1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 117 #include <linux/uaccess.h> 118 119 #include <linux/netdevice.h> 120 #include <net/protocol.h> 121 #include <linux/skbuff.h> 122 #include <net/net_namespace.h> 123 #include <net/request_sock.h> 124 #include <net/sock.h> 125 #include <linux/net_tstamp.h> 126 #include <net/xfrm.h> 127 #include <linux/ipsec.h> 128 #include <net/cls_cgroup.h> 129 #include <net/netprio_cgroup.h> 130 #include <linux/sock_diag.h> 131 132 #include <linux/filter.h> 133 #include <net/sock_reuseport.h> 134 #include <net/bpf_sk_storage.h> 135 136 #include <trace/events/sock.h> 137 138 #include <net/tcp.h> 139 #include <net/busy_poll.h> 140 141 static DEFINE_MUTEX(proto_list_mutex); 142 static LIST_HEAD(proto_list); 143 144 static void sock_inuse_add(struct net *net, int val); 145 146 /** 147 * sk_ns_capable - General socket capability test 148 * @sk: Socket to use a capability on or through 149 * @user_ns: The user namespace of the capability to use 150 * @cap: The capability to use 151 * 152 * Test to see if the opener of the socket had when the socket was 153 * created and the current process has the capability @cap in the user 154 * namespace @user_ns. 155 */ 156 bool sk_ns_capable(const struct sock *sk, 157 struct user_namespace *user_ns, int cap) 158 { 159 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 160 ns_capable(user_ns, cap); 161 } 162 EXPORT_SYMBOL(sk_ns_capable); 163 164 /** 165 * sk_capable - Socket global capability test 166 * @sk: Socket to use a capability on or through 167 * @cap: The global capability to use 168 * 169 * Test to see if the opener of the socket had when the socket was 170 * created and the current process has the capability @cap in all user 171 * namespaces. 172 */ 173 bool sk_capable(const struct sock *sk, int cap) 174 { 175 return sk_ns_capable(sk, &init_user_ns, cap); 176 } 177 EXPORT_SYMBOL(sk_capable); 178 179 /** 180 * sk_net_capable - Network namespace socket capability test 181 * @sk: Socket to use a capability on or through 182 * @cap: The capability to use 183 * 184 * Test to see if the opener of the socket had when the socket was created 185 * and the current process has the capability @cap over the network namespace 186 * the socket is a member of. 187 */ 188 bool sk_net_capable(const struct sock *sk, int cap) 189 { 190 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 191 } 192 EXPORT_SYMBOL(sk_net_capable); 193 194 /* 195 * Each address family might have different locking rules, so we have 196 * one slock key per address family and separate keys for internal and 197 * userspace sockets. 198 */ 199 static struct lock_class_key af_family_keys[AF_MAX]; 200 static struct lock_class_key af_family_kern_keys[AF_MAX]; 201 static struct lock_class_key af_family_slock_keys[AF_MAX]; 202 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 203 204 /* 205 * Make lock validator output more readable. (we pre-construct these 206 * strings build-time, so that runtime initialization of socket 207 * locks is fast): 208 */ 209 210 #define _sock_locks(x) \ 211 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 212 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 213 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 214 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 215 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 216 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 217 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 218 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 219 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 220 x "27" , x "28" , x "AF_CAN" , \ 221 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 222 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 223 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 224 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 225 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 226 x "AF_MAX" 227 228 static const char *const af_family_key_strings[AF_MAX+1] = { 229 _sock_locks("sk_lock-") 230 }; 231 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 232 _sock_locks("slock-") 233 }; 234 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 235 _sock_locks("clock-") 236 }; 237 238 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 239 _sock_locks("k-sk_lock-") 240 }; 241 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 242 _sock_locks("k-slock-") 243 }; 244 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 245 _sock_locks("k-clock-") 246 }; 247 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 248 _sock_locks("rlock-") 249 }; 250 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 251 _sock_locks("wlock-") 252 }; 253 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 254 _sock_locks("elock-") 255 }; 256 257 /* 258 * sk_callback_lock and sk queues locking rules are per-address-family, 259 * so split the lock classes by using a per-AF key: 260 */ 261 static struct lock_class_key af_callback_keys[AF_MAX]; 262 static struct lock_class_key af_rlock_keys[AF_MAX]; 263 static struct lock_class_key af_wlock_keys[AF_MAX]; 264 static struct lock_class_key af_elock_keys[AF_MAX]; 265 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 266 267 /* Run time adjustable parameters. */ 268 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 269 EXPORT_SYMBOL(sysctl_wmem_max); 270 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 271 EXPORT_SYMBOL(sysctl_rmem_max); 272 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 273 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 274 275 /* Maximal space eaten by iovec or ancillary data plus some space */ 276 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 277 EXPORT_SYMBOL(sysctl_optmem_max); 278 279 int sysctl_tstamp_allow_data __read_mostly = 1; 280 281 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 282 EXPORT_SYMBOL_GPL(memalloc_socks_key); 283 284 /** 285 * sk_set_memalloc - sets %SOCK_MEMALLOC 286 * @sk: socket to set it on 287 * 288 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 289 * It's the responsibility of the admin to adjust min_free_kbytes 290 * to meet the requirements 291 */ 292 void sk_set_memalloc(struct sock *sk) 293 { 294 sock_set_flag(sk, SOCK_MEMALLOC); 295 sk->sk_allocation |= __GFP_MEMALLOC; 296 static_branch_inc(&memalloc_socks_key); 297 } 298 EXPORT_SYMBOL_GPL(sk_set_memalloc); 299 300 void sk_clear_memalloc(struct sock *sk) 301 { 302 sock_reset_flag(sk, SOCK_MEMALLOC); 303 sk->sk_allocation &= ~__GFP_MEMALLOC; 304 static_branch_dec(&memalloc_socks_key); 305 306 /* 307 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 308 * progress of swapping. SOCK_MEMALLOC may be cleared while 309 * it has rmem allocations due to the last swapfile being deactivated 310 * but there is a risk that the socket is unusable due to exceeding 311 * the rmem limits. Reclaim the reserves and obey rmem limits again. 312 */ 313 sk_mem_reclaim(sk); 314 } 315 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 316 317 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 318 { 319 int ret; 320 unsigned int noreclaim_flag; 321 322 /* these should have been dropped before queueing */ 323 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 324 325 noreclaim_flag = memalloc_noreclaim_save(); 326 ret = sk->sk_backlog_rcv(sk, skb); 327 memalloc_noreclaim_restore(noreclaim_flag); 328 329 return ret; 330 } 331 EXPORT_SYMBOL(__sk_backlog_rcv); 332 333 static int sock_get_timeout(long timeo, void *optval, bool old_timeval) 334 { 335 struct __kernel_sock_timeval tv; 336 337 if (timeo == MAX_SCHEDULE_TIMEOUT) { 338 tv.tv_sec = 0; 339 tv.tv_usec = 0; 340 } else { 341 tv.tv_sec = timeo / HZ; 342 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 343 } 344 345 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 346 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 347 *(struct old_timeval32 *)optval = tv32; 348 return sizeof(tv32); 349 } 350 351 if (old_timeval) { 352 struct __kernel_old_timeval old_tv; 353 old_tv.tv_sec = tv.tv_sec; 354 old_tv.tv_usec = tv.tv_usec; 355 *(struct __kernel_old_timeval *)optval = old_tv; 356 return sizeof(old_tv); 357 } 358 359 *(struct __kernel_sock_timeval *)optval = tv; 360 return sizeof(tv); 361 } 362 363 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval) 364 { 365 struct __kernel_sock_timeval tv; 366 367 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 368 struct old_timeval32 tv32; 369 370 if (optlen < sizeof(tv32)) 371 return -EINVAL; 372 373 if (copy_from_user(&tv32, optval, sizeof(tv32))) 374 return -EFAULT; 375 tv.tv_sec = tv32.tv_sec; 376 tv.tv_usec = tv32.tv_usec; 377 } else if (old_timeval) { 378 struct __kernel_old_timeval old_tv; 379 380 if (optlen < sizeof(old_tv)) 381 return -EINVAL; 382 if (copy_from_user(&old_tv, optval, sizeof(old_tv))) 383 return -EFAULT; 384 tv.tv_sec = old_tv.tv_sec; 385 tv.tv_usec = old_tv.tv_usec; 386 } else { 387 if (optlen < sizeof(tv)) 388 return -EINVAL; 389 if (copy_from_user(&tv, optval, sizeof(tv))) 390 return -EFAULT; 391 } 392 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 393 return -EDOM; 394 395 if (tv.tv_sec < 0) { 396 static int warned __read_mostly; 397 398 *timeo_p = 0; 399 if (warned < 10 && net_ratelimit()) { 400 warned++; 401 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 402 __func__, current->comm, task_pid_nr(current)); 403 } 404 return 0; 405 } 406 *timeo_p = MAX_SCHEDULE_TIMEOUT; 407 if (tv.tv_sec == 0 && tv.tv_usec == 0) 408 return 0; 409 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 410 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 411 return 0; 412 } 413 414 static void sock_warn_obsolete_bsdism(const char *name) 415 { 416 static int warned; 417 static char warncomm[TASK_COMM_LEN]; 418 if (strcmp(warncomm, current->comm) && warned < 5) { 419 strcpy(warncomm, current->comm); 420 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 421 warncomm, name); 422 warned++; 423 } 424 } 425 426 static bool sock_needs_netstamp(const struct sock *sk) 427 { 428 switch (sk->sk_family) { 429 case AF_UNSPEC: 430 case AF_UNIX: 431 return false; 432 default: 433 return true; 434 } 435 } 436 437 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 438 { 439 if (sk->sk_flags & flags) { 440 sk->sk_flags &= ~flags; 441 if (sock_needs_netstamp(sk) && 442 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 443 net_disable_timestamp(); 444 } 445 } 446 447 448 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 449 { 450 unsigned long flags; 451 struct sk_buff_head *list = &sk->sk_receive_queue; 452 453 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 454 atomic_inc(&sk->sk_drops); 455 trace_sock_rcvqueue_full(sk, skb); 456 return -ENOMEM; 457 } 458 459 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 460 atomic_inc(&sk->sk_drops); 461 return -ENOBUFS; 462 } 463 464 skb->dev = NULL; 465 skb_set_owner_r(skb, sk); 466 467 /* we escape from rcu protected region, make sure we dont leak 468 * a norefcounted dst 469 */ 470 skb_dst_force(skb); 471 472 spin_lock_irqsave(&list->lock, flags); 473 sock_skb_set_dropcount(sk, skb); 474 __skb_queue_tail(list, skb); 475 spin_unlock_irqrestore(&list->lock, flags); 476 477 if (!sock_flag(sk, SOCK_DEAD)) 478 sk->sk_data_ready(sk); 479 return 0; 480 } 481 EXPORT_SYMBOL(__sock_queue_rcv_skb); 482 483 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 484 { 485 int err; 486 487 err = sk_filter(sk, skb); 488 if (err) 489 return err; 490 491 return __sock_queue_rcv_skb(sk, skb); 492 } 493 EXPORT_SYMBOL(sock_queue_rcv_skb); 494 495 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 496 const int nested, unsigned int trim_cap, bool refcounted) 497 { 498 int rc = NET_RX_SUCCESS; 499 500 if (sk_filter_trim_cap(sk, skb, trim_cap)) 501 goto discard_and_relse; 502 503 skb->dev = NULL; 504 505 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 506 atomic_inc(&sk->sk_drops); 507 goto discard_and_relse; 508 } 509 if (nested) 510 bh_lock_sock_nested(sk); 511 else 512 bh_lock_sock(sk); 513 if (!sock_owned_by_user(sk)) { 514 /* 515 * trylock + unlock semantics: 516 */ 517 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 518 519 rc = sk_backlog_rcv(sk, skb); 520 521 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 522 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 523 bh_unlock_sock(sk); 524 atomic_inc(&sk->sk_drops); 525 goto discard_and_relse; 526 } 527 528 bh_unlock_sock(sk); 529 out: 530 if (refcounted) 531 sock_put(sk); 532 return rc; 533 discard_and_relse: 534 kfree_skb(skb); 535 goto out; 536 } 537 EXPORT_SYMBOL(__sk_receive_skb); 538 539 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 540 { 541 struct dst_entry *dst = __sk_dst_get(sk); 542 543 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 544 sk_tx_queue_clear(sk); 545 sk->sk_dst_pending_confirm = 0; 546 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 547 dst_release(dst); 548 return NULL; 549 } 550 551 return dst; 552 } 553 EXPORT_SYMBOL(__sk_dst_check); 554 555 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 556 { 557 struct dst_entry *dst = sk_dst_get(sk); 558 559 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 560 sk_dst_reset(sk); 561 dst_release(dst); 562 return NULL; 563 } 564 565 return dst; 566 } 567 EXPORT_SYMBOL(sk_dst_check); 568 569 static int sock_setbindtodevice_locked(struct sock *sk, int ifindex) 570 { 571 int ret = -ENOPROTOOPT; 572 #ifdef CONFIG_NETDEVICES 573 struct net *net = sock_net(sk); 574 575 /* Sorry... */ 576 ret = -EPERM; 577 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 578 goto out; 579 580 ret = -EINVAL; 581 if (ifindex < 0) 582 goto out; 583 584 sk->sk_bound_dev_if = ifindex; 585 if (sk->sk_prot->rehash) 586 sk->sk_prot->rehash(sk); 587 sk_dst_reset(sk); 588 589 ret = 0; 590 591 out: 592 #endif 593 594 return ret; 595 } 596 597 static int sock_setbindtodevice(struct sock *sk, char __user *optval, 598 int optlen) 599 { 600 int ret = -ENOPROTOOPT; 601 #ifdef CONFIG_NETDEVICES 602 struct net *net = sock_net(sk); 603 char devname[IFNAMSIZ]; 604 int index; 605 606 ret = -EINVAL; 607 if (optlen < 0) 608 goto out; 609 610 /* Bind this socket to a particular device like "eth0", 611 * as specified in the passed interface name. If the 612 * name is "" or the option length is zero the socket 613 * is not bound. 614 */ 615 if (optlen > IFNAMSIZ - 1) 616 optlen = IFNAMSIZ - 1; 617 memset(devname, 0, sizeof(devname)); 618 619 ret = -EFAULT; 620 if (copy_from_user(devname, optval, optlen)) 621 goto out; 622 623 index = 0; 624 if (devname[0] != '\0') { 625 struct net_device *dev; 626 627 rcu_read_lock(); 628 dev = dev_get_by_name_rcu(net, devname); 629 if (dev) 630 index = dev->ifindex; 631 rcu_read_unlock(); 632 ret = -ENODEV; 633 if (!dev) 634 goto out; 635 } 636 637 lock_sock(sk); 638 ret = sock_setbindtodevice_locked(sk, index); 639 release_sock(sk); 640 641 out: 642 #endif 643 644 return ret; 645 } 646 647 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 648 int __user *optlen, int len) 649 { 650 int ret = -ENOPROTOOPT; 651 #ifdef CONFIG_NETDEVICES 652 struct net *net = sock_net(sk); 653 char devname[IFNAMSIZ]; 654 655 if (sk->sk_bound_dev_if == 0) { 656 len = 0; 657 goto zero; 658 } 659 660 ret = -EINVAL; 661 if (len < IFNAMSIZ) 662 goto out; 663 664 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 665 if (ret) 666 goto out; 667 668 len = strlen(devname) + 1; 669 670 ret = -EFAULT; 671 if (copy_to_user(optval, devname, len)) 672 goto out; 673 674 zero: 675 ret = -EFAULT; 676 if (put_user(len, optlen)) 677 goto out; 678 679 ret = 0; 680 681 out: 682 #endif 683 684 return ret; 685 } 686 687 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, 688 int valbool) 689 { 690 if (valbool) 691 sock_set_flag(sk, bit); 692 else 693 sock_reset_flag(sk, bit); 694 } 695 696 bool sk_mc_loop(struct sock *sk) 697 { 698 if (dev_recursion_level()) 699 return false; 700 if (!sk) 701 return true; 702 switch (sk->sk_family) { 703 case AF_INET: 704 return inet_sk(sk)->mc_loop; 705 #if IS_ENABLED(CONFIG_IPV6) 706 case AF_INET6: 707 return inet6_sk(sk)->mc_loop; 708 #endif 709 } 710 WARN_ON(1); 711 return true; 712 } 713 EXPORT_SYMBOL(sk_mc_loop); 714 715 /* 716 * This is meant for all protocols to use and covers goings on 717 * at the socket level. Everything here is generic. 718 */ 719 720 int sock_setsockopt(struct socket *sock, int level, int optname, 721 char __user *optval, unsigned int optlen) 722 { 723 struct sock_txtime sk_txtime; 724 struct sock *sk = sock->sk; 725 int val; 726 int valbool; 727 struct linger ling; 728 int ret = 0; 729 730 /* 731 * Options without arguments 732 */ 733 734 if (optname == SO_BINDTODEVICE) 735 return sock_setbindtodevice(sk, optval, optlen); 736 737 if (optlen < sizeof(int)) 738 return -EINVAL; 739 740 if (get_user(val, (int __user *)optval)) 741 return -EFAULT; 742 743 valbool = val ? 1 : 0; 744 745 lock_sock(sk); 746 747 switch (optname) { 748 case SO_DEBUG: 749 if (val && !capable(CAP_NET_ADMIN)) 750 ret = -EACCES; 751 else 752 sock_valbool_flag(sk, SOCK_DBG, valbool); 753 break; 754 case SO_REUSEADDR: 755 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 756 break; 757 case SO_REUSEPORT: 758 sk->sk_reuseport = valbool; 759 break; 760 case SO_TYPE: 761 case SO_PROTOCOL: 762 case SO_DOMAIN: 763 case SO_ERROR: 764 ret = -ENOPROTOOPT; 765 break; 766 case SO_DONTROUTE: 767 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 768 sk_dst_reset(sk); 769 break; 770 case SO_BROADCAST: 771 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 772 break; 773 case SO_SNDBUF: 774 /* Don't error on this BSD doesn't and if you think 775 * about it this is right. Otherwise apps have to 776 * play 'guess the biggest size' games. RCVBUF/SNDBUF 777 * are treated in BSD as hints 778 */ 779 val = min_t(u32, val, sysctl_wmem_max); 780 set_sndbuf: 781 /* Ensure val * 2 fits into an int, to prevent max_t() 782 * from treating it as a negative value. 783 */ 784 val = min_t(int, val, INT_MAX / 2); 785 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 786 WRITE_ONCE(sk->sk_sndbuf, 787 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 788 /* Wake up sending tasks if we upped the value. */ 789 sk->sk_write_space(sk); 790 break; 791 792 case SO_SNDBUFFORCE: 793 if (!capable(CAP_NET_ADMIN)) { 794 ret = -EPERM; 795 break; 796 } 797 798 /* No negative values (to prevent underflow, as val will be 799 * multiplied by 2). 800 */ 801 if (val < 0) 802 val = 0; 803 goto set_sndbuf; 804 805 case SO_RCVBUF: 806 /* Don't error on this BSD doesn't and if you think 807 * about it this is right. Otherwise apps have to 808 * play 'guess the biggest size' games. RCVBUF/SNDBUF 809 * are treated in BSD as hints 810 */ 811 val = min_t(u32, val, sysctl_rmem_max); 812 set_rcvbuf: 813 /* Ensure val * 2 fits into an int, to prevent max_t() 814 * from treating it as a negative value. 815 */ 816 val = min_t(int, val, INT_MAX / 2); 817 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 818 /* 819 * We double it on the way in to account for 820 * "struct sk_buff" etc. overhead. Applications 821 * assume that the SO_RCVBUF setting they make will 822 * allow that much actual data to be received on that 823 * socket. 824 * 825 * Applications are unaware that "struct sk_buff" and 826 * other overheads allocate from the receive buffer 827 * during socket buffer allocation. 828 * 829 * And after considering the possible alternatives, 830 * returning the value we actually used in getsockopt 831 * is the most desirable behavior. 832 */ 833 WRITE_ONCE(sk->sk_rcvbuf, 834 max_t(int, val * 2, SOCK_MIN_RCVBUF)); 835 break; 836 837 case SO_RCVBUFFORCE: 838 if (!capable(CAP_NET_ADMIN)) { 839 ret = -EPERM; 840 break; 841 } 842 843 /* No negative values (to prevent underflow, as val will be 844 * multiplied by 2). 845 */ 846 if (val < 0) 847 val = 0; 848 goto set_rcvbuf; 849 850 case SO_KEEPALIVE: 851 if (sk->sk_prot->keepalive) 852 sk->sk_prot->keepalive(sk, valbool); 853 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 854 break; 855 856 case SO_OOBINLINE: 857 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 858 break; 859 860 case SO_NO_CHECK: 861 sk->sk_no_check_tx = valbool; 862 break; 863 864 case SO_PRIORITY: 865 if ((val >= 0 && val <= 6) || 866 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 867 sk->sk_priority = val; 868 else 869 ret = -EPERM; 870 break; 871 872 case SO_LINGER: 873 if (optlen < sizeof(ling)) { 874 ret = -EINVAL; /* 1003.1g */ 875 break; 876 } 877 if (copy_from_user(&ling, optval, sizeof(ling))) { 878 ret = -EFAULT; 879 break; 880 } 881 if (!ling.l_onoff) 882 sock_reset_flag(sk, SOCK_LINGER); 883 else { 884 #if (BITS_PER_LONG == 32) 885 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 886 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 887 else 888 #endif 889 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 890 sock_set_flag(sk, SOCK_LINGER); 891 } 892 break; 893 894 case SO_BSDCOMPAT: 895 sock_warn_obsolete_bsdism("setsockopt"); 896 break; 897 898 case SO_PASSCRED: 899 if (valbool) 900 set_bit(SOCK_PASSCRED, &sock->flags); 901 else 902 clear_bit(SOCK_PASSCRED, &sock->flags); 903 break; 904 905 case SO_TIMESTAMP_OLD: 906 case SO_TIMESTAMP_NEW: 907 case SO_TIMESTAMPNS_OLD: 908 case SO_TIMESTAMPNS_NEW: 909 if (valbool) { 910 if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW) 911 sock_set_flag(sk, SOCK_TSTAMP_NEW); 912 else 913 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 914 915 if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW) 916 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 917 else 918 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 919 sock_set_flag(sk, SOCK_RCVTSTAMP); 920 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 921 } else { 922 sock_reset_flag(sk, SOCK_RCVTSTAMP); 923 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 924 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 925 } 926 break; 927 928 case SO_TIMESTAMPING_NEW: 929 sock_set_flag(sk, SOCK_TSTAMP_NEW); 930 /* fall through */ 931 case SO_TIMESTAMPING_OLD: 932 if (val & ~SOF_TIMESTAMPING_MASK) { 933 ret = -EINVAL; 934 break; 935 } 936 937 if (val & SOF_TIMESTAMPING_OPT_ID && 938 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 939 if (sk->sk_protocol == IPPROTO_TCP && 940 sk->sk_type == SOCK_STREAM) { 941 if ((1 << sk->sk_state) & 942 (TCPF_CLOSE | TCPF_LISTEN)) { 943 ret = -EINVAL; 944 break; 945 } 946 sk->sk_tskey = tcp_sk(sk)->snd_una; 947 } else { 948 sk->sk_tskey = 0; 949 } 950 } 951 952 if (val & SOF_TIMESTAMPING_OPT_STATS && 953 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { 954 ret = -EINVAL; 955 break; 956 } 957 958 sk->sk_tsflags = val; 959 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 960 sock_enable_timestamp(sk, 961 SOCK_TIMESTAMPING_RX_SOFTWARE); 962 else { 963 if (optname == SO_TIMESTAMPING_NEW) 964 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 965 966 sock_disable_timestamp(sk, 967 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 968 } 969 break; 970 971 case SO_RCVLOWAT: 972 if (val < 0) 973 val = INT_MAX; 974 if (sock->ops->set_rcvlowat) 975 ret = sock->ops->set_rcvlowat(sk, val); 976 else 977 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 978 break; 979 980 case SO_RCVTIMEO_OLD: 981 case SO_RCVTIMEO_NEW: 982 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD); 983 break; 984 985 case SO_SNDTIMEO_OLD: 986 case SO_SNDTIMEO_NEW: 987 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD); 