xref: /openbmc/linux/net/core/sock.c (revision db181ce0)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120 
121 #include <asm/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 
135 #include <linux/filter.h>
136 
137 #include <trace/events/sock.h>
138 
139 #ifdef CONFIG_INET
140 #include <net/tcp.h>
141 #endif
142 
143 #include <net/busy_poll.h>
144 
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
147 
148 /**
149  * sk_ns_capable - General socket capability test
150  * @sk: Socket to use a capability on or through
151  * @user_ns: The user namespace of the capability to use
152  * @cap: The capability to use
153  *
154  * Test to see if the opener of the socket had when the socket was
155  * created and the current process has the capability @cap in the user
156  * namespace @user_ns.
157  */
158 bool sk_ns_capable(const struct sock *sk,
159 		   struct user_namespace *user_ns, int cap)
160 {
161 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162 		ns_capable(user_ns, cap);
163 }
164 EXPORT_SYMBOL(sk_ns_capable);
165 
166 /**
167  * sk_capable - Socket global capability test
168  * @sk: Socket to use a capability on or through
169  * @cap: The global capbility to use
170  *
171  * Test to see if the opener of the socket had when the socket was
172  * created and the current process has the capability @cap in all user
173  * namespaces.
174  */
175 bool sk_capable(const struct sock *sk, int cap)
176 {
177 	return sk_ns_capable(sk, &init_user_ns, cap);
178 }
179 EXPORT_SYMBOL(sk_capable);
180 
181 /**
182  * sk_net_capable - Network namespace socket capability test
183  * @sk: Socket to use a capability on or through
184  * @cap: The capability to use
185  *
186  * Test to see if the opener of the socket had when the socke was created
187  * and the current process has the capability @cap over the network namespace
188  * the socket is a member of.
189  */
190 bool sk_net_capable(const struct sock *sk, int cap)
191 {
192 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193 }
194 EXPORT_SYMBOL(sk_net_capable);
195 
196 
197 #ifdef CONFIG_MEMCG_KMEM
198 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
199 {
200 	struct proto *proto;
201 	int ret = 0;
202 
203 	mutex_lock(&proto_list_mutex);
204 	list_for_each_entry(proto, &proto_list, node) {
205 		if (proto->init_cgroup) {
206 			ret = proto->init_cgroup(memcg, ss);
207 			if (ret)
208 				goto out;
209 		}
210 	}
211 
212 	mutex_unlock(&proto_list_mutex);
213 	return ret;
214 out:
215 	list_for_each_entry_continue_reverse(proto, &proto_list, node)
216 		if (proto->destroy_cgroup)
217 			proto->destroy_cgroup(memcg);
218 	mutex_unlock(&proto_list_mutex);
219 	return ret;
220 }
221 
222 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
223 {
224 	struct proto *proto;
225 
226 	mutex_lock(&proto_list_mutex);
227 	list_for_each_entry_reverse(proto, &proto_list, node)
228 		if (proto->destroy_cgroup)
229 			proto->destroy_cgroup(memcg);
230 	mutex_unlock(&proto_list_mutex);
231 }
232 #endif
233 
234 /*
235  * Each address family might have different locking rules, so we have
236  * one slock key per address family:
237  */
238 static struct lock_class_key af_family_keys[AF_MAX];
239 static struct lock_class_key af_family_slock_keys[AF_MAX];
240 
241 #if defined(CONFIG_MEMCG_KMEM)
242 struct static_key memcg_socket_limit_enabled;
243 EXPORT_SYMBOL(memcg_socket_limit_enabled);
244 #endif
245 
246 /*
247  * Make lock validator output more readable. (we pre-construct these
248  * strings build-time, so that runtime initialization of socket
249  * locks is fast):
250  */
251 static const char *const af_family_key_strings[AF_MAX+1] = {
252   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
253   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
254   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
255   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
256   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
257   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
258   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
259   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
260   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
261   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
262   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
263   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
264   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
265   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_MAX"
266 };
267 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
268   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
269   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
270   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
271   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
272   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
273   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
274   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
275   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
276   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
277   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
278   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
279   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
280   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
281   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_MAX"
282 };
283 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
284   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
285   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
286   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
287   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
288   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
289   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
290   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
291   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
292   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
293   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
294   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
295   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
296   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
297   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_MAX"
298 };
299 
300 /*
301  * sk_callback_lock locking rules are per-address-family,
302  * so split the lock classes by using a per-AF key:
303  */
304 static struct lock_class_key af_callback_keys[AF_MAX];
305 
306 /* Take into consideration the size of the struct sk_buff overhead in the
307  * determination of these values, since that is non-constant across
308  * platforms.  This makes socket queueing behavior and performance
309  * not depend upon such differences.
310  */
311 #define _SK_MEM_PACKETS		256
312 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
313 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
314 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315 
316 /* Run time adjustable parameters. */
317 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
318 EXPORT_SYMBOL(sysctl_wmem_max);
319 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
320 EXPORT_SYMBOL(sysctl_rmem_max);
321 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
322 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
323 
324 /* Maximal space eaten by iovec or ancillary data plus some space */
325 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
326 EXPORT_SYMBOL(sysctl_optmem_max);
327 
328 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
329 EXPORT_SYMBOL_GPL(memalloc_socks);
330 
331 /**
332  * sk_set_memalloc - sets %SOCK_MEMALLOC
333  * @sk: socket to set it on
334  *
335  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
336  * It's the responsibility of the admin to adjust min_free_kbytes
337  * to meet the requirements
338  */
339 void sk_set_memalloc(struct sock *sk)
340 {
341 	sock_set_flag(sk, SOCK_MEMALLOC);
342 	sk->sk_allocation |= __GFP_MEMALLOC;
343 	static_key_slow_inc(&memalloc_socks);
344 }
345 EXPORT_SYMBOL_GPL(sk_set_memalloc);
346 
347 void sk_clear_memalloc(struct sock *sk)
348 {
349 	sock_reset_flag(sk, SOCK_MEMALLOC);
350 	sk->sk_allocation &= ~__GFP_MEMALLOC;
351 	static_key_slow_dec(&memalloc_socks);
352 
353 	/*
354 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
355 	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
356 	 * it has rmem allocations there is a risk that the user of the
357 	 * socket cannot make forward progress due to exceeding the rmem
358 	 * limits. By rights, sk_clear_memalloc() should only be called
359 	 * on sockets being torn down but warn and reset the accounting if
360 	 * that assumption breaks.
361 	 */
362 	if (WARN_ON(sk->sk_forward_alloc))
363 		sk_mem_reclaim(sk);
364 }
365 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
366 
367 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
368 {
369 	int ret;
370 	unsigned long pflags = current->flags;
371 
372 	/* these should have been dropped before queueing */
373 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
374 
375 	current->flags |= PF_MEMALLOC;
376 	ret = sk->sk_backlog_rcv(sk, skb);
377 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
378 
379 	return ret;
380 }
381 EXPORT_SYMBOL(__sk_backlog_rcv);
382 
383 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
384 {
385 	struct timeval tv;
386 
387 	if (optlen < sizeof(tv))
388 		return -EINVAL;
389 	if (copy_from_user(&tv, optval, sizeof(tv)))
390 		return -EFAULT;
391 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
392 		return -EDOM;
393 
394 	if (tv.tv_sec < 0) {
395 		static int warned __read_mostly;
396 
397 		*timeo_p = 0;
398 		if (warned < 10 && net_ratelimit()) {
399 			warned++;
400 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
401 				__func__, current->comm, task_pid_nr(current));
402 		}
403 		return 0;
404 	}
405 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
406 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
407 		return 0;
408 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
409 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
410 	return 0;
411 }
412 
413 static void sock_warn_obsolete_bsdism(const char *name)
414 {
415 	static int warned;
416 	static char warncomm[TASK_COMM_LEN];
417 	if (strcmp(warncomm, current->comm) && warned < 5) {
418 		strcpy(warncomm,  current->comm);
419 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
420 			warncomm, name);
421 		warned++;
422 	}
423 }
424 
425 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
426 
427 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
428 {
429 	if (sk->sk_flags & flags) {
430 		sk->sk_flags &= ~flags;
431 		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
432 			net_disable_timestamp();
433 	}
434 }
435 
436 
437 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
438 {
439 	int err;
440 	int skb_len;
441 	unsigned long flags;
442 	struct sk_buff_head *list = &sk->sk_receive_queue;
443 
444 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
445 		atomic_inc(&sk->sk_drops);
446 		trace_sock_rcvqueue_full(sk, skb);
447 		return -ENOMEM;
448 	}
449 
450 	err = sk_filter(sk, skb);
451 	if (err)
452 		return err;
453 
454 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
455 		atomic_inc(&sk->sk_drops);
456 		return -ENOBUFS;
457 	}
458 
459 	skb->dev = NULL;
460 	skb_set_owner_r(skb, sk);
461 
462 	/* Cache the SKB length before we tack it onto the receive
463 	 * queue.  Once it is added it no longer belongs to us and
464 	 * may be freed by other threads of control pulling packets
465 	 * from the queue.
466 	 */
467 	skb_len = skb->len;
468 
469 	/* we escape from rcu protected region, make sure we dont leak
470 	 * a norefcounted dst
471 	 */
472 	skb_dst_force(skb);
473 
474 	spin_lock_irqsave(&list->lock, flags);
475 	skb->dropcount = atomic_read(&sk->sk_drops);
476 	__skb_queue_tail(list, skb);
477 	spin_unlock_irqrestore(&list->lock, flags);
478 
479 	if (!sock_flag(sk, SOCK_DEAD))
480 		sk->sk_data_ready(sk);
481 	return 0;
482 }
483 EXPORT_SYMBOL(sock_queue_rcv_skb);
484 
485 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
486 {
487 	int rc = NET_RX_SUCCESS;
488 
489 	if (sk_filter(sk, skb))
490 		goto discard_and_relse;
491 
492 	skb->dev = NULL;
493 
494 	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
495 		atomic_inc(&sk->sk_drops);
496 		goto discard_and_relse;
497 	}
498 	if (nested)
499 		bh_lock_sock_nested(sk);
500 	else
501 		bh_lock_sock(sk);
502 	if (!sock_owned_by_user(sk)) {
503 		/*
504 		 * trylock + unlock semantics:
505 		 */
506 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
507 
508 		rc = sk_backlog_rcv(sk, skb);
509 
510 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
511 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
512 		bh_unlock_sock(sk);
513 		atomic_inc(&sk->sk_drops);
514 		goto discard_and_relse;
515 	}
516 
517 	bh_unlock_sock(sk);
518 out:
519 	sock_put(sk);
520 	return rc;
521 discard_and_relse:
522 	kfree_skb(skb);
523 	goto out;
524 }
525 EXPORT_SYMBOL(sk_receive_skb);
526 
527 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
528 {
529 	struct dst_entry *dst = __sk_dst_get(sk);
530 
531 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
532 		sk_tx_queue_clear(sk);
533 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
534 		dst_release(dst);
535 		return NULL;
536 	}
537 
538 	return dst;
539 }
540 EXPORT_SYMBOL(__sk_dst_check);
541 
542 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
543 {
544 	struct dst_entry *dst = sk_dst_get(sk);
545 
546 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
547 		sk_dst_reset(sk);
548 		dst_release(dst);
549 		return NULL;
550 	}
551 
552 	return dst;
553 }
554 EXPORT_SYMBOL(sk_dst_check);
555 
556 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
557 				int optlen)
558 {
559 	int ret = -ENOPROTOOPT;
560 #ifdef CONFIG_NETDEVICES
561 	struct net *net = sock_net(sk);
562 	char devname[IFNAMSIZ];
563 	int index;
564 
565 	/* Sorry... */
566 	ret = -EPERM;
567 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
568 		goto out;
569 
570 	ret = -EINVAL;
571 	if (optlen < 0)
572 		goto out;
573 
574 	/* Bind this socket to a particular device like "eth0",
575 	 * as specified in the passed interface name. If the
576 	 * name is "" or the option length is zero the socket
577 	 * is not bound.
