prot->twsk_slab_name = NULL; 3675 kmem_cache_destroy(twsk_prot->twsk_slab); 3676 twsk_prot->twsk_slab = NULL; 3677 } 3678 3679 static int tw_prot_init(const struct proto *prot) 3680 { 3681 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 3682 3683 if (!twsk_prot) 3684 return 0; 3685 3686 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 3687 prot->name); 3688 if (!twsk_prot->twsk_slab_name) 3689 return -ENOMEM; 3690 3691 twsk_prot->twsk_slab = 3692 kmem_cache_create(twsk_prot->twsk_slab_name, 3693 twsk_prot->twsk_obj_size, 0, 3694 SLAB_ACCOUNT | prot->slab_flags, 3695 NULL); 3696 if (!twsk_prot->twsk_slab) { 3697 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 3698 prot->name); 3699 return -ENOMEM; 3700 } 3701 3702 return 0; 3703 } 3704 3705 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3706 { 3707 if (!rsk_prot) 3708 return; 3709 kfree(rsk_prot->slab_name); 3710 rsk_prot->slab_name = NULL; 3711 kmem_cache_destroy(rsk_prot->slab); 3712 rsk_prot->slab = NULL; 3713 } 3714 3715 static int req_prot_init(const struct proto *prot) 3716 { 3717 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3718 3719 if (!rsk_prot) 3720 return 0; 3721 3722 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3723 prot->name); 3724 if (!rsk_prot->slab_name) 3725 return -ENOMEM; 3726 3727 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3728 rsk_prot->obj_size, 0, 3729 SLAB_ACCOUNT | prot->slab_flags, 3730 NULL); 3731 3732 if (!rsk_prot->slab) { 3733 pr_crit("%s: Can't create request sock SLAB cache!\n", 3734 prot->name); 3735 return -ENOMEM; 3736 } 3737 return 0; 3738 } 3739 3740 int proto_register(struct proto *prot, int alloc_slab) 3741 { 3742 int ret = -ENOBUFS; 3743 3744 if (prot->memory_allocated && !prot->sysctl_mem) { 3745 pr_err("%s: missing sysctl_mem\n", prot->name); 3746 return -EINVAL; 3747 } 3748 if (alloc_slab) { 3749 prot->slab = kmem_cache_create_usercopy(prot->name, 3750 prot->obj_size, 0, 3751 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3752 prot->slab_flags, 3753 prot->useroffset, prot->usersize, 3754 NULL); 3755 3756 if (prot->slab == NULL) { 3757 pr_crit("%s: Can't create sock SLAB cache!\n", 3758 prot->name); 3759 goto out; 3760 } 3761 3762 if (req_prot_init(prot)) 3763 goto out_free_request_sock_slab; 3764 3765 if (tw_prot_init(prot)) 3766 goto out_free_timewait_sock_slab; 3767 } 3768 3769 mutex_lock(&proto_list_mutex); 3770 ret = assign_proto_idx(prot); 3771 if (ret) { 3772 mutex_unlock(&proto_list_mutex); 3773 goto out_free_timewait_sock_slab; 3774 } 3775 list_add(&prot->node, &proto_list); 3776 mutex_unlock(&proto_list_mutex); 3777 return ret; 3778 3779 out_free_timewait_sock_slab: 3780 if (alloc_slab) 3781 tw_prot_cleanup(prot->twsk_prot); 3782 out_free_request_sock_slab: 3783 if (alloc_slab) { 3784 req_prot_cleanup(prot->rsk_prot); 3785 3786 kmem_cache_destroy(prot->slab); 3787 prot->slab = NULL; 3788 } 3789 out: 3790 return ret; 3791 } 3792 EXPORT_SYMBOL(proto_register); 3793 3794 void proto_unregister(struct proto *prot) 3795 { 3796 mutex_lock(&proto_list_mutex); 3797 release_proto_idx(prot); 3798 list_del(&prot->node); 3799 mutex_unlock(&proto_list_mutex); 3800 3801 kmem_cache_destroy(prot->slab); 3802 prot->slab = NULL; 3803 3804 req_prot_cleanup(prot->rsk_prot); 3805 tw_prot_cleanup(prot->twsk_prot); 3806 } 3807 EXPORT_SYMBOL(proto_unregister); 3808 3809 int sock_load_diag_module(int family, int protocol) 3810 { 3811 if (!protocol) { 3812 if (!sock_is_registered(family)) 3813 return -ENOENT; 3814 3815 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3816 NETLINK_SOCK_DIAG, family); 3817 } 3818 3819 #ifdef CONFIG_INET 3820 if (family == AF_INET && 3821 protocol != IPPROTO_RAW && 3822 protocol < MAX_INET_PROTOS && 3823 !rcu_access_pointer(inet_protos[protocol])) 3824 return -ENOENT; 3825 #endif 3826 3827 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3828 NETLINK_SOCK_DIAG, family, protocol); 3829 } 3830 EXPORT_SYMBOL(sock_load_diag_module); 3831 3832 #ifdef CONFIG_PROC_FS 3833 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3834 __acquires(proto_list_mutex) 3835 { 3836 mutex_lock(&proto_list_mutex); 3837 return seq_list_start_head(&proto_list, *pos); 3838 } 3839 3840 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3841 { 3842 return seq_list_next(v, &proto_list, pos); 3843 } 3844 3845 static void proto_seq_stop(struct seq_file *seq, void *v) 3846 __releases(proto_list_mutex) 3847 { 3848 mutex_unlock(&proto_list_mutex); 3849 } 3850 3851 static char proto_method_implemented(const void *method) 3852 { 3853 return method == NULL ? 