988 break; 989 990 case SO_ATTACH_FILTER: 991 ret = -EINVAL; 992 if (optlen == sizeof(struct sock_fprog)) { 993 struct sock_fprog fprog; 994 995 ret = -EFAULT; 996 if (copy_from_user(&fprog, optval, sizeof(fprog))) 997 break; 998 999 ret = sk_attach_filter(&fprog, sk); 1000 } 1001 break; 1002 1003 case SO_ATTACH_BPF: 1004 ret = -EINVAL; 1005 if (optlen == sizeof(u32)) { 1006 u32 ufd; 1007 1008 ret = -EFAULT; 1009 if (copy_from_user(&ufd, optval, sizeof(ufd))) 1010 break; 1011 1012 ret = sk_attach_bpf(ufd, sk); 1013 } 1014 break; 1015 1016 case SO_ATTACH_REUSEPORT_CBPF: 1017 ret = -EINVAL; 1018 if (optlen == sizeof(struct sock_fprog)) { 1019 struct sock_fprog fprog; 1020 1021 ret = -EFAULT; 1022 if (copy_from_user(&fprog, optval, sizeof(fprog))) 1023 break; 1024 1025 ret = sk_reuseport_attach_filter(&fprog, sk); 1026 } 1027 break; 1028 1029 case SO_ATTACH_REUSEPORT_EBPF: 1030 ret = -EINVAL; 1031 if (optlen == sizeof(u32)) { 1032 u32 ufd; 1033 1034 ret = -EFAULT; 1035 if (copy_from_user(&ufd, optval, sizeof(ufd))) 1036 break; 1037 1038 ret = sk_reuseport_attach_bpf(ufd, sk); 1039 } 1040 break; 1041 1042 case SO_DETACH_REUSEPORT_BPF: 1043 ret = reuseport_detach_prog(sk); 1044 break; 1045 1046 case SO_DETACH_FILTER: 1047 ret = sk_detach_filter(sk); 1048 break; 1049 1050 case SO_LOCK_FILTER: 1051 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1052 ret = -EPERM; 1053 else 1054 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1055 break; 1056 1057 case SO_PASSSEC: 1058 if (valbool) 1059 set_bit(SOCK_PASSSEC, &sock->flags); 1060 else 1061 clear_bit(SOCK_PASSSEC, &sock->flags); 1062 break; 1063 case SO_MARK: 1064 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1065 ret = -EPERM; 1066 } else if (val != sk->sk_mark) { 1067 sk->sk_mark = val; 1068 sk_dst_reset(sk); 1069 } 1070 break; 1071 1072 case SO_RXQ_OVFL: 1073 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1074 break; 1075 1076 case SO_WIFI_STATUS: 1077 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1078 break; 1079 1080 case SO_PEEK_OFF: 1081 if (sock->ops->set_peek_off) 1082 ret = sock->ops->set_peek_off(sk, val); 1083 else 1084 ret = -EOPNOTSUPP; 1085 break; 1086 1087 case SO_NOFCS: 1088 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1089 break; 1090 1091 case SO_SELECT_ERR_QUEUE: 1092 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1093 break; 1094 1095 #ifdef CONFIG_NET_RX_BUSY_POLL 1096 case SO_BUSY_POLL: 1097 /* allow unprivileged users to decrease the value */ 1098 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1099 ret = -EPERM; 1100 else { 1101 if (val < 0) 1102 ret = -EINVAL; 1103 else 1104 sk->sk_ll_usec = val; 1105 } 1106 break; 1107 #endif 1108 1109 case SO_MAX_PACING_RATE: 1110 { 1111 unsigned long ulval = (val == ~0U) ? ~0UL : val; 1112 1113 if (sizeof(ulval) != sizeof(val) && 1114 optlen >= sizeof(ulval) && 1115 get_user(ulval, (unsigned long __user *)optval)) { 1116 ret = -EFAULT; 1117 break; 1118 } 1119 if (ulval != ~0UL) 1120 cmpxchg(&sk->sk_pacing_status, 1121 SK_PACING_NONE, 1122 SK_PACING_NEEDED); 1123 sk->sk_max_pacing_rate = ulval; 1124 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1125 break; 1126 } 1127 case SO_INCOMING_CPU: 1128 WRITE_ONCE(sk->sk_incoming_cpu, val); 1129 break; 1130 1131 case SO_CNX_ADVICE: 1132 if (val == 1) 1133 dst_negative_advice(sk); 1134 break; 1135 1136 case SO_ZEROCOPY: 1137 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1138 if (!((sk->sk_type == SOCK_STREAM && 1139 sk->sk_protocol == IPPROTO_TCP) || 1140 (sk->sk_type == SOCK_DGRAM && 1141 sk->sk_protocol == IPPROTO_UDP))) 1142 ret = -ENOTSUPP; 1143 } else if (sk->sk_family != PF_RDS) { 1144 ret = -ENOTSUPP; 1145 } 1146 if (!ret) { 1147 if (val < 0 || val > 1) 1148 ret = -EINVAL; 1149 else 1150 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1151 } 1152 break; 1153 1154 case SO_TXTIME: 1155 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1156 ret = -EPERM; 1157 } else if (optlen != sizeof(struct sock_txtime)) { 1158 ret = -EINVAL; 1159 } else if (copy_from_user(&sk_txtime, optval, 1160 sizeof(struct sock_txtime))) { 1161 ret = -EFAULT; 1162 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1163 ret = -EINVAL; 1164 } else { 1165 sock_valbool_flag(sk, SOCK_TXTIME, true); 1166 sk->sk_clockid = sk_txtime.clockid; 1167 sk->sk_txtime_deadline_mode = 1168 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1169 sk->sk_txtime_report_errors = 1170 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1171 } 1172 break; 1173 1174 case SO_BINDTOIFINDEX: 1175 ret = sock_setbindtodevice_locked(sk, val); 1176 break; 1177 1178 default: 1179 ret = -ENOPROTOOPT; 1180 break; 1181 } 1182 release_sock(sk); 1183 return ret; 1184 } 1185 EXPORT_SYMBOL(sock_setsockopt); 1186 1187 1188 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1189 struct ucred *ucred) 1190 { 1191 ucred->pid = pid_vnr(pid); 1192 ucred->uid = ucred->gid = -1; 1193 if (cred) { 1194 struct user_namespace *current_ns = current_user_ns(); 1195 1196 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1197 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1198 } 1199 } 1200 1201 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1202 { 1203 struct user_namespace *user_ns = current_user_ns(); 1204 int i; 1205 1206 for (i = 0; i < src->ngroups; i++) 1207 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1208 return -EFAULT; 1209 1210 return 0; 1211 } 1212 1213 int sock_getsockopt(struct socket *sock, int level, int optname, 1214 char __user *optval, int __user *optlen) 1215 { 1216 struct sock *sk = sock->sk; 1217 1218 union { 1219 int val; 1220 u64 val64; 1221 unsigned long ulval; 1222 struct linger ling; 1223 struct old_timeval32 tm32; 1224 struct __kernel_old_timeval tm; 1225 struct __kernel_sock_timeval stm; 1226 struct sock_txtime txtime; 1227 } v; 1228 1229 int lv = sizeof(int); 1230 int len; 1231 1232 if (get_user(len, optlen)) 1233 return -EFAULT; 1234 if (len < 0) 1235 return -EINVAL; 1236 1237 memset(&v, 0, sizeof(v)); 1238 1239 switch (optname) { 1240 case SO_DEBUG: 1241 v.val = sock_flag(sk, SOCK_DBG); 1242 break; 1243 1244 case SO_DONTROUTE: 1245 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1246 break; 1247 1248 case SO_BROADCAST: 1249 v.val = sock_flag(sk, SOCK_BROADCAST); 1250 break; 1251 1252 case SO_SNDBUF: 1253 v.val = sk->sk_sndbuf; 1254 break; 1255 1256 case SO_RCVBUF: 1257 v.val = sk->sk_rcvbuf; 1258 break; 1259 1260 case SO_REUSEADDR: 1261 v.val = sk->sk_reuse; 1262 break; 1263 1264 case SO_REUSEPORT: 1265 v.val = sk->sk_reuseport; 1266 break; 1267 1268 case SO_KEEPALIVE: 1269 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1270 break; 1271 1272 case SO_TYPE: 1273 v.val = sk->sk_type; 1274 break; 1275 1276 case SO_PROTOCOL: 1277 v.val = sk->sk_protocol; 1278 break; 1279 1280 case SO_DOMAIN: 1281 v.val = sk->sk_family; 1282 break; 1283 1284 case SO_ERROR: 1285 v.val = -sock_error(sk); 1286 if (v.val == 0) 1287 v.val = xchg(&sk->sk_err_soft, 0); 1288 break; 1289 1290 case SO_OOBINLINE: 1291 v.val = sock_flag(sk, SOCK_URGINLINE); 1292 break; 1293 1294 case SO_NO_CHECK: 1295 v.val = sk->sk_no_check_tx; 1296 break; 1297 1298 case SO_PRIORITY: 1299 v.val = sk->sk_priority; 1300 break; 1301 1302 case SO_LINGER: 1303 lv = sizeof(v.ling); 1304 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1305 v.ling.l_linger = sk->sk_lingertime / HZ; 1306 break; 1307 1308 case SO_BSDCOMPAT: 1309 sock_warn_obsolete_bsdism("getsockopt"); 1310 break; 1311 1312 case SO_TIMESTAMP_OLD: 1313 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1314 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1315 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1316 break; 1317 1318 case SO_TIMESTAMPNS_OLD: 1319 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1320 break; 1321 1322 case SO_TIMESTAMP_NEW: 1323 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1324 break; 1325 1326 case SO_TIMESTAMPNS_NEW: 1327 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1328 break; 1329 1330 case SO_TIMESTAMPING_OLD: 1331 v.val = sk->sk_tsflags; 1332 break; 1333 1334 case SO_RCVTIMEO_OLD: 1335 case SO_RCVTIMEO_NEW: 1336 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1337 break; 1338 1339 case SO_SNDTIMEO_OLD: 1340 case SO_SNDTIMEO_NEW: 1341 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1342 break; 1343 1344 case SO_RCVLOWAT: 1345 v.val = sk->sk_rcvlowat; 1346 break; 1347 1348 case SO_SNDLOWAT: 1349 v.val = 1; 1350 break; 1351 1352 case SO_PASSCRED: 1353 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1354 break; 1355 1356 case SO_PEERCRED: 1357 { 1358 struct ucred peercred; 1359 if (len > sizeof(peercred)) 1360 len = sizeof(peercred); 1361 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1362 if (copy_to_user(optval, &peercred, len)) 1363 return -EFAULT; 1364 goto lenout; 1365 } 1366 1367 case SO_PEERGROUPS: 1368 { 1369 int ret, n; 1370 1371 if (!sk->sk_peer_cred) 1372 return -ENODATA; 1373 1374 n = sk->sk_peer_cred->group_info->ngroups; 1375 if (len < n * sizeof(gid_t)) { 1376 len = n * sizeof(gid_t); 1377 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1378 } 1379 len = n * sizeof(gid_t); 1380 1381 ret = groups_to_user((gid_t __user *)optval, 1382 sk->sk_peer_cred->group_info); 1383 if (ret) 1384 return ret; 1385 goto lenout; 1386 } 1387 1388 case SO_PEERNAME: 1389 { 1390 char address[128]; 1391 1392 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1393 if (lv < 0) 1394 return -ENOTCONN; 1395 if (lv < len) 1396 return -EINVAL; 1397 if (copy_to_user(optval, address, len)) 1398 return -EFAULT; 1399 goto lenout; 1400 } 1401 1402 /* Dubious BSD thing... Probably nobody even uses it, but 1403 * the UNIX standard wants it for whatever reason... -DaveM 1404 */ 1405 case SO_ACCEPTCONN: 1406 v.val = sk->sk_state == TCP_LISTEN; 1407 break; 1408 1409 case SO_PASSSEC: 1410 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1411 break; 1412 1413 case SO_PEERSEC: 1414 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1415 1416 case SO_MARK: 1417 v.val = sk->sk_mark; 1418 break; 1419 1420 case SO_RXQ_OVFL: 1421 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1422 break; 1423 1424 case SO_WIFI_STATUS: 1425 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1426 break; 1427 1428 case SO_PEEK_OFF: 1429 if (!sock->ops->set_peek_off) 1430 return -EOPNOTSUPP; 1431 1432 v.val = sk->sk_peek_off; 1433 break; 1434 case SO_NOFCS: 1435 v.val = sock_flag(sk, SOCK_NOFCS); 1436 break; 1437 1438 case SO_BINDTODEVICE: 1439 return sock_getbindtodevice(sk, optval, optlen, len); 1440 1441 case SO_GET_FILTER: 1442 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1443 if (len < 0) 1444 return len; 1445 1446 goto lenout; 1447 1448 case SO_LOCK_FILTER: 1449 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1450 break; 1451 1452 case SO_BPF_EXTENSIONS: 1453 v.val = bpf_tell_extensions(); 1454 break; 1455 1456 case SO_SELECT_ERR_QUEUE: 1457 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1458 break; 1459 1460 #ifdef CONFIG_NET_RX_BUSY_POLL 1461 case SO_BUSY_POLL: 1462 v.val = sk->sk_ll_usec; 1463 break; 1464 #endif 1465 1466 case SO_MAX_PACING_RATE: 1467 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1468 lv = sizeof(v.ulval); 1469 v.ulval = sk->sk_max_pacing_rate; 1470 } else { 1471 /* 32bit version */ 1472 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1473 } 1474 break; 1475 1476 case SO_INCOMING_CPU: 1477 v.val = READ_ONCE(sk->sk_incoming_cpu); 1478 break; 1479 1480 case SO_MEMINFO: 1481 { 1482 u32 meminfo[SK_MEMINFO_VARS]; 1483 1484 sk_get_meminfo(sk, meminfo); 1485 1486 len = min_t(unsigned int, len, sizeof(meminfo)); 1487 if (copy_to_user(optval, &meminfo, len)) 1488 return -EFAULT; 1489 1490 goto lenout; 1491 } 1492 1493 #ifdef CONFIG_NET_RX_BUSY_POLL 1494 case SO_INCOMING_NAPI_ID: 1495 v.val = READ_ONCE(sk->sk_napi_id); 1496 1497 /* aggregate non-NAPI IDs down to 0 */ 1498 if (v.val < MIN_NAPI_ID) 1499 v.val = 0; 1500 1501 break; 1502 #endif 1503 1504 case SO_COOKIE: 1505 lv = sizeof(u64); 1506 if (len < lv) 1507 return -EINVAL; 1508 v.val64 = sock_gen_cookie(sk); 1509 break; 1510 1511 case SO_ZEROCOPY: 1512 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1513 break; 1514 1515 case SO_TXTIME: 1516 lv = sizeof(v.txtime); 1517 v.txtime.clockid = sk->sk_clockid; 1518 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1519 SOF_TXTIME_DEADLINE_MODE : 0; 1520 v.txtime.flags |= sk->sk_txtime_report_errors ? 