578 	 */
579 	if (optlen > IFNAMSIZ - 1)
580 		optlen = IFNAMSIZ - 1;
581 	memset(devname, 0, sizeof(devname));
582 
583 	ret = -EFAULT;
584 	if (copy_from_user(devname, optval, optlen))
585 		goto out;
586 
587 	index = 0;
588 	if (devname[0] != '\0') {
589 		struct net_device *dev;
590 
591 		rcu_read_lock();
592 		dev = dev_get_by_name_rcu(net, devname);
593 		if (dev)
594 			index = dev->ifindex;
595 		rcu_read_unlock();
596 		ret = -ENODEV;
597 		if (!dev)
598 			goto out;
599 	}
600 
601 	lock_sock(sk);
602 	sk->sk_bound_dev_if = index;
603 	sk_dst_reset(sk);
604 	release_sock(sk);
605 
606 	ret = 0;
607 
608 out:
609 #endif
610 
611 	return ret;
612 }
613 
614 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
615 				int __user *optlen, int len)
616 {
617 	int ret = -ENOPROTOOPT;
618 #ifdef CONFIG_NETDEVICES
619 	struct net *net = sock_net(sk);
620 	char devname[IFNAMSIZ];
621 
622 	if (sk->sk_bound_dev_if == 0) {
623 		len = 0;
624 		goto zero;
625 	}
626 
627 	ret = -EINVAL;
628 	if (len < IFNAMSIZ)
629 		goto out;
630 
631 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
632 	if (ret)
633 		goto out;
634 
635 	len = strlen(devname) + 1;
636 
637 	ret = -EFAULT;
638 	if (copy_to_user(optval, devname, len))
639 		goto out;
640 
641 zero:
642 	ret = -EFAULT;
643 	if (put_user(len, optlen))
644 		goto out;
645 
646 	ret = 0;
647 
648 out:
649 #endif
650 
651 	return ret;
652 }
653 
654 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
655 {
656 	if (valbool)
657 		sock_set_flag(sk, bit);
658 	else
659 		sock_reset_flag(sk, bit);
660 }
661 
662 /*
663  *	This is meant for all protocols to use and covers goings on
664  *	at the socket level. Everything here is generic.
665  */
666 
667 int sock_setsockopt(struct socket *sock, int level, int optname,
668 		    char __user *optval, unsigned int optlen)
669 {
670 	struct sock *sk = sock->sk;
671 	int val;
672 	int valbool;
673 	struct linger ling;
674 	int ret = 0;
675 
676 	/*
677 	 *	Options without arguments
678 	 */
679 
680 	if (optname == SO_BINDTODEVICE)
681 		return sock_setbindtodevice(sk, optval, optlen);
682 
683 	if (optlen < sizeof(int))
684 		return -EINVAL;
685 
686 	if (get_user(val, (int __user *)optval))
687 		return -EFAULT;
688 
689 	valbool = val ? 1 : 0;
690 
691 	lock_sock(sk);
692 
693 	switch (optname) {
694 	case SO_DEBUG:
695 		if (val && !capable(CAP_NET_ADMIN))
696 			ret = -EACCES;
697 		else
698 			sock_valbool_flag(sk, SOCK_DBG, valbool);
699 		break;
700 	case SO_REUSEADDR:
701 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
702 		break;
703 	case SO_REUSEPORT:
704 		sk->sk_reuseport = valbool;
705 		break;
706 	case SO_TYPE:
707 	case SO_PROTOCOL:
708 	case SO_DOMAIN:
709 	case SO_ERROR:
710 		ret = -ENOPROTOOPT;
711 		break;
712 	case SO_DONTROUTE:
713 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
714 		break;
715 	case SO_BROADCAST:
716 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
717 		break;
718 	case SO_SNDBUF:
719 		/* Don't error on this BSD doesn't and if you think
720 		 * about it this is right. Otherwise apps have to
721 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
722 		 * are treated in BSD as hints
723 		 */
724 		val = min_t(u32, val, sysctl_wmem_max);
725 set_sndbuf:
726 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
727 		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
728 		/* Wake up sending tasks if we upped the value. */
729 		sk->sk_write_space(sk);
730 		break;
731 
732 	case SO_SNDBUFFORCE:
733 		if (!capable(CAP_NET_ADMIN)) {
734 			ret = -EPERM;
735 			break;
736 		}
737 		goto set_sndbuf;
738 
739 	case SO_RCVBUF:
740 		/* Don't error on this BSD doesn't and if you think
741 		 * about it this is right. Otherwise apps have to
742 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
743 		 * are treated in BSD as hints
744 		 */
745 		val = min_t(u32, val, sysctl_rmem_max);
746 set_rcvbuf:
747 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
748 		/*
749 		 * We double it on the way in to account for
750 		 * "struct sk_buff" etc. overhead.   Applications
751 		 * assume that the SO_RCVBUF setting they make will
752 		 * allow that much actual data to be received on that
753 		 * socket.
754 		 *
755 		 * Applications are unaware that "struct sk_buff" and
756 		 * other overheads allocate from the receive buffer
757 		 * during socket buffer allocation.
758 		 *
759 		 * And after considering the possible alternatives,
760 		 * returning the value we actually used in getsockopt
761 		 * is the most desirable behavior.
762 		 */
763 		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
764 		break;
765 
766 	case SO_RCVBUFFORCE:
767 		if (!capable(CAP_NET_ADMIN)) {
768 			ret = -EPERM;
769 			break;
770 		}
771 		goto set_rcvbuf;
772 
773 	case SO_KEEPALIVE:
774 #ifdef CONFIG_INET
775 		if (sk->sk_protocol == IPPROTO_TCP &&
776 		    sk->sk_type == SOCK_STREAM)
777 			tcp_set_keepalive(sk, valbool);
778 #endif
779 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
780 		break;
781 
782 	case SO_OOBINLINE:
783 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
784 		break;
785 
786 	case SO_NO_CHECK:
787 		sk->sk_no_check_tx = valbool;
788 		break;
789 
790 	case SO_PRIORITY:
791 		if ((val >= 0 && val <= 6) ||
792 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
793 			sk->sk_priority = val;
794 		else
795 			ret = -EPERM;
796 		break;
797 
798 	case SO_LINGER:
799 		if (optlen < sizeof(ling)) {
800 			ret = -EINVAL;	/* 1003.1g */
801 			break;
802 		}
803 		if (copy_from_user(&ling, optval, sizeof(ling))) {
804 			ret = -EFAULT;
805 			break;
806 		}
807 		if (!ling.l_onoff)
808 			sock_reset_flag(sk, SOCK_LINGER);
809 		else {
810 #if (BITS_PER_LONG == 32)
811 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
812 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
813 			else
814 #endif
815 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
816 			sock_set_flag(sk, SOCK_LINGER);
817 		}
818 		break;
819 
820 	case SO_BSDCOMPAT:
821 		sock_warn_obsolete_bsdism("setsockopt");
822 		break;
823 
824 	case SO_PASSCRED:
825 		if (valbool)
826 			set_bit(SOCK_PASSCRED, &sock->flags);
827 		else
828 			clear_bit(SOCK_PASSCRED, &sock->flags);
829 		break;
830 
831 	case SO_TIMESTAMP:
832 	case SO_TIMESTAMPNS:
833 		if (valbool)  {
834 			if (optname == SO_TIMESTAMP)
835 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
836 			else
837 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
838 			sock_set_flag(sk, SOCK_RCVTSTAMP);
839 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
840 		} else {
841 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
842 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
843 		}
844 		break;
845 
846 	case SO_TIMESTAMPING:
847 		if (val & ~SOF_TIMESTAMPING_MASK) {
848 			ret = -EINVAL;
849 			break;
850 		}
851 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
852 				  val & SOF_TIMESTAMPING_TX_HARDWARE);
853 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
854 				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
855 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
856 				  val & SOF_TIMESTAMPING_RX_HARDWARE);
857 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
858 			sock_enable_timestamp(sk,
859 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
860 		else
861 			sock_disable_timestamp(sk,
862 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
863 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
864 				  val & SOF_TIMESTAMPING_SOFTWARE);
865 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
866 				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
867 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
868 				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
869 		break;
870 
871 	case SO_RCVLOWAT:
872 		if (val < 0)
873 			val = INT_MAX;
874 		sk->sk_rcvlowat = val ? : 1;
875 		break;
876 
877 	case SO_RCVTIMEO:
878 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
879 		break;
880 
881 	case SO_SNDTIMEO:
882 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
883 		break;
884 
885 	case SO_ATTACH_FILTER:
886 		ret = -EINVAL;
887 		if (optlen == sizeof(struct sock_fprog)) {
888 			struct sock_fprog fprog;
889 
890 			ret = -EFAULT;
891 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
892 				break;
893 
894 			ret = sk_attach_filter(&fprog, sk);
895 		}
896 		break;
897 
898 	case SO_DETACH_FILTER:
899 		ret = sk_detach_filter(sk);
900 		break;
901 
902 	case SO_LOCK_FILTER:
903 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
904 			ret = -EPERM;
905 		else
906 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
907 		break;
908 
909 	case SO_PASSSEC:
910 		if (valbool)
911 			set_bit(SOCK_PASSSEC, &sock->flags);
912 		else
913 			clear_bit(SOCK_PASSSEC, &sock->flags);
914 		break;
915 	case SO_MARK:
916 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
917 			ret = -EPERM;
918 		else
919 			sk->sk_mark = val;
920 		break;
921 
922 		/* We implement the SO_SNDLOWAT etc to
923 		   not be settable (1003.1g 5.3) */
924 	case SO_RXQ_OVFL:
925 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
926 		break;
927 
928 	case SO_WIFI_STATUS:
929 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
930 		break;
931 
932 	case SO_PEEK_OFF:
933 		if (sock->ops->set_peek_off)
934 			ret = sock->ops->set_peek_off(sk, val);
935 		else
936 			ret = -EOPNOTSUPP;
937 		break;
938 
939 	case SO_NOFCS:
940 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
941 		break;
942 
943 	case SO_SELECT_ERR_QUEUE:
944 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
945 		break;
946 
947 #ifdef CONFIG_NET_RX_BUSY_POLL
948 	case SO_BUSY_POLL:
949 		/* allow unprivileged users to decrease the value */
950 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
951 			ret = -EPERM;
952 		else {
953 			if (val < 0)
954 				ret = -EINVAL;
955 			else
956 				sk->sk_ll_usec = val;
957 		}
958 		break;
959 #endif
960 
961 	case SO_MAX_PACING_RATE:
962 		sk->sk_max_pacing_rate = val;
963 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
964 					 sk->sk_max_pacing_rate);
965 		break;
966 
967 	default:
968 		ret = -ENOPROTOOPT;
969 		break;
970 	}
971 	release_sock(sk);
972 	return ret;
973 }
974 EXPORT_SYMBOL(sock_setsockopt);
975 
976 
977 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
978 			  struct ucred *ucred)
979 {
980 	ucred->pid = pid_vnr(pid);
981 	ucred->uid = ucred->gid = -1;
982 	if (cred) {
983 		struct user_namespace *current_ns = current_user_ns();
984 
985 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
986 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
987 	}
988 }
989 
990 int sock_getsockopt(struct socket *sock, int level, int optname,
991 		    char __user *optval, int __user *optlen)
992 {
993 	struct sock *sk = sock->sk;
994 
995 	union {
996 		int val;
997 		struct linger ling;
998 		struct timeval tm;
999 	} v;
1000 
1001 	int lv = sizeof(int);
1002 	int len;
1003 
1004 	if (get_user(len, optlen))
1005 		return -EFAULT;
1006 	if (len < 0)
1007 		return -EINVAL;
1008 
1009 	memset(&v, 0, sizeof(v));
1010 
1011 	switch (optname) {
1012 	case SO_DEBUG:
1013 		v.val = sock_flag(sk, SOCK_DBG);
1014 		break;
1015 
1016 	case SO_DONTROUTE:
1017 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1018 		break;
1019 
1020 	case SO_BROADCAST:
1021 		v.val = sock_flag(sk, SOCK_BROADCAST);
1022 		break;
1023 
1024 	case SO_SNDBUF:
1025 		v.val = sk->sk_sndbuf;
1026 		break;
1027 
1028 	case SO_RCVBUF:
1029 		v.val = sk->sk_rcvbuf;
1030 		break;
1031 
1032 	case SO_REUSEADDR:
1033 		v.val = sk->sk_reuse;
1034 		break;
1035 
1036 	case SO_REUSEPORT:
1037 		v.val = sk->sk_reuseport;
1038 		break;
1039 
1040 	case SO_KEEPALIVE:
1041 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1042 		break;
1043 
1044 	case SO_TYPE:
1045 		v.val = sk->sk_type;
1046 		break;
1047 
1048 	case SO_PROTOCOL:
1049 		v.val = sk->sk_protocol;
1050 		break;
1051 
1052 	case SO_DOMAIN:
1053 		v.val = sk->sk_family;
1054 		break;
1055 
1056 	case SO_ERROR:
1057 		v.val = -sock_error(sk);
1058 		if (v.val == 0)
1059 			v.val = xchg(&sk->sk_err_soft, 0);
1060 		break;
1061 
1062 	case SO_OOBINLINE:
1063 		v.val = sock_flag(sk, SOCK_URGINLINE);
1064 		break;
1065 
1066 	case SO_NO_CHECK:
1067 		v.val = sk->sk_no_check_tx;
1068 		break;
1069 
1070 	case SO_PRIORITY:
1071 		v.val = sk->sk_priority;
1072 		break;
1073 
1074 	case SO_LINGER:
1075 		lv		= sizeof(v.ling);
1076 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1077 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1078 		break;
1079 
1080 	case SO_BSDCOMPAT:
1081 		sock_warn_obsolete_bsdism("getsockopt");
1082 		break;
1083 
1084 	case SO_TIMESTAMP:
1085 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1086 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1087 		break;
1088 
1089 	case SO_TIMESTAMPNS:
1090 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1091 		break;
1092 
1093 	case SO_TIMESTAMPING:
1094 		v.val = 0;
1095 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
1096 			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
1097 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
1098 			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
1099 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
1100 			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
1101 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1102 			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
1103 		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
1104 			v.val |= SOF_TIMESTAMPING_SOFTWARE;
1105 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
1106 			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
1107 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
1108 			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
1109 		break;
1110 
1111 	case SO_RCVTIMEO:
1112 		lv = sizeof(struct timeval);
1113 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1114 			v.tm.tv_sec = 0;
1115 			v.tm.tv_usec = 0;
1116 		} else {
1117 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1118 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1119 		}
1120 		break;
1121 
1122 	case SO_SNDTIMEO:
1123 		lv = sizeof(struct timeval);
1124 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1125 			v.tm.tv_sec = 0;
1126 			v.tm.tv_usec = 0;
1127 		} else {
1128 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1129 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1130 		}
1131 		break;
1132 
1133 	case SO_RCVLOWAT:
1134 		v.val = sk->sk_rcvlowat;
1135 		break;
1136 
1137 	case SO_SNDLOWAT:
1138 		v.val = 1;
1139 		break;
1140 
1141 	case SO_PASSCRED:
1142 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1143 		break;
1144 
1145 	case SO_PEERCRED:
1146 	{
1147 		struct ucred peercred;
1148 		if (len > sizeof(peercred))
1149 			len = sizeof(peercred);
1150 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1151 		if (copy_to_user(optval, &peercred, len))
1152 			return -EFAULT;
1153 		goto lenout;
1154 	}
1155 
1156 	case SO_PEERNAME:
1157 	{
1158 		char address[128];
1159 
1160 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1161 			return -ENOTCONN;
1162 		if (lv < len)
1163 			return -EINVAL;
1164 		if (copy_to_user(optval, address, len))
1165 			return -EFAULT;
1166 		goto lenout;
1167 	}
1168 
1169 	/* Dubious BSD thing... Probably nobody even uses it, but
1170 	 * the UNIX standard wants it for whatever reason... -DaveM
1171 	 */
1172 	case SO_ACCEPTCONN:
1173 		v.val = sk->sk_state == TCP_LISTEN;
1174 		break;
1175 
1176 	case SO_PASSSEC:
1177 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1178 		break;
1179 
1180 	case SO_PEERSEC:
1181 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1182 
1183 	case SO_MARK:
1184 		v.val = sk->sk_mark;
1185 		break;
1186 
1187 	case SO_RXQ_OVFL:
1188 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1189 		break;
1190 
1191 	case SO_WIFI_STATUS:
1192 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1193 		break;
1194 
1195 	case SO_PEEK_OFF:
1196 		if (!sock->ops->set_peek_off)
1197 			return -EOPNOTSUPP;
1198 
1199 		v.val = sk->sk_peek_off;
1200 		break;
1201 	case SO_NOFCS:
1202 		v.val = sock_flag(sk, SOCK_NOFCS);
1203 		break;
1204 
1205 	case SO_BINDTODEVICE:
1206 		return sock_getbindtodevice(sk, optval, optlen, len);
1207 
1208 	case SO_GET_FILTER:
1209 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1210 		if (len < 0)
1211 			return len;
1212 
1213 		goto lenout;
1214 
1215 	case SO_LOCK_FILTER:
1216 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1217 		break;
1218 
1219 	case SO_BPF_EXTENSIONS:
1220 		v.val = bpf_tell_extensions();
1221 		break;
1222 
1223 	case SO_SELECT_ERR_QUEUE:
1224 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1225 		break;
1226 
1227 #ifdef CONFIG_NET_RX_BUSY_POLL
1228 	case SO_BUSY_POLL:
1229 		v.val = sk->sk_ll_usec;
1230 		break;
1231 #endif
1232 
1233 	case SO_MAX_PACING_RATE:
1234 		v.val = sk->sk_max_pacing_rate;
1235 		break;
1236 
1237 	default:
1238 		return -ENOPROTOOPT;
1239 	}
1240 
1241 	if (len > lv)
1242 		len = lv;
1243 	if (copy_to_user(optval, &v, len))
1244 		return -EFAULT;
1245 lenout:
1246 	if (put_user(len, optlen))
1247 		return -EFAULT;
1248 	return 0;
1249 }
1250 
1251 /*
1252  * Initialize an sk_lock.
1253  *
1254  * (We also register the sk_lock with the lock validator.)
