1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 117 #include <linux/uaccess.h> 118 119 #include <linux/netdevice.h> 120 #include <net/protocol.h> 121 #include <linux/skbuff.h> 122 #include <net/net_namespace.h> 123 #include <net/request_sock.h> 124 #include <net/sock.h> 125 #include <linux/net_tstamp.h> 126 #include <net/xfrm.h> 127 #include <linux/ipsec.h> 128 #include <net/cls_cgroup.h> 129 #include <net/netprio_cgroup.h> 130 #include <linux/sock_diag.h> 131 132 #include <linux/filter.h> 133 #include <net/sock_reuseport.h> 134 #include <net/bpf_sk_storage.h> 135 136 #include <trace/events/sock.h> 137 138 #include <net/tcp.h> 139 #include <net/busy_poll.h> 140 141 static DEFINE_MUTEX(proto_list_mutex); 142 static LIST_HEAD(proto_list); 143 144 static void sock_inuse_add(struct net *net, int val); 145 146 /** 147 * sk_ns_capable - General socket capability test 148 * @sk: Socket to use a capability on or through 149 * @user_ns: The user namespace of the capability to use 150 * @cap: The capability to use 151 * 152 * Test to see if the opener of the socket had when the socket was 153 * created and the current process has the capability @cap in the user 154 * namespace @user_ns. 155 */ 156 bool sk_ns_capable(const struct sock *sk, 157 struct user_namespace *user_ns, int cap) 158 { 159 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 160 ns_capable(user_ns, cap); 161 } 162 EXPORT_SYMBOL(sk_ns_capable); 163 164 /** 165 * sk_capable - Socket global capability test 166 * @sk: Socket to use a capability on or through 167 * @cap: The global capability to use 168 * 169 * Test to see if the opener of the socket had when the socket was 170 * created and the current process has the capability @cap in all user 171 * namespaces. 172 */ 173 bool sk_capable(const struct sock *sk, int cap) 174 { 175 return sk_ns_capable(sk, &init_user_ns, cap); 176 } 177 EXPORT_SYMBOL(sk_capable); 178 179 /** 180 * sk_net_capable - Network namespace socket capability test 181 * @sk: Socket to use a capability on or through 182 * @cap: The capability to use 183 * 184 * Test to see if the opener of the socket had when the socket was created 185 * and the current process has the capability @cap over the network namespace 186 * the socket is a member of. 187 */ 188 bool sk_net_capable(const struct sock *sk, int cap) 189 { 190 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 191 } 192 EXPORT_SYMBOL(sk_net_capable); 193 194 /* 195 * Each address family might have different locking rules, so we have 196 * one slock key per address family and separate keys for internal and 197 * userspace sockets. 198 */ 199 static struct lock_class_key af_family_keys[AF_MAX]; 200 static struct lock_class_key af_family_kern_keys[AF_MAX]; 201 static struct lock_class_key af_family_slock_keys[AF_MAX]; 202 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 203 204 /* 205 * Make lock validator output more readable. (we pre-construct these 206 * strings build-time, so that runtime initialization of socket 207 * locks is fast): 208 */ 209 210 #define _sock_locks(x) \ 211 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 212 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 213 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 214 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 215 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 216 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 217 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 218 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 219 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 220 x "27" , x "28" , x "AF_CAN" , \ 221 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 222 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 223 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 224 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 225 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 226 x "AF_MAX" 227 228 static const char *const af_family_key_strings[AF_MAX+1] = { 229 _sock_locks("sk_lock-") 230 }; 231 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 232 _sock_locks("slock-") 233 }; 234 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 235 _sock_locks("clock-") 236 }; 237 238 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 239 _sock_locks("k-sk_lock-") 240 }; 241 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 242 _sock_locks("k-slock-") 243 }; 244 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 245 _sock_locks("k-clock-") 246 }; 247 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 248 _sock_locks("rlock-") 249 }; 250 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 251 _sock_locks("wlock-") 252 }; 253 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 254 _sock_locks("elock-") 255 }; 256 257 /* 258 * sk_callback_lock and sk queues locking rules are per-address-family, 259 * so split the lock classes by using a per-AF key: 260 */ 261 static struct lock_class_key af_callback_keys[AF_MAX]; 262 static struct lock_class_key af_rlock_keys[AF_MAX]; 263 static struct lock_class_key af_wlock_keys[AF_MAX]; 264 static struct lock_class_key af_elock_keys[AF_MAX]; 265 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 266 267 /* Run time adjustable parameters. */ 268 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 269 EXPORT_SYMBOL(sysctl_wmem_max); 270 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 271 EXPORT_SYMBOL(sysctl_rmem_max); 272 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 273 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 