1521 SOF_TXTIME_REPORT_ERRORS : 0; 1522 break; 1523 1524 case SO_BINDTOIFINDEX: 1525 v.val = sk->sk_bound_dev_if; 1526 break; 1527 1528 default: 1529 /* We implement the SO_SNDLOWAT etc to not be settable 1530 * (1003.1g 7). 1531 */ 1532 return -ENOPROTOOPT; 1533 } 1534 1535 if (len > lv) 1536 len = lv; 1537 if (copy_to_user(optval, &v, len)) 1538 return -EFAULT; 1539 lenout: 1540 if (put_user(len, optlen)) 1541 return -EFAULT; 1542 return 0; 1543 } 1544 1545 /* 1546 * Initialize an sk_lock. 1547 * 1548 * (We also register the sk_lock with the lock validator.) 1549 */ 1550 static inline void sock_lock_init(struct sock *sk) 1551 { 1552 if (sk->sk_kern_sock) 1553 sock_lock_init_class_and_name( 1554 sk, 1555 af_family_kern_slock_key_strings[sk->sk_family], 1556 af_family_kern_slock_keys + sk->sk_family, 1557 af_family_kern_key_strings[sk->sk_family], 1558 af_family_kern_keys + sk->sk_family); 1559 else 1560 sock_lock_init_class_and_name( 1561 sk, 1562 af_family_slock_key_strings[sk->sk_family], 1563 af_family_slock_keys + sk->sk_family, 1564 af_family_key_strings[sk->sk_family], 1565 af_family_keys + sk->sk_family); 1566 } 1567 1568 /* 1569 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1570 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1571 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1572 */ 1573 static void sock_copy(struct sock *nsk, const struct sock *osk) 1574 { 1575 #ifdef CONFIG_SECURITY_NETWORK 1576 void *sptr = nsk->sk_security; 1577 #endif 1578 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1579 1580 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1581 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1582 1583 #ifdef CONFIG_SECURITY_NETWORK 1584 nsk->sk_security = sptr; 1585 security_sk_clone(osk, nsk); 1586 #endif 1587 } 1588 1589 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1590 int family) 1591 { 1592 struct sock *sk; 1593 struct kmem_cache *slab; 1594 1595 slab = prot->slab; 1596 if (slab != NULL) { 1597 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1598 if (!sk) 1599 return sk; 1600 if (want_init_on_alloc(priority)) 1601 sk_prot_clear_nulls(sk, prot->obj_size); 1602 } else 1603 sk = kmalloc(prot->obj_size, priority); 1604 1605 if (sk != NULL) { 1606 if (security_sk_alloc(sk, family, priority)) 1607 goto out_free; 1608 1609 if (!try_module_get(prot->owner)) 1610 goto out_free_sec; 1611 sk_tx_queue_clear(sk); 1612 } 1613 1614 return sk; 1615 1616 out_free_sec: 1617 security_sk_free(sk); 1618 out_free: 1619 if (slab != NULL) 1620 kmem_cache_free(slab, sk); 1621 else 1622 kfree(sk); 1623 return NULL; 1624 } 1625 1626 static void sk_prot_free(struct proto *prot, struct sock *sk) 1627 { 1628 struct kmem_cache *slab; 1629 struct module *owner; 1630 1631 owner = prot->owner; 1632 slab = prot->slab; 1633 1634 cgroup_sk_free(&sk->sk_cgrp_data); 1635 mem_cgroup_sk_free(sk); 1636 security_sk_free(sk); 1637 if (slab != NULL) 1638 kmem_cache_free(slab, sk); 1639 else 1640 kfree(sk); 1641 module_put(owner); 1642 } 1643 1644 /** 1645 * sk_alloc - All socket objects are allocated here 1646 * @net: the applicable net namespace 1647 * @family: protocol family 1648 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1649 * @prot: struct proto associated with this new sock instance 1650 * @kern: is this to be a kernel socket? 1651 */ 1652 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1653 struct proto *prot, int kern) 1654 { 1655 struct sock *sk; 1656 1657 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1658 if (sk) { 1659 sk->sk_family = family; 1660 /* 1661 * See comment in struct sock definition to understand 1662 * why we need sk_prot_creator -acme 1663 */ 1664 sk->sk_prot = sk->sk_prot_creator = prot; 1665 sk->sk_kern_sock = kern; 1666 sock_lock_init(sk); 1667 sk->sk_net_refcnt = kern ? 0 : 1; 1668 if (likely(sk->sk_net_refcnt)) { 1669 get_net(net); 1670 sock_inuse_add(net, 1); 1671 } 1672 1673 sock_net_set(sk, net); 1674 refcount_set(&sk->sk_wmem_alloc, 1); 1675 1676 mem_cgroup_sk_alloc(sk); 1677 cgroup_sk_alloc(&sk->sk_cgrp_data); 1678 sock_update_classid(&sk->sk_cgrp_data); 1679 sock_update_netprioidx(&sk->sk_cgrp_data); 1680 } 1681 1682 return sk; 1683 } 1684 EXPORT_SYMBOL(sk_alloc); 1685 1686 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1687 * grace period. This is the case for UDP sockets and TCP listeners. 1688 */ 1689 static void __sk_destruct(struct rcu_head *head) 1690 { 1691 struct sock *sk = container_of(head, struct sock, sk_rcu); 1692 struct sk_filter *filter; 1693 1694 if (sk->sk_destruct) 1695 sk->sk_destruct(sk); 1696 1697 filter = rcu_dereference_check(sk->sk_filter, 1698 refcount_read(&sk->sk_wmem_alloc) == 0); 1699 if (filter) { 1700 sk_filter_uncharge(sk, filter); 1701 RCU_INIT_POINTER(sk->sk_filter, NULL); 1702 } 1703 1704 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1705 1706 #ifdef CONFIG_BPF_SYSCALL 1707 bpf_sk_storage_free(sk); 1708 #endif 1709 1710 if (atomic_read(&sk->sk_omem_alloc)) 1711 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1712 __func__, atomic_read(&sk->sk_omem_alloc)); 1713 1714 if (sk->sk_frag.page) { 1715 put_page(sk->sk_frag.page); 1716 sk->sk_frag.page = NULL; 1717 } 1718 1719 if (sk->sk_peer_cred) 1720 put_cred(sk->sk_peer_cred); 1721 put_pid(sk->sk_peer_pid); 1722 if (likely(sk->sk_net_refcnt)) 1723 put_net(sock_net(sk)); 1724 sk_prot_free(sk->sk_prot_creator, sk); 1725 } 1726 1727 void sk_destruct(struct sock *sk) 1728 { 1729 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 1730 1731 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 1732 reuseport_detach_sock(sk); 1733 use_call_rcu = true; 1734 } 1735 1736 if (use_call_rcu) 1737 call_rcu(&sk->sk_rcu, __sk_destruct); 1738 else 1739 __sk_destruct(&sk->sk_rcu); 1740 } 1741 1742 static void __sk_free(struct sock *sk) 1743 { 1744 if (likely(sk->sk_net_refcnt)) 1745 sock_inuse_add(sock_net(sk), -1); 1746 1747 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 1748 sock_diag_broadcast_destroy(sk); 1749 else 1750 sk_destruct(sk); 1751 } 1752 1753 void sk_free(struct sock *sk) 1754 { 1755 /* 1756 * We subtract one from sk_wmem_alloc and can know if 1757 * some packets are still in some tx queue. 1758 * If not null, sock_wfree() will call __sk_free(sk) later 1759 */ 1760 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 1761 __sk_free(sk); 1762 } 1763 EXPORT_SYMBOL(sk_free); 1764 1765 static void sk_init_common(struct sock *sk) 1766 { 1767 skb_queue_head_init(&sk->sk_receive_queue); 1768 skb_queue_head_init(&sk->sk_write_queue); 1769 skb_queue_head_init(&sk->sk_error_queue); 1770 1771 rwlock_init(&sk->sk_callback_lock); 1772 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 1773 af_rlock_keys + sk->sk_family, 1774 af_family_rlock_key_strings[sk->sk_family]); 1775 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 1776 af_wlock_keys + sk->sk_family, 1777 af_family_wlock_key_strings[sk->sk_family]); 1778 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 1779 af_elock_keys + sk->sk_family, 1780 af_family_elock_key_strings[sk->sk_family]); 1781 lockdep_set_class_and_name(&sk->sk_callback_lock, 1782 af_callback_keys + sk->sk_family, 1783 af_family_clock_key_strings[sk->sk_family]); 1784 } 1785 1786 /** 1787 * sk_clone_lock - clone a socket, and lock its clone 1788 * @sk: the socket to clone 1789 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1790 * 1791 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1792 */ 1793 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1794 { 1795 struct sock *newsk; 1796 bool is_charged = true; 1797 1798 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1799 if (newsk != NULL) { 1800 struct sk_filter *filter; 1801 1802 sock_copy(newsk, sk); 1803 1804 newsk->sk_prot_creator = sk->sk_prot; 1805 1806 /* SANITY */ 1807 if (likely(newsk->sk_net_refcnt)) 1808 get_net(sock_net(newsk)); 1809 sk_node_init(&newsk->sk_node); 1810 sock_lock_init(newsk); 1811 bh_lock_sock(newsk); 1812 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1813 newsk->sk_backlog.len = 0; 1814 1815 atomic_set(&newsk->sk_rmem_alloc, 0); 1816 /* 1817 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1818 */ 1819 refcount_set(&newsk->sk_wmem_alloc, 1); 1820 atomic_set(&newsk->sk_omem_alloc, 0); 1821 sk_init_common(newsk); 1822 1823 newsk->sk_dst_cache = NULL; 1824 newsk->sk_dst_pending_confirm = 0; 1825 newsk->sk_wmem_queued = 0; 1826 newsk->sk_forward_alloc = 0; 1827 atomic_set(&newsk->sk_drops, 0); 1828 newsk->sk_send_head = NULL; 1829 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1830 atomic_set(&newsk->sk_zckey, 0); 1831 1832 sock_reset_flag(newsk, SOCK_DONE); 1833 mem_cgroup_sk_alloc(newsk); 1834 cgroup_sk_alloc(&newsk->sk_cgrp_data); 1835 1836 rcu_read_lock(); 1837 filter = rcu_dereference(sk->sk_filter); 1838 if (filter != NULL) 1839 /* though it's an empty new sock, the charging may fail 1840 * if sysctl_optmem_max was changed between creation of 1841 * original socket and cloning 1842 */ 1843 is_charged = sk_filter_charge(newsk, filter); 1844 RCU_INIT_POINTER(newsk->sk_filter, filter); 1845 rcu_read_unlock(); 1846 1847 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1848 /* We need to make sure that we don't uncharge the new 1849 * socket if we couldn't charge it in the first place 1850 * as otherwise we uncharge the parent's filter. 1851 */ 1852 if (!is_charged) 1853 RCU_INIT_POINTER(newsk->sk_filter, NULL); 1854 sk_free_unlock_clone(newsk); 1855 newsk = NULL; 1856 goto out; 1857 } 1858 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1859 1860 if (bpf_sk_storage_clone(sk, newsk)) { 1861 sk_free_unlock_clone(newsk); 1862 newsk = NULL; 1863 goto out; 1864 } 1865 1866 newsk->sk_err = 0; 1867 newsk->sk_err_soft = 0; 1868 newsk->sk_priority = 0; 1869 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1870 if (likely(newsk->sk_net_refcnt)) 1871 sock_inuse_add(sock_net(newsk), 1); 1872 1873 /* 1874 * Before updating sk_refcnt, we must commit prior changes to memory 1875 * (Documentation/RCU/rculist_nulls.txt for details) 1876 */ 1877 smp_wmb(); 1878 refcount_set(&newsk->sk_refcnt, 2); 1879 1880 /* 1881 * Increment the counter in the same struct proto as the master 1882 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1883 * is the same as sk->sk_prot->socks, as this field was copied 1884 * with memcpy). 