1255  */
1256 static inline void sock_lock_init(struct sock *sk)
1257 {
1258 	sock_lock_init_class_and_name(sk,
1259 			af_family_slock_key_strings[sk->sk_family],
1260 			af_family_slock_keys + sk->sk_family,
1261 			af_family_key_strings[sk->sk_family],
1262 			af_family_keys + sk->sk_family);
1263 }
1264 
1265 /*
1266  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1267  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1268  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1269  */
1270 static void sock_copy(struct sock *nsk, const struct sock *osk)
1271 {
1272 #ifdef CONFIG_SECURITY_NETWORK
1273 	void *sptr = nsk->sk_security;
1274 #endif
1275 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1276 
1277 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1278 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1279 
1280 #ifdef CONFIG_SECURITY_NETWORK
1281 	nsk->sk_security = sptr;
1282 	security_sk_clone(osk, nsk);
1283 #endif
1284 }
1285 
1286 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1287 {
1288 	unsigned long nulls1, nulls2;
1289 
1290 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1291 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1292 	if (nulls1 > nulls2)
1293 		swap(nulls1, nulls2);
1294 
1295 	if (nulls1 != 0)
1296 		memset((char *)sk, 0, nulls1);
1297 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1298 	       nulls2 - nulls1 - sizeof(void *));
1299 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1300 	       size - nulls2 - sizeof(void *));
1301 }
1302 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1303 
1304 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1305 		int family)
1306 {
1307 	struct sock *sk;
1308 	struct kmem_cache *slab;
1309 
1310 	slab = prot->slab;
1311 	if (slab != NULL) {
1312 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1313 		if (!sk)
1314 			return sk;
1315 		if (priority & __GFP_ZERO) {
1316 			if (prot->clear_sk)
1317 				prot->clear_sk(sk, prot->obj_size);
1318 			else
1319 				sk_prot_clear_nulls(sk, prot->obj_size);
1320 		}
1321 	} else
1322 		sk = kmalloc(prot->obj_size, priority);
1323 
1324 	if (sk != NULL) {
1325 		kmemcheck_annotate_bitfield(sk, flags);
1326 
1327 		if (security_sk_alloc(sk, family, priority))
1328 			goto out_free;
1329 
1330 		if (!try_module_get(prot->owner))
1331 			goto out_free_sec;
1332 		sk_tx_queue_clear(sk);
1333 	}
1334 
1335 	return sk;
1336 
1337 out_free_sec:
1338 	security_sk_free(sk);
1339 out_free:
1340 	if (slab != NULL)
1341 		kmem_cache_free(slab, sk);
1342 	else
1343 		kfree(sk);
1344 	return NULL;
1345 }
1346 
1347 static void sk_prot_free(struct proto *prot, struct sock *sk)
1348 {
1349 	struct kmem_cache *slab;
1350 	struct module *owner;
1351 
1352 	owner = prot->owner;
1353 	slab = prot->slab;
1354 
1355 	security_sk_free(sk);
1356 	if (slab != NULL)
1357 		kmem_cache_free(slab, sk);
1358 	else
1359 		kfree(sk);
1360 	module_put(owner);
1361 }
1362 
1363 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1364 void sock_update_netprioidx(struct sock *sk)
1365 {
1366 	if (in_interrupt())
1367 		return;
1368 
1369 	sk->sk_cgrp_prioidx = task_netprioidx(current);
1370 }
1371 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1372 #endif
1373 
1374 /**
1375  *	sk_alloc - All socket objects are allocated here
1376  *	@net: the applicable net namespace
1377  *	@family: protocol family
1378  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1379  *	@prot: struct proto associated with this new sock instance
1380  */
1381 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1382 		      struct proto *prot)
1383 {
1384 	struct sock *sk;
1385 
1386 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1387 	if (sk) {
1388 		sk->sk_family = family;
1389 		/*
1390 		 * See comment in struct sock definition to understand
1391 		 * why we need sk_prot_creator -acme
1392 		 */
1393 		sk->sk_prot = sk->sk_prot_creator = prot;
1394 		sock_lock_init(sk);
1395 		sock_net_set(sk, get_net(net));
1396 		atomic_set(&sk->sk_wmem_alloc, 1);
1397 
1398 		sock_update_classid(sk);
1399 		sock_update_netprioidx(sk);
1400 	}
1401 
1402 	return sk;
1403 }
1404 EXPORT_SYMBOL(sk_alloc);
1405 
1406 static void __sk_free(struct sock *sk)
1407 {
1408 	struct sk_filter *filter;
1409 
1410 	if (sk->sk_destruct)
1411 		sk->sk_destruct(sk);
1412 
1413 	filter = rcu_dereference_check(sk->sk_filter,
1414 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1415 	if (filter) {
1416 		sk_filter_uncharge(sk, filter);
1417 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1418 	}
1419 
1420 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1421 
1422 	if (atomic_read(&sk->sk_omem_alloc))
1423 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1424 			 __func__, atomic_read(&sk->sk_omem_alloc));
1425 
1426 	if (sk->sk_peer_cred)
1427 		put_cred(sk->sk_peer_cred);
1428 	put_pid(sk->sk_peer_pid);
1429 	put_net(sock_net(sk));
1430 	sk_prot_free(sk->sk_prot_creator, sk);
1431 }
1432 
1433 void sk_free(struct sock *sk)
1434 {
1435 	/*
1436 	 * We subtract one from sk_wmem_alloc and can know if
1437 	 * some packets are still in some tx queue.
1438 	 * If not null, sock_wfree() will call __sk_free(sk) later
1439 	 */
1440 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1441 		__sk_free(sk);
1442 }
1443 EXPORT_SYMBOL(sk_free);
1444 
1445 /*
1446  * Last sock_put should drop reference to sk->sk_net. It has already
1447  * been dropped in sk_change_net. Taking reference to stopping namespace
1448  * is not an option.
1449  * Take reference to a socket to remove it from hash _alive_ and after that
1450  * destroy it in the context of init_net.
1451  */
1452 void sk_release_kernel(struct sock *sk)
1453 {
1454 	if (sk == NULL || sk->sk_socket == NULL)
1455 		return;
1456 
1457 	sock_hold(sk);
1458 	sock_release(sk->sk_socket);
1459 	release_net(sock_net(sk));
1460 	sock_net_set(sk, get_net(&init_net));
1461 	sock_put(sk);
1462 }
1463 EXPORT_SYMBOL(sk_release_kernel);
1464 
1465 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1466 {
1467 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1468 		sock_update_memcg(newsk);
1469 }
1470 
1471 /**
1472  *	sk_clone_lock - clone a socket, and lock its clone
1473  *	@sk: the socket to clone
1474  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1475  *
1476  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1477  */
1478 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1479 {
1480 	struct sock *newsk;
1481 
1482 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1483 	if (newsk != NULL) {
1484 		struct sk_filter *filter;
1485 
1486 		sock_copy(newsk, sk);
1487 
1488 		/* SANITY */
1489 		get_net(sock_net(newsk));
1490 		sk_node_init(&newsk->sk_node);
1491 		sock_lock_init(newsk);
1492 		bh_lock_sock(newsk);
1493 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1494 		newsk->sk_backlog.len = 0;
1495 
1496 		atomic_set(&newsk->sk_rmem_alloc, 0);
1497 		/*
1498 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1499 		 */
1500 		atomic_set(&newsk->sk_wmem_alloc, 1);
1501 		atomic_set(&newsk->sk_omem_alloc, 0);
1502 		skb_queue_head_init(&newsk->sk_receive_queue);
1503 		skb_queue_head_init(&newsk->sk_write_queue);
1504 #ifdef CONFIG_NET_DMA
1505 		skb_queue_head_init(&newsk->sk_async_wait_queue);
1506 #endif
1507 
1508 		spin_lock_init(&newsk->sk_dst_lock);
1509 		rwlock_init(&newsk->sk_callback_lock);
1510 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1511 				af_callback_keys + newsk->sk_family,
1512 				af_family_clock_key_strings[newsk->sk_family]);
1513 
1514 		newsk->sk_dst_cache	= NULL;
1515 		newsk->sk_wmem_queued	= 0;
1516 		newsk->sk_forward_alloc = 0;
1517 		newsk->sk_send_head	= NULL;
1518 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1519 
1520 		sock_reset_flag(newsk, SOCK_DONE);
1521 		skb_queue_head_init(&newsk->sk_error_queue);
1522 
1523 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1524 		if (filter != NULL)
1525 			sk_filter_charge(newsk, filter);
1526 
1527 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1528 			/* It is still raw copy of parent, so invalidate
1529 			 * destructor and make plain sk_free() */
1530 			newsk->sk_destruct = NULL;
1531 			bh_unlock_sock(newsk);
1532 			sk_free(newsk);
1533 			newsk = NULL;
1534 			goto out;
1535 		}
1536 
1537 		newsk->sk_err	   = 0;
1538 		newsk->sk_priority = 0;
1539 		/*
1540 		 * Before updating sk_refcnt, we must commit prior changes to memory
1541 		 * (Documentation/RCU/rculist_nulls.txt for details)
1542 		 */
1543 		smp_wmb();
1544 		atomic_set(&newsk->sk_refcnt, 2);
1545 
1546 		/*
1547 		 * Increment the counter in the same struct proto as the master
1548 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1549 		 * is the same as sk->sk_prot->socks, as this field was copied
1550 		 * with memcpy).
1551 		 *
1552 		 * This _changes_ the previous behaviour, where
1553 		 * tcp_create_openreq_child always was incrementing the
1554 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1555 		 * to be taken into account in all callers. -acme
1556 		 */
1557 		sk_refcnt_debug_inc(newsk);
1558 		sk_set_socket(newsk, NULL);
1559 		newsk->sk_wq = NULL;
1560 
1561 		sk_update_clone(sk, newsk);
1562 
1563 		if (newsk->sk_prot->sockets_allocated)
1564 			sk_sockets_allocated_inc(newsk);
1565 
1566 		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1567 			net_enable_timestamp();
1568 	}
1569 out:
1570 	return newsk;
1571 }
1572 EXPORT_SYMBOL_GPL(sk_clone_lock);
1573 
1574 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1575 {
1576 	__sk_dst_set(sk, dst);
1577 	sk->sk_route_caps = dst->dev->features;
1578 	if (sk->sk_route_caps & NETIF_F_GSO)
1579 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1580 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1581 	if (sk_can_gso(sk)) {
1582 		if (dst->header_len) {
1583 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1584 		} else {
1585 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1586 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1587 			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1588 		}
1589 	}
1590 }
1591 EXPORT_SYMBOL_GPL(sk_setup_caps);
1592 
1593 /*
1594  *	Simple resource managers for sockets.
1595  */
1596 
1597 
1598 /*
1599  * Write buffer destructor automatically called from kfree_skb.
1600  */
1601 void sock_wfree(struct sk_buff *skb)
1602 {
1603 	struct sock *sk = skb->sk;
1604 	unsigned int len = skb->truesize;
1605 
1606 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1607 		/*
1608 		 * Keep a reference on sk_wmem_alloc, this will be released
1609 		 * after sk_write_space() call
1610 		 */
1611 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1612 		sk->sk_write_space(sk);
1613 		len = 1;
1614 	}
1615 	/*
1616 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1617 	 * could not do because of in-flight packets
1618 	 */
1619 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1620 		__sk_free(sk);
1621 }
1622 EXPORT_SYMBOL(sock_wfree);
1623 
1624 void skb_orphan_partial(struct sk_buff *skb)
1625 {
1626 	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1627 	 * so we do not completely orphan skb, but transfert all
1628 	 * accounted bytes but one, to avoid unexpected reorders.
1629 	 */
1630 	if (skb->destructor == sock_wfree
1631 #ifdef CONFIG_INET
1632 	    || skb->destructor == tcp_wfree
1633 #endif
1634 		) {
1635 		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1636 		skb->truesize = 1;
1637 	} else {
1638 		skb_orphan(skb);
1639 	}
1640 }
1641 EXPORT_SYMBOL(skb_orphan_partial);
1642 
1643 /*
1644  * Read buffer destructor automatically called from kfree_skb.