274 275 /* Maximal space eaten by iovec or ancillary data plus some space */ 276 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 277 EXPORT_SYMBOL(sysctl_optmem_max); 278 279 int sysctl_tstamp_allow_data __read_mostly = 1; 280 281 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 282 EXPORT_SYMBOL_GPL(memalloc_socks_key); 283 284 /** 285 * sk_set_memalloc - sets %SOCK_MEMALLOC 286 * @sk: socket to set it on 287 * 288 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 289 * It's the responsibility of the admin to adjust min_free_kbytes 290 * to meet the requirements 291 */ 292 void sk_set_memalloc(struct sock *sk) 293 { 294 sock_set_flag(sk, SOCK_MEMALLOC); 295 sk->sk_allocation |= __GFP_MEMALLOC; 296 static_branch_inc(&memalloc_socks_key); 297 } 298 EXPORT_SYMBOL_GPL(sk_set_memalloc); 299 300 void sk_clear_memalloc(struct sock *sk) 301 { 302 sock_reset_flag(sk, SOCK_MEMALLOC); 303 sk->sk_allocation &= ~__GFP_MEMALLOC; 304 static_branch_dec(&memalloc_socks_key); 305 306 /* 307 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 308 * progress of swapping. SOCK_MEMALLOC may be cleared while 309 * it has rmem allocations due to the last swapfile being deactivated 310 * but there is a risk that the socket is unusable due to exceeding 311 * the rmem limits. Reclaim the reserves and obey rmem limits again. 312 */ 313 sk_mem_reclaim(sk); 314 } 315 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 316 317 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 318 { 319 int ret; 320 unsigned int noreclaim_flag; 321 322 /* these should have been dropped before queueing */ 323 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 324 325 noreclaim_flag = memalloc_noreclaim_save(); 326 ret = sk->sk_backlog_rcv(sk, skb); 327 memalloc_noreclaim_restore(noreclaim_flag); 328 329 return ret; 330 } 331 EXPORT_SYMBOL(__sk_backlog_rcv); 332 333 static int sock_get_timeout(long timeo, void *optval, bool old_timeval) 334 { 335 struct __kernel_sock_timeval tv; 336 337 if (timeo == MAX_SCHEDULE_TIMEOUT) { 338 tv.tv_sec = 0; 339 tv.tv_usec = 0; 340 } else { 341 tv.tv_sec = timeo / HZ; 342 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 343 } 344 345 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 346 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 347 *(struct old_timeval32 *)optval = tv32; 348 return sizeof(tv32); 349 } 350 351 if (old_timeval) { 352 struct __kernel_old_timeval old_tv; 353 old_tv.tv_sec = tv.tv_sec; 354 old_tv.tv_usec = tv.tv_usec; 355 *(struct __kernel_old_timeval *)optval = old_tv; 356 return sizeof(old_tv); 357 } 358 359 *(struct __kernel_sock_timeval *)optval = tv; 360 return sizeof(tv); 361 } 362 363 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval) 364 { 365 struct __kernel_sock_timeval tv; 366 367 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 368 struct old_timeval32 tv32; 369 370 if (optlen < sizeof(tv32)) 371 return -EINVAL; 372 373 if (copy_from_user(&tv32, optval, sizeof(tv32))) 374 return -EFAULT; 375 tv.tv_sec = tv32.tv_sec; 376 tv.tv_usec = tv32.tv_usec; 377 } else if (old_timeval) { 378 struct __kernel_old_timeval old_tv; 379 380 if (optlen < sizeof(old_tv)) 381 return -EINVAL; 382 if (copy_from_user(&old_tv, optval, sizeof(old_tv))) 383 return -EFAULT; 384 tv.tv_sec = old_tv.tv_sec; 385 tv.tv_usec = old_tv.tv_usec; 386 } else { 387 if (optlen < sizeof(tv)) 388 return -EINVAL; 389 if (copy_from_user(&tv, optval, sizeof(tv))) 390 return -EFAULT; 391 } 392 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 393 return -EDOM; 394 395 if (tv.tv_sec < 0) { 396 static int warned __read_mostly; 397 398 *timeo_p = 0; 399 if (warned < 10 && net_ratelimit()) { 400 warned++; 401 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 402 __func__, current->comm, task_pid_nr(current)); 403 } 404 return 0; 405 } 406 *timeo_p = MAX_SCHEDULE_TIMEOUT; 407 if (tv.tv_sec == 0 && tv.tv_usec == 0) 408 return 0; 409 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 410 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 411 return 0; 412 } 413 414 static void sock_warn_obsolete_bsdism(const char *name) 415 { 416 static int warned; 417 static char warncomm[TASK_COMM_LEN]; 418 if (strcmp(warncomm, current->comm) && warned < 5) { 419 strcpy(warncomm, current->comm); 420 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 421 warncomm, name); 422 warned++; 423 } 424 } 425 426 static bool sock_needs_netstamp(const struct sock *sk) 427 { 428 switch (sk->sk_family) { 429 case AF_UNSPEC: 430 case AF_UNIX: 431 return false; 432 default: 433 return true; 434 } 435 } 436 437 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 438 { 439 if (sk->sk_flags & flags) { 440 sk->sk_flags &= ~flags; 441 if (sock_needs_netstamp(sk) && 442 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 443 net_disable_timestamp(); 444 } 445 } 446 447 448 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 449 { 450 unsigned long flags; 451 struct sk_buff_head *list = &sk->sk_receive_queue; 452 453 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 454 atomic_inc(&sk->sk_drops); 455 trace_sock_rcvqueue_full(sk, skb); 456 return -ENOMEM; 457 } 458 459 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 460 atomic_inc(&sk->sk_drops); 461 return -ENOBUFS; 462 } 463 464 skb->dev = NULL; 465 skb_set_owner_r(skb, sk); 466 467 /* we escape from rcu protected region, make sure we dont leak 468 * a norefcounted dst 469 */ 470 skb_dst_force(skb); 471 472 spin_lock_irqsave(&list->lock, flags); 473 sock_skb_set_dropcount(sk, skb); 