1885 * 1886 * This _changes_ the previous behaviour, where 1887 * tcp_create_openreq_child always was incrementing the 1888 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1889 * to be taken into account in all callers. -acme 1890 */ 1891 sk_refcnt_debug_inc(newsk); 1892 sk_set_socket(newsk, NULL); 1893 RCU_INIT_POINTER(newsk->sk_wq, NULL); 1894 1895 if (newsk->sk_prot->sockets_allocated) 1896 sk_sockets_allocated_inc(newsk); 1897 1898 if (sock_needs_netstamp(sk) && 1899 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1900 net_enable_timestamp(); 1901 } 1902 out: 1903 return newsk; 1904 } 1905 EXPORT_SYMBOL_GPL(sk_clone_lock); 1906 1907 void sk_free_unlock_clone(struct sock *sk) 1908 { 1909 /* It is still raw copy of parent, so invalidate 1910 * destructor and make plain sk_free() */ 1911 sk->sk_destruct = NULL; 1912 bh_unlock_sock(sk); 1913 sk_free(sk); 1914 } 1915 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 1916 1917 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1918 { 1919 u32 max_segs = 1; 1920 1921 sk_dst_set(sk, dst); 1922 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps; 1923 if (sk->sk_route_caps & NETIF_F_GSO) 1924 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1925 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1926 if (sk_can_gso(sk)) { 1927 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 1928 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1929 } else { 1930 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1931 sk->sk_gso_max_size = dst->dev->gso_max_size; 1932 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 1933 } 1934 } 1935 sk->sk_gso_max_segs = max_segs; 1936 } 1937 EXPORT_SYMBOL_GPL(sk_setup_caps); 1938 1939 /* 1940 * Simple resource managers for sockets. 1941 */ 1942 1943 1944 /* 1945 * Write buffer destructor automatically called from kfree_skb. 1946 */ 1947 void sock_wfree(struct sk_buff *skb) 1948 { 1949 struct sock *sk = skb->sk; 1950 unsigned int len = skb->truesize; 1951 1952 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1953 /* 1954 * Keep a reference on sk_wmem_alloc, this will be released 1955 * after sk_write_space() call 1956 */ 1957 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 1958 sk->sk_write_space(sk); 1959 len = 1; 1960 } 1961 /* 1962 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1963 * could not do because of in-flight packets 1964 */ 1965 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 1966 __sk_free(sk); 1967 } 1968 EXPORT_SYMBOL(sock_wfree); 1969 1970 /* This variant of sock_wfree() is used by TCP, 1971 * since it sets SOCK_USE_WRITE_QUEUE. 1972 */ 1973 void __sock_wfree(struct sk_buff *skb) 1974 { 1975 struct sock *sk = skb->sk; 1976 1977 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 1978 __sk_free(sk); 1979 } 1980 1981 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1982 { 1983 skb_orphan(skb); 1984 skb->sk = sk; 1985 #ifdef CONFIG_INET 1986 if (unlikely(!sk_fullsock(sk))) { 1987 skb->destructor = sock_edemux; 1988 sock_hold(sk); 1989 return; 1990 } 1991 #endif 1992 skb->destructor = sock_wfree; 1993 skb_set_hash_from_sk(skb, sk); 1994 /* 1995 * We used to take a refcount on sk, but following operation 1996 * is enough to guarantee sk_free() wont free this sock until 1997 * all in-flight packets are completed 1998 */ 1999 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2000 } 2001 EXPORT_SYMBOL(skb_set_owner_w); 2002 2003 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2004 { 2005 #ifdef CONFIG_TLS_DEVICE 2006 /* Drivers depend on in-order delivery for crypto offload, 2007 * partial orphan breaks out-of-order-OK logic. 2008 */ 2009 if (skb->decrypted) 2010 return false; 2011 #endif 2012 return (skb->destructor == sock_wfree || 2013 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2014 } 2015 2016 /* This helper is used by netem, as it can hold packets in its 2017 * delay queue. We want to allow the owner socket to send more 2018 * packets, as if they were already TX completed by a typical driver. 2019 * But we also want to keep skb->sk set because some packet schedulers 2020 * rely on it (sch_fq for example). 2021 */ 2022 void skb_orphan_partial(struct sk_buff *skb) 2023 { 2024 if (skb_is_tcp_pure_ack(skb)) 2025 return; 2026 2027 if (can_skb_orphan_partial(skb)) { 2028 struct sock *sk = skb->sk; 2029 2030 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 2031 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)); 2032 skb->destructor = sock_efree; 2033 } 2034 } else { 2035 skb_orphan(skb); 2036 } 2037 } 2038 EXPORT_SYMBOL(skb_orphan_partial); 2039 2040 /* 2041 * Read buffer destructor automatically called from kfree_skb. 2042 */ 2043 void sock_rfree(struct sk_buff *skb) 2044 { 2045 struct sock *sk = skb->sk; 2046 unsigned int len = skb->truesize; 2047 2048 atomic_sub(len, &sk->sk_rmem_alloc); 2049 sk_mem_uncharge(sk, len); 2050 } 2051 EXPORT_SYMBOL(sock_rfree); 2052 2053 /* 2054 * Buffer destructor for skbs that are not used directly in read or write 2055 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2056 */ 2057 void sock_efree(struct sk_buff *skb) 2058 { 2059 sock_put(skb->sk); 2060 } 2061 EXPORT_SYMBOL(sock_efree); 2062 2063 kuid_t sock_i_uid(struct sock *sk) 2064 { 2065 kuid_t uid; 2066 2067 read_lock_bh(&sk->sk_callback_lock); 2068 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2069 read_unlock_bh(&sk->sk_callback_lock); 2070 return uid; 2071 } 2072 EXPORT_SYMBOL(sock_i_uid); 2073 2074 unsigned long sock_i_ino(struct sock *sk) 2075 { 2076 unsigned long ino; 2077 2078 read_lock_bh(&sk->sk_callback_lock); 2079 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2080 read_unlock_bh(&sk->sk_callback_lock); 2081 return ino; 2082 } 2083 EXPORT_SYMBOL(sock_i_ino); 2084 2085 /* 2086 * Allocate a skb from the socket's send buffer. 2087 */ 2088 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2089 gfp_t priority) 2090 { 2091 if (force || 2092 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2093 struct sk_buff *skb = alloc_skb(size, priority); 2094 2095 if (skb) { 2096 skb_set_owner_w(skb, sk); 2097 return skb; 2098 } 2099 } 2100 return NULL; 2101 } 2102 EXPORT_SYMBOL(sock_wmalloc); 2103 2104 static void sock_ofree(struct sk_buff *skb) 2105 { 2106 struct sock *sk = skb->sk; 2107 2108 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2109 } 2110 2111 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2112 gfp_t priority) 2113 { 2114 struct sk_buff *skb; 2115 2116 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2117 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2118 sysctl_optmem_max) 2119 return NULL; 2120 2121 skb = alloc_skb(size, priority); 2122 if (!skb) 2123 return NULL; 2124 2125 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2126 skb->sk = sk; 2127 skb->destructor = sock_ofree; 2128 return skb; 2129 } 2130 2131 /* 2132 * Allocate a memory block from the socket's option memory buffer. 2133 */ 2134 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2135 { 2136 if ((unsigned int)size <= sysctl_optmem_max && 2137 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 2138 void *mem; 2139 /* First do the add, to avoid the race if kmalloc 2140 * might sleep. 2141 */ 2142 atomic_add(size, &sk->sk_omem_alloc); 2143 mem = kmalloc(size, priority); 2144 if (mem) 2145 return mem; 2146 atomic_sub(size, &sk->sk_omem_alloc); 2147 } 2148 return NULL; 2149 } 2150 EXPORT_SYMBOL(sock_kmalloc); 2151 2152 /* Free an option memory block. Note, we actually want the inline 2153 * here as this allows gcc to detect the nullify and fold away the 2154 * condition entirely. 2155 */ 2156 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2157 const bool nullify) 2158 { 2159 if (WARN_ON_ONCE(!mem)) 2160 return; 2161 if (nullify) 2162 kzfree(mem); 2163 else 2164 kfree(mem); 2165 atomic_sub(size, &sk->sk_omem_alloc); 2166 } 2167 2168 void sock_kfree_s(struct sock *sk, void *mem, int size) 2169 { 2170 __sock_kfree_s(sk, mem, size, false); 2171 } 2172 EXPORT_SYMBOL(sock_kfree_s); 2173 2174 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2175 { 2176 __sock_kfree_s(sk, mem, size, true); 2177 } 2178 EXPORT_SYMBOL(sock_kzfree_s); 2179 2180 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2181 I think, these locks should be removed for datagram sockets. 2182 */ 2183 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2184 { 2185 DEFINE_WAIT(wait); 2186 2187 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2188 for (;;) { 2189 if (!timeo) 2190 break; 2191 if (signal_pending(current)) 2192 break; 2193 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2194 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2195 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2196 break; 2197 if (sk->sk_shutdown & SEND_SHUTDOWN) 2198 break; 2199 if (sk->sk_err) 2200 break; 2201 timeo = schedule_timeout(timeo); 2202 } 2203 finish_wait(sk_sleep(sk), &wait); 2204 return timeo; 2205 } 2206 2207 2208 /* 2209 * Generic send/receive buffer handlers 2210 */ 2211 2212 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2213 unsigned long data_len, int noblock, 2214 int *errcode, int max_page_order) 2215 { 2216 struct sk_buff *skb; 2217 long timeo; 2218 int err; 2219 2220 timeo = sock_sndtimeo(sk, noblock); 2221 for (;;) { 2222 err = sock_error(sk); 2223 if (err != 0) 2224 goto failure; 2225 2226 err = -EPIPE; 2227 if (sk->sk_shutdown & SEND_SHUTDOWN) 2228 goto failure; 2229 2230 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2231 break; 2232 2233 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2234 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2235 err = -EAGAIN; 2236 if (!timeo) 2237 goto failure; 2238 if (signal_pending(current)) 2239 goto interrupted; 2240 timeo = sock_wait_for_wmem(sk, timeo); 2241 } 2242 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2243 errcode, sk->sk_allocation); 2244 if (skb) 2245 skb_set_owner_w(skb, sk); 2246 return skb; 2247 2248 interrupted: 2249 err = sock_intr_errno(timeo); 2250 failure: 2251 *errcode = err; 2252 return NULL; 2253 } 2254 EXPORT_SYMBOL(sock_alloc_send_pskb); 2255 2256 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2257 int noblock, int *errcode) 2258 { 2259 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2260 } 2261 EXPORT_SYMBOL(sock_alloc_send_skb); 2262 2263 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2264 struct sockcm_cookie *sockc) 2265 { 2266 u32 tsflags; 2267 2268 switch (cmsg->cmsg_type) { 2269 case SO_MARK: 2270 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2271 return -EPERM; 2272 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2273 return -EINVAL; 2274 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2275 break; 2276 case SO_TIMESTAMPING_OLD: 2277 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2278 return -EINVAL; 2279 2280 tsflags = *(u32 *)CMSG_DATA(cmsg); 2281 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2282 return -EINVAL; 2283 2284 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2285 sockc->tsflags |= tsflags; 2286 break; 2287 case SCM_TXTIME: 2288 if (!sock_flag(sk, SOCK_TXTIME)) 2289 return -EINVAL; 2290 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2291 return -EINVAL; 2292 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2293 break; 2294 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2295 case SCM_RIGHTS: 2296 case SCM_CREDENTIALS: 2297 break; 2298 default: 2299 return -EINVAL; 2300 } 2301 return 0; 2302 } 2303 EXPORT_SYMBOL(__sock_cmsg_send); 2304 2305 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2306 struct sockcm_cookie *sockc) 2307 { 2308 struct cmsghdr *cmsg; 2309 int ret; 2310 2311 for_each_cmsghdr(cmsg, msg) { 2312 if (!CMSG_OK(msg, cmsg)) 2313 return -EINVAL; 2314 if (cmsg->cmsg_level != SOL_SOCKET) 2315 continue; 2316 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2317 if (ret) 2318 return ret; 2319 } 2320 return 0; 2321 } 2322 EXPORT_SYMBOL(sock_cmsg_send); 2323 2324 static void sk_enter_memory_pressure(struct sock *sk) 2325 { 2326 if (!sk->sk_prot->enter_memory_pressure) 2327 return; 2328 2329 sk->sk_prot->enter_memory_pressure(sk); 2330 } 2331 2332 static void sk_leave_memory_pressure(struct sock *sk) 2333 { 2334 if (sk->sk_prot->leave_memory_pressure) { 2335 sk->sk_prot->leave_memory_pressure(sk); 2336 } else { 2337 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2338 2339 if (memory_pressure && READ_ONCE(*memory_pressure)) 2340 WRITE_ONCE(*memory_pressure, 