1645  */
1646 void sock_rfree(struct sk_buff *skb)
1647 {
1648 	struct sock *sk = skb->sk;
1649 	unsigned int len = skb->truesize;
1650 
1651 	atomic_sub(len, &sk->sk_rmem_alloc);
1652 	sk_mem_uncharge(sk, len);
1653 }
1654 EXPORT_SYMBOL(sock_rfree);
1655 
1656 void sock_edemux(struct sk_buff *skb)
1657 {
1658 	struct sock *sk = skb->sk;
1659 
1660 #ifdef CONFIG_INET
1661 	if (sk->sk_state == TCP_TIME_WAIT)
1662 		inet_twsk_put(inet_twsk(sk));
1663 	else
1664 #endif
1665 		sock_put(sk);
1666 }
1667 EXPORT_SYMBOL(sock_edemux);
1668 
1669 kuid_t sock_i_uid(struct sock *sk)
1670 {
1671 	kuid_t uid;
1672 
1673 	read_lock_bh(&sk->sk_callback_lock);
1674 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1675 	read_unlock_bh(&sk->sk_callback_lock);
1676 	return uid;
1677 }
1678 EXPORT_SYMBOL(sock_i_uid);
1679 
1680 unsigned long sock_i_ino(struct sock *sk)
1681 {
1682 	unsigned long ino;
1683 
1684 	read_lock_bh(&sk->sk_callback_lock);
1685 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1686 	read_unlock_bh(&sk->sk_callback_lock);
1687 	return ino;
1688 }
1689 EXPORT_SYMBOL(sock_i_ino);
1690 
1691 /*
1692  * Allocate a skb from the socket's send buffer.
1693  */
1694 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1695 			     gfp_t priority)
1696 {
1697 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1698 		struct sk_buff *skb = alloc_skb(size, priority);
1699 		if (skb) {
1700 			skb_set_owner_w(skb, sk);
1701 			return skb;
1702 		}
1703 	}
1704 	return NULL;
1705 }
1706 EXPORT_SYMBOL(sock_wmalloc);
1707 
1708 /*
1709  * Allocate a memory block from the socket's option memory buffer.
1710  */
1711 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1712 {
1713 	if ((unsigned int)size <= sysctl_optmem_max &&
1714 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1715 		void *mem;
1716 		/* First do the add, to avoid the race if kmalloc
1717 		 * might sleep.
1718 		 */
1719 		atomic_add(size, &sk->sk_omem_alloc);
1720 		mem = kmalloc(size, priority);
1721 		if (mem)
1722 			return mem;
1723 		atomic_sub(size, &sk->sk_omem_alloc);
1724 	}
1725 	return NULL;
1726 }
1727 EXPORT_SYMBOL(sock_kmalloc);
1728 
1729 /*
1730  * Free an option memory block.
1731  */
1732 void sock_kfree_s(struct sock *sk, void *mem, int size)
1733 {
1734 	kfree(mem);
1735 	atomic_sub(size, &sk->sk_omem_alloc);
1736 }
1737 EXPORT_SYMBOL(sock_kfree_s);
1738 
1739 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1740    I think, these locks should be removed for datagram sockets.
1741  */
1742 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1743 {
1744 	DEFINE_WAIT(wait);
1745 
1746 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1747 	for (;;) {
1748 		if (!timeo)
1749 			break;
1750 		if (signal_pending(current))
1751 			break;
1752 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1753 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1754 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1755 			break;
1756 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1757 			break;
1758 		if (sk->sk_err)
1759 			break;
1760 		timeo = schedule_timeout(timeo);
1761 	}
1762 	finish_wait(sk_sleep(sk), &wait);
1763 	return timeo;
1764 }
1765 
1766 
1767 /*
1768  *	Generic send/receive buffer handlers
1769  */
1770 
1771 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1772 				     unsigned long data_len, int noblock,
1773 				     int *errcode, int max_page_order)
1774 {
1775 	struct sk_buff *skb = NULL;
1776 	unsigned long chunk;
1777 	gfp_t gfp_mask;
1778 	long timeo;
1779 	int err;
1780 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1781 	struct page *page;
1782 	int i;
1783 
1784 	err = -EMSGSIZE;
1785 	if (npages > MAX_SKB_FRAGS)
1786 		goto failure;
1787 
1788 	timeo = sock_sndtimeo(sk, noblock);
1789 	while (!skb) {
1790 		err = sock_error(sk);
1791 		if (err != 0)
1792 			goto failure;
1793 
1794 		err = -EPIPE;
1795 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1796 			goto failure;
1797 
1798 		if (atomic_read(&sk->sk_wmem_alloc) >= sk->sk_sndbuf) {
1799 			set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1800 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1801 			err = -EAGAIN;
1802 			if (!timeo)
1803 				goto failure;
1804 			if (signal_pending(current))
1805 				goto interrupted;
1806 			timeo = sock_wait_for_wmem(sk, timeo);
1807 			continue;
1808 		}
1809 
1810 		err = -ENOBUFS;
1811 		gfp_mask = sk->sk_allocation;
1812 		if (gfp_mask & __GFP_WAIT)
1813 			gfp_mask |= __GFP_REPEAT;
1814 
1815 		skb = alloc_skb(header_len, gfp_mask);
1816 		if (!skb)
1817 			goto failure;
1818 
1819 		skb->truesize += data_len;
1820 
1821 		for (i = 0; npages > 0; i++) {
1822 			int order = max_page_order;
1823 
1824 			while (order) {
1825 				if (npages >= 1 << order) {
1826 					page = alloc_pages(sk->sk_allocation |
1827 							   __GFP_COMP |
1828 							   __GFP_NOWARN |
1829 							   __GFP_NORETRY,
1830 							   order);
1831 					if (page)
1832 						goto fill_page;
1833 				}
1834 				order--;
1835 			}
1836 			page = alloc_page(sk->sk_allocation);
1837 			if (!page)
1838 				goto failure;
1839 fill_page:
1840 			chunk = min_t(unsigned long, data_len,
1841 				      PAGE_SIZE << order);
1842 			skb_fill_page_desc(skb, i, page, 0, chunk);
1843 			data_len -= chunk;
1844 			npages -= 1 << order;
1845 		}
1846 	}
1847 
1848 	skb_set_owner_w(skb, sk);
1849 	return skb;
1850 
1851 interrupted:
1852 	err = sock_intr_errno(timeo);
1853 failure:
1854 	kfree_skb(skb);
1855 	*errcode = err;
1856 	return NULL;
1857 }
1858 EXPORT_SYMBOL(sock_alloc_send_pskb);
1859 
1860 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1861 				    int noblock, int *errcode)
1862 {
1863 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1864 }
1865 EXPORT_SYMBOL(sock_alloc_send_skb);
1866 
1867 /* On 32bit arches, an skb frag is limited to 2^15 */
1868 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1869 
1870 /**
1871  * skb_page_frag_refill - check that a page_frag contains enough room
1872  * @sz: minimum size of the fragment we want to get
1873  * @pfrag: pointer to page_frag
1874  * @prio: priority for memory allocation
1875  *
1876  * Note: While this allocator tries to use high order pages, there is
1877  * no guarantee that allocations succeed. Therefore, @sz MUST be
1878  * less or equal than PAGE_SIZE.
1879  */
1880 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio)
1881 {
1882 	int order;
1883 
1884 	if (pfrag->page) {
1885 		if (atomic_read(&pfrag->page->_count) == 1) {
1886 			pfrag->offset = 0;
1887 			return true;
1888 		}
1889 		if (pfrag->offset + sz <= pfrag->size)
1890 			return true;
1891 		put_page(pfrag->page);
1892 	}
1893 
1894 	order = SKB_FRAG_PAGE_ORDER;
1895 	do {
1896 		gfp_t gfp = prio;
1897 
1898 		if (order)
1899 			gfp |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY;
1900 		pfrag->page = alloc_pages(gfp, order);
1901 		if (likely(pfrag->page)) {
1902 			pfrag->offset = 0;
1903 			pfrag->size = PAGE_SIZE << order;
1904 			return true;
1905 		}
1906 	} while (--order >= 0);
1907 
1908 	return false;
1909 }
1910 EXPORT_SYMBOL(skb_page_frag_refill);
1911 
1912 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1913 {
1914 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1915 		return true;
1916 
1917 	sk_enter_memory_pressure(sk);
1918 	sk_stream_moderate_sndbuf(sk);
1919 	return false;
1920 }
1921 EXPORT_SYMBOL(sk_page_frag_refill);
1922 
1923 static void __lock_sock(struct sock *sk)
1924 	__releases(&sk->sk_lock.slock)
1925 	__acquires(&sk->sk_lock.slock)
1926 {
1927 	DEFINE_WAIT(wait);
1928 
1929 	for (;;) {
1930 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1931 					TASK_UNINTERRUPTIBLE);
1932 		spin_unlock_bh(&sk->sk_lock.slock);
1933 		schedule();
1934 		spin_lock_bh(&sk->sk_lock.slock);
1935 		if (!sock_owned_by_user(sk))
1936 			break;
1937 	}
1938 	finish_wait(&sk->sk_lock.wq, &wait);
1939 }
1940 
1941 static void __release_sock(struct sock *sk)
1942 	__releases(&sk->sk_lock.slock)
1943 	__acquires(&sk->sk_lock.slock)
1944 {
1945 	struct sk_buff *skb = sk->sk_backlog.head;
1946 
1947 	do {
1948 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1949 		bh_unlock_sock(sk);
1950 
1951 		do {
1952 			struct sk_buff *next = skb->next;
1953 
1954 			prefetch(next);
1955 			WARN_ON_ONCE(skb_dst_is_noref(skb));
1956 			skb->next = NULL;
1957 			sk_backlog_rcv(sk, skb);
1958 
1959 			/*
1960 			 * We are in process context here with softirqs
1961 			 * disabled, use cond_resched_softirq() to preempt.
1962 			 * This is safe to do because we've taken the backlog
1963 			 * queue private:
1964 			 */
1965 			cond_resched_softirq();
1966 
1967 			skb = next;
1968 		} while (skb != NULL);
1969 
1970 		bh_lock_sock(sk);
1971 	} while ((skb = sk->sk_backlog.head) != NULL);
1972 
1973 	/*
1974 	 * Doing the zeroing here guarantee we can not loop forever
1975 	 * while a wild producer attempts to flood us.
1976 	 */
1977 	sk->sk_backlog.len = 0;
1978 }
1979 
1980 /**
1981  * sk_wait_data - wait for data to arrive at sk_receive_queue
1982  * @sk:    sock to wait on
1983  * @timeo: for how long
1984  *
1985  * Now socket state including sk->sk_err is changed only under lock,
1986  * hence we may omit checks after joining wait queue.
