xref: /openbmc/linux/net/core/sock.c (revision d41ced01f21ddd2c3a01531bb9edf6c41064e9fc)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114 #include <linux/static_key.h>
115 #include <linux/memcontrol.h>
116 
117 #include <asm/uaccess.h>
118 
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <linux/net_tstamp.h>
126 #include <net/xfrm.h>
127 #include <linux/ipsec.h>
128 #include <net/cls_cgroup.h>
129 #include <net/netprio_cgroup.h>
130 
131 #include <linux/filter.h>
132 
133 #include <trace/events/sock.h>
134 
135 #ifdef CONFIG_INET
136 #include <net/tcp.h>
137 #endif
138 
139 static DEFINE_MUTEX(proto_list_mutex);
140 static LIST_HEAD(proto_list);
141 
142 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
143 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
144 {
145 	struct proto *proto;
146 	int ret = 0;
147 
148 	mutex_lock(&proto_list_mutex);
149 	list_for_each_entry(proto, &proto_list, node) {
150 		if (proto->init_cgroup) {
151 			ret = proto->init_cgroup(cgrp, ss);
152 			if (ret)
153 				goto out;
154 		}
155 	}
156 
157 	mutex_unlock(&proto_list_mutex);
158 	return ret;
159 out:
160 	list_for_each_entry_continue_reverse(proto, &proto_list, node)
161 		if (proto->destroy_cgroup)
162 			proto->destroy_cgroup(cgrp);
163 	mutex_unlock(&proto_list_mutex);
164 	return ret;
165 }
166 
167 void mem_cgroup_sockets_destroy(struct cgroup *cgrp)
168 {
169 	struct proto *proto;
170 
171 	mutex_lock(&proto_list_mutex);
172 	list_for_each_entry_reverse(proto, &proto_list, node)
173 		if (proto->destroy_cgroup)
174 			proto->destroy_cgroup(cgrp);
175 	mutex_unlock(&proto_list_mutex);
176 }
177 #endif
178 
179 /*
180  * Each address family might have different locking rules, so we have
181  * one slock key per address family:
182  */
183 static struct lock_class_key af_family_keys[AF_MAX];
184 static struct lock_class_key af_family_slock_keys[AF_MAX];
185 
186 struct static_key memcg_socket_limit_enabled;
187 EXPORT_SYMBOL(memcg_socket_limit_enabled);
188 
189 /*
190  * Make lock validator output more readable. (we pre-construct these
191  * strings build-time, so that runtime initialization of socket
192  * locks is fast):
193  */
194 static const char *const af_family_key_strings[AF_MAX+1] = {
195   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
196   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
197   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
198   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
199   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
200   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
201   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
202   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
203   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
204   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
205   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
206   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
207   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
208   "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
209 };
210 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
211   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
212   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
213   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
214   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
215   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
216   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
217   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
218   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
219   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
220   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
221   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
222   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
223   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
224   "slock-AF_NFC"   , "slock-AF_MAX"
225 };
226 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
227   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
228   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
229   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
230   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
231   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
232   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
233   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
234   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
235   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
236   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
237   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
238   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
239   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
240   "clock-AF_NFC"   , "clock-AF_MAX"
241 };
242 
243 /*
244  * sk_callback_lock locking rules are per-address-family,
245  * so split the lock classes by using a per-AF key:
246  */
247 static struct lock_class_key af_callback_keys[AF_MAX];
248 
249 /* Take into consideration the size of the struct sk_buff overhead in the
250  * determination of these values, since that is non-constant across
251  * platforms.  This makes socket queueing behavior and performance
252  * not depend upon such differences.
253  */
254 #define _SK_MEM_PACKETS		256
255 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
256 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
257 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
258 
259 /* Run time adjustable parameters. */
260 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
261 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
262 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
263 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
264 
265 /* Maximal space eaten by iovec or ancillary data plus some space */
266 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
267 EXPORT_SYMBOL(sysctl_optmem_max);
268 
269 #if defined(CONFIG_CGROUPS)
270 #if !defined(CONFIG_NET_CLS_CGROUP)
271 int net_cls_subsys_id = -1;
272 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
273 #endif
274 #if !defined(CONFIG_NETPRIO_CGROUP)
275 int net_prio_subsys_id = -1;
276 EXPORT_SYMBOL_GPL(net_prio_subsys_id);
277 #endif
278 #endif
279 
280 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
281 {
282 	struct timeval tv;
283 
284 	if (optlen < sizeof(tv))
285 		return -EINVAL;
286 	if (copy_from_user(&tv, optval, sizeof(tv)))
287 		return -EFAULT;
288 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
289 		return -EDOM;
290 
291 	if (tv.tv_sec < 0) {
292 		static int warned __read_mostly;
293 
294 		*timeo_p = 0;
295 		if (warned < 10 && net_ratelimit()) {
296 			warned++;
297 			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
298 			       "tries to set negative timeout\n",
299 				current->comm, task_pid_nr(current));
300 		}
301 		return 0;
302 	}
303 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
304 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
305 		return 0;
306 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
307 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
308 	return 0;
309 }
310 
311 static void sock_warn_obsolete_bsdism(const char *name)
312 {
313 	static int warned;
314 	static char warncomm[TASK_COMM_LEN];
315 	if (strcmp(warncomm, current->comm) && warned < 5) {
316 		strcpy(warncomm,  current->comm);
317 		printk(KERN_WARNING "process `%s' is using obsolete "
318 		       "%s SO_BSDCOMPAT\n", warncomm, name);
319 		warned++;
320 	}
321 }
322 
323 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
324 
325 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
326 {
327 	if (sk->sk_flags & flags) {
328 		sk->sk_flags &= ~flags;
329 		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
330 			net_disable_timestamp();
331 	}
332 }
333 
334 
335 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
336 {
337 	int err;
338 	int skb_len;
339 	unsigned long flags;
340 	struct sk_buff_head *list = &sk->sk_receive_queue;
341 
342 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
343 		atomic_inc(&sk->sk_drops);
344 		trace_sock_rcvqueue_full(sk, skb);
345 		return -ENOMEM;
346 	}
347 
348 	err = sk_filter(sk, skb);
349 	if (err)
350 		return err;
351 
352 	if (!sk_rmem_schedule(sk, skb->truesize)) {
353 		atomic_inc(&sk->sk_drops);
354 		return -ENOBUFS;
355 	}
356 
357 	skb->dev = NULL;
358 	skb_set_owner_r(skb, sk);
359 
360 	/* Cache the SKB length before we tack it onto the receive
361 	 * queue.  Once it is added it no longer belongs to us and
362 	 * may be freed by other threads of control pulling packets
363 	 * from the queue.
364 	 */
365 	skb_len = skb->len;
366 
367 	/* we escape from rcu protected region, make sure we dont leak
368 	 * a norefcounted dst
369 	 */
370 	skb_dst_force(skb);
371 
372 	spin_lock_irqsave(&list->lock, flags);
373 	skb->dropcount = atomic_read(&sk->sk_drops);
374 	__skb_queue_tail(list, skb);
375 	spin_unlock_irqrestore(&list->lock, flags);
376 
377 	if (!sock_flag(sk, SOCK_DEAD))
378 		sk->sk_data_ready(sk, skb_len);
379 	return 0;
380 }
381 EXPORT_SYMBOL(sock_queue_rcv_skb);
382 
383 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
384 {
385 	int rc = NET_RX_SUCCESS;
386 
387 	if (sk_filter(sk, skb))
388 		goto discard_and_relse;
389 
390 	skb->dev = NULL;
391 
392 	if (sk_rcvqueues_full(sk, skb)) {
393 		atomic_inc(&sk->sk_drops);
394 		goto discard_and_relse;
395 	}
396 	if (nested)
397 		bh_lock_sock_nested(sk);
398 	else
399 		bh_lock_sock(sk);
400 	if (!sock_owned_by_user(sk)) {
401 		/*
402 		 * trylock + unlock semantics:
403 		 */
404 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
405 
406 		rc = sk_backlog_rcv(sk, skb);
407 
408 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
409 	} else if (sk_add_backlog(sk, skb)) {
410 		bh_unlock_sock(sk);
411 		atomic_inc(&sk->sk_drops);
412 		goto discard_and_relse;
413 	}
414 
415 	bh_unlock_sock(sk);
416 out:
417 	sock_put(sk);
418 	return rc;
419 discard_and_relse:
420 	kfree_skb(skb);
421 	goto out;
422 }
423 EXPORT_SYMBOL(sk_receive_skb);
424 
425 void sk_reset_txq(struct sock *sk)
426 {
427 	sk_tx_queue_clear(sk);
428 }
429 EXPORT_SYMBOL(sk_reset_txq);
430 
431 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
432 {
433 	struct dst_entry *dst = __sk_dst_get(sk);
434 
435 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
436 		sk_tx_queue_clear(sk);
437 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
438 		dst_release(dst);
439 		return NULL;
440 	}
441 
442 	return dst;
443 }
444 EXPORT_SYMBOL(__sk_dst_check);
445 
446 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
447 {
448 	struct dst_entry *dst = sk_dst_get(sk);
449 
450 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
451 		sk_dst_reset(sk);
452 		dst_release(dst);
453 		return NULL;
454 	}
455 
456 	return dst;
457 }
458 EXPORT_SYMBOL(sk_dst_check);
459 
460 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
461 {
462 	int ret = -ENOPROTOOPT;
463 #ifdef CONFIG_NETDEVICES
464 	struct net *net = sock_net(sk);
465 	char devname[IFNAMSIZ];
466 	int index;
467 
468 	/* Sorry... */
469 	ret = -EPERM;
470 	if (!capable(CAP_NET_RAW))
471 		goto out;
472 
473 	ret = -EINVAL;
474 	if (optlen < 0)
475 		goto out;
476 
477 	/* Bind this socket to a particular device like "eth0",
478 	 * as specified in the passed interface name. If the
479 	 * name is "" or the option length is zero the socket
480 	 * is not bound.