'n' : 'y'; 3854 } 3855 static long sock_prot_memory_allocated(struct proto *proto) 3856 { 3857 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3858 } 3859 3860 static const char *sock_prot_memory_pressure(struct proto *proto) 3861 { 3862 return proto->memory_pressure != NULL ? 3863 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3864 } 3865 3866 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3867 { 3868 3869 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3870 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3871 proto->name, 3872 proto->obj_size, 3873 sock_prot_inuse_get(seq_file_net(seq), proto), 3874 sock_prot_memory_allocated(proto), 3875 sock_prot_memory_pressure(proto), 3876 proto->max_header, 3877 proto->slab == NULL ? "no" : "yes", 3878 module_name(proto->owner), 3879 proto_method_implemented(proto->close), 3880 proto_method_implemented(proto->connect), 3881 proto_method_implemented(proto->disconnect), 3882 proto_method_implemented(proto->accept), 3883 proto_method_implemented(proto->ioctl), 3884 proto_method_implemented(proto->init), 3885 proto_method_implemented(proto->destroy), 3886 proto_method_implemented(proto->shutdown), 3887 proto_method_implemented(proto->setsockopt), 3888 proto_method_implemented(proto->getsockopt), 3889 proto_method_implemented(proto->sendmsg), 3890 proto_method_implemented(proto->recvmsg), 3891 proto_method_implemented(proto->sendpage), 3892 proto_method_implemented(proto->bind), 3893 proto_method_implemented(proto->backlog_rcv), 3894 proto_method_implemented(proto->hash), 3895 proto_method_implemented(proto->unhash), 3896 proto_method_implemented(proto->get_port), 3897 proto_method_implemented(proto->enter_memory_pressure)); 3898 } 3899 3900 static int proto_seq_show(struct seq_file *seq, void *v) 3901 { 3902 if (v == &proto_list) 3903 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3904 "protocol", 3905 "size", 3906 "sockets", 3907 "memory", 3908 "press", 3909 "maxhdr", 3910 "slab", 3911 "module", 3912 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3913 else 3914 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3915 return 0; 3916 } 3917 3918 static const struct seq_operations proto_seq_ops = { 3919 .start = proto_seq_start, 3920 .next = proto_seq_next, 3921 .stop = proto_seq_stop, 3922 .show = proto_seq_show, 3923 }; 3924 3925 static __net_init int proto_init_net(struct net *net) 3926 { 3927 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 3928 sizeof(struct seq_net_private))) 3929 return -ENOMEM; 3930 3931 return 0; 3932 } 3933 3934 static __net_exit void proto_exit_net(struct net *net) 3935 { 3936 remove_proc_entry("protocols", net->proc_net); 3937 } 3938 3939 3940 static __net_initdata struct pernet_operations proto_net_ops = { 3941 .init = proto_init_net, 3942 .exit = proto_exit_net, 3943 }; 3944 3945 static int __init proto_init(void) 3946 { 3947 return register_pernet_subsys(&proto_net_ops); 3948 } 3949 3950 subsys_initcall(proto_init); 3951 3952 #endif /* PROC_FS */ 3953 3954 #ifdef CONFIG_NET_RX_BUSY_POLL 3955 bool sk_busy_loop_end(void *p, unsigned long start_time) 3956 { 3957 struct sock *sk = p; 3958 3959 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 3960 sk_busy_loop_timeout(sk, start_time); 3961 } 3962 EXPORT_SYMBOL(sk_busy_loop_end); 3963 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3964 3965 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 3966 { 3967 if (!sk->sk_prot->bind_add) 3968 return -EOPNOTSUPP; 3969 return sk->sk_prot->bind_add(sk, addr, addr_len); 3970 } 3971 EXPORT_SYMBOL(sock_bind_add); 3972