1987  * We check receive queue before schedule() only as optimization;
1988  * it is very likely that release_sock() added new data.
1989  */
1990 int sk_wait_data(struct sock *sk, long *timeo)
1991 {
1992 	int rc;
1993 	DEFINE_WAIT(wait);
1994 
1995 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1996 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1997 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1998 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1999 	finish_wait(sk_sleep(sk), &wait);
2000 	return rc;
2001 }
2002 EXPORT_SYMBOL(sk_wait_data);
2003 
2004 /**
2005  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2006  *	@sk: socket
2007  *	@size: memory size to allocate
2008  *	@kind: allocation type
2009  *
2010  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2011  *	rmem allocation. This function assumes that protocols which have
2012  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2013  */
2014 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2015 {
2016 	struct proto *prot = sk->sk_prot;
2017 	int amt = sk_mem_pages(size);
2018 	long allocated;
2019 	int parent_status = UNDER_LIMIT;
2020 
2021 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2022 
2023 	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
2024 
2025 	/* Under limit. */
2026 	if (parent_status == UNDER_LIMIT &&
2027 			allocated <= sk_prot_mem_limits(sk, 0)) {
2028 		sk_leave_memory_pressure(sk);
2029 		return 1;
2030 	}
2031 
2032 	/* Under pressure. (we or our parents) */
2033 	if ((parent_status > SOFT_LIMIT) ||
2034 			allocated > sk_prot_mem_limits(sk, 1))
2035 		sk_enter_memory_pressure(sk);
2036 
2037 	/* Over hard limit (we or our parents) */
2038 	if ((parent_status == OVER_LIMIT) ||
2039 			(allocated > sk_prot_mem_limits(sk, 2)))
2040 		goto suppress_allocation;
2041 
2042 	/* guarantee minimum buffer size under pressure */
2043 	if (kind == SK_MEM_RECV) {
2044 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2045 			return 1;
2046 
2047 	} else { /* SK_MEM_SEND */
2048 		if (sk->sk_type == SOCK_STREAM) {
2049 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2050 				return 1;
2051 		} else if (atomic_read(&sk->sk_wmem_alloc) <
2052 			   prot->sysctl_wmem[0])
2053 				return 1;
2054 	}
2055 
2056 	if (sk_has_memory_pressure(sk)) {
2057 		int alloc;
2058 
2059 		if (!sk_under_memory_pressure(sk))
2060 			return 1;
2061 		alloc = sk_sockets_allocated_read_positive(sk);
2062 		if (sk_prot_mem_limits(sk, 2) > alloc *
2063 		    sk_mem_pages(sk->sk_wmem_queued +
2064 				 atomic_read(&sk->sk_rmem_alloc) +
2065 				 sk->sk_forward_alloc))
2066 			return 1;
2067 	}
2068 
2069 suppress_allocation:
2070 
2071 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2072 		sk_stream_moderate_sndbuf(sk);
2073 
2074 		/* Fail only if socket is _under_ its sndbuf.
2075 		 * In this case we cannot block, so that we have to fail.
2076 		 */
2077 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2078 			return 1;
2079 	}
2080 
2081 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2082 
2083 	/* Alas. Undo changes. */
2084 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2085 
2086 	sk_memory_allocated_sub(sk, amt);
2087 
2088 	return 0;
2089 }
2090 EXPORT_SYMBOL(__sk_mem_schedule);
2091 
2092 /**
2093  *	__sk_reclaim - reclaim memory_allocated
2094  *	@sk: socket
2095  */
2096 void __sk_mem_reclaim(struct sock *sk)
2097 {
2098 	sk_memory_allocated_sub(sk,
2099 				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2100 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2101 
2102 	if (sk_under_memory_pressure(sk) &&
2103 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2104 		sk_leave_memory_pressure(sk);
2105 }
2106 EXPORT_SYMBOL(__sk_mem_reclaim);
2107 
2108 
2109 /*
2110  * Set of default routines for initialising struct proto_ops when
2111  * the protocol does not support a particular function. In certain
2112  * cases where it makes no sense for a protocol to have a "do nothing"
2113  * function, some default processing is provided.
2114  */
2115 
2116 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2117 {
2118 	return -EOPNOTSUPP;
2119 }
2120 EXPORT_SYMBOL(sock_no_bind);
2121 
2122 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2123 		    int len, int flags)
2124 {
2125 	return -EOPNOTSUPP;
2126 }
2127 EXPORT_SYMBOL(sock_no_connect);
2128 
2129 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2130 {
2131 	return -EOPNOTSUPP;
2132 }
2133 EXPORT_SYMBOL(sock_no_socketpair);
2134 
2135 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2136 {
2137 	return -EOPNOTSUPP;
2138 }
2139 EXPORT_SYMBOL(sock_no_accept);
2140 
2141 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2142 		    int *len, int peer)
2143 {
2144 	return -EOPNOTSUPP;
2145 }
2146 EXPORT_SYMBOL(sock_no_getname);
2147 
2148 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2149 {
2150 	return 0;
2151 }
2152 EXPORT_SYMBOL(sock_no_poll);
2153 
2154 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2155 {
2156 	return -EOPNOTSUPP;
2157 }
2158 EXPORT_SYMBOL(sock_no_ioctl);
2159 
2160 int sock_no_listen(struct socket *sock, int backlog)
2161 {
2162 	return -EOPNOTSUPP;
2163 }
2164 EXPORT_SYMBOL(sock_no_listen);
2165 
2166 int sock_no_shutdown(struct socket *sock, int how)
2167 {
2168 	return -EOPNOTSUPP;
2169 }
2170 EXPORT_SYMBOL(sock_no_shutdown);
2171 
2172 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2173 		    char __user *optval, unsigned int optlen)
2174 {
2175 	return -EOPNOTSUPP;
2176 }
2177 EXPORT_SYMBOL(sock_no_setsockopt);
2178 
2179 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2180 		    char __user *optval, int __user *optlen)
2181 {
2182 	return -EOPNOTSUPP;
2183 }
2184 EXPORT_SYMBOL(sock_no_getsockopt);
2185 
2186 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2187 		    size_t len)
2188 {
2189 	return -EOPNOTSUPP;
2190 }
2191 EXPORT_SYMBOL(sock_no_sendmsg);
2192 
2193 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2194 		    size_t len, int flags)
2195 {
2196 	return -EOPNOTSUPP;
2197 }
2198 EXPORT_SYMBOL(sock_no_recvmsg);
2199 
2200 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2201 {
2202 	/* Mirror missing mmap method error code */
2203 	return -ENODEV;
2204 }
2205 EXPORT_SYMBOL(sock_no_mmap);
2206 
2207 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2208 {
2209 	ssize_t res;
2210 	struct msghdr msg = {.msg_flags = flags};
2211 	struct kvec iov;
2212 	char *kaddr = kmap(page);
2213 	iov.iov_base = kaddr + offset;
2214 	iov.iov_len = size;
2215 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2216 	kunmap(page);
2217 	return res;
2218 }
2219 EXPORT_SYMBOL(sock_no_sendpage);
2220 
2221 /*
2222  *	Default Socket Callbacks
2223  */
2224 
2225 static void sock_def_wakeup(struct sock *sk)
2226 {
2227 	struct socket_wq *wq;
2228 
2229 	rcu_read_lock();
2230 	wq = rcu_dereference(sk->sk_wq);
2231 	if (wq_has_sleeper(wq))
2232 		wake_up_interruptible_all(&wq->wait);
2233 	rcu_read_unlock();
2234 }
2235 
2236 static void sock_def_error_report(struct sock *sk)
2237 {
2238 	struct socket_wq *wq;
2239 
2240 	rcu_read_lock();
2241 	wq = rcu_dereference(sk->sk_wq);
2242 	if (wq_has_sleeper(wq))
2243 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2244 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2245 	rcu_read_unlock();
2246 }
2247 
2248 static void sock_def_readable(struct sock *sk)
2249 {
2250 	struct socket_wq *wq;
2251 
2252 	rcu_read_lock();
2253 	wq = rcu_dereference(sk->sk_wq);
2254 	if (wq_has_sleeper(wq))
2255 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2256 						POLLRDNORM | POLLRDBAND);
2257 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2258 	rcu_read_unlock();
2259 }
2260 
2261 static void sock_def_write_space(struct sock *sk)
2262 {
2263 	struct socket_wq *wq;
2264 
2265 	rcu_read_lock();
2266 
2267 	/* Do not wake up a writer until he can make "significant"
2268 	 * progress.  --DaveM
2269 	 */
2270 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2271 		wq = rcu_dereference(sk->sk_wq);
2272 		if (wq_has_sleeper(wq))
2273 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2274 						POLLWRNORM | POLLWRBAND);
2275 
2276 		/* Should agree with poll, otherwise some programs break */
2277 		if (sock_writeable(sk))
2278 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2279 	}
2280 
2281 	rcu_read_unlock();
2282 }
2283 
2284 static void sock_def_destruct(struct sock *sk)
2285 {
2286 	kfree(sk->sk_protinfo);
2287 }
2288 
2289 void sk_send_sigurg(struct sock *sk)
2290 {
2291 	if (sk->sk_socket && sk->sk_socket->file)
2292 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2293 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2294 }
2295 EXPORT_SYMBOL(sk_send_sigurg);
2296 
2297 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2298 		    unsigned long expires)
2299 {
2300 	if (!mod_timer(timer, expires))
2301 		sock_hold(sk);
2302 }
2303 EXPORT_SYMBOL(sk_reset_timer);
2304 
2305 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2306 {
2307 	if (del_timer(timer))
2308 		__sock_put(sk);
2309 }
2310 EXPORT_SYMBOL(sk_stop_timer);
2311 
2312 void sock_init_data(struct socket *sock, struct sock *sk)
2313 {
2314 	skb_queue_head_init(&sk->sk_receive_queue);
2315 	skb_queue_head_init(&sk->sk_write_queue);
2316 	skb_queue_head_init(&sk->sk_error_queue);
2317 #ifdef CONFIG_NET_DMA
2318 	skb_queue_head_init(&sk->sk_async_wait_queue);
2319 #endif
2320 
2321 	sk->sk_send_head	=	NULL;
2322 
2323 	init_timer(&sk->sk_timer);
2324 
2325 	sk->sk_allocation	=	GFP_KERNEL;
2326 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2327 	sk->sk_sndbuf		=	sysctl_wmem_default;
2328 	sk->sk_state		=	TCP_CLOSE;
2329 	sk_set_socket(sk, sock);
2330 
2331 	sock_set_flag(sk, SOCK_ZAPPED);
2332 
2333 	if (sock) {
2334 		sk->sk_type	=	sock->type;
2335 		sk->sk_wq	=	sock->wq;
2336 		sock->sk	=	sk;
2337 	} else
2338 		sk->sk_wq	=	NULL;
2339 
2340 	spin_lock_init(&sk->sk_dst_lock);
2341 	rwlock_init(&sk->sk_callback_lock);
2342 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2343 			af_callback_keys + sk->sk_family,
2344 			af_family_clock_key_strings[sk->sk_family]);
2345 
2346 	sk->sk_state_change	=	sock_def_wakeup;
2347 	sk->sk_data_ready	=	sock_def_readable;
2348 	sk->sk_write_space	=	sock_def_write_space;
2349 	sk->sk_error_report	=	sock_def_error_report;
2350 	sk->sk_destruct		=	sock_def_destruct;
2351 
2352 	sk->sk_frag.page	=	NULL;
2353 	sk->sk_frag.offset	=	0;
2354 	sk->sk_peek_off		=	-1;
2355 
2356 	sk->sk_peer_pid 	=	NULL;
2357 	sk->sk_peer_cred	=	NULL;
2358 	sk->sk_write_pending	=	0;
2359 	sk->sk_rcvlowat		=	1;
2360 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2361 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2362 
2363 	sk->sk_stamp = ktime_set(-1L, 0);
2364 
2365 #ifdef CONFIG_NET_RX_BUSY_POLL
2366 	sk->sk_napi_id		=	0;
2367 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2368 #endif
2369 
2370 	sk->sk_max_pacing_rate = ~0U;
2371 	sk->sk_pacing_rate = ~0U;
2372 	/*
2373 	 * Before updating sk_refcnt, we must commit prior changes to memory
2374 	 * (Documentation/RCU/rculist_nulls.txt for details)
2375 	 */
2376 	smp_wmb();
2377 	atomic_set(&sk->sk_refcnt, 1);
2378 	atomic_set(&sk->sk_drops, 0);
2379 }
2380 EXPORT_SYMBOL(sock_init_data);
2381 
2382 void lock_sock_nested(struct sock *sk, int subclass)
2383 {
2384 	might_sleep();
2385 	spin_lock_bh(&sk->sk_lock.slock);
2386 	if (sk->sk_lock.owned)
2387 		__lock_sock(sk);
2388 	sk->sk_lock.owned = 1;
2389 	spin_unlock(&sk->sk_lock.slock);
2390 	/*
2391 	 * The sk_lock has mutex_lock() semantics here:
2392 	 */
2393 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2394 	local_bh_enable();
2395 }
2396 EXPORT_SYMBOL(lock_sock_nested);
2397 
2398 void release_sock(struct sock *sk)
2399 {
2400 	/*
2401 	 * The sk_lock has mutex_unlock() semantics:
2402 	 */
2403 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2404 
2405 	spin_lock_bh(&sk->sk_lock.slock);
2406 	if (sk->sk_backlog.tail)
2407 		__release_sock(sk);
2408 
2409 	/* Warning : release_cb() might need to release sk ownership,
2410 	 * ie call sock_release_ownership(sk) before us.