0); 2341 } 2342 } 2343 2344 /* On 32bit arches, an skb frag is limited to 2^15 */ 2345 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2346 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2347 2348 /** 2349 * skb_page_frag_refill - check that a page_frag contains enough room 2350 * @sz: minimum size of the fragment we want to get 2351 * @pfrag: pointer to page_frag 2352 * @gfp: priority for memory allocation 2353 * 2354 * Note: While this allocator tries to use high order pages, there is 2355 * no guarantee that allocations succeed. Therefore, @sz MUST be 2356 * less or equal than PAGE_SIZE. 2357 */ 2358 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2359 { 2360 if (pfrag->page) { 2361 if (page_ref_count(pfrag->page) == 1) { 2362 pfrag->offset = 0; 2363 return true; 2364 } 2365 if (pfrag->offset + sz <= pfrag->size) 2366 return true; 2367 put_page(pfrag->page); 2368 } 2369 2370 pfrag->offset = 0; 2371 if (SKB_FRAG_PAGE_ORDER && 2372 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2373 /* Avoid direct reclaim but allow kswapd to wake */ 2374 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2375 __GFP_COMP | __GFP_NOWARN | 2376 __GFP_NORETRY, 2377 SKB_FRAG_PAGE_ORDER); 2378 if (likely(pfrag->page)) { 2379 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2380 return true; 2381 } 2382 } 2383 pfrag->page = alloc_page(gfp); 2384 if (likely(pfrag->page)) { 2385 pfrag->size = PAGE_SIZE; 2386 return true; 2387 } 2388 return false; 2389 } 2390 EXPORT_SYMBOL(skb_page_frag_refill); 2391 2392 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2393 { 2394 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2395 return true; 2396 2397 sk_enter_memory_pressure(sk); 2398 sk_stream_moderate_sndbuf(sk); 2399 return false; 2400 } 2401 EXPORT_SYMBOL(sk_page_frag_refill); 2402 2403 static void __lock_sock(struct sock *sk) 2404 __releases(&sk->sk_lock.slock) 2405 __acquires(&sk->sk_lock.slock) 2406 { 2407 DEFINE_WAIT(wait); 2408 2409 for (;;) { 2410 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2411 TASK_UNINTERRUPTIBLE); 2412 spin_unlock_bh(&sk->sk_lock.slock); 2413 schedule(); 2414 spin_lock_bh(&sk->sk_lock.slock); 2415 if (!sock_owned_by_user(sk)) 2416 break; 2417 } 2418 finish_wait(&sk->sk_lock.wq, &wait); 2419 } 2420 2421 void __release_sock(struct sock *sk) 2422 __releases(&sk->sk_lock.slock) 2423 __acquires(&sk->sk_lock.slock) 2424 { 2425 struct sk_buff *skb, *next; 2426 2427 while ((skb = sk->sk_backlog.head) != NULL) { 2428 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2429 2430 spin_unlock_bh(&sk->sk_lock.slock); 2431 2432 do { 2433 next = skb->next; 2434 prefetch(next); 2435 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2436 skb_mark_not_on_list(skb); 2437 sk_backlog_rcv(sk, skb); 2438 2439 cond_resched(); 2440 2441 skb = next; 2442 } while (skb != NULL); 2443 2444 spin_lock_bh(&sk->sk_lock.slock); 2445 } 2446 2447 /* 2448 * Doing the zeroing here guarantee we can not loop forever 2449 * while a wild producer attempts to flood us. 2450 */ 2451 sk->sk_backlog.len = 0; 2452 } 2453 2454 void __sk_flush_backlog(struct sock *sk) 2455 { 2456 spin_lock_bh(&sk->sk_lock.slock); 2457 __release_sock(sk); 2458 spin_unlock_bh(&sk->sk_lock.slock); 2459 } 2460 2461 /** 2462 * sk_wait_data - wait for data to arrive at sk_receive_queue 2463 * @sk: sock to wait on 2464 * @timeo: for how long 2465 * @skb: last skb seen on sk_receive_queue 2466 * 2467 * Now socket state including sk->sk_err is changed only under lock, 2468 * hence we may omit checks after joining wait queue. 2469 * We check receive queue before schedule() only as optimization; 2470 * it is very likely that release_sock() added new data. 2471 */ 2472 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2473 { 2474 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2475 int rc; 2476 2477 add_wait_queue(sk_sleep(sk), &wait); 2478 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2479 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2480 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2481 remove_wait_queue(sk_sleep(sk), &wait); 2482 return rc; 2483 } 2484 EXPORT_SYMBOL(sk_wait_data); 2485 2486 /** 2487 * __sk_mem_raise_allocated - increase memory_allocated 2488 * @sk: socket 2489 * @size: memory size to allocate 2490 * @amt: pages to allocate 2491 * @kind: allocation type 2492 * 2493 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2494 */ 2495 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2496 { 2497 struct proto *prot = sk->sk_prot; 2498 long allocated = sk_memory_allocated_add(sk, amt); 2499 bool charged = true; 2500 2501 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2502 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt))) 2503 goto suppress_allocation; 2504 2505 /* Under limit. */ 2506 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2507 sk_leave_memory_pressure(sk); 2508 return 1; 2509 } 2510 2511 /* Under pressure. */ 2512 if (allocated > sk_prot_mem_limits(sk, 1)) 2513 sk_enter_memory_pressure(sk); 2514 2515 /* Over hard limit. */ 2516 if (allocated > sk_prot_mem_limits(sk, 2)) 2517 goto suppress_allocation; 2518 2519 /* guarantee minimum buffer size under pressure */ 2520 if (kind == SK_MEM_RECV) { 2521 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2522 return 1; 2523 2524 } else { /* SK_MEM_SEND */ 2525 int wmem0 = sk_get_wmem0(sk, prot); 2526 2527 if (sk->sk_type == SOCK_STREAM) { 2528 if (sk->sk_wmem_queued < wmem0) 2529 return 1; 2530 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2531 return 1; 2532 } 2533 } 2534 2535 if (sk_has_memory_pressure(sk)) { 2536 u64 alloc; 2537 2538 if (!sk_under_memory_pressure(sk)) 2539 return 1; 2540 alloc = sk_sockets_allocated_read_positive(sk); 2541 if (sk_prot_mem_limits(sk, 2) > alloc * 2542 sk_mem_pages(sk->sk_wmem_queued + 2543 atomic_read(&sk->sk_rmem_alloc) + 2544 sk->sk_forward_alloc)) 2545 return 1; 2546 } 2547 2548 suppress_allocation: 2549 2550 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2551 sk_stream_moderate_sndbuf(sk); 2552 2553 /* Fail only if socket is _under_ its sndbuf. 2554 * In this case we cannot block, so that we have to fail. 2555 */ 2556 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2557 return 1; 2558 } 2559 2560 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 2561 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 2562 2563 sk_memory_allocated_sub(sk, amt); 2564 2565 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2566 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2567 2568 return 0; 2569 } 2570 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2571 2572 /** 2573 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2574 * @sk: socket 2575 * @size: memory size to allocate 2576 * @kind: allocation type 2577 * 2578 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2579 * rmem allocation. This function assumes that protocols which have 2580 * memory_pressure use sk_wmem_queued as write buffer accounting. 2581 */ 2582 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2583 { 2584 int ret, amt = sk_mem_pages(size); 2585 2586 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2587 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2588 if (!ret) 2589 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2590 return ret; 2591 } 2592 EXPORT_SYMBOL(__sk_mem_schedule); 2593 2594 /** 2595 * __sk_mem_reduce_allocated - reclaim memory_allocated 2596 * @sk: socket 2597 * @amount: number of quanta 2598 * 2599 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2600 */ 2601 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2602 { 2603 sk_memory_allocated_sub(sk, amount); 2604 2605 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2606 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2607 2608 if (sk_under_memory_pressure(sk) && 2609 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2610 sk_leave_memory_pressure(sk); 2611 } 2612 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2613 2614 /** 2615 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2616 * @sk: socket 2617 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2618 */ 2619 void __sk_mem_reclaim(struct sock *sk, int amount) 2620 { 2621 amount >>= SK_MEM_QUANTUM_SHIFT; 2622 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2623 __sk_mem_reduce_allocated(sk, amount); 2624 } 2625 EXPORT_SYMBOL(__sk_mem_reclaim); 2626 2627 int sk_set_peek_off(struct sock *sk, int val) 2628 { 2629 sk->sk_peek_off = val; 2630 return 0; 2631 } 2632 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2633 2634 /* 2635 * Set of default routines for initialising struct proto_ops when 2636 * the protocol does not support a particular function. In certain 2637 * cases where it makes no sense for a protocol to have a "do nothing" 2638 * function, some default processing is provided. 2639 */ 2640 2641 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2642 { 2643 return -EOPNOTSUPP; 2644 } 2645 EXPORT_SYMBOL(sock_no_bind); 2646 2647 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2648 int len, int flags) 2649 { 2650 return -EOPNOTSUPP; 2651 } 2652 EXPORT_SYMBOL(sock_no_connect); 2653 2654 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2655 { 2656 return -EOPNOTSUPP; 2657 } 2658 EXPORT_SYMBOL(sock_no_socketpair); 2659 2660 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 2661 bool kern) 2662 { 2663 return -EOPNOTSUPP; 2664 } 2665 EXPORT_SYMBOL(sock_no_accept); 2666 2667 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2668 int peer) 2669 { 2670 return -EOPNOTSUPP; 2671 } 2672 EXPORT_SYMBOL(sock_no_getname); 2673 2674 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2675 { 2676 return -EOPNOTSUPP; 2677 } 2678 EXPORT_SYMBOL(sock_no_ioctl); 2679 2680 int sock_no_listen(struct socket *sock, int backlog) 2681 { 2682 return -EOPNOTSUPP; 2683 } 2684 EXPORT_SYMBOL(sock_no_listen); 2685 2686 int sock_no_shutdown(struct socket *sock, int how) 2687 { 2688 return -EOPNOTSUPP; 2689 } 2690 EXPORT_SYMBOL(sock_no_shutdown); 2691 2692 int sock_no_setsockopt(struct socket *sock, int level, int optname, 2693 char __user *optval, unsigned int optlen) 2694 { 2695 return -EOPNOTSUPP; 2696 } 2697 EXPORT_SYMBOL(sock_no_setsockopt); 2698 2699 int sock_no_getsockopt(struct socket *sock, int level, int optname, 2700 char __user *optval, int __user *optlen) 2701 { 2702 return -EOPNOTSUPP; 2703 } 2704 EXPORT_SYMBOL(sock_no_getsockopt); 2705 2706 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2707 { 2708 return -EOPNOTSUPP; 2709 } 2710 EXPORT_SYMBOL(sock_no_sendmsg); 2711 2712 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 2713 { 2714 return -EOPNOTSUPP; 2715 } 2716 EXPORT_SYMBOL(sock_no_sendmsg_locked); 2717 2718 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2719 int flags) 2720 { 2721 return -EOPNOTSUPP; 2722 } 2723 EXPORT_SYMBOL(sock_no_recvmsg); 2724 2725 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2726 { 2727 /* Mirror missing mmap method error code */ 2728 return -ENODEV; 2729 } 2730 EXPORT_SYMBOL(sock_no_mmap); 2731 2732 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2733 { 2734 ssize_t res; 2735 struct msghdr msg = {.msg_flags = flags}; 2736 struct kvec iov; 2737 char *kaddr = kmap(page); 2738 iov.iov_base = kaddr + offset; 2739 iov.iov_len = size; 2740 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2741 kunmap(page); 2742 return res; 2743 } 2744 EXPORT_SYMBOL(sock_no_sendpage); 2745 2746 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 2747 int offset, size_t size, int flags) 2748 { 2749 ssize_t res; 2750 struct msghdr msg = {.msg_flags = flags}; 2751 struct kvec iov; 2752 char *kaddr = kmap(page); 2753 2754 iov.iov_base = kaddr + offset; 2755 iov.iov_len = size; 2756 