474 __skb_queue_tail(list, skb); 475 spin_unlock_irqrestore(&list->lock, flags); 476 477 if (!sock_flag(sk, SOCK_DEAD)) 478 sk->sk_data_ready(sk); 479 return 0; 480 } 481 EXPORT_SYMBOL(__sock_queue_rcv_skb); 482 483 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 484 { 485 int err; 486 487 err = sk_filter(sk, skb); 488 if (err) 489 return err; 490 491 return __sock_queue_rcv_skb(sk, skb); 492 } 493 EXPORT_SYMBOL(sock_queue_rcv_skb); 494 495 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 496 const int nested, unsigned int trim_cap, bool refcounted) 497 { 498 int rc = NET_RX_SUCCESS; 499 500 if (sk_filter_trim_cap(sk, skb, trim_cap)) 501 goto discard_and_relse; 502 503 skb->dev = NULL; 504 505 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 506 atomic_inc(&sk->sk_drops); 507 goto discard_and_relse; 508 } 509 if (nested) 510 bh_lock_sock_nested(sk); 511 else 512 bh_lock_sock(sk); 513 if (!sock_owned_by_user(sk)) { 514 /* 515 * trylock + unlock semantics: 516 */ 517 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 518 519 rc = sk_backlog_rcv(sk, skb); 520 521 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 522 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 523 bh_unlock_sock(sk); 524 atomic_inc(&sk->sk_drops); 525 goto discard_and_relse; 526 } 527 528 bh_unlock_sock(sk); 529 out: 530 if (refcounted) 531 sock_put(sk); 532 return rc; 533 discard_and_relse: 534 kfree_skb(skb); 535 goto out; 536 } 537 EXPORT_SYMBOL(__sk_receive_skb); 538 539 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 540 { 541 struct dst_entry *dst = __sk_dst_get(sk); 542 543 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 544 sk_tx_queue_clear(sk); 545 sk->sk_dst_pending_confirm = 0; 546 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 547 dst_release(dst); 548 return NULL; 549 } 550 551 return dst; 552 } 553 EXPORT_SYMBOL(__sk_dst_check); 554 555 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 556 { 557 struct dst_entry *dst = sk_dst_get(sk); 558 559 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 560 sk_dst_reset(sk); 561 dst_release(dst); 562 return NULL; 563 } 564 565 return dst; 566 } 567 EXPORT_SYMBOL(sk_dst_check); 568 569 static int sock_setbindtodevice_locked(struct sock *sk, int ifindex) 570 { 571 int ret = -ENOPROTOOPT; 572 #ifdef CONFIG_NETDEVICES 573 struct net *net = sock_net(sk); 574 575 /* Sorry... */ 576 ret = -EPERM; 577 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 578 goto out; 579 580 ret = -EINVAL; 581 if (ifindex < 0) 582 goto out; 583 584 sk->sk_bound_dev_if = ifindex; 585 if (sk->sk_prot->rehash) 586 sk->sk_prot->rehash(sk); 587 sk_dst_reset(sk); 588 589 ret = 0; 590 591 out: 592 #endif 593 594 return ret; 595 } 596 597 static int sock_setbindtodevice(struct sock *sk, char __user *optval, 598 int optlen) 599 { 600 int ret = -ENOPROTOOPT; 601 #ifdef CONFIG_NETDEVICES 602 struct net *net = sock_net(sk); 603 char devname[IFNAMSIZ]; 604 int index; 605 606 ret = -EINVAL; 607 if (optlen < 0) 608 goto out; 609 610 /* Bind this socket to a particular device like "eth0", 611 * as specified in the passed interface name. If the 612 * name is "" or the option length is zero the socket 613 * is not bound. 614 */ 615 if (optlen > IFNAMSIZ - 1) 616 optlen = IFNAMSIZ - 1; 617 memset(devname, 0, sizeof(devname)); 618 619 ret = -EFAULT; 620 if (copy_from_user(devname, optval, optlen)) 621 goto out; 622 623 index = 0; 624 if (devname[0] != '\0') { 625 struct net_device *dev; 626 627 rcu_read_lock(); 628 dev = dev_get_by_name_rcu(net, devname); 629 if (dev) 630 index = dev->ifindex; 631 rcu_read_unlock(); 632 ret = -ENODEV; 633 if (!dev) 634 goto out; 635 } 636 637 lock_sock(sk); 638 ret = sock_setbindtodevice_locked(sk, index); 639 release_sock(sk); 640 641 out: 642 #endif 643 644 return ret; 645 } 646 647 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 648 int __user *optlen, int len) 649 { 650 int ret = -ENOPROTOOPT; 651 #ifdef CONFIG_NETDEVICES 652 struct net *net = sock_net(sk); 653 char devname[IFNAMSIZ]; 654 655 if (sk->sk_bound_dev_if == 0) { 656 len = 0; 657 goto zero; 658 } 659 660 ret = -EINVAL; 661 if (len < IFNAMSIZ) 662 goto out; 663 664 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 665 if (ret) 666 goto out; 667 668 len = strlen(devname) + 1; 669 670 ret = -EFAULT; 671 if (copy_to_user(optval, devname, len)) 672 goto out; 673 674 zero: 675 ret = -EFAULT; 676 if (put_user(len, optlen)) 677 goto out; 678 679 ret = 0; 680 681 out: 682 #endif 683 684 return ret; 685 } 686 687 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, 688 int valbool) 689 { 690 if (valbool) 691 sock_set_flag(sk, bit); 692 else 693 sock_reset_flag(sk, bit); 694 } 695 696 bool sk_mc_loop(struct sock *sk) 697 { 698 if (dev_recursion_level()) 699 return false; 700 if (!sk) 701 return true; 702 switch (sk->sk_family) { 703 case AF_INET: 704 return inet_sk(sk)->mc_loop; 705 #if IS_ENABLED(CONFIG_IPV6) 706 case AF_INET6: 707 return inet6_sk(sk)->mc_loop; 708 #endif 709 } 710 WARN_ON(1); 711 return true; 712 } 713 EXPORT_SYMBOL(sk_mc_loop); 714 715 /* 716 * This is meant for all protocols to use and covers goings on 717 * at the socket level. Everything here is generic. 718 */ 719 720 int sock_setsockopt(struct socket *sock, int level, int optname, 721 char __user *optval, unsigned int optlen) 722 { 723 struct sock_txtime sk_txtime; 724 struct sock *sk = sock->sk; 725 int val; 726 int valbool; 727 struct linger ling; 728 int ret = 0; 729 730 /* 731 * Options without arguments 732 */ 733 734 if (optname == SO_BINDTODEVICE) 735 return sock_setbindtodevice(sk, optval, optlen); 736 737 if (optlen < sizeof(int)) 738 return -EINVAL; 739 740 if (get_user(val, (int __user *)optval)) 741 return -EFAULT; 742 743 valbool = val ? 