2411 	 */
2412 	if (sk->sk_prot->release_cb)
2413 		sk->sk_prot->release_cb(sk);
2414 
2415 	sock_release_ownership(sk);
2416 	if (waitqueue_active(&sk->sk_lock.wq))
2417 		wake_up(&sk->sk_lock.wq);
2418 	spin_unlock_bh(&sk->sk_lock.slock);
2419 }
2420 EXPORT_SYMBOL(release_sock);
2421 
2422 /**
2423  * lock_sock_fast - fast version of lock_sock
2424  * @sk: socket
2425  *
2426  * This version should be used for very small section, where process wont block
2427  * return false if fast path is taken
2428  *   sk_lock.slock locked, owned = 0, BH disabled
2429  * return true if slow path is taken
2430  *   sk_lock.slock unlocked, owned = 1, BH enabled
2431  */
2432 bool lock_sock_fast(struct sock *sk)
2433 {
2434 	might_sleep();
2435 	spin_lock_bh(&sk->sk_lock.slock);
2436 
2437 	if (!sk->sk_lock.owned)
2438 		/*
2439 		 * Note : We must disable BH
2440 		 */
2441 		return false;
2442 
2443 	__lock_sock(sk);
2444 	sk->sk_lock.owned = 1;
2445 	spin_unlock(&sk->sk_lock.slock);
2446 	/*
2447 	 * The sk_lock has mutex_lock() semantics here:
2448 	 */
2449 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2450 	local_bh_enable();
2451 	return true;
2452 }
2453 EXPORT_SYMBOL(lock_sock_fast);
2454 
2455 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2456 {
2457 	struct timeval tv;
2458 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2459 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2460 	tv = ktime_to_timeval(sk->sk_stamp);
2461 	if (tv.tv_sec == -1)
2462 		return -ENOENT;
2463 	if (tv.tv_sec == 0) {
2464 		sk->sk_stamp = ktime_get_real();
2465 		tv = ktime_to_timeval(sk->sk_stamp);
2466 	}
2467 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2468 }
2469 EXPORT_SYMBOL(sock_get_timestamp);
2470 
2471 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2472 {
2473 	struct timespec ts;
2474 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2475 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2476 	ts = ktime_to_timespec(sk->sk_stamp);
2477 	if (ts.tv_sec == -1)
2478 		return -ENOENT;
2479 	if (ts.tv_sec == 0) {
2480 		sk->sk_stamp = ktime_get_real();
2481 		ts = ktime_to_timespec(sk->sk_stamp);
2482 	}
2483 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2484 }
2485 EXPORT_SYMBOL(sock_get_timestampns);
2486 
2487 void sock_enable_timestamp(struct sock *sk, int flag)
2488 {
2489 	if (!sock_flag(sk, flag)) {
2490 		unsigned long previous_flags = sk->sk_flags;
2491 
2492 		sock_set_flag(sk, flag);
2493 		/*
2494 		 * we just set one of the two flags which require net
2495 		 * time stamping, but time stamping might have been on
2496 		 * already because of the other one
2497 		 */
2498 		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2499 			net_enable_timestamp();
2500 	}
2501 }
2502 
2503 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2504 		       int level, int type)
2505 {
2506 	struct sock_exterr_skb *serr;
2507 	struct sk_buff *skb, *skb2;
2508 	int copied, err;
2509 
2510 	err = -EAGAIN;
2511 	skb = skb_dequeue(&sk->sk_error_queue);
2512 	if (skb == NULL)
2513 		goto out;
2514 
2515 	copied = skb->len;
2516 	if (copied > len) {
2517 		msg->msg_flags |= MSG_TRUNC;
2518 		copied = len;
2519 	}
2520 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2521 	if (err)
2522 		goto out_free_skb;
2523 
2524 	sock_recv_timestamp(msg, sk, skb);
2525 
2526 	serr = SKB_EXT_ERR(skb);
2527 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2528 
2529 	msg->msg_flags |= MSG_ERRQUEUE;
2530 	err = copied;
2531 
2532 	/* Reset and regenerate socket error */
2533 	spin_lock_bh(&sk->sk_error_queue.lock);
2534 	sk->sk_err = 0;
2535 	if ((skb2 = skb_peek(&sk->sk_error_queue)) != NULL) {
2536 		sk->sk_err = SKB_EXT_ERR(skb2)->ee.ee_errno;
2537 		spin_unlock_bh(&sk->sk_error_queue.lock);
2538 		sk->sk_error_report(sk);
2539 	} else
2540 		spin_unlock_bh(&sk->sk_error_queue.lock);
2541 
2542 out_free_skb:
2543 	kfree_skb(skb);
2544 out:
2545 	return err;
2546 }
2547 EXPORT_SYMBOL(sock_recv_errqueue);
2548 
2549 /*
2550  *	Get a socket option on an socket.
2551  *
2552  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2553  *	asynchronous errors should be reported by getsockopt. We assume
2554  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2555  */
2556 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2557 			   char __user *optval, int __user *optlen)
2558 {
2559 	struct sock *sk = sock->sk;
2560 
2561 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2562 }
2563 EXPORT_SYMBOL(sock_common_getsockopt);
2564 
2565 #ifdef CONFIG_COMPAT
2566 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2567 				  char __user *optval, int __user *optlen)
2568 {
2569 	struct sock *sk = sock->sk;
2570 
2571 	if (sk->sk_prot->compat_getsockopt != NULL)
2572 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2573 						      optval, optlen);
2574 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2575 }
2576 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2577 #endif
2578 
2579 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2580 			struct msghdr *msg, size_t size, int flags)
2581 {
2582 	struct sock *sk = sock->sk;
2583 	int addr_len = 0;
2584 	int err;
2585 
2586 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2587 				   flags & ~MSG_DONTWAIT, &addr_len);
2588 	if (err >= 0)
2589 		msg->msg_namelen = addr_len;
2590 	return err;
2591 }
2592 EXPORT_SYMBOL(sock_common_recvmsg);
2593 
2594 /*
2595  *	Set socket options on an inet socket.
2596  */
2597 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2598 			   char __user *optval, unsigned int optlen)
2599 {
2600 	struct sock *sk = sock->sk;
2601 
2602 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2603 }
2604 EXPORT_SYMBOL(sock_common_setsockopt);
2605 
2606 #ifdef CONFIG_COMPAT
2607 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2608 				  char __user *optval, unsigned int optlen)
2609 {
2610 	struct sock *sk = sock->sk;
2611 
2612 	if (sk->sk_prot->compat_setsockopt != NULL)
2613 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2614 						      optval, optlen);
2615 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2616 }
2617 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2618 #endif
2619 
2620 void sk_common_release(struct sock *sk)
2621 {
2622 	if (sk->sk_prot->destroy)
2623 		sk->sk_prot->destroy(sk);
2624 
2625 	/*
2626 	 * Observation: when sock_common_release is called, processes have
2627 	 * no access to socket. But net still has.
2628 	 * Step one, detach it from networking:
2629 	 *
2630 	 * A. Remove from hash tables.
2631 	 */
2632 
2633 	sk->sk_prot->unhash(sk);
2634 
2635 	/*
2636 	 * In this point socket cannot receive new packets, but it is possible
2637 	 * that some packets are in flight because some CPU runs receiver and
2638 	 * did hash table lookup before we unhashed socket. They will achieve
2639 	 * receive queue and will be purged by socket destructor.
2640 	 *
2641 	 * Also we still have packets pending on receive queue and probably,
2642 	 * our own packets waiting in device queues. sock_destroy will drain
2643 	 * receive queue, but transmitted packets will delay socket destruction
2644 	 * until the last reference will be released.
2645 	 */
2646 
2647 	sock_orphan(sk);
2648 
2649 	xfrm_sk_free_policy(sk);
2650 
2651 	sk_refcnt_debug_release(sk);
2652 
2653 	if (sk->sk_frag.page) {
2654 		put_page(sk->sk_frag.page);
2655 		sk->sk_frag.page = NULL;
2656 	}
2657 
2658 	sock_put(sk);
2659 }
2660 EXPORT_SYMBOL(sk_common_release);
2661 
2662 #ifdef CONFIG_PROC_FS
2663 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2664 struct prot_inuse {
2665 	int val[PROTO_INUSE_NR];
2666 };
2667 
2668 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2669 
2670 #ifdef CONFIG_NET_NS
2671 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2672 {
2673 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2674 }
2675 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2676 
2677 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2678 {
2679 	int cpu, idx = prot->inuse_idx;
2680 	int res = 0;
2681 
2682 	for_each_possible_cpu(cpu)
2683 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2684 
2685 	return res >= 0 ? res : 0;
2686 }
2687 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2688 
2689 static int __net_init sock_inuse_init_net(struct net *net)
2690 {
2691 	net->core.inuse = alloc_percpu(struct prot_inuse);
2692 	return net->core.inuse ? 0 : -ENOMEM;
2693 }
2694 
2695 static void __net_exit sock_inuse_exit_net(struct net *net)
2696 {
2697 	free_percpu(net->core.inuse);
2698 }
2699 
2700 static struct pernet_operations net_inuse_ops = {
2701 	.init = sock_inuse_init_net,
2702 	.exit = sock_inuse_exit_net,
2703 };
2704 
2705 static __init int net_inuse_init(void)
2706 {
2707 	if (register_pernet_subsys(&net_inuse_ops))
2708 		panic("Cannot initialize net inuse counters");
2709 
2710 	return 0;
2711 }
2712 
2713 core_initcall(net_inuse_init);
2714 #else
2715 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2716 
2717 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2718 {
2719 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2720 }
2721 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2722 
2723 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2724 {
2725 	int cpu, idx = prot->inuse_idx;
2726 	int res = 0;
2727 
2728 	for_each_possible_cpu(cpu)
2729 		res += per_cpu(prot_inuse, cpu).val[idx];
2730 
2731 	return res >= 0 ? res : 0;
2732 }
2733 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2734 #endif
2735 
2736 static void assign_proto_idx(struct proto *prot)
2737 {
2738 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2739 
2740 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2741 		pr_err("PROTO_INUSE_NR exhausted\n");
2742 		return;
2743 	}
2744 
2745 	set_bit(prot->inuse_idx, proto_inuse_idx);
2746 }
2747 
2748 static void release_proto_idx(struct proto *prot)
2749 {
2750 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2751 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2752 }
2753 #else
2754 static inline void assign_proto_idx(struct proto *prot)
2755 {
2756 }
2757 
2758 static inline void release_proto_idx(struct proto *prot)
2759 {
2760 }
2761 #endif
2762 
2763 int proto_register(struct proto *prot, int alloc_slab)
2764 {
2765 	if (alloc_slab) {
2766 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2767 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2768 					NULL);
2769 
2770 		if (prot->slab == NULL) {
2771 			pr_crit("%s: Can't create sock SLAB cache!\n",
2772 				prot->name);
2773 			goto out;
2774 		}
2775 
2776 		if (prot->rsk_prot != NULL) {
2777 			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2778 			if (prot->rsk_prot->slab_name == NULL)
2779 				goto out_free_sock_slab;
2780 
2781 			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2782 								 prot->rsk_prot->obj_size, 0,
2783 								 SLAB_HWCACHE_ALIGN, NULL);
2784 
2785 			if (prot->rsk_prot->slab == NULL) {
2786 				pr_crit("%s: Can't create request sock SLAB cache!\n",
2787 					prot->name);
2788 				goto out_free_request_sock_slab_name;
2789 			}
2790 		}
2791 
2792 		if (prot->twsk_prot != NULL) {
2793 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2794 
2795 			if (prot->twsk_prot->twsk_slab_name == NULL)
2796 				goto out_free_request_sock_slab;
2797 
2798 			prot->twsk_prot->twsk_slab =
2799 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2800 						  prot->twsk_prot->twsk_obj_size,
2801 						  0,
2802 						  SLAB_HWCACHE_ALIGN |
2803 							prot->slab_flags,
2804 						  NULL);
2805 			if (prot->twsk_prot->twsk_slab == NULL)
2806 				goto out_free_timewait_sock_slab_name;
2807 		}
2808 	}
2809 
2810 	mutex_lock(&proto_list_mutex);
2811 	list_add(&prot->node, &proto_list);
2812 	assign_proto_idx(prot);
2813 	mutex_unlock(&proto_list_mutex);
2814 	return 0;
2815 
2816 out_free_timewait_sock_slab_name:
2817 	kfree(prot->twsk_prot->twsk_slab_name);
2818 out_free_request_sock_slab:
2819 	if (prot->rsk_prot && prot->rsk_prot->slab) {
2820 		kmem_cache_destroy(prot->rsk_prot->slab);
2821 		prot->rsk_prot->slab = NULL;
2822 	}
2823 out_free_request_sock_slab_name:
2824 	if (prot->rsk_prot)
2825 		kfree(prot->rsk_prot->slab_name);
2826 out_free_sock_slab:
2827 	kmem_cache_destroy(prot->slab);
2828 	prot->slab = NULL;
2829 out:
2830 	return -ENOBUFS;
2831 }
2832 EXPORT_SYMBOL(proto_register);
2833 
2834 void proto_unregister(struct proto *prot)
2835 {
2836 	mutex_lock(&proto_list_mutex);
2837 	release_proto_idx(prot);
2838 	list_del(&prot->node);
2839 	mutex_unlock(&proto_list_mutex);
2840 
2841 	if (prot->slab != NULL) {
2842 		kmem_cache_destroy(prot->slab);
2843 		prot->slab = NULL;
2844 	}
2845 
2846 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2847 		kmem_cache_destroy(prot->rsk_prot->slab);
2848 		kfree(prot->rsk_prot->slab_name);
2849 		prot->rsk_prot->slab = NULL;
2850 	}
2851 
2852 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2853 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2854 		kfree(prot->twsk_prot->twsk_slab_name);
2855 		prot->twsk_prot->twsk_slab = NULL;
2856 	}
2857 }
2858 EXPORT_SYMBOL(proto_unregister);
2859 
2860 #ifdef CONFIG_PROC_FS
2861 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2862 	__acquires(proto_list_mutex)
2863 {
2864 	mutex_lock(&proto_list_mutex);
2865 	return seq_list_start_head(&proto_list, *pos);
2866 }
2867 
2868 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2869 {
2870 	return seq_list_next(v, &proto_list, pos);
2871 }
2872 
2873 static void proto_seq_stop(struct seq_file *seq, void *v)
2874 	__releases(proto_list_mutex)
2875 {
2876 	mutex_unlock(&proto_list_mutex);
2877 }
2878 
2879 static char proto_method_implemented(const void *method)
2880 {
2881 	return method == NULL ? 'n' : 'y';
2882 }
2883 static long sock_prot_memory_allocated(struct proto *proto)
2884 {
2885 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2886 }
2887 
2888 static char *sock_prot_memory_pressure(struct proto *proto)
2889 {
2890 	return proto->memory_pressure != NULL ?
2891 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2892 }
2893 
2894 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2895 {
2896 
2897 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2898 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2899 		   proto->name,
2900 		   proto->obj_size,
2901 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2902 		   sock_prot_memory_allocated(proto),
2903 		   sock_prot_memory_pressure(proto),
2904 		   proto->max_header,
2905 		   proto->slab == NULL ? "no" : "yes",
2906 		   module_name(proto->owner),
2907 		   proto_method_implemented(proto->close),
2908 		   proto_method_implemented(proto->connect),
2909 		   proto_method_implemented(proto->disconnect),
2910 		   proto_method_implemented(proto->accept),
2911 		   proto_method_implemented(proto->ioctl),
2912 		   proto_method_implemented(proto->init),
2913 		   proto_method_implemented(proto->destroy),
2914 		   proto_method_implemented(proto->shutdown),
2915 		   proto_method_implemented(proto->setsockopt),
2916 		   proto_method_implemented(proto->getsockopt),
2917 		   proto_method_implemented(proto->sendmsg),
2918 		   proto_method_implemented(proto->recvmsg),
2919 		   proto_method_implemented(proto->sendpage),
2920 		   proto_method_implemented(proto->bind),
2921 		   proto_method_implemented(proto->backlog_rcv),
2922 		   proto_method_implemented(proto->hash),
2923 		   proto_method_implemented(proto->unhash),
2924 		   proto_method_implemented(proto->get_port),
2925 		   proto_method_implemented(proto->enter_memory_pressure));
2926 }
2927 
2928 static int proto_seq_show(struct seq_file *seq, void *v)
2929 {
2930 	if (v == &proto_list)
2931 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2932 			   "protocol",
2933 			   "size",
2934 			   "sockets",
2935 			   "memory",
2936 			   "press",
2937 			   "maxhdr",
2938 			   "slab",
2939 			   "module",
2940 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2941 	else
2942 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2943 	return 0;
2944 }
2945 
2946 static const struct seq_operations proto_seq_ops = {
2947 	.start  = proto_seq_start,
2948 	.next   = proto_seq_next,
2949 	.stop   = proto_seq_stop,
2950 	.show   = proto_seq_show,
2951 };
2952 
2953 static int proto_seq_open(struct inode *inode, struct file *file)
2954 {
2955 	return seq_open_net(inode, file, &proto_seq_ops,
2956 			    sizeof(struct seq_net_private));
2957 }
2958 
2959 static const struct file_operations proto_seq_fops = {
2960 	.owner		= THIS_MODULE,
2961 	.open		= proto_seq_open,
2962 	.read		= seq_read,
2963 	.llseek		= seq_lseek,
2964 	.release	= seq_release_net,
2965 };
2966 
2967 static __net_init int proto_init_net(struct net *net)
2968 {
2969 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2970 		return -ENOMEM;
2971 
2972 	return 0;
2973 }
2974 
2975 static __net_exit void proto_exit_net(struct net *net)
2976 {
2977 	remove_proc_entry("protocols", net->proc_net);
2978 }
2979 
2980 
2981 static __net_initdata struct pernet_operations proto_net_ops = {
2982 	.init = proto_init_net,
2983 	.exit = proto_exit_net,
2984 };
2985 
2986 static int __init proto_init(void)
2987 {
2988 	return register_pernet_subsys(&proto_net_ops);
2989 }
2990 
2991 subsys_initcall(proto_init);
2992 
2993 #endif /* PROC_FS */
2994