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 2757 kunmap(page); 2758 return res; 2759 } 2760 EXPORT_SYMBOL(sock_no_sendpage_locked); 2761 2762 /* 2763 * Default Socket Callbacks 2764 */ 2765 2766 static void sock_def_wakeup(struct sock *sk) 2767 { 2768 struct socket_wq *wq; 2769 2770 rcu_read_lock(); 2771 wq = rcu_dereference(sk->sk_wq); 2772 if (skwq_has_sleeper(wq)) 2773 wake_up_interruptible_all(&wq->wait); 2774 rcu_read_unlock(); 2775 } 2776 2777 static void sock_def_error_report(struct sock *sk) 2778 { 2779 struct socket_wq *wq; 2780 2781 rcu_read_lock(); 2782 wq = rcu_dereference(sk->sk_wq); 2783 if (skwq_has_sleeper(wq)) 2784 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 2785 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2786 rcu_read_unlock(); 2787 } 2788 2789 void sock_def_readable(struct sock *sk) 2790 { 2791 struct socket_wq *wq; 2792 2793 rcu_read_lock(); 2794 wq = rcu_dereference(sk->sk_wq); 2795 if (skwq_has_sleeper(wq)) 2796 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 2797 EPOLLRDNORM | EPOLLRDBAND); 2798 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2799 rcu_read_unlock(); 2800 } 2801 2802 static void sock_def_write_space(struct sock *sk) 2803 { 2804 struct socket_wq *wq; 2805 2806 rcu_read_lock(); 2807 2808 /* Do not wake up a writer until he can make "significant" 2809 * progress. --DaveM 2810 */ 2811 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) { 2812 wq = rcu_dereference(sk->sk_wq); 2813 if (skwq_has_sleeper(wq)) 2814 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 2815 EPOLLWRNORM | EPOLLWRBAND); 2816 2817 /* Should agree with poll, otherwise some programs break */ 2818 if (sock_writeable(sk)) 2819 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2820 } 2821 2822 rcu_read_unlock(); 2823 } 2824 2825 static void sock_def_destruct(struct sock *sk) 2826 { 2827 } 2828 2829 void sk_send_sigurg(struct sock *sk) 2830 { 2831 if (sk->sk_socket && sk->sk_socket->file) 2832 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2833 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2834 } 2835 EXPORT_SYMBOL(sk_send_sigurg); 2836 2837 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2838 unsigned long expires) 2839 { 2840 if (!mod_timer(timer, expires)) 2841 sock_hold(sk); 2842 } 2843 EXPORT_SYMBOL(sk_reset_timer); 2844 2845 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2846 { 2847 if (del_timer(timer)) 2848 __sock_put(sk); 2849 } 2850 EXPORT_SYMBOL(sk_stop_timer); 2851 2852 void sock_init_data(struct socket *sock, struct sock *sk) 2853 { 2854 sk_init_common(sk); 2855 sk->sk_send_head = NULL; 2856 2857 timer_setup(&sk->sk_timer, NULL, 0); 2858 2859 sk->sk_allocation = GFP_KERNEL; 2860 sk->sk_rcvbuf = sysctl_rmem_default; 2861 sk->sk_sndbuf = sysctl_wmem_default; 2862 sk->sk_state = TCP_CLOSE; 2863 sk_set_socket(sk, sock); 2864 2865 sock_set_flag(sk, SOCK_ZAPPED); 2866 2867 if (sock) { 2868 sk->sk_type = sock->type; 2869 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 2870 sock->sk = sk; 2871 sk->sk_uid = SOCK_INODE(sock)->i_uid; 2872 } else { 2873 RCU_INIT_POINTER(sk->sk_wq, NULL); 2874 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 2875 } 2876 2877 rwlock_init(&sk->sk_callback_lock); 2878 if (sk->sk_kern_sock) 2879 lockdep_set_class_and_name( 2880 &sk->sk_callback_lock, 2881 af_kern_callback_keys + sk->sk_family, 2882 af_family_kern_clock_key_strings[sk->sk_family]); 2883 else 2884 lockdep_set_class_and_name( 2885 &sk->sk_callback_lock, 2886 af_callback_keys + sk->sk_family, 2887 af_family_clock_key_strings[sk->sk_family]); 2888 2889 sk->sk_state_change = sock_def_wakeup; 2890 sk->sk_data_ready = sock_def_readable; 2891 sk->sk_write_space = sock_def_write_space; 2892 sk->sk_error_report = sock_def_error_report; 2893 sk->sk_destruct = sock_def_destruct; 2894 2895 sk->sk_frag.page = NULL; 2896 sk->sk_frag.offset = 0; 2897 sk->sk_peek_off = -1; 2898 2899 sk->sk_peer_pid = NULL; 2900 sk->sk_peer_cred = NULL; 2901 sk->sk_write_pending = 0; 2902 sk->sk_rcvlowat = 1; 2903 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2904 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2905 2906 sk->sk_stamp = SK_DEFAULT_STAMP; 2907 #if BITS_PER_LONG==32 2908 seqlock_init(&sk->sk_stamp_seq); 2909 #endif 2910 atomic_set(&sk->sk_zckey, 0); 2911 2912 #ifdef CONFIG_NET_RX_BUSY_POLL 2913 sk->sk_napi_id = 0; 2914 sk->sk_ll_usec = sysctl_net_busy_read; 2915 #endif 2916 2917 sk->sk_max_pacing_rate = ~0UL; 2918 sk->sk_pacing_rate = ~0UL; 2919 WRITE_ONCE(sk->sk_pacing_shift, 10); 2920 sk->sk_incoming_cpu = -1; 2921 2922 sk_rx_queue_clear(sk); 2923 /* 2924 * Before updating sk_refcnt, we must commit prior changes to memory 2925 * (Documentation/RCU/rculist_nulls.txt for details) 2926 */ 2927 smp_wmb(); 2928 refcount_set(&sk->sk_refcnt, 1); 2929 atomic_set(&sk->sk_drops, 0); 2930 } 2931 EXPORT_SYMBOL(sock_init_data); 2932 2933 void lock_sock_nested(struct sock *sk, int subclass) 2934 { 2935 might_sleep(); 2936 spin_lock_bh(&sk->sk_lock.slock); 2937 if (sk->sk_lock.owned) 2938 __lock_sock(sk); 2939 sk->sk_lock.owned = 1; 2940 spin_unlock(&sk->sk_lock.slock); 2941 /* 2942 * The sk_lock has mutex_lock() semantics here: 2943 */ 2944 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2945 local_bh_enable(); 2946 } 2947 EXPORT_SYMBOL(lock_sock_nested); 2948 2949 void release_sock(struct sock *sk) 2950 { 2951 spin_lock_bh(&sk->sk_lock.slock); 2952 if (sk->sk_backlog.tail) 2953 __release_sock(sk); 2954 2955 /* Warning : release_cb() might need to release sk ownership, 2956 * ie call sock_release_ownership(sk) before us. 2957 */ 2958 if (sk->sk_prot->release_cb) 2959 sk->sk_prot->release_cb(sk); 2960 2961 sock_release_ownership(sk); 2962 if (waitqueue_active(&sk->sk_lock.wq)) 2963 wake_up(&sk->sk_lock.wq); 2964 spin_unlock_bh(&sk->sk_lock.slock); 2965 } 2966 EXPORT_SYMBOL(release_sock); 2967 2968 /** 2969 * lock_sock_fast - fast version of lock_sock 2970 * @sk: socket 2971 * 2972 * This version should be used for very small section, where process wont block 2973 * return false if fast path is taken: 2974 * 2975 * sk_lock.slock locked, owned = 0, BH disabled 2976 * 2977 * return true if slow path is taken: 2978 * 2979 * sk_lock.slock unlocked, owned = 1, BH enabled 2980 */ 2981 bool lock_sock_fast(struct sock *sk) 2982 { 2983 might_sleep(); 2984 spin_lock_bh(&sk->sk_lock.slock); 2985 2986 if (!sk->sk_lock.owned) 2987 /* 2988 * Note : We must disable BH 2989 */ 2990 return false; 2991 2992 __lock_sock(sk); 2993 sk->sk_lock.owned = 1; 2994 spin_unlock(&sk->sk_lock.slock); 2995 /* 2996 * The sk_lock has mutex_lock() semantics here: 2997 */ 2998 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 2999 local_bh_enable(); 3000 return true; 3001 } 3002 EXPORT_SYMBOL(lock_sock_fast); 3003 3004 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3005 bool timeval, bool time32) 3006 { 3007 struct sock *sk = sock->sk; 3008 struct timespec64 ts; 3009 3010 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3011 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3012 if (ts.tv_sec == -1) 3013 return -ENOENT; 3014 if (ts.tv_sec == 0) { 3015 ktime_t kt = ktime_get_real(); 3016 sock_write_timestamp(sk, kt); 3017 ts = ktime_to_timespec64(kt); 3018 } 3019 3020 if (timeval) 3021 ts.tv_nsec /= 1000; 3022 3023 #ifdef CONFIG_COMPAT_32BIT_TIME 3024 if (time32) 3025 return put_old_timespec32(&ts, userstamp); 3026 #endif 3027 #ifdef CONFIG_SPARC64 3028 /* beware of padding in sparc64 timeval */ 3029 if (timeval && !in_compat_syscall()) { 3030 struct __kernel_old_timeval __user tv = { 3031 .tv_sec = ts.tv_sec, 3032 .tv_usec = ts.tv_nsec, 3033 }; 3034 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3035 return -EFAULT; 3036 return 0; 3037 } 3038 #endif 3039 return put_timespec64(&ts, userstamp); 3040 } 3041 EXPORT_SYMBOL(sock_gettstamp); 3042 3043 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3044 { 3045 if (!sock_flag(sk, flag)) { 3046 unsigned long previous_flags = sk->sk_flags; 3047 3048 sock_set_flag(sk, flag); 3049 /* 3050 * we just set one of the two flags which require net 3051 * time stamping, but time stamping might have been on 3052 * already because of the other one 3053 */ 3054 if (sock_needs_netstamp(sk) && 3055 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3056 net_enable_timestamp(); 3057 } 3058 } 3059 3060 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3061 int level, int type) 3062 { 3063 struct sock_exterr_skb *serr; 3064 struct sk_buff *skb; 3065 int copied, err; 3066 3067 err = -EAGAIN; 3068 skb = sock_dequeue_err_skb(sk); 3069 if (skb == NULL) 3070 goto out; 3071 3072 copied = skb->len; 3073 if (copied > len) { 3074 msg->msg_flags |= MSG_TRUNC; 3075 copied = len; 3076 } 3077 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3078 if (err) 3079 goto out_free_skb; 3080 3081 sock_recv_timestamp(msg, sk, skb); 3082 3083 serr = SKB_EXT_ERR(skb); 3084 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3085 3086 msg->msg_flags |= MSG_ERRQUEUE; 3087 err = copied; 3088 3089 out_free_skb: 3090 kfree_skb(skb); 3091 out: 3092 return err; 3093 } 3094 EXPORT_SYMBOL(sock_recv_errqueue); 3095 3096 /* 3097 * Get a socket option on an socket. 3098 * 3099 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3100 * asynchronous errors should be reported by getsockopt. We assume 3101 * this means if you specify SO_ERROR (otherwise whats the point of it). 3102 */ 3103 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3104 char __user *optval, int __user *optlen) 3105 { 3106 struct sock *sk = sock->sk; 3107 3108 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3109 } 3110 EXPORT_SYMBOL(sock_common_getsockopt); 3111 3112 #ifdef CONFIG_COMPAT 3113 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 3114 char __user *optval, int __user *optlen) 3115 { 3116 struct sock *sk = sock->sk; 3117 3118 if (sk->sk_prot->compat_getsockopt != NULL) 3119 return sk->sk_prot->compat_getsockopt(sk, level, optname, 3120 optval, optlen); 3121 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3122 } 3123 EXPORT_SYMBOL(compat_sock_common_getsockopt); 3124 #endif 3125 3126 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3127 int flags) 3128 { 3129 struct sock *sk = sock->sk; 3130 int addr_len = 0; 3131 int err; 3132 3133 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 3134 flags & ~MSG_DONTWAIT, &addr_len); 3135 if (err >= 0) 3136 msg->msg_namelen = addr_len; 3137 return err; 3138 } 3139 EXPORT_SYMBOL(sock_common_recvmsg); 3140 3141 /* 3142 * Set socket options on an inet socket. 3143 */ 3144 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3145 char __user *optval, unsigned int optlen) 3146 { 3147 struct sock *sk = sock->sk; 3148 3149 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3150 } 3151 EXPORT_SYMBOL(sock_common_setsockopt); 3152 3153 #ifdef CONFIG_COMPAT 3154 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 3155 char __user *optval, unsigned int optlen) 3156 { 3157 struct sock *sk = sock->sk; 3158 3159 if (sk->sk_prot->compat_setsockopt != NULL) 3160 return sk->sk_prot->compat_setsockopt(sk, level, optname, 3161 optval, optlen); 3162 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3163 } 3164 EXPORT_SYMBOL(compat_sock_common_setsockopt); 3165 #endif 3166 3167 void sk_common_release(struct sock *sk) 3168 { 3169 if (sk->sk_prot->destroy) 3170 sk->sk_prot->destroy(sk); 3171 3172 /* 3173 * Observation: when sock_common_release is called, processes have 3174 * no access to socket. But net still has. 3175 * Step one, detach it from networking: 3176 * 3177 * A. Remove from hash tables. 3178 */ 3179 3180 sk->sk_prot->unhash(sk); 3181 3182 /* 3183 * In this point socket cannot receive new packets, but it is possible 3184 * that some packets are in flight because some CPU runs receiver and 3185 * did hash table lookup before we unhashed socket. They will achieve 3186 * receive queue and will be purged by socket destructor. 3187 * 3188 * Also we still have packets pending on receive queue and probably, 3189 * our own packets waiting in device queues. sock_destroy will drain 3190 * receive queue, but transmitted packets will delay socket destruction 3191 * until the last reference will be released. 3192 */ 3193 3194 sock_orphan(sk); 3195 3196 xfrm_sk_free_policy(sk); 3197 3198 sk_refcnt_debug_release(sk); 3199 3200 sock_put(sk); 3201 } 3202 EXPORT_SYMBOL(sk_common_release); 3203 3204 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3205 { 3206 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3207 3208 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3209 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3210 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3211 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3212 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3213 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3214 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3215 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3216 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3217 } 3218 3219 #ifdef CONFIG_PROC_FS 3220 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 3221 struct prot_inuse { 3222 int val[PROTO_INUSE_NR]; 3223 }; 3224 3225 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3226 3227 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 3228 { 3229 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 3230 } 3231 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 3232 3233 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3234 { 3235 int cpu, idx = prot->inuse_idx; 3236 int res = 0; 3237 3238 for_each_possible_cpu(cpu) 3239 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3240 3241 return res >= 0 ? res : 0; 3242 } 3243 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3244 3245 static void sock_inuse_add(struct net *net, int val) 3246 { 3247 this_cpu_add(*net->core.sock_inuse, val); 3248 } 3249 3250 int sock_inuse_get(struct net *net) 3251 { 3252 int cpu, res = 0; 3253 3254 for_each_possible_cpu(cpu) 3255 res += *per_cpu_ptr(net->core.sock_inuse, cpu); 3256 3257 return res; 3258 } 3259 3260 EXPORT_SYMBOL_GPL(sock_inuse_get); 3261 3262 static int __net_init sock_inuse_init_net(struct net *net) 3263 { 3264 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3265 if (net->core.prot_inuse == NULL) 3266 return -ENOMEM; 3267 3268 net->core.sock_inuse = alloc_percpu(int); 3269 if (net->core.sock_inuse == NULL) 3270 goto out; 3271 3272 return 0; 3273 3274 out: 3275 free_percpu(net->core.prot_inuse); 3276 return -ENOMEM; 3277 } 3278 3279 static void __net_exit sock_inuse_exit_net(struct net *net) 3280 { 3281 free_percpu(net->core.prot_inuse); 3282 free_percpu(net->core.sock_inuse); 3283 } 3284 3285 static struct pernet_operations net_inuse_ops = { 3286 .init = sock_inuse_init_net, 3287 .exit = sock_inuse_exit_net, 3288 }; 3289 3290 static __init int net_inuse_init(void) 3291 { 3292 if (register_pernet_subsys(&net_inuse_ops)) 3293 panic("Cannot initialize net inuse counters"); 3294 3295 return 0; 3296 } 3297 3298 core_initcall(net_inuse_init); 3299 3300 static int assign_proto_idx(struct proto *prot) 3301 { 3302 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3303 3304 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3305 pr_err("PROTO_INUSE_NR exhausted\n"); 3306 return -ENOSPC; 3307 } 3308 3309 set_bit(prot->inuse_idx, proto_inuse_idx); 3310 return 0; 3311 } 3312 3313 static void release_proto_idx(struct proto *prot) 3314 { 3315 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3316 clear_bit(prot->inuse_idx, proto_inuse_idx); 3317 } 3318 #else 3319 static inline int assign_proto_idx(struct proto *prot) 3320 { 3321 return 0; 3322 } 3323 3324 static inline void release_proto_idx(struct proto *prot) 3325 { 3326 } 3327 3328 static void sock_inuse_add(struct net *net, int val) 3329 { 3330 } 3331 #endif 3332 3333 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3334 { 3335 if (!rsk_prot) 3336 return; 3337 kfree(rsk_prot->slab_name); 3338 rsk_prot->slab_name = NULL; 3339 kmem_cache_destroy(rsk_prot->slab); 3340 rsk_prot->slab = NULL; 3341 } 3342 3343 static int req_prot_init(const struct proto *prot) 3344 { 3345 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3346 3347 if (!rsk_prot) 3348 return 0; 3349 3350 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3351 prot->name); 3352 if (!rsk_prot->slab_name) 3353 return -ENOMEM; 3354 3355 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3356 rsk_prot->obj_size, 0, 3357 SLAB_ACCOUNT | prot->slab_flags, 3358 NULL); 3359 3360 if (!rsk_prot->slab) { 3361 pr_crit("%s: Can't create request sock SLAB cache!\n", 3362 prot->name); 3363 return -ENOMEM; 3364 } 3365 return 0; 3366 } 3367 3368 int proto_register(struct proto *prot, int alloc_slab) 3369 { 3370 int ret = -ENOBUFS; 3371 3372 if (alloc_slab) { 3373 prot->slab = kmem_cache_create_usercopy(prot->name, 3374 prot->obj_size, 0, 3375 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3376 prot->slab_flags, 3377 prot->useroffset, prot->usersize, 3378 NULL); 3379 3380 if (prot->slab == NULL) { 3381 pr_crit("%s: Can't create sock SLAB cache!\n", 3382 prot->name); 3383 goto out; 3384 } 3385 3386 if (req_prot_init(prot)) 3387 goto out_free_request_sock_slab; 3388 3389 if (prot->twsk_prot != NULL) { 3390 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 3391 3392 if (prot->twsk_prot->twsk_slab_name == NULL) 3393 goto out_free_request_sock_slab; 3394 3395 prot->twsk_prot->twsk_slab = 3396 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 3397 prot->twsk_prot->twsk_obj_size, 3398 0, 3399 SLAB_ACCOUNT | 3400 prot->slab_flags, 3401 NULL); 3402 if (prot->twsk_prot->twsk_slab == NULL) 3403 goto out_free_timewait_sock_slab_name; 3404 } 3405 } 3406 3407 mutex_lock(&proto_list_mutex); 3408 ret = assign_proto_idx(prot); 3409 if (ret) { 3410 mutex_unlock(&proto_list_mutex); 3411 goto out_free_timewait_sock_slab_name; 3412 } 3413 list_add(&prot->node, &proto_list); 3414 mutex_unlock(&proto_list_mutex); 3415 return ret; 3416 3417 out_free_timewait_sock_slab_name: 3418 if (alloc_slab && prot->twsk_prot) 3419 kfree(prot->twsk_prot->twsk_slab_name); 3420 out_free_request_sock_slab: 3421 if (alloc_slab) { 3422 req_prot_cleanup(prot->rsk_prot); 3423 3424 kmem_cache_destroy(prot->slab); 3425 prot->slab = NULL; 3426 } 3427 out: 3428 return ret; 3429 } 3430 EXPORT_SYMBOL(proto_register); 3431 3432 void proto_unregister(struct proto *prot) 3433 { 3434 mutex_lock(&proto_list_mutex); 3435 release_proto_idx(prot); 3436 list_del(&prot->node); 3437 mutex_unlock(&proto_list_mutex); 3438 3439 kmem_cache_destroy(prot->slab); 3440 prot->slab = NULL; 3441 3442 req_prot_cleanup(prot->rsk_prot); 3443 3444 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 3445 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 3446 kfree(prot->twsk_prot->twsk_slab_name); 3447 prot->twsk_prot->twsk_slab = NULL; 3448 } 3449 } 3450 EXPORT_SYMBOL(proto_unregister); 3451 3452 int sock_load_diag_module(int family, int protocol) 3453 { 3454 if (!protocol) { 3455 if (!sock_is_registered(family)) 3456 return -ENOENT; 3457 3458 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3459 NETLINK_SOCK_DIAG, family); 3460 } 3461 3462 #ifdef CONFIG_INET 3463 if (family == AF_INET && 3464 protocol != IPPROTO_RAW && 3465 !rcu_access_pointer(inet_protos[protocol])) 3466 return -ENOENT; 3467 #endif 3468 3469 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3470 NETLINK_SOCK_DIAG, family, protocol); 3471 } 3472 EXPORT_SYMBOL(sock_load_diag_module); 3473 3474 #ifdef CONFIG_PROC_FS 3475 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3476 __acquires(proto_list_mutex) 3477 { 3478 mutex_lock(&proto_list_mutex); 3479 return seq_list_start_head(&proto_list, *pos); 3480 } 3481 3482 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3483 { 3484 return seq_list_next(v, &proto_list, pos); 3485 } 3486 3487 static void proto_seq_stop(struct seq_file *seq, void *v) 3488 __releases(proto_list_mutex) 3489 { 3490 mutex_unlock(&proto_list_mutex); 3491 } 3492 3493 static char proto_method_implemented(const void *method) 3494 { 3495 return method == NULL ? 'n' : 'y'; 3496 } 3497 static long sock_prot_memory_allocated(struct proto *proto) 3498 { 3499 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3500 } 3501 3502 static const char *sock_prot_memory_pressure(struct proto *proto) 3503 { 3504 return proto->memory_pressure != NULL ? 3505 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3506 } 3507 3508 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3509 { 3510 3511 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3512 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3513 proto->name, 3514 proto->obj_size, 3515 sock_prot_inuse_get(seq_file_net(seq), proto), 3516 sock_prot_memory_allocated(proto), 3517 sock_prot_memory_pressure(proto), 3518 proto->max_header, 3519 proto->slab == NULL ? "no" : "yes", 3520 module_name(proto->owner), 3521 proto_method_implemented(proto->close), 3522 proto_method_implemented(proto->connect), 3523 proto_method_implemented(proto->disconnect), 3524 proto_method_implemented(proto->accept), 3525 proto_method_implemented(proto->ioctl), 3526 proto_method_implemented(proto->init), 3527 proto_method_implemented(proto->destroy), 3528 proto_method_implemented(proto->shutdown), 3529 proto_method_implemented(proto->setsockopt), 3530 proto_method_implemented(proto->getsockopt), 3531 proto_method_implemented(proto->sendmsg), 3532 proto_method_implemented(proto->recvmsg), 3533 proto_method_implemented(proto->sendpage), 3534 proto_method_implemented(proto->bind), 3535 proto_method_implemented(proto->backlog_rcv), 3536 proto_method_implemented(proto->hash), 3537 proto_method_implemented(proto->unhash), 3538 proto_method_implemented(proto->get_port), 3539 proto_method_implemented(proto->enter_memory_pressure)); 3540 } 3541 3542 static int proto_seq_show(struct seq_file *seq, void *v) 3543 { 3544 if (v == &proto_list) 3545 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3546 "protocol", 3547 "size", 3548 "sockets", 3549 "memory", 3550 "press", 3551 "maxhdr", 3552 "slab", 3553 "module", 3554 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3555 else 3556 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3557 return 0; 3558 } 3559 3560 static const struct seq_operations proto_seq_ops = { 3561 .start = proto_seq_start, 3562 .next = proto_seq_next, 3563 .stop = proto_seq_stop, 3564 .show = proto_seq_show, 3565 }; 3566 3567 static __net_init int proto_init_net(struct net *net) 3568 { 3569 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 3570 sizeof(struct seq_net_private))) 3571 return -ENOMEM; 3572 3573 return 0; 3574 } 3575 3576 static __net_exit void proto_exit_net(struct net *net) 3577 { 3578 remove_proc_entry("protocols", net->proc_net); 3579 } 3580 3581 3582 static __net_initdata struct pernet_operations proto_net_ops = { 3583 .init = proto_init_net, 3584 .exit = proto_exit_net, 3585 }; 3586 3587 static int __init proto_init(void) 3588 { 3589 return register_pernet_subsys(&proto_net_ops); 3590 } 3591 3592 subsys_initcall(proto_init); 3593 3594 #endif /* PROC_FS */ 3595 3596 #ifdef CONFIG_NET_RX_BUSY_POLL 3597 bool sk_busy_loop_end(void *p, unsigned long start_time) 3598 { 3599 struct sock *sk = p; 3600 3601 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 3602 sk_busy_loop_timeout(sk, start_time); 3603 } 3604 EXPORT_SYMBOL(sk_busy_loop_end); 3605 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3606