481 	 */
482 	if (optlen > IFNAMSIZ - 1)
483 		optlen = IFNAMSIZ - 1;
484 	memset(devname, 0, sizeof(devname));
485 
486 	ret = -EFAULT;
487 	if (copy_from_user(devname, optval, optlen))
488 		goto out;
489 
490 	index = 0;
491 	if (devname[0] != '\0') {
492 		struct net_device *dev;
493 
494 		rcu_read_lock();
495 		dev = dev_get_by_name_rcu(net, devname);
496 		if (dev)
497 			index = dev->ifindex;
498 		rcu_read_unlock();
499 		ret = -ENODEV;
500 		if (!dev)
501 			goto out;
502 	}
503 
504 	lock_sock(sk);
505 	sk->sk_bound_dev_if = index;
506 	sk_dst_reset(sk);
507 	release_sock(sk);
508 
509 	ret = 0;
510 
511 out:
512 #endif
513 
514 	return ret;
515 }
516 
517 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
518 {
519 	if (valbool)
520 		sock_set_flag(sk, bit);
521 	else
522 		sock_reset_flag(sk, bit);
523 }
524 
525 /*
526  *	This is meant for all protocols to use and covers goings on
527  *	at the socket level. Everything here is generic.
528  */
529 
530 int sock_setsockopt(struct socket *sock, int level, int optname,
531 		    char __user *optval, unsigned int optlen)
532 {
533 	struct sock *sk = sock->sk;
534 	int val;
535 	int valbool;
536 	struct linger ling;
537 	int ret = 0;
538 
539 	/*
540 	 *	Options without arguments
541 	 */
542 
543 	if (optname == SO_BINDTODEVICE)
544 		return sock_bindtodevice(sk, optval, optlen);
545 
546 	if (optlen < sizeof(int))
547 		return -EINVAL;
548 
549 	if (get_user(val, (int __user *)optval))
550 		return -EFAULT;
551 
552 	valbool = val ? 1 : 0;
553 
554 	lock_sock(sk);
555 
556 	switch (optname) {
557 	case SO_DEBUG:
558 		if (val && !capable(CAP_NET_ADMIN))
559 			ret = -EACCES;
560 		else
561 			sock_valbool_flag(sk, SOCK_DBG, valbool);
562 		break;
563 	case SO_REUSEADDR:
564 		sk->sk_reuse = valbool;
565 		break;
566 	case SO_TYPE:
567 	case SO_PROTOCOL:
568 	case SO_DOMAIN:
569 	case SO_ERROR:
570 		ret = -ENOPROTOOPT;
571 		break;
572 	case SO_DONTROUTE:
573 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
574 		break;
575 	case SO_BROADCAST:
576 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
577 		break;
578 	case SO_SNDBUF:
579 		/* Don't error on this BSD doesn't and if you think
580 		   about it this is right. Otherwise apps have to
581 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
582 		   are treated in BSD as hints */
583 
584 		if (val > sysctl_wmem_max)
585 			val = sysctl_wmem_max;
586 set_sndbuf:
587 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
588 		if ((val * 2) < SOCK_MIN_SNDBUF)
589 			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
590 		else
591 			sk->sk_sndbuf = val * 2;
592 
593 		/*
594 		 *	Wake up sending tasks if we
595 		 *	upped the value.
596 		 */
597 		sk->sk_write_space(sk);
598 		break;
599 
600 	case SO_SNDBUFFORCE:
601 		if (!capable(CAP_NET_ADMIN)) {
602 			ret = -EPERM;
603 			break;
604 		}
605 		goto set_sndbuf;
606 
607 	case SO_RCVBUF:
608 		/* Don't error on this BSD doesn't and if you think
609 		   about it this is right. Otherwise apps have to
610 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
611 		   are treated in BSD as hints */
612 
613 		if (val > sysctl_rmem_max)
614 			val = sysctl_rmem_max;
615 set_rcvbuf:
616 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
617 		/*
618 		 * We double it on the way in to account for
619 		 * "struct sk_buff" etc. overhead.   Applications
620 		 * assume that the SO_RCVBUF setting they make will
621 		 * allow that much actual data to be received on that
622 		 * socket.
623 		 *
624 		 * Applications are unaware that "struct sk_buff" and
625 		 * other overheads allocate from the receive buffer
626 		 * during socket buffer allocation.
627 		 *
628 		 * And after considering the possible alternatives,
629 		 * returning the value we actually used in getsockopt
630 		 * is the most desirable behavior.
631 		 */
632 		if ((val * 2) < SOCK_MIN_RCVBUF)
633 			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
634 		else
635 			sk->sk_rcvbuf = val * 2;
636 		break;
637 
638 	case SO_RCVBUFFORCE:
639 		if (!capable(CAP_NET_ADMIN)) {
640 			ret = -EPERM;
641 			break;
642 		}
643 		goto set_rcvbuf;
644 
645 	case SO_KEEPALIVE:
646 #ifdef CONFIG_INET
647 		if (sk->sk_protocol == IPPROTO_TCP)
648 			tcp_set_keepalive(sk, valbool);
649 #endif
650 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
651 		break;
652 
653 	case SO_OOBINLINE:
654 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
655 		break;
656 
657 	case SO_NO_CHECK:
658 		sk->sk_no_check = valbool;
659 		break;
660 
661 	case SO_PRIORITY:
662 		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
663 			sk->sk_priority = val;
664 		else
665 			ret = -EPERM;
666 		break;
667 
668 	case SO_LINGER:
669 		if (optlen < sizeof(ling)) {
670 			ret = -EINVAL;	/* 1003.1g */
671 			break;
672 		}
673 		if (copy_from_user(&ling, optval, sizeof(ling))) {
674 			ret = -EFAULT;
675 			break;
676 		}
677 		if (!ling.l_onoff)
678 			sock_reset_flag(sk, SOCK_LINGER);
679 		else {
680 #if (BITS_PER_LONG == 32)
681 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
682 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
683 			else
684 #endif
685 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
686 			sock_set_flag(sk, SOCK_LINGER);
687 		}
688 		break;
689 
690 	case SO_BSDCOMPAT:
691 		sock_warn_obsolete_bsdism("setsockopt");
692 		break;
693 
694 	case SO_PASSCRED:
695 		if (valbool)
696 			set_bit(SOCK_PASSCRED, &sock->flags);
697 		else
698 			clear_bit(SOCK_PASSCRED, &sock->flags);
699 		break;
700 
701 	case SO_TIMESTAMP:
702 	case SO_TIMESTAMPNS:
703 		if (valbool)  {
704 			if (optname == SO_TIMESTAMP)
705 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
706 			else
707 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
708 			sock_set_flag(sk, SOCK_RCVTSTAMP);
709 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
710 		} else {
711 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
712 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
713 		}
714 		break;
715 
716 	case SO_TIMESTAMPING:
717 		if (val & ~SOF_TIMESTAMPING_MASK) {
718 			ret = -EINVAL;
719 			break;
720 		}
721 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
722 				  val & SOF_TIMESTAMPING_TX_HARDWARE);
723 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
724 				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
725 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
726 				  val & SOF_TIMESTAMPING_RX_HARDWARE);
727 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
728 			sock_enable_timestamp(sk,
729 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
730 		else
731 			sock_disable_timestamp(sk,
732 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
733 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
734 				  val & SOF_TIMESTAMPING_SOFTWARE);
735 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
736 				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
737 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
738 				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
739 		break;
740 
741 	case SO_RCVLOWAT:
742 		if (val < 0)
743 			val = INT_MAX;
744 		sk->sk_rcvlowat = val ? : 1;
745 		break;
746 
747 	case SO_RCVTIMEO:
748 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
749 		break;
750 
751 	case SO_SNDTIMEO:
752 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
753 		break;
754 
755 	case SO_ATTACH_FILTER:
756 		ret = -EINVAL;
757 		if (optlen == sizeof(struct sock_fprog)) {
758 			struct sock_fprog fprog;
759 
760 			ret = -EFAULT;
761 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
762 				break;
763 
764 			ret = sk_attach_filter(&fprog, sk);
765 		}
766 		break;
767 
768 	case SO_DETACH_FILTER:
769 		ret = sk_detach_filter(sk);
770 		break;
771 
772 	case SO_PASSSEC:
773 		if (valbool)
774 			set_bit(SOCK_PASSSEC, &sock->flags);
775 		else
776 			clear_bit(SOCK_PASSSEC, &sock->flags);
777 		break;
778 	case SO_MARK:
779 		if (!capable(CAP_NET_ADMIN))
780 			ret = -EPERM;
781 		else
782 			sk->sk_mark = val;
783 		break;
784 
785 		/* We implement the SO_SNDLOWAT etc to
786 		   not be settable (1003.1g 5.3) */
787 	case SO_RXQ_OVFL:
788 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
789 		break;
790 
791 	case SO_WIFI_STATUS:
792 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
793 		break;
794 
795 	case SO_PEEK_OFF:
796 		if (sock->ops->set_peek_off)
797 			sock->ops->set_peek_off(sk, val);
798 		else
799 			ret = -EOPNOTSUPP;
800 		break;
801 
802 	case SO_NOFCS:
803 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
804 		break;
805 
806 	default:
807 		ret = -ENOPROTOOPT;
808 		break;
809 	}
810 	release_sock(sk);
811 	return ret;
812 }
813 EXPORT_SYMBOL(sock_setsockopt);
814 
815 
816 void cred_to_ucred(struct pid *pid, const struct cred *cred,
817 		   struct ucred *ucred)
818 {
819 	ucred->pid = pid_vnr(pid);
820 	ucred->uid = ucred->gid = -1;
821 	if (cred) {
822 		struct user_namespace *current_ns = current_user_ns();
823 
824 		ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
825 		ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
826 	}
827 }
828 EXPORT_SYMBOL_GPL(cred_to_ucred);
829 
830 int sock_getsockopt(struct socket *sock, int level, int optname,
831 		    char __user *optval, int __user *optlen)
832 {
833 	struct sock *sk = sock->sk;
834 
835 	union {
836 		int val;
837 		struct linger ling;
838 		struct timeval tm;
839 	} v;
840 
841 	int lv = sizeof(int);
842 	int len;
843 
844 	if (get_user(len, optlen))
845 		return -EFAULT;
846 	if (len < 0)
847 		return -EINVAL;
848 
849 	memset(&v, 0, sizeof(v));
850 
851 	switch (optname) {
852 	case SO_DEBUG:
853 		v.val = sock_flag(sk, SOCK_DBG);
854 		break;
855 
856 	case SO_DONTROUTE:
857 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
858 		break;
859 
860 	case SO_BROADCAST:
861 		v.val = !!sock_flag(sk, SOCK_BROADCAST);
862 		break;
863 
864 	case SO_SNDBUF:
865 		v.val = sk->sk_sndbuf;
866 		break;
867 
868 	case SO_RCVBUF:
869 		v.val = sk->sk_rcvbuf;
870 		break;
871 
872 	case SO_REUSEADDR:
873 		v.val = sk->sk_reuse;
874 		break;
875 
876 	case SO_KEEPALIVE:
877 		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
878 		break;
879 
880 	case SO_TYPE:
881 		v.val = sk->sk_type;
882 		break;
883 
884 	case SO_PROTOCOL:
885 		v.val = sk->sk_protocol;
886 		break;
887 
888 	case SO_DOMAIN:
889 		v.val = sk->sk_family;
890 		break;
891 
892 	case SO_ERROR:
893 		v.val = -sock_error(sk);
894 		if (v.val == 0)
895 			v.val = xchg(&sk->sk_err_soft, 0);
896 		break;
897 
898 	case SO_OOBINLINE:
899 		v.val = !!sock_flag(sk, SOCK_URGINLINE);
900 		break;
901 
902 	case SO_NO_CHECK:
903 		v.val = sk->sk_no_check;
904 		break;
905 
906 	case SO_PRIORITY:
907 		v.val = sk->sk_priority;
908 		break;
909 
910 	case SO_LINGER:
911 		lv		= sizeof(v.ling);
912 		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
913 		v.ling.l_linger	= sk->sk_lingertime / HZ;
914 		break;
915 
916 	case SO_BSDCOMPAT:
917 		sock_warn_obsolete_bsdism("getsockopt");
918 		break;
919 
920 	case SO_TIMESTAMP:
921 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
922 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
923 		break;
924 
925 	case SO_TIMESTAMPNS:
926 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
927 		break;
928 
929 	case SO_TIMESTAMPING:
930 		v.val = 0;
931 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
932 			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
933 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
934 			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
935 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
936 			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
937 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
938 			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
939 		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
940 			v.val |= SOF_TIMESTAMPING_SOFTWARE;
941 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
942 			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
943 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
944 			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
945 		break;
946 
947 	case SO_RCVTIMEO:
948 		lv = sizeof(struct timeval);
949 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
950 			v.tm.tv_sec = 0;
951 			v.tm.tv_usec = 0;
952 		} else {
953 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
954 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
955 		}
956 		break;
957 
958 	case SO_SNDTIMEO:
959 		lv = sizeof(struct timeval);
960 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
961 			v.tm.tv_sec = 0;
962 			v.tm.tv_usec = 0;
963 		} else {
964 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
965 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
966 		}
967 		break;
968 
969 	case SO_RCVLOWAT:
970 		v.val = sk->sk_rcvlowat;
971 		break;
972 
973 	case SO_SNDLOWAT:
974 		v.val = 1;
975 		break;
976 
977 	case SO_PASSCRED:
978 		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
979 		break;
980 
981 	case SO_PEERCRED:
982 	{
983 		struct ucred peercred;
984 		if (len > sizeof(peercred))
985 			len = sizeof(peercred);
986 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
987 		if (copy_to_user(optval, &peercred, len))
988 			return -EFAULT;
989 		goto lenout;
990 	}
991 
992 	case SO_PEERNAME:
993 	{
994 		char address[128];
995 
996 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
997 			return -ENOTCONN;
998 		if (lv < len)
999 			return -EINVAL;
1000 		if (copy_to_user(optval, address, len))
1001 			return -EFAULT;
1002 		goto lenout;
1003 	}
1004 
1005 	/* Dubious BSD thing... Probably nobody even uses it, but
1006 	 * the UNIX standard wants it for whatever reason... -DaveM
1007 	 */
1008 	case SO_ACCEPTCONN:
1009 		v.val = sk->sk_state == TCP_LISTEN;
1010 		break;
1011 
1012 	case SO_PASSSEC:
1013 		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
1014 		break;
1015 
1016 	case SO_PEERSEC:
1017 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1018 
1019 	case SO_MARK:
1020 		v.val = sk->sk_mark;
1021 		break;
1022 
1023 	case SO_RXQ_OVFL:
1024 		v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
1025 		break;
1026 
1027 	case SO_WIFI_STATUS:
1028 		v.val = !!sock_flag(sk, SOCK_WIFI_STATUS);
1029 		break;
1030 
1031 	case SO_PEEK_OFF:
1032 		if (!sock->ops->set_peek_off)
1033 			return -EOPNOTSUPP;
1034 
1035 		v.val = sk->sk_peek_off;
1036 		break;
1037 	case SO_NOFCS:
1038 		v.val = !!sock_flag(sk, SOCK_NOFCS);
1039 		break;
1040 	default:
1041 		return -ENOPROTOOPT;
1042 	}
1043 
1044 	if (len > lv)
1045 		len = lv;
1046 	if (copy_to_user(optval, &v, len))
1047 		return -EFAULT;
1048 lenout:
1049 	if (put_user(len, optlen))
1050 		return -EFAULT;
1051 	return 0;
1052 }
1053 
1054 /*
1055  * Initialize an sk_lock.
1056  *
1057  * (We also register the sk_lock with the lock validator.)
1058  */
1059 static inline void sock_lock_init(struct sock *sk)
1060 {
1061 	sock_lock_init_class_and_name(sk,
1062 			af_family_slock_key_strings[sk->sk_family],
1063 			af_family_slock_keys + sk->sk_family,
1064 			af_family_key_strings[sk->sk_family],
1065 			af_family_keys + sk->sk_family);
1066 }
1067 
1068 /*
1069  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1070  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1071  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1072  */
1073 static void sock_copy(struct sock *nsk, const struct sock *osk)
1074 {
1075 #ifdef CONFIG_SECURITY_NETWORK
1076 	void *sptr = nsk->sk_security;
1077 #endif
1078 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1079 
1080 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1081 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1082 
1083 #ifdef CONFIG_SECURITY_NETWORK
1084 	nsk->sk_security = sptr;
1085 	security_sk_clone(osk, nsk);
1086 #endif
1087 }
1088 
1089 /*
1090  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1091  * un-modified. Special care is taken when initializing object to zero.
1092  */
1093 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1094 {
1095 	if (offsetof(struct sock, sk_node.next) != 0)
1096 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1097 	memset(&sk->sk_node.pprev, 0,
1098 	       size - offsetof(struct sock, sk_node.pprev));
1099 }
1100 
1101 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1102 {
1103 	unsigned long nulls1, nulls2;
1104 
1105 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1106 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1107 	if (nulls1 > nulls2)
1108 		swap(nulls1, nulls2);
1109 
1110 	if (nulls1 != 0)
1111 		memset((char *)sk, 0, nulls1);
1112 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1113 	       nulls2 - nulls1 - sizeof(void *));
1114 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1115 	       size - nulls2 - sizeof(void *));
1116 }
1117 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1118 
1119 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1120 		int family)
1121 {
1122 	struct sock *sk;
1123 	struct kmem_cache *slab;
1124 
1125 	slab = prot->slab;
1126 	if (slab != NULL) {
1127 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1128 		if (!sk)
1129 			return sk;
1130 		if (priority & __GFP_ZERO) {
1131 			if (prot->clear_sk)
1132 				prot->clear_sk(sk, prot->obj_size);
1133 			else
1134 				sk_prot_clear_nulls(sk, prot->obj_size);
1135 		}
1136 	} else
1137 		sk = kmalloc(prot->obj_size, priority);
1138 
1139 	if (sk != NULL) {
1140 		kmemcheck_annotate_bitfield(sk, flags);
1141 
1142 		if (security_sk_alloc(sk, family, priority))
1143 			goto out_free;
1144 
1145 		if (!try_module_get(prot->owner))
1146 			goto out_free_sec;
1147 		sk_tx_queue_clear(sk);
1148 	}
1149 
1150 	return sk;
1151 
1152 out_free_sec:
1153 	security_sk_free(sk);
1154 out_free:
1155 	if (slab != NULL)
1156 		kmem_cache_free(slab, sk);
1157 	else
1158 		kfree(sk);
1159 	return NULL;
1160 }
1161 
1162 static void sk_prot_free(struct proto *prot, struct sock *sk)
1163 {
1164 	struct kmem_cache *slab;
1165 	struct module *owner;
1166 
1167 	owner = prot->owner;
1168 	slab = prot->slab;
1169 
1170 	security_sk_free(sk);
1171 	if (slab != NULL)
1172 		kmem_cache_free(slab, sk);
1173 	else
1174 		kfree(sk);
1175 	module_put(owner);
1176 }
1177 
1178 #ifdef CONFIG_CGROUPS
1179 void sock_update_classid(struct sock *sk)
1180 {
1181 	u32 classid;
1182 
1183 	rcu_read_lock();  /* doing current task, which cannot vanish. */
1184 	classid = task_cls_classid(current);
1185 	rcu_read_unlock();
1186 	if (classid && classid != sk->sk_classid)
1187 		sk->sk_classid = classid;
1188 }
1189 EXPORT_SYMBOL(sock_update_classid);
1190 
1191 void sock_update_netprioidx(struct sock *sk)
1192 {
1193 	if (in_interrupt())
1194 		return;
1195 
1196 	sk->sk_cgrp_prioidx = task_netprioidx(current);
1197 }
1198 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1199 #endif
1200 
1201 /**
1202  *	sk_alloc - All socket objects are allocated here
1203  *	@net: the applicable net namespace
1204  *	@family: protocol family
1205  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1206  *	@prot: struct proto associated with this new sock instance
1207  */
1208 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1209 		      struct proto *prot)
1210 {
1211 	struct sock *sk;
1212 
1213 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1214 	if (sk) {
1215 		sk->sk_family = family;
1216 		/*
1217 		 * See comment in struct sock definition to understand
1218 		 * why we need sk_prot_creator -acme
1219 		 */
1220 		sk->sk_prot = sk->sk_prot_creator = prot;
1221 		sock_lock_init(sk);
1222 		sock_net_set(sk, get_net(net));
1223 		atomic_set(&sk->sk_wmem_alloc, 1);
1224 
1225 		sock_update_classid(sk);
1226 		sock_update_netprioidx(sk);
1227 	}
1228 
1229 	return sk;
1230 }
1231 EXPORT_SYMBOL(sk_alloc);
1232 
1233 static void __sk_free(struct sock *sk)
1234 {
1235 	struct sk_filter *filter;
1236 
1237 	if (sk->sk_destruct)
1238 		sk->sk_destruct(sk);
1239 
1240 	filter = rcu_dereference_check(sk->sk_filter,
1241 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1242 	if (filter) {
1243 		sk_filter_uncharge(sk, filter);
1244 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1245 	}
1246 
1247 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1248 
1249 	if (atomic_read(&sk->sk_omem_alloc))
1250 		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1251 		       __func__, atomic_read(&sk->sk_omem_alloc));
1252 
1253 	if (sk->sk_peer_cred)
1254 		put_cred(sk->sk_peer_cred);
1255 	put_pid(sk->sk_peer_pid);
1256 	put_net(sock_net(sk));
1257 	sk_prot_free(sk->sk_prot_creator, sk);
1258 }
1259 
1260 void sk_free(struct sock *sk)
1261 {
1262 	/*
1263 	 * We subtract one from sk_wmem_alloc and can know if
1264 	 * some packets are still in some tx queue.
1265 	 * If not null, sock_wfree() will call __sk_free(sk) later
1266 	 */
1267 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1268 		__sk_free(sk);
1269 }
1270 EXPORT_SYMBOL(sk_free);
1271 
1272 /*
1273  * Last sock_put should drop reference to sk->sk_net. It has already
1274  * been dropped in sk_change_net. Taking reference to stopping namespace
1275  * is not an option.
1276  * Take reference to a socket to remove it from hash _alive_ and after that
1277  * destroy it in the context of init_net.
1278  */
1279 void sk_release_kernel(struct sock *sk)
1280 {
1281 	if (sk == NULL || sk->sk_socket == NULL)
1282 		return;
1283 
1284 	sock_hold(sk);
1285 	sock_release(sk->sk_socket);
1286 	release_net(sock_net(sk));
1287 	sock_net_set(sk, get_net(&init_net));
1288 	sock_put(sk);
1289 }
1290 EXPORT_SYMBOL(sk_release_kernel);
1291 
1292 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1293 {
1294 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1295 		sock_update_memcg(newsk);
1296 }
1297 
1298 /**
1299  *	sk_clone_lock - clone a socket, and lock its clone
1300  *	@sk: the socket to clone
1301  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1302  *
1303  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1304  */
1305 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1306 {
1307 	struct sock *newsk;
1308 
1309 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1310 	if (newsk != NULL) {
1311 		struct sk_filter *filter;
1312 
1313 		sock_copy(newsk, sk);
1314 
1315 		/* SANITY */
1316 		get_net(sock_net(newsk));
1317 		sk_node_init(&newsk->sk_node);
1318 		sock_lock_init(newsk);
1319 		bh_lock_sock(newsk);
1320 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1321 		newsk->sk_backlog.len = 0;
1322 
1323 		atomic_set(&newsk->sk_rmem_alloc, 0);
1324 		/*
1325 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1326 		 */
1327 		atomic_set(&newsk->sk_wmem_alloc, 1);
1328 		atomic_set(&newsk->sk_omem_alloc, 0);
1329 		skb_queue_head_init(&newsk->sk_receive_queue);
1330 		skb_queue_head_init(&newsk->sk_write_queue);
1331 #ifdef CONFIG_NET_DMA
1332 		skb_queue_head_init(&newsk->sk_async_wait_queue);
1333 #endif
1334 
1335 		spin_lock_init(&newsk->sk_dst_lock);
1336 		rwlock_init(&newsk->sk_callback_lock);
1337 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1338 				af_callback_keys + newsk->sk_family,
1339 				af_family_clock_key_strings[newsk->sk_family]);
1340 
1341 		newsk->sk_dst_cache	= NULL;
1342 		newsk->sk_wmem_queued	= 0;
1343 		newsk->sk_forward_alloc = 0;
1344 		newsk->sk_send_head	= NULL;
1345 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1346 
1347 		sock_reset_flag(newsk, SOCK_DONE);
1348 		skb_queue_head_init(&newsk->sk_error_queue);
1349 
1350 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1351 		if (filter != NULL)
1352 			sk_filter_charge(newsk, filter);
1353 
1354 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1355 			/* It is still raw copy of parent, so invalidate
1356 			 * destructor and make plain sk_free() */
1357 			newsk->sk_destruct = NULL;
1358 			bh_unlock_sock(newsk);
1359 			sk_free(newsk);
1360 			newsk = NULL;
1361 			goto out;
1362 		}
1363 
1364 		newsk->sk_err	   = 0;
1365 		newsk->sk_priority = 0;
1366 		/*
1367 		 * Before updating sk_refcnt, we must commit prior changes to memory
1368 		 * (Documentation/RCU/rculist_nulls.txt for details)
1369 		 */
1370 		smp_wmb();
1371 		atomic_set(&newsk->sk_refcnt, 2);
1372 
1373 		/*
1374 		 * Increment the counter in the same struct proto as the master
1375 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1376 		 * is the same as sk->sk_prot->socks, as this field was copied
1377 		 * with memcpy).
1378 		 *
1379 		 * This _changes_ the previous behaviour, where
1380 		 * tcp_create_openreq_child always was incrementing the
1381 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1382 		 * to be taken into account in all callers. -acme
1383 		 */
1384 		sk_refcnt_debug_inc(newsk);
1385 		sk_set_socket(newsk, NULL);
1386 		newsk->sk_wq = NULL;
1387 
1388 		sk_update_clone(sk, newsk);
1389 
1390 		if (newsk->sk_prot->sockets_allocated)
1391 			sk_sockets_allocated_inc(newsk);
1392 
1393 		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1394 			net_enable_timestamp();
1395 	}
1396 out:
1397 	return newsk;
1398 }
1399 EXPORT_SYMBOL_GPL(sk_clone_lock);
1400 
1401 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1402 {
1403 	__sk_dst_set(sk, dst);
1404 	sk->sk_route_caps = dst->dev->features;
1405 	if (sk->sk_route_caps & NETIF_F_GSO)
1406 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1407 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1408 	if (sk_can_gso(sk)) {
1409 		if (dst->header_len) {
1410 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1411 		} else {
1412 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1413 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1414 		}
1415 	}
1416 }
1417 EXPORT_SYMBOL_GPL(sk_setup_caps);
1418 
1419 void __init sk_init(void)
1420 {
1421 	if (totalram_pages <= 4096) {
1422 		sysctl_wmem_max = 32767;
1423 		sysctl_rmem_max = 32767;
1424 		sysctl_wmem_default = 32767;
1425 		sysctl_rmem_default = 32767;
1426 	} else if (totalram_pages >= 131072) {
1427 		sysctl_wmem_max = 131071;
1428 		sysctl_rmem_max = 131071;
1429 	}
1430 }
1431 
1432 /*
1433  *	Simple resource managers for sockets.
1434  */
1435 
1436 
1437 /*
1438  * Write buffer destructor automatically called from kfree_skb.
1439  */
1440 void sock_wfree(struct sk_buff *skb)
1441 {
1442 	struct sock *sk = skb->sk;
1443 	unsigned int len = skb->truesize;
1444 
1445 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1446 		/*
1447 		 * Keep a reference on sk_wmem_alloc, this will be released
1448 		 * after sk_write_space() call
1449 		 */
1450 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1451 		sk->sk_write_space(sk);
1452 		len = 1;
1453 	}
1454 	/*
1455 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1456 	 * could not do because of in-flight packets
1457 	 */
1458 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1459 		__sk_free(sk);
1460 }
1461 EXPORT_SYMBOL(sock_wfree);
1462 
1463 /*
1464  * Read buffer destructor automatically called from kfree_skb.
1465  */
1466 void sock_rfree(struct sk_buff *skb)
1467 {
1468 	struct sock *sk = skb->sk;
1469 	unsigned int len = skb->truesize;
1470 
1471 	atomic_sub(len, &sk->sk_rmem_alloc);
1472 	sk_mem_uncharge(sk, len);
1473 }
1474 EXPORT_SYMBOL(sock_rfree);
1475 
1476 
1477 int sock_i_uid(struct sock *sk)
1478 {
1479 	int uid;
1480 
1481 	read_lock_bh(&sk->sk_callback_lock);
1482 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1483 	read_unlock_bh(&sk->sk_callback_lock);
1484 	return uid;
1485 }
1486 EXPORT_SYMBOL(sock_i_uid);
1487 
1488 unsigned long sock_i_ino(struct sock *sk)
1489 {
1490 	unsigned long ino;
1491 
1492 	read_lock_bh(&sk->sk_callback_lock);
1493 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1494 	read_unlock_bh(&sk->sk_callback_lock);
1495 	return ino;
1496 }
1497 EXPORT_SYMBOL(sock_i_ino);
1498 
1499 /*
1500  * Allocate a skb from the socket's send buffer.
1501  */
1502 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1503 			     gfp_t priority)
1504 {
1505 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1506 		struct sk_buff *skb = alloc_skb(size, priority);
1507 		if (skb) {
1508 			skb_set_owner_w(skb, sk);
1509 			return skb;
1510 		}
1511 	}
1512 	return NULL;
1513 }
1514 EXPORT_SYMBOL(sock_wmalloc);
1515 
1516 /*
1517  * Allocate a skb from the socket's receive buffer.
1518  */
1519 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1520 			     gfp_t priority)
1521 {
1522 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1523 		struct sk_buff *skb = alloc_skb(size, priority);
1524 		if (skb) {
1525 			skb_set_owner_r(skb, sk);
1526 			return skb;
1527 		}
1528 	}
1529 	return NULL;
1530 }
1531 
1532 /*
1533  * Allocate a memory block from the socket's option memory buffer.
1534  */
1535 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1536 {
1537 	if ((unsigned)size <= sysctl_optmem_max &&
1538 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1539 		void *mem;
1540 		/* First do the add, to avoid the race if kmalloc
1541 		 * might sleep.
1542 		 */
1543 		atomic_add(size, &sk->sk_omem_alloc);
1544 		mem = kmalloc(size, priority);
1545 		if (mem)
1546 			return mem;
1547 		atomic_sub(size, &sk->sk_omem_alloc);
1548 	}
1549 	return NULL;
1550 }
1551 EXPORT_SYMBOL(sock_kmalloc);
1552 
1553 /*
1554  * Free an option memory block.
1555  */
1556 void sock_kfree_s(struct sock *sk, void *mem, int size)
1557 {
1558 	kfree(mem);
1559 	atomic_sub(size, &sk->sk_omem_alloc);
1560 }
1561 EXPORT_SYMBOL(sock_kfree_s);
1562 
1563 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1564    I think, these locks should be removed for datagram sockets.
1565  */
1566 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1567 {
1568 	DEFINE_WAIT(wait);
1569 
1570 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1571 	for (;;) {
1572 		if (!timeo)
1573 			break;
1574 		if (signal_pending(current))
1575 			break;
1576 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1577 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1578 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1579 			break;
1580 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1581 			break;
1582 		if (sk->sk_err)
1583 			break;
1584 		timeo = schedule_timeout(timeo);
1585 	}
1586 	finish_wait(sk_sleep(sk), &wait);
1587 	return timeo;
1588 }
1589 
1590 
1591 /*
1592  *	Generic send/receive buffer handlers
1593  */
1594 
1595 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1596 				     unsigned long data_len, int noblock,
1597 				     int *errcode)
1598 {
1599 	struct sk_buff *skb;
1600 	gfp_t gfp_mask;
1601 	long timeo;
1602 	int err;
1603 
1604 	gfp_mask = sk->sk_allocation;
1605 	if (gfp_mask & __GFP_WAIT)
1606 		gfp_mask |= __GFP_REPEAT;
1607 
1608 	timeo = sock_sndtimeo(sk, noblock);
1609 	while (1) {
1610 		err = sock_error(sk);
1611 		if (err != 0)
1612 			goto failure;
1613 
1614 		err = -EPIPE;
1615 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1616 			goto failure;
1617 
1618 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1619 			skb = alloc_skb(header_len, gfp_mask);
1620 			if (skb) {
1621 				int npages;
1622 				int i;
1623 
1624 				/* No pages, we're done... */
1625 				if (!data_len)
1626 					break;
1627 
1628 				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1629 				skb->truesize += data_len;
1630 				skb_shinfo(skb)->nr_frags = npages;
1631 				for (i = 0; i < npages; i++) {
1632 					struct page *page;
1633 
1634 					page = alloc_pages(sk->sk_allocation, 0);
1635 					if (!page) {
1636 						err = -ENOBUFS;
1637 						skb_shinfo(skb)->nr_frags = i;
1638 						kfree_skb(skb);
1639 						goto failure;
1640 					}
1641 
1642 					__skb_fill_page_desc(skb, i,
1643 							page, 0,
1644 							(data_len >= PAGE_SIZE ?
1645 							 PAGE_SIZE :
1646 							 data_len));
1647 					data_len -= PAGE_SIZE;
1648 				}
1649 
1650 				/* Full success... */
1651 				break;
1652 			}
1653 			err = -ENOBUFS;
1654 			goto failure;
1655 		}
1656 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1657 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1658 		err = -EAGAIN;
1659 		if (!timeo)
1660 			goto failure;
1661 		if (signal_pending(current))
1662 			goto interrupted;
1663 		timeo = sock_wait_for_wmem(sk, timeo);
1664 	}
1665 
1666 	skb_set_owner_w(skb, sk);
1667 	return skb;
1668 
1669 interrupted:
1670 	err = sock_intr_errno(timeo);
1671 failure:
1672 	*errcode = err;
1673 	return NULL;
1674 }
1675 EXPORT_SYMBOL(sock_alloc_send_pskb);
1676 
1677 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1678 				    int noblock, int *errcode)
1679 {
1680 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1681 }
1682 EXPORT_SYMBOL(sock_alloc_send_skb);
1683 
1684 static void __lock_sock(struct sock *sk)
1685 	__releases(&sk->sk_lock.slock)
1686 	__acquires(&sk->sk_lock.slock)
1687 {
1688 	DEFINE_WAIT(wait);
1689 
1690 	for (;;) {
1691 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1692 					TASK_UNINTERRUPTIBLE);
1693 		spin_unlock_bh(&sk->sk_lock.slock);
1694 		schedule();
1695 		spin_lock_bh(&sk->sk_lock.slock);
1696 		if (!sock_owned_by_user(sk))
1697 			break;
1698 	}
1699 	finish_wait(&sk->sk_lock.wq, &wait);
1700 }
1701 
1702 static void __release_sock(struct sock *sk)
1703 	__releases(&sk->sk_lock.slock)
1704 	__acquires(&sk->sk_lock.slock)
1705 {
1706 	struct sk_buff *skb = sk->sk_backlog.head;
1707 
1708 	do {
1709 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1710 		bh_unlock_sock(sk);
1711 
1712 		do {
1713 			struct sk_buff *next = skb->next;
1714 
1715 			WARN_ON_ONCE(skb_dst_is_noref(skb));
1716 			skb->next = NULL;
1717 			sk_backlog_rcv(sk, skb);
1718 
1719 			/*
1720 			 * We are in process context here with softirqs
1721 			 * disabled, use cond_resched_softirq() to preempt.
1722 			 * This is safe to do because we've taken the backlog
1723 			 * queue private:
1724 			 */
1725 			cond_resched_softirq();
1726 
1727 			skb = next;
1728 		} while (skb != NULL);
1729 
1730 		bh_lock_sock(sk);
1731 	} while ((skb = sk->sk_backlog.head) != NULL);
1732 
1733 	/*
1734 	 * Doing the zeroing here guarantee we can not loop forever
1735 	 * while a wild producer attempts to flood us.
1736 	 */
1737 	sk->sk_backlog.len = 0;
1738 }
1739 
1740 /**
1741  * sk_wait_data - wait for data to arrive at sk_receive_queue
1742  * @sk:    sock to wait on
1743  * @timeo: for how long
1744  *
1745  * Now socket state including sk->sk_err is changed only under lock,
1746  * hence we may omit checks after joining wait queue.
1747  * We check receive queue before schedule() only as optimization;
1748  * it is very likely that release_sock() added new data.
1749  */
1750 int sk_wait_data(struct sock *sk, long *timeo)
1751 {
1752 	int rc;
1753 	DEFINE_WAIT(wait);
1754 
1755 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1756 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1757 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1758 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1759 	finish_wait(sk_sleep(sk), &wait);
1760 	return rc;
1761 }
1762 EXPORT_SYMBOL(sk_wait_data);
1763 
1764 /**
1765  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1766  *	@sk: socket
1767  *	@size: memory size to allocate
1768  *	@kind: allocation type
1769  *
1770  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1771  *	rmem allocation. This function assumes that protocols which have
1772  *	memory_pressure use sk_wmem_queued as write buffer accounting.
1773  */
1774 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1775 {
1776 	struct proto *prot = sk->sk_prot;
1777 	int amt = sk_mem_pages(size);
1778 	long allocated;
1779 	int parent_status = UNDER_LIMIT;
1780 
1781 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1782 
1783 	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1784 
1785 	/* Under limit. */
1786 	if (parent_status == UNDER_LIMIT &&
1787 			allocated <= sk_prot_mem_limits(sk, 0)) {
1788 		sk_leave_memory_pressure(sk);
1789 		return 1;
1790 	}
1791 
1792 	/* Under pressure. (we or our parents) */
1793 	if ((parent_status > SOFT_LIMIT) ||
1794 			allocated > sk_prot_mem_limits(sk, 1))
1795 		sk_enter_memory_pressure(sk);
1796 
1797 	/* Over hard limit (we or our parents) */
1798 	if ((parent_status == OVER_LIMIT) ||
1799 			(allocated > sk_prot_mem_limits(sk, 2)))
1800 		goto suppress_allocation;
1801 
1802 	/* guarantee minimum buffer size under pressure */
1803 	if (kind == SK_MEM_RECV) {
1804 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1805 			return 1;
1806 
1807 	} else { /* SK_MEM_SEND */
1808 		if (sk->sk_type == SOCK_STREAM) {
1809 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1810 				return 1;
1811 		} else if (atomic_read(&sk->sk_wmem_alloc) <
1812 			   prot->sysctl_wmem[0])
1813 				return 1;
1814 	}
1815 
1816 	if (sk_has_memory_pressure(sk)) {
1817 		int alloc;
1818 
1819 		if (!sk_under_memory_pressure(sk))
1820 			return 1;
1821 		alloc = sk_sockets_allocated_read_positive(sk);
1822 		if (sk_prot_mem_limits(sk, 2) > alloc *
1823 		    sk_mem_pages(sk->sk_wmem_queued +
1824 				 atomic_read(&sk->sk_rmem_alloc) +
1825 				 sk->sk_forward_alloc))
1826 			return 1;
1827 	}
1828 
1829 suppress_allocation:
1830 
1831 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1832 		sk_stream_moderate_sndbuf(sk);
1833 
1834 		/* Fail only if socket is _under_ its sndbuf.
1835 		 * In this case we cannot block, so that we have to fail.
1836 		 */
1837 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1838 			return 1;
1839 	}
1840 
1841 	trace_sock_exceed_buf_limit(sk, prot, allocated);
1842 
1843 	/* Alas. Undo changes. */
1844 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1845 
1846 	sk_memory_allocated_sub(sk, amt);
1847 
1848 	return 0;
1849 }
1850 EXPORT_SYMBOL(__sk_mem_schedule);
1851 
1852 /**
1853  *	__sk_reclaim - reclaim memory_allocated
1854  *	@sk: socket
1855  */
1856 void __sk_mem_reclaim(struct sock *sk)
1857 {
1858 	sk_memory_allocated_sub(sk,
1859 				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1860 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1861 
1862 	if (sk_under_memory_pressure(sk) &&
1863 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1864 		sk_leave_memory_pressure(sk);
1865 }
1866 EXPORT_SYMBOL(__sk_mem_reclaim);
1867 
1868 
1869 /*
1870  * Set of default routines for initialising struct proto_ops when
1871  * the protocol does not support a particular function. In certain
1872  * cases where it makes no sense for a protocol to have a "do nothing"
1873  * function, some default processing is provided.
1874  */
1875 
1876 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1877 {
1878 	return -EOPNOTSUPP;
1879 }
1880 EXPORT_SYMBOL(sock_no_bind);
1881 
1882 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1883 		    int len, int flags)
1884 {
1885 	return -EOPNOTSUPP;
1886 }
1887 EXPORT_SYMBOL(sock_no_connect);
1888 
1889 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1890 {
1891 	return -EOPNOTSUPP;
1892 }
1893 EXPORT_SYMBOL(sock_no_socketpair);
1894 
1895 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1896 {
1897 	return -EOPNOTSUPP;
1898 }
1899 EXPORT_SYMBOL(sock_no_accept);
1900 
1901 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1902 		    int *len, int peer)
1903 {
1904 	return -EOPNOTSUPP;
1905 }
1906 EXPORT_SYMBOL(sock_no_getname);
1907 
1908 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1909 {
1910 	return 0;
1911 }
1912 EXPORT_SYMBOL(sock_no_poll);
1913 
1914 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1915 {
1916 	return -EOPNOTSUPP;
1917 }
1918 EXPORT_SYMBOL(sock_no_ioctl);
1919 
1920 int sock_no_listen(struct socket *sock, int backlog)
1921 {
1922 	return -EOPNOTSUPP;
1923 }
1924 EXPORT_SYMBOL(sock_no_listen);
1925 
1926 int sock_no_shutdown(struct socket *sock, int how)
1927 {
1928 	return -EOPNOTSUPP;
1929 }
1930 EXPORT_SYMBOL(sock_no_shutdown);
1931 
1932 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1933 		    char __user *optval, unsigned int optlen)
1934 {
1935 	return -EOPNOTSUPP;
1936 }
1937 EXPORT_SYMBOL(sock_no_setsockopt);
1938 
1939 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1940 		    char __user *optval, int __user *optlen)
1941 {
1942 	return -EOPNOTSUPP;
1943 }
1944 EXPORT_SYMBOL(sock_no_getsockopt);
1945 
1946 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1947 		    size_t len)
1948 {
1949 	return -EOPNOTSUPP;
1950 }
1951 EXPORT_SYMBOL(sock_no_sendmsg);
1952 
1953 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1954 		    size_t len, int flags)
1955 {
1956 	return -EOPNOTSUPP;
1957 }
1958 EXPORT_SYMBOL(sock_no_recvmsg);
1959 
1960 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1961 {
1962 	/* Mirror missing mmap method error code */
1963 	return -ENODEV;
1964 }
1965 EXPORT_SYMBOL(sock_no_mmap);
1966 
1967 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1968 {
1969 	ssize_t res;
1970 	struct msghdr msg = {.msg_flags = flags};
1971 	struct kvec iov;
1972 	char *kaddr = kmap(page);
1973 	iov.iov_base = kaddr + offset;
1974 	iov.iov_len = size;
1975 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1976 	kunmap(page);
1977 	return res;
1978 }
1979 EXPORT_SYMBOL(sock_no_sendpage);
1980 
1981 /*
1982  *	Default Socket Callbacks
1983  */
1984 
1985 static void sock_def_wakeup(struct sock *sk)
1986 {
1987 	struct socket_wq *wq;
1988 
1989 	rcu_read_lock();
1990 	wq = rcu_dereference(sk->sk_wq);
1991 	if (wq_has_sleeper(wq))
1992 		wake_up_interruptible_all(&wq->wait);
1993 	rcu_read_unlock();
1994 }
1995 
1996 static void sock_def_error_report(struct sock *sk)
1997 {
1998 	struct socket_wq *wq;
1999 
2000 	rcu_read_lock();
2001 	wq = rcu_dereference(sk->sk_wq);
2002 	if (wq_has_sleeper(wq))
2003 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2004 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2005 	rcu_read_unlock();
2006 }
2007 
2008 static void sock_def_readable(struct sock *sk, int len)
2009 {
2010 	struct socket_wq *wq;
2011 
2012 	rcu_read_lock();
2013 	wq = rcu_dereference(sk->sk_wq);
2014 	if (wq_has_sleeper(wq))
2015 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2016 						POLLRDNORM | POLLRDBAND);
2017 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2018 	rcu_read_unlock();
2019 }
2020 
2021 static void sock_def_write_space(struct sock *sk)
2022 {
2023 	struct socket_wq *wq;
2024 
2025 	rcu_read_lock();
2026 
2027 	/* Do not wake up a writer until he can make "significant"
2028 	 * progress.  --DaveM
2029 	 */
2030 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2031 		wq = rcu_dereference(sk->sk_wq);
2032 		if (wq_has_sleeper(wq))
2033 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2034 						POLLWRNORM | POLLWRBAND);
2035 
2036 		/* Should agree with poll, otherwise some programs break */
2037 		if (sock_writeable(sk))
2038 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2039 	}
2040 
2041 	rcu_read_unlock();
2042 }
2043 
2044 static void sock_def_destruct(struct sock *sk)
2045 {
2046 	kfree(sk->sk_protinfo);
2047 }
2048 
2049 void sk_send_sigurg(struct sock *sk)
2050 {
2051 	if (sk->sk_socket && sk->sk_socket->file)
2052 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2053 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2054 }
2055 EXPORT_SYMBOL(sk_send_sigurg);
2056 
2057 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2058 		    unsigned long expires)
2059 {
2060 	if (!mod_timer(timer, expires))
2061 		sock_hold(sk);
2062 }
2063 EXPORT_SYMBOL(sk_reset_timer);
2064 
2065 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2066 {
2067 	if (timer_pending(timer) && del_timer(timer))
2068 		__sock_put(sk);
2069 }
2070 EXPORT_SYMBOL(sk_stop_timer);
2071 
2072 void sock_init_data(struct socket *sock, struct sock *sk)
2073 {
2074 	skb_queue_head_init(&sk->sk_receive_queue);
2075 	skb_queue_head_init(&sk->sk_write_queue);
2076 	skb_queue_head_init(&sk->sk_error_queue);
2077 #ifdef CONFIG_NET_DMA
2078 	skb_queue_head_init(&sk->sk_async_wait_queue);
2079 #endif
2080 
2081 	sk->sk_send_head	=	NULL;
2082 
2083 	init_timer(&sk->sk_timer);
2084 
2085 	sk->sk_allocation	=	GFP_KERNEL;
2086 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2087 	sk->sk_sndbuf		=	sysctl_wmem_default;
2088 	sk->sk_state		=	TCP_CLOSE;
2089 	sk_set_socket(sk, sock);
2090 
2091 	sock_set_flag(sk, SOCK_ZAPPED);
2092 
2093 	if (sock) {
2094 		sk->sk_type	=	sock->type;
2095 		sk->sk_wq	=	sock->wq;
2096 		sock->sk	=	sk;
2097 	} else
2098 		sk->sk_wq	=	NULL;
2099 
2100 	spin_lock_init(&sk->sk_dst_lock);
2101 	rwlock_init(&sk->sk_callback_lock);
2102 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2103 			af_callback_keys + sk->sk_family,
2104 			af_family_clock_key_strings[sk->sk_family]);
2105 
2106 	sk->sk_state_change	=	sock_def_wakeup;
2107 	sk->sk_data_ready	=	sock_def_readable;
2108 	sk->sk_write_space	=	sock_def_write_space;
2109 	sk->sk_error_report	=	sock_def_error_report;
2110 	sk->sk_destruct		=	sock_def_destruct;
2111 
2112 	sk->sk_sndmsg_page	=	NULL;
2113 	sk->sk_sndmsg_off	=	0;
2114 	sk->sk_peek_off		=	-1;
2115 
2116 	sk->sk_peer_pid 	=	NULL;
2117 	sk->sk_peer_cred	=	NULL;
2118 	sk->sk_write_pending	=	0;
2119 	sk->sk_rcvlowat		=	1;
2120 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2121 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2122 
2123 	sk->sk_stamp = ktime_set(-1L, 0);
2124 
2125 	/*
2126 	 * Before updating sk_refcnt, we must commit prior changes to memory
2127 	 * (Documentation/RCU/rculist_nulls.txt for details)
2128 	 */
2129 	smp_wmb();
2130 	atomic_set(&sk->sk_refcnt, 1);
2131 	atomic_set(&sk->sk_drops, 0);
2132 }
2133 EXPORT_SYMBOL(sock_init_data);
2134 
2135 void lock_sock_nested(struct sock *sk, int subclass)
2136 {
2137 	might_sleep();
2138 	spin_lock_bh(&sk->sk_lock.slock);
2139 	if (sk->sk_lock.owned)
2140 		__lock_sock(sk);
2141 	sk->sk_lock.owned = 1;
2142 	spin_unlock(&sk->sk_lock.slock);
2143 	/*
2144 	 * The sk_lock has mutex_lock() semantics here:
2145 	 */
2146 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2147 	local_bh_enable();
2148 }
2149 EXPORT_SYMBOL(lock_sock_nested);
2150 
2151 void release_sock(struct sock *sk)
2152 {
2153 	/*
2154 	 * The sk_lock has mutex_unlock() semantics:
2155 	 */
2156 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2157 
2158 	spin_lock_bh(&sk->sk_lock.slock);
2159 	if (sk->sk_backlog.tail)
2160 		__release_sock(sk);
2161 	sk->sk_lock.owned = 0;
2162 	if (waitqueue_active(&sk->sk_lock.wq))
2163 		wake_up(&sk->sk_lock.wq);
2164 	spin_unlock_bh(&sk->sk_lock.slock);
2165 }
2166 EXPORT_SYMBOL(release_sock);
2167 
2168 /**
2169  * lock_sock_fast - fast version of lock_sock
2170  * @sk: socket
2171  *
2172  * This version should be used for very small section, where process wont block
2173  * return false if fast path is taken
2174  *   sk_lock.slock locked, owned = 0, BH disabled
2175  * return true if slow path is taken
2176  *   sk_lock.slock unlocked, owned = 1, BH enabled
2177  */
2178 bool lock_sock_fast(struct sock *sk)
2179 {
2180 	might_sleep();
2181 	spin_lock_bh(&sk->sk_lock.slock);
2182 
2183 	if (!sk->sk_lock.owned)
2184 		/*
2185 		 * Note : We must disable BH
2186 		 */
2187 		return false;
2188 
2189 	__lock_sock(sk);
2190 	sk->sk_lock.owned = 1;
2191 	spin_unlock(&sk->sk_lock.slock);
2192 	/*
2193 	 * The sk_lock has mutex_lock() semantics here:
2194 	 */
2195 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2196 	local_bh_enable();
2197 	return true;
2198 }
2199 EXPORT_SYMBOL(lock_sock_fast);
2200 
2201 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2202 {
2203 	struct timeval tv;
2204 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2205 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2206 	tv = ktime_to_timeval(sk->sk_stamp);
2207 	if (tv.tv_sec == -1)
2208 		return -ENOENT;
2209 	if (tv.tv_sec == 0) {
2210 		sk->sk_stamp = ktime_get_real();
2211 		tv = ktime_to_timeval(sk->sk_stamp);
2212 	}
2213 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2214 }
2215 EXPORT_SYMBOL(sock_get_timestamp);
2216 
2217 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2218 {
2219 	struct timespec ts;
2220 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2221 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2222 	ts = ktime_to_timespec(sk->sk_stamp);
2223 	if (ts.tv_sec == -1)
2224 		return -ENOENT;
2225 	if (ts.tv_sec == 0) {
2226 		sk->sk_stamp = ktime_get_real();
2227 		ts = ktime_to_timespec(sk->sk_stamp);
2228 	}
2229 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2230 }
2231 EXPORT_SYMBOL(sock_get_timestampns);
2232 
2233 void sock_enable_timestamp(struct sock *sk, int flag)
2234 {
2235 	if (!sock_flag(sk, flag)) {
2236 		unsigned long previous_flags = sk->sk_flags;
2237 
2238 		sock_set_flag(sk, flag);
2239 		/*
2240 		 * we just set one of the two flags which require net
2241 		 * time stamping, but time stamping might have been on
2242 		 * already because of the other one
2243 		 */
2244 		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2245 			net_enable_timestamp();
2246 	}
2247 }
2248 
2249 /*
2250  *	Get a socket option on an socket.
2251  *
2252  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2253  *	asynchronous errors should be reported by getsockopt. We assume
2254  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2255  */
2256 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2257 			   char __user *optval, int __user *optlen)
2258 {
2259 	struct sock *sk = sock->sk;
2260 
2261 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2262 }
2263 EXPORT_SYMBOL(sock_common_getsockopt);
2264 
2265 #ifdef CONFIG_COMPAT
2266 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2267 				  char __user *optval, int __user *optlen)
2268 {
2269 	struct sock *sk = sock->sk;
2270 
2271 	if (sk->sk_prot->compat_getsockopt != NULL)
2272 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2273 						      optval, optlen);
2274 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2275 }
2276 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2277 #endif
2278 
2279 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2280 			struct msghdr *msg, size_t size, int flags)
2281 {
2282 	struct sock *sk = sock->sk;
2283 	int addr_len = 0;
2284 	int err;
2285 
2286 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2287 				   flags & ~MSG_DONTWAIT, &addr_len);
2288 	if (err >= 0)
2289 		msg->msg_namelen = addr_len;
2290 	return err;
2291 }
2292 EXPORT_SYMBOL(sock_common_recvmsg);
2293 
2294 /*
2295  *	Set socket options on an inet socket.
2296  */
2297 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2298 			   char __user *optval, unsigned int optlen)
2299 {
2300 	struct sock *sk = sock->sk;
2301 
2302 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2303 }
2304 EXPORT_SYMBOL(sock_common_setsockopt);
2305 
2306 #ifdef CONFIG_COMPAT
2307 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2308 				  char __user *optval, unsigned int optlen)
2309 {
2310 	struct sock *sk = sock->sk;
2311 
2312 	if (sk->sk_prot->compat_setsockopt != NULL)
2313 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2314 						      optval, optlen);
2315 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2316 }
2317 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2318 #endif
2319 
2320 void sk_common_release(struct sock *sk)
2321 {
2322 	if (sk->sk_prot->destroy)
2323 		sk->sk_prot->destroy(sk);
2324 
2325 	/*
2326 	 * Observation: when sock_common_release is called, processes have
2327 	 * no access to socket. But net still has.
2328 	 * Step one, detach it from networking:
2329 	 *
2330 	 * A. Remove from hash tables.
2331 	 */
2332 
2333 	sk->sk_prot->unhash(sk);
2334 
2335 	/*
2336 	 * In this point socket cannot receive new packets, but it is possible
2337 	 * that some packets are in flight because some CPU runs receiver and
2338 	 * did hash table lookup before we unhashed socket. They will achieve
2339 	 * receive queue and will be purged by socket destructor.
2340 	 *
2341 	 * Also we still have packets pending on receive queue and probably,
2342 	 * our own packets waiting in device queues. sock_destroy will drain
2343 	 * receive queue, but transmitted packets will delay socket destruction
2344 	 * until the last reference will be released.
2345 	 */
2346 
2347 	sock_orphan(sk);
2348 
2349 	xfrm_sk_free_policy(sk);
2350 
2351 	sk_refcnt_debug_release(sk);
2352 	sock_put(sk);
2353 }
2354 EXPORT_SYMBOL(sk_common_release);
2355 
2356 #ifdef CONFIG_PROC_FS
2357 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2358 struct prot_inuse {
2359 	int val[PROTO_INUSE_NR];
2360 };
2361 
2362 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2363 
2364 #ifdef CONFIG_NET_NS
2365 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2366 {
2367 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2368 }
2369 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2370 
2371 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2372 {
2373 	int cpu, idx = prot->inuse_idx;
2374 	int res = 0;
2375 
2376 	for_each_possible_cpu(cpu)
2377 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2378 
2379 	return res >= 0 ? res : 0;
2380 }
2381 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2382 
2383 static int __net_init sock_inuse_init_net(struct net *net)
2384 {
2385 	net->core.inuse = alloc_percpu(struct prot_inuse);
2386 	return net->core.inuse ? 0 : -ENOMEM;
2387 }
2388 
2389 static void __net_exit sock_inuse_exit_net(struct net *net)
2390 {
2391 	free_percpu(net->core.inuse);
2392 }
2393 
2394 static struct pernet_operations net_inuse_ops = {
2395 	.init = sock_inuse_init_net,
2396 	.exit = sock_inuse_exit_net,
2397 };
2398 
2399 static __init int net_inuse_init(void)
2400 {
2401 	if (register_pernet_subsys(&net_inuse_ops))
2402 		panic("Cannot initialize net inuse counters");
2403 
2404 	return 0;
2405 }
2406 
2407 core_initcall(net_inuse_init);
2408 #else
2409 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2410 
2411 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2412 {
2413 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2414 }
2415 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2416 
2417 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2418 {
2419 	int cpu, idx = prot->inuse_idx;
2420 	int res = 0;
2421 
2422 	for_each_possible_cpu(cpu)
2423 		res += per_cpu(prot_inuse, cpu).val[idx];
2424 
2425 	return res >= 0 ? res : 0;
2426 }
2427 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2428 #endif
2429 
2430 static void assign_proto_idx(struct proto *prot)
2431 {
2432 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2433 
2434 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2435 		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2436 		return;
2437 	}
2438 
2439 	set_bit(prot->inuse_idx, proto_inuse_idx);
2440 }
2441 
2442 static void release_proto_idx(struct proto *prot)
2443 {
2444 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2445 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2446 }
2447 #else
2448 static inline void assign_proto_idx(struct proto *prot)
2449 {
2450 }
2451 
2452 static inline void release_proto_idx(struct proto *prot)
2453 {
2454 }
2455 #endif
2456 
2457 int proto_register(struct proto *prot, int alloc_slab)
2458 {
2459 	if (alloc_slab) {
2460 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2461 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2462 					NULL);
2463 
2464 		if (prot->slab == NULL) {
2465 			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2466 			       prot->name);
2467 			goto out;
2468 		}
2469 
2470 		if (prot->rsk_prot != NULL) {
2471 			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2472 			if (prot->rsk_prot->slab_name == NULL)
2473 				goto out_free_sock_slab;
2474 
2475 			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2476 								 prot->rsk_prot->obj_size, 0,
2477 								 SLAB_HWCACHE_ALIGN, NULL);
2478 
2479 			if (prot->rsk_prot->slab == NULL) {
2480 				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2481 				       prot->name);
2482 				goto out_free_request_sock_slab_name;
2483 			}
2484 		}
2485 
2486 		if (prot->twsk_prot != NULL) {
2487 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2488 
2489 			if (prot->twsk_prot->twsk_slab_name == NULL)
2490 				goto out_free_request_sock_slab;
2491 
2492 			prot->twsk_prot->twsk_slab =
2493 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2494 						  prot->twsk_prot->twsk_obj_size,
2495 						  0,
2496 						  SLAB_HWCACHE_ALIGN |
2497 							prot->slab_flags,
2498 						  NULL);
2499 			if (prot->twsk_prot->twsk_slab == NULL)
2500 				goto out_free_timewait_sock_slab_name;
2501 		}
2502 	}
2503 
2504 	mutex_lock(&proto_list_mutex);
2505 	list_add(&prot->node, &proto_list);
2506 	assign_proto_idx(prot);
2507 	mutex_unlock(&proto_list_mutex);
2508 	return 0;
2509 
2510 out_free_timewait_sock_slab_name:
2511 	kfree(prot->twsk_prot->twsk_slab_name);
2512 out_free_request_sock_slab:
2513 	if (prot->rsk_prot && prot->rsk_prot->slab) {
2514 		kmem_cache_destroy(prot->rsk_prot->slab);
2515 		prot->rsk_prot->slab = NULL;
2516 	}
2517 out_free_request_sock_slab_name:
2518 	if (prot->rsk_prot)
2519 		kfree(prot->rsk_prot->slab_name);
2520 out_free_sock_slab:
2521 	kmem_cache_destroy(prot->slab);
2522 	prot->slab = NULL;
2523 out:
2524 	return -ENOBUFS;
2525 }
2526 EXPORT_SYMBOL(proto_register);
2527 
2528 void proto_unregister(struct proto *prot)
2529 {
2530 	mutex_lock(&proto_list_mutex);
2531 	release_proto_idx(prot);
2532 	list_del(&prot->node);
2533 	mutex_unlock(&proto_list_mutex);
2534 
2535 	if (prot->slab != NULL) {
2536 		kmem_cache_destroy(prot->slab);
2537 		prot->slab = NULL;
2538 	}
2539 
2540 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2541 		kmem_cache_destroy(prot->rsk_prot->slab);
2542 		kfree(prot->rsk_prot->slab_name);
2543 		prot->rsk_prot->slab = NULL;
2544 	}
2545 
2546 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2547 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2548 		kfree(prot->twsk_prot->twsk_slab_name);
2549 		prot->twsk_prot->twsk_slab = NULL;
2550 	}
2551 }
2552 EXPORT_SYMBOL(proto_unregister);
2553 
2554 #ifdef CONFIG_PROC_FS
2555 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2556 	__acquires(proto_list_mutex)
2557 {
2558 	mutex_lock(&proto_list_mutex);
2559 	return seq_list_start_head(&proto_list, *pos);
2560 }
2561 
2562 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2563 {
2564 	return seq_list_next(v, &proto_list, pos);
2565 }
2566 
2567 static void proto_seq_stop(struct seq_file *seq, void *v)
2568 	__releases(proto_list_mutex)
2569 {
2570 	mutex_unlock(&proto_list_mutex);
2571 }
2572 
2573 static char proto_method_implemented(const void *method)
2574 {
2575 	return method == NULL ? 'n' : 'y';
2576 }
2577 static long sock_prot_memory_allocated(struct proto *proto)
2578 {
2579 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto): -1L;
2580 }
2581 
2582 static char *sock_prot_memory_pressure(struct proto *proto)
2583 {
2584 	return proto->memory_pressure != NULL ?
2585 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2586 }
2587 
2588 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2589 {
2590 
2591 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2592 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2593 		   proto->name,
2594 		   proto->obj_size,
2595 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2596 		   sock_prot_memory_allocated(proto),
2597 		   sock_prot_memory_pressure(proto),
2598 		   proto->max_header,
2599 		   proto->slab == NULL ? "no" : "yes",
2600 		   module_name(proto->owner),
2601 		   proto_method_implemented(proto->close),
2602 		   proto_method_implemented(proto->connect),
2603 		   proto_method_implemented(proto->disconnect),
2604 		   proto_method_implemented(proto->accept),
2605 		   proto_method_implemented(proto->ioctl),
2606 		   proto_method_implemented(proto->init),
2607 		   proto_method_implemented(proto->destroy),
2608 		   proto_method_implemented(proto->shutdown),
2609 		   proto_method_implemented(proto->setsockopt),
2610 		   proto_method_implemented(proto->getsockopt),
2611 		   proto_method_implemented(proto->sendmsg),
2612 		   proto_method_implemented(proto->recvmsg),
2613 		   proto_method_implemented(proto->sendpage),
2614 		   proto_method_implemented(proto->bind),
2615 		   proto_method_implemented(proto->backlog_rcv),
2616 		   proto_method_implemented(proto->hash),
2617 		   proto_method_implemented(proto->unhash),
2618 		   proto_method_implemented(proto->get_port),
2619 		   proto_method_implemented(proto->enter_memory_pressure));
2620 }
2621 
2622 static int proto_seq_show(struct seq_file *seq, void *v)
2623 {
2624 	if (v == &proto_list)
2625 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2626 			   "protocol",
2627 			   "size",
2628 			   "sockets",
2629 			   "memory",
2630 			   "press",
2631 			   "maxhdr",
2632 			   "slab",
2633 			   "module",
2634 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2635 	else
2636 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2637 	return 0;
2638 }
2639 
2640 static const struct seq_operations proto_seq_ops = {
2641 	.start  = proto_seq_start,
2642 	.next   = proto_seq_next,
2643 	.stop   = proto_seq_stop,
2644 	.show   = proto_seq_show,
2645 };
2646 
2647 static int proto_seq_open(struct inode *inode, struct file *file)
2648 {
2649 	return seq_open_net(inode, file, &proto_seq_ops,
2650 			    sizeof(struct seq_net_private));
2651 }
2652 
2653 static const struct file_operations proto_seq_fops = {
2654 	.owner		= THIS_MODULE,
2655 	.open		= proto_seq_open,
2656 	.read		= seq_read,
2657 	.llseek		= seq_lseek,
2658 	.release	= seq_release_net,
2659 };
2660 
2661 static __net_init int proto_init_net(struct net *net)
2662 {
2663 	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2664 		return -ENOMEM;
2665 
2666 	return 0;
2667 }
2668 
2669 static __net_exit void proto_exit_net(struct net *net)
2670 {
2671 	proc_net_remove(net, "protocols");
2672 }
2673 
2674 
2675 static __net_initdata struct pernet_operations proto_net_ops = {
2676 	.init = proto_init_net,
2677 	.exit = proto_exit_net,
2678 };
2679 
2680 static int __init proto_init(void)
2681 {
2682 	return register_pernet_subsys(&proto_net_ops);
2683 }
2684 
2685 subsys_initcall(proto_init);
2686 
2687 #endif /* PROC_FS */
2688