1 : 0; 744 745 lock_sock(sk); 746 747 switch (optname) { 748 case SO_DEBUG: 749 if (val && !capable(CAP_NET_ADMIN)) 750 ret = -EACCES; 751 else 752 sock_valbool_flag(sk, SOCK_DBG, valbool); 753 break; 754 case SO_REUSEADDR: 755 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 756 break; 757 case SO_REUSEPORT: 758 sk->sk_reuseport = valbool; 759 break; 760 case SO_TYPE: 761 case SO_PROTOCOL: 762 case SO_DOMAIN: 763 case SO_ERROR: 764 ret = -ENOPROTOOPT; 765 break; 766 case SO_DONTROUTE: 767 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 768 sk_dst_reset(sk); 769 break; 770 case SO_BROADCAST: 771 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 772 break; 773 case SO_SNDBUF: 774 /* Don't error on this BSD doesn't and if you think 775 * about it this is right. Otherwise apps have to 776 * play 'guess the biggest size' games. RCVBUF/SNDBUF 777 * are treated in BSD as hints 778 */ 779 val = min_t(u32, val, sysctl_wmem_max); 780 set_sndbuf: 781 /* Ensure val * 2 fits into an int, to prevent max_t() 782 * from treating it as a negative value. 783 */ 784 val = min_t(int, val, INT_MAX / 2); 785 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 786 WRITE_ONCE(sk->sk_sndbuf, 787 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 788 /* Wake up sending tasks if we upped the value. */ 789 sk->sk_write_space(sk); 790 break; 791 792 case SO_SNDBUFFORCE: 793 if (!capable(CAP_NET_ADMIN)) { 794 ret = -EPERM; 795 break; 796 } 797 798 /* No negative values (to prevent underflow, as val will be 799 * multiplied by 2). 800 */ 801 if (val < 0) 802 val = 0; 803 goto set_sndbuf; 804 805 case SO_RCVBUF: 806 /* Don't error on this BSD doesn't and if you think 807 * about it this is right. Otherwise apps have to 808 * play 'guess the biggest size' games. RCVBUF/SNDBUF 809 * are treated in BSD as hints 810 */ 811 val = min_t(u32, val, sysctl_rmem_max); 812 set_rcvbuf: 813 /* Ensure val * 2 fits into an int, to prevent max_t() 814 * from treating it as a negative value. 815 */ 816 val = min_t(int, val, INT_MAX / 2); 817 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 818 /* 819 * We double it on the way in to account for 820 * "struct sk_buff" etc. overhead. Applications 821 * assume that the SO_RCVBUF setting they make will 822 * allow that much actual data to be received on that 823 * socket. 824 * 825 * Applications are unaware that "struct sk_buff" and 826 * other overheads allocate from the receive buffer 827 * during socket buffer allocation. 828 * 829 * And after considering the possible alternatives, 830 * returning the value we actually used in getsockopt 831 * is the most desirable behavior. 832 */ 833 WRITE_ONCE(sk->sk_rcvbuf, 834 max_t(int, val * 2, SOCK_MIN_RCVBUF)); 835 break; 836 837 case SO_RCVBUFFORCE: 838 if (!capable(CAP_NET_ADMIN)) { 839 ret = -EPERM; 840 break; 841 } 842 843 /* No negative values (to prevent underflow, as val will be 844 * multiplied by 2). 845 */ 846 if (val < 0) 847 val = 0; 848 goto set_rcvbuf; 849 850 case SO_KEEPALIVE: 851 if (sk->sk_prot->keepalive) 852 sk->sk_prot->keepalive(sk, valbool); 853 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 854 break; 855 856 case SO_OOBINLINE: 857 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 858 break; 859 860 case SO_NO_CHECK: 861 sk->sk_no_check_tx = valbool; 862 break; 863 864 case SO_PRIORITY: 865 if ((val >= 0 && val <= 6) || 866 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 867 sk->sk_priority = val; 868 else 869 ret = -EPERM; 870 break; 871 872 case SO_LINGER: 873 if (optlen < sizeof(ling)) { 874 ret = -EINVAL; /* 1003.1g */ 875 break; 876 } 877 if (copy_from_user(&ling, optval, sizeof(ling))) { 878 ret = -EFAULT; 879 break; 880 } 881 if (!ling.l_onoff) 882 sock_reset_flag(sk, SOCK_LINGER); 883 else { 884 #if (BITS_PER_LONG == 32) 885 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 886 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 887 else 888 #endif 889 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 890 sock_set_flag(sk, SOCK_LINGER); 891 } 892 break; 893 894 case SO_BSDCOMPAT: 895 sock_warn_obsolete_bsdism("setsockopt"); 896 break; 897 898 case SO_PASSCRED: 899 if (valbool) 900 set_bit(SOCK_PASSCRED, &sock->flags); 901 else 902 clear_bit(SOCK_PASSCRED, &sock->flags); 903 break; 904 905 case SO_TIMESTAMP_OLD: 906 case SO_TIMESTAMP_NEW: 907 case SO_TIMESTAMPNS_OLD: 908 case SO_TIMESTAMPNS_NEW: 909 if (valbool) { 910 if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW) 911 sock_set_flag(sk, SOCK_TSTAMP_NEW); 912 else 913 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 914 915 if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW) 916 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 917 else 918 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 919 sock_set_flag(sk, SOCK_RCVTSTAMP); 920 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 921 } else { 922 sock_reset_flag(sk, SOCK_RCVTSTAMP); 923 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 924 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 925 } 926 break; 927 928 case SO_TIMESTAMPING_NEW: 929 sock_set_flag(sk, SOCK_TSTAMP_NEW); 930 /* fall through */ 931 case SO_TIMESTAMPING_OLD: 932 if (val & ~SOF_TIMESTAMPING_MASK) { 933 ret = -EINVAL; 934 break; 935 } 936 937 if (val & SOF_TIMESTAMPING_OPT_ID && 938 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 939 if (sk->sk_protocol == IPPROTO_TCP && 940 sk->sk_type == SOCK_STREAM) { 941 if ((1 << sk->sk_state) & 942 (TCPF_CLOSE | TCPF_LISTEN)) { 943 ret = -EINVAL; 944 break; 945 } 946 sk->sk_tskey = tcp_sk(sk)->snd_una; 947 } else { 948 sk->sk_tskey = 0; 949 } 950 } 951 952 if (val & SOF_TIMESTAMPING_OPT_STATS && 953 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { 954 ret = -EINVAL; 955 break; 956 } 957 958 sk->sk_tsflags = val; 959 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 960 sock_enable_timestamp(sk, 961 SOCK_TIMESTAMPING_RX_SOFTWARE); 962 else { 963 if (optname == SO_TIMESTAMPING_NEW) 964 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 965 966 sock_disable_timestamp(sk, 967 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 968 } 969 break; 970 971 case SO_RCVLOWAT: 972 if (val < 0) 973 val = INT_MAX; 974 if (sock->ops->set_rcvlowat) 975 ret = sock->ops->set_rcvlowat(sk, val); 976 else 977 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 978 break; 979 980 case SO_RCVTIMEO_OLD: 981 case SO_RCVTIMEO_NEW: 982 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD); 983 break; 984 985 case SO_SNDTIMEO_OLD: 986 case SO_SNDTIMEO_NEW: 987 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD); 988 break; 989 990 case SO_ATTACH_FILTER: 991 ret = -EINVAL; 992 if (optlen == sizeof(struct sock_fprog)) { 993 struct sock_fprog fprog; 994 995 ret = -EFAULT; 996 if (copy_from_user(&fprog, optval, sizeof(fprog))) 997 break; 998 999 ret = sk_attach_filter(&fprog, sk); 1000 } 1001 break; 1002 1003 case SO_ATTACH_BPF: 1004 ret = -EINVAL; 1005 if (optlen == sizeof(u32)) { 1006 u32 ufd; 1007 1008 ret = -EFAULT; 1009 if (copy_from_user(&ufd, optval, sizeof(ufd))) 1010 break; 1011 1012 ret = sk_attach_bpf(ufd, sk); 1013 } 1014 break; 1015 1016 case SO_ATTACH_REUSEPORT_CBPF: 1017 ret = -EINVAL; 1018 if (optlen == sizeof(struct sock_fprog)) { 1019 struct sock_fprog fprog; 1020 1021 ret = -EFAULT; 1022 if (copy_from_user(&fprog, optval, sizeof(fprog))) 1023 break; 1024 1025 ret = sk_reuseport_attach_filter(&fprog, sk); 1026 } 1027 break; 1028 1029 case SO_ATTACH_REUSEPORT_EBPF: 1030 ret = -EINVAL; 1031 if (optlen == sizeof(u32)) { 1032 u32 ufd; 1033 1034 ret = -EFAULT; 1035 if (copy_from_user(&ufd, optval, sizeof(ufd))) 1036 break; 1037 1038 ret = sk_reuseport_attach_bpf(ufd, sk); 1039 } 1040 break; 1041 1042 case SO_DETACH_REUSEPORT_BPF: 1043 ret = reuseport_detach_prog(sk); 1044 break; 1045 1046 case SO_DETACH_FILTER: 1047 ret = sk_detach_filter(sk); 1048 break; 1049 1050 case SO_LOCK_FILTER: 1051 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1052 ret = -EPERM; 1053 else 1054 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1055 break; 1056 1057 case SO_PASSSEC: 1058 if (valbool) 1059 set_bit(SOCK_PASSSEC, &sock->flags); 1060 else 1061 clear_bit(SOCK_PASSSEC, &sock->flags); 1062 break; 1063 case SO_MARK: 1064 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1065 ret = -EPERM; 1066 } else if (val != sk->sk_mark) { 1067 sk->sk_mark = val; 1068 sk_dst_reset(sk); 1069 } 1070 break; 1071 1072 case SO_RXQ_OVFL: 1073 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1074 break; 1075 1076 case SO_WIFI_STATUS: 1077 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1078 break; 1079 1080 case SO_PEEK_OFF: 1081 if (sock->ops->set_peek_off) 1082 ret = sock->ops->set_peek_off(sk, val); 1083 else 1084 ret = -EOPNOTSUPP; 1085 break; 1086 1087 case SO_NOFCS: 1088 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1089 break; 1090 1091 case SO_SELECT_ERR_QUEUE: 1092 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1093 break; 1094 1095 #ifdef CONFIG_NET_RX_BUSY_POLL 1096 case SO_BUSY_POLL: 1097 /* allow unprivileged users to decrease the value */ 1098 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1099 ret = -EPERM; 1100 else { 1101 if (val < 0) 1102 ret = -EINVAL; 1103 else 1104 sk->sk_ll_usec = val; 1105 } 1106 break; 1107 #endif 1108 1109 case SO_MAX_PACING_RATE: 1110 { 1111 unsigned long ulval = (val == ~0U) ? ~0UL : val; 1112 1113 if (sizeof(ulval) != sizeof(val) && 1114 optlen >= sizeof(ulval) && 1115 get_user(ulval, (unsigned long __user *)optval)) { 1116 ret = -EFAULT; 1117 break; 1118 } 1119 if (ulval != ~0UL) 1120 cmpxchg(&sk->sk_pacing_status, 1121 SK_PACING_NONE, 1122 SK_PACING_NEEDED); 1123 sk->sk_max_pacing_rate = ulval; 1124 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1125 break; 1126 } 1127 case SO_INCOMING_CPU: 1128 WRITE_ONCE(sk->sk_incoming_cpu, val); 1129 break; 1130 1131 case SO_CNX_ADVICE: 1132 if (val == 1) 1133 dst_negative_advice(sk); 1134 break; 1135 1136 case SO_ZEROCOPY: 1137 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1138 if (!((sk->sk_type == SOCK_STREAM && 1139 sk->sk_protocol == IPPROTO_TCP) || 1140 (sk->sk_type == SOCK_DGRAM && 1141 sk->sk_protocol == IPPROTO_UDP))) 1142 ret = -ENOTSUPP; 1143 } else if (sk->sk_family != PF_RDS) { 1144 ret = -ENOTSUPP; 1145 } 1146 if (!ret) { 1147 if (val < 0 || val > 1) 1148 ret = -EINVAL; 1149 else 1150 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1151 } 1152 break; 1153 1154 case SO_TXTIME: 1155 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1156 ret = -EPERM; 1157 } else if (optlen != sizeof(struct sock_txtime)) { 1158 ret = -EINVAL; 1159 } else if (copy_from_user(&sk_txtime, optval, 1160 sizeof(struct sock_txtime))) { 1161 ret = -EFAULT; 1162 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1163 ret = -EINVAL; 1164 } else { 1165 sock_valbool_flag(sk, SOCK_TXTIME, true); 1166 sk->sk_clockid = sk_txtime.clockid; 1167 sk->sk_txtime_deadline_mode = 1168 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1169 sk->sk_txtime_report_errors = 1170 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1171 } 1172 break; 1173 1174 case SO_BINDTOIFINDEX: 1175 ret = sock_setbindtodevice_locked(sk, val); 1176 break; 1177 1178 default: 1179 ret = -ENOPROTOOPT; 1180 break; 1181 } 1182 release_sock(sk); 1183 return ret; 1184 } 1185 EXPORT_SYMBOL(sock_setsockopt); 1186 1187 1188 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1189 struct ucred *ucred) 1190 { 1191 ucred->pid = pid_vnr(pid); 1192 ucred->uid = ucred->gid = -1; 1193 if (cred) { 1194 struct user_namespace *current_ns = current_user_ns(); 1195 1196 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1197 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1198 } 1199 } 1200 1201 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1202 { 1203 struct user_namespace *user_ns = current_user_ns(); 1204 int i; 1205 1206 for (i = 0; i < src->ngroups; i++) 1207 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1208 return -EFAULT; 1209 1210 return 0; 1211 } 1212 1213 int sock_getsockopt(struct socket *sock, int level, int optname, 1214 char __user *optval, int __user *optlen) 1215 { 1216 struct sock *sk = sock->sk; 1217 1218 union { 1219 int val; 1220 u64 val64; 1221 unsigned long ulval; 1222 struct linger ling; 1223 struct old_timeval32 tm32; 1224 struct __kernel_old_timeval tm; 1225 struct __kernel_sock_timeval stm; 1226 struct sock_txtime txtime; 1227 } v; 1228 1229 int lv = sizeof(int); 1230 int len; 1231 1232 if (get_user(len, optlen)) 1233 return -EFAULT; 1234 if (len < 0) 1235 return -EINVAL; 1236 1237 memset(&v, 0, sizeof(v)); 1238 1239 switch (optname) { 1240 case SO_DEBUG: 1241 v.val = sock_flag(sk, SOCK_DBG); 1242 break; 1243 1244 case SO_DONTROUTE: 1245 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1246 break; 1247 1248 case SO_BROADCAST: 1249 v.val = sock_flag(sk, SOCK_BROADCAST); 1250 break; 1251 1252 case SO_SNDBUF: 1253 v.val = sk->sk_sndbuf; 1254 break; 1255 1256 case SO_RCVBUF: 1257 v.val = sk->sk_rcvbuf; 1258 break; 1259 1260 case SO_REUSEADDR: 1261 v.val = sk->sk_reuse; 1262 break; 1263 1264 case SO_REUSEPORT: 1265 v.val = sk->sk_reuseport; 1266 break; 1267 1268 case SO_KEEPALIVE: 1269 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1270 break; 1271 1272 case SO_TYPE: 1273 v.val = sk->sk_type; 1274 break; 1275 1276 case SO_PROTOCOL: 1277 v.val = sk->sk_protocol; 1278 break; 1279 1280 case SO_DOMAIN: 1281 v.val = sk->sk_family; 1282 break; 1283 1284 case SO_ERROR: 1285 v.val = -sock_error(sk); 1286 if (v.val == 0) 1287 v.val = xchg(&sk->sk_err_soft, 0); 1288 break; 1289 1290 case SO_OOBINLINE: 1291 v.val = sock_flag(sk, SOCK_URGINLINE); 1292 break; 1293 1294 case SO_NO_CHECK: 1295 v.val = sk->sk_no_check_tx; 1296 break; 1297 1298 case SO_PRIORITY: 1299 v.val = sk->sk_priority; 1300 break; 1301 1302 case SO_LINGER: 1303 lv = sizeof(v.ling); 1304 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1305 v.ling.l_linger = sk->sk_lingertime / HZ; 1306 break; 1307 1308 case SO_BSDCOMPAT: 1309 sock_warn_obsolete_bsdism("getsockopt"); 1310 break; 1311 1312 case SO_TIMESTAMP_OLD: 1313 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1314 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1315 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1316 break; 1317 1318 case SO_TIMESTAMPNS_OLD: 1319 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1320 break; 1321 1322 case SO_TIMESTAMP_NEW: 1323 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1324 break; 1325 1326 case SO_TIMESTAMPNS_NEW: 1327 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1328 break; 1329 1330 case SO_TIMESTAMPING_OLD: 1331 v.val = sk->sk_tsflags; 1332 break; 1333 1334 case SO_RCVTIMEO_OLD: 1335 case SO_RCVTIMEO_NEW: 1336 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1337 break; 1338 1339 case SO_SNDTIMEO_OLD: 1340 case SO_SNDTIMEO_NEW: 1341 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1342 break; 1343 1344 case SO_RCVLOWAT: 1345 v.val = sk->sk_rcvlowat; 1346 break; 1347 1348 case SO_SNDLOWAT: 1349 v.val = 1; 1350 break; 1351 1352 case SO_PASSCRED: 1353 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1354 break; 1355 1356 case SO_PEERCRED: 1357 { 1358 struct ucred peercred; 1359 if (len > sizeof(peercred)) 1360 len = sizeof(peercred); 1361 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1362 if (copy_to_user(optval, &peercred, len)) 1363 return -EFAULT; 1364 goto lenout; 1365 } 1366 1367 case SO_PEERGROUPS: 1368 { 1369 int ret, n; 1370 1371 if (!sk->sk_peer_cred) 1372 return -ENODATA; 1373 1374 n = sk->sk_peer_cred->group_info->ngroups; 1375 if (len < n * sizeof(gid_t)) { 1376 len = n * sizeof(gid_t); 1377 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1378 } 1379 len = n * sizeof(gid_t); 1380 1381 ret = groups_to_user((gid_t __user *)optval, 1382 sk->sk_peer_cred->group_info); 1383 if (ret) 1384 return ret; 1385 goto lenout; 1386 } 1387 1388 case SO_PEERNAME: 1389 { 1390 char address[128]; 1391 1392 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1393 if (lv < 0) 1394 return -ENOTCONN; 1395 if (lv < len) 1396 return -EINVAL; 1397 if (copy_to_user(optval, address, len)) 1398 return -EFAULT; 1399 goto lenout; 1400 } 1401 1402 /* Dubious BSD thing... Probably nobody even uses it, but 1403 * the UNIX standard wants it for whatever reason... -DaveM 1404 */ 1405 case SO_ACCEPTCONN: 1406 v.val = sk->sk_state == TCP_LISTEN; 1407 break; 1408 1409 case SO_PASSSEC: 1410 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1411 break; 1412 1413 case SO_PEERSEC: 1414 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1415 1416 case SO_MARK: 1417 v.val = sk->sk_mark; 1418 break; 1419 1420 case SO_RXQ_OVFL: 1421 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1422 break; 1423 1424 case SO_WIFI_STATUS: 1425 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1426 break; 1427 1428 case SO_PEEK_OFF: 1429 if (!sock->ops->set_peek_off) 1430 return -EOPNOTSUPP; 1431 1432 v.val = sk->sk_peek_off; 1433 break; 1434 case SO_NOFCS: 1435 v.val = sock_flag(sk, SOCK_NOFCS); 1436 break; 1437 1438 case SO_BINDTODEVICE: 1439 return sock_getbindtodevice(sk, optval, optlen, len); 1440 1441 case SO_GET_FILTER: 1442 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1443 if (len < 0) 1444 return len; 1445 1446 goto lenout; 1447 1448 case SO_LOCK_FILTER: 1449 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1450 break; 1451 1452 case SO_BPF_EXTENSIONS: 1453 v.val = bpf_tell_extensions(); 1454 break; 1455 1456 case SO_SELECT_ERR_QUEUE: 1457 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1458 break; 1459 1460 #ifdef CONFIG_NET_RX_BUSY_POLL 1461 case SO_BUSY_POLL: 1462 v.val = sk->sk_ll_usec; 1463 break; 1464 #endif 1465 1466 case SO_MAX_PACING_RATE: 1467 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1468 lv = sizeof(v.ulval); 1469 v.ulval = sk->sk_max_pacing_rate; 1470 } else { 1471 /* 32bit version */ 1472 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1473 } 1474 break; 1475 1476 case SO_INCOMING_CPU: 1477 v.val = READ_ONCE(sk->sk_incoming_cpu); 1478 break; 1479 1480 case SO_MEMINFO: 1481 { 1482 u32 meminfo[SK_MEMINFO_VARS]; 1483 1484 sk_get_meminfo(sk, meminfo); 1485 1486 len = min_t(unsigned int, len, sizeof(meminfo)); 1487 if (copy_to_user(optval, &meminfo, len)) 1488 return -EFAULT; 1489 1490 goto lenout; 1491 } 1492 1493 #ifdef CONFIG_NET_RX_BUSY_POLL 1494 case SO_INCOMING_NAPI_ID: 1495 v.val = READ_ONCE(sk->sk_napi_id); 1496 1497 /* aggregate non-NAPI IDs down to 0 */ 1498 if (v.val < MIN_NAPI_ID) 1499 v.val = 0; 1500 1501 break; 1502 #endif 1503 1504 case SO_COOKIE: 1505 lv = sizeof(u64); 1506 if (len < lv) 1507 return -EINVAL; 1508 v.val64 = sock_gen_cookie(sk); 1509 break; 1510 1511 case SO_ZEROCOPY: 1512 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1513 break; 1514 1515 case SO_TXTIME: 1516 lv = sizeof(v.txtime); 1517 v.txtime.clockid = sk->sk_clockid; 1518 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1519 SOF_TXTIME_DEADLINE_MODE : 0; 1520 v.txtime.flags |= sk->sk_txtime_report_errors ? 1521 SOF_TXTIME_REPORT_ERRORS : 0; 1522 break; 1523 1524 case SO_BINDTOIFINDEX: 1525 v.val = sk->sk_bound_dev_if; 1526 break; 1527 1528 default: 1529 /* We implement the SO_SNDLOWAT etc to not be settable 1530 * (1003.1g 7). 1531 */ 1532 return -ENOPROTOOPT; 1533 } 1534 1535 if (len > lv) 1536 len = lv; 1537 if (copy_to_user(optval, &v, len)) 1538 return -EFAULT; 1539 lenout: 1540 if (put_user(len, optlen)) 1541 return -EFAULT; 1542 return 0; 1543 } 1544 1545 /* 1546 * Initialize an sk_lock. 1547 * 1548 * (We also register the sk_lock with the lock validator.) 1549 */ 1550 static inline void sock_lock_init(struct sock *sk) 1551 { 1552 if (sk->sk_kern_sock) 1553 sock_lock_init_class_and_name( 1554 sk, 1555 af_family_kern_slock_key_strings[sk->sk_family], 1556 af_family_kern_slock_keys + sk->sk_family, 1557 af_family_kern_key_strings[sk->sk_family], 1558 af_family_kern_keys + sk->sk_family); 1559 else 1560 sock_lock_init_class_and_name( 1561 sk, 1562 af_family_slock_key_strings[sk->sk_family], 1563 af_family_slock_keys + sk->sk_family, 1564 af_family_key_strings[sk->sk_family], 1565 af_family_keys + sk->sk_family); 1566 } 1567 1568 /* 1569 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1570 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1571 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1572 */ 1573 static void sock_copy(struct sock *nsk, const struct sock *osk) 1574 { 1575 const struct proto *prot = READ_ONCE(osk->sk_prot); 1576 #ifdef CONFIG_SECURITY_NETWORK 1577 void *sptr = nsk->sk_security; 1578 #endif 1579 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1580 1581 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1582 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1583 1584 #ifdef CONFIG_SECURITY_NETWORK 1585 nsk->sk_security = sptr; 1586 security_sk_clone(osk, nsk); 1587 #endif 1588 } 1589 1590 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1591 int family) 1592 { 1593 struct sock *sk; 1594 struct kmem_cache *slab; 1595 1596 slab = prot->slab; 1597 if (slab != NULL) { 1598 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1599 if (!sk) 1600 return sk; 1601 if (want_init_on_alloc(priority)) 1602 sk_prot_clear_nulls(sk, prot->obj_size); 1603 } else 1604 sk = kmalloc(prot->obj_size, priority); 1605 1606 if (sk != NULL) { 1607 if (security_sk_alloc(sk, family, priority)) 1608 goto out_free; 1609 1610 if (!try_module_get(prot->owner)) 1611 goto out_free_sec; 1612 sk_tx_queue_clear(sk); 1613 } 1614 1615 return sk; 1616 1617 out_free_sec: 1618 security_sk_free(sk); 1619 out_free: 1620 if (slab != NULL) 1621 kmem_cache_free(slab, sk); 1622 else 1623 kfree(sk); 1624 return NULL; 1625 } 1626 1627 static void sk_prot_free(struct proto *prot, struct sock *sk) 1628 { 1629 struct kmem_cache *slab; 1630 struct module *owner; 1631 1632 owner = prot->owner; 1633 slab = prot->slab; 1634 1635 cgroup_sk_free(&sk->sk_cgrp_data); 1636 mem_cgroup_sk_free(sk); 1637 security_sk_free(sk); 1638 if (slab != NULL) 1639 kmem_cache_free(slab, sk); 1640 else 1641 kfree(sk); 1642 module_put(owner); 1643 } 1644 1645 /** 1646 * sk_alloc - All socket objects are allocated here 1647 * @net: the applicable net namespace 1648 * @family: protocol family 1649 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1650 * @prot: struct proto associated with this new sock instance 1651 * @kern: is this to be a kernel socket? 1652 */ 1653 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1654 struct proto *prot, int kern) 1655 { 1656 struct sock *sk; 1657 1658 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1659 if (sk) { 1660 sk->sk_family = family; 1661 /* 1662 * See comment in struct sock definition to understand 1663 * why we need sk_prot_creator -acme 1664 */ 1665 sk->sk_prot = sk->sk_prot_creator = prot; 1666 sk->sk_kern_sock = kern; 1667 sock_lock_init(sk); 1668 sk->sk_net_refcnt = kern ? 0 : 1; 1669 if (likely(sk->sk_net_refcnt)) { 1670 get_net(net); 1671 sock_inuse_add(net, 1); 1672 } 1673 1674 sock_net_set(sk, net); 1675 refcount_set(&sk->sk_wmem_alloc, 1); 1676 1677 mem_cgroup_sk_alloc(sk); 1678 cgroup_sk_alloc(&sk->sk_cgrp_data); 1679 sock_update_classid(&sk->sk_cgrp_data); 1680 sock_update_netprioidx(&sk->sk_cgrp_data); 1681 } 1682 1683 return sk; 1684 } 1685 EXPORT_SYMBOL(sk_alloc); 1686 1687 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1688 * grace period. This is the case for UDP sockets and TCP listeners. 1689 */ 1690 static void __sk_destruct(struct rcu_head *head) 1691 { 1692 struct sock *sk = container_of(head, struct sock, sk_rcu); 1693 struct sk_filter *filter; 1694 1695 if (sk->sk_destruct) 1696 sk->sk_destruct(sk); 1697 1698 filter = rcu_dereference_check(sk->sk_filter, 1699 refcount_read(&sk->sk_wmem_alloc) == 0); 1700 if (filter) { 1701 sk_filter_uncharge(sk, filter); 1702 RCU_INIT_POINTER(sk->sk_filter, NULL); 1703 } 1704 1705 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1706 1707 #ifdef CONFIG_BPF_SYSCALL 1708 bpf_sk_storage_free(sk); 1709 #endif 1710 1711 if (atomic_read(&sk->sk_omem_alloc)) 1712 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1713 __func__, atomic_read(&sk->sk_omem_alloc)); 1714 1715 if (sk->sk_frag.page) { 1716 put_page(sk->sk_frag.page); 1717 sk->sk_frag.page = NULL; 1718 } 1719 1720 if (sk->sk_peer_cred) 1721 put_cred(sk->sk_peer_cred); 1722 put_pid(sk->sk_peer_pid); 1723 if (likely(sk->sk_net_refcnt)) 1724 put_net(sock_net(sk)); 1725 sk_prot_free(sk->sk_prot_creator, sk); 1726 } 1727 1728 void sk_destruct(struct sock *sk) 1729 { 1730 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 1731 1732 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 1733 reuseport_detach_sock(sk); 1734 use_call_rcu = true; 1735 } 1736 1737 if (use_call_rcu) 1738 call_rcu(&sk->sk_rcu, __sk_destruct); 1739 else 1740 __sk_destruct(&sk->sk_rcu); 1741 } 1742 1743 static void __sk_free(struct sock *sk) 1744 { 1745 if (likely(sk->sk_net_refcnt)) 1746 sock_inuse_add(sock_net(sk), -1); 1747 1748 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 1749 sock_diag_broadcast_destroy(sk); 1750 else 1751 sk_destruct(sk); 1752 } 1753 1754 void sk_free(struct sock *sk) 1755 { 1756 /* 1757 * We subtract one from sk_wmem_alloc and can know if 1758 * some packets are still in some tx queue. 1759 * If not null, sock_wfree() will call __sk_free(sk) later 1760 */ 1761 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 1762 __sk_free(sk); 1763 } 1764 EXPORT_SYMBOL(sk_free); 1765 1766 static void sk_init_common(struct sock *sk) 1767 { 1768 skb_queue_head_init(&sk->sk_receive_queue); 1769 skb_queue_head_init(&sk->sk_write_queue); 1770 skb_queue_head_init(&sk->sk_error_queue); 1771 1772 rwlock_init(&sk->sk_callback_lock); 1773 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 1774 af_rlock_keys + sk->sk_family, 1775 af_family_rlock_key_strings[sk->sk_family]); 1776 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 1777 af_wlock_keys + sk->sk_family, 1778 af_family_wlock_key_strings[sk->sk_family]); 1779 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 1780 af_elock_keys + sk->sk_family, 1781 af_family_elock_key_strings[sk->sk_family]); 1782 lockdep_set_class_and_name(&sk->sk_callback_lock, 1783 af_callback_keys + sk->sk_family, 1784 af_family_clock_key_strings[sk->sk_family]); 1785 } 1786 1787 /** 1788 * sk_clone_lock - clone a socket, and lock its clone 1789 * @sk: the socket to clone 1790 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1791 * 1792 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1793 */ 1794 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1795 { 1796 struct proto *prot = READ_ONCE(sk->sk_prot); 1797 struct sock *newsk; 1798 bool is_charged = true; 1799 1800 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 1801 if (newsk != NULL) { 1802 struct sk_filter *filter; 1803 1804 sock_copy(newsk, sk); 1805 1806 newsk->sk_prot_creator = prot; 1807 1808 /* SANITY */ 1809 if (likely(newsk->sk_net_refcnt)) 1810 get_net(sock_net(newsk)); 1811 sk_node_init(&newsk->sk_node); 1812 sock_lock_init(newsk); 1813 bh_lock_sock(newsk); 1814 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1815 newsk->sk_backlog.len = 0; 1816 1817 atomic_set(&newsk->sk_rmem_alloc, 0); 1818 /* 1819 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1820 */ 1821 refcount_set(&newsk->sk_wmem_alloc, 1); 1822 atomic_set(&newsk->sk_omem_alloc, 0); 1823 sk_init_common(newsk); 1824 1825 newsk->sk_dst_cache = NULL; 1826 newsk->sk_dst_pending_confirm = 0; 1827 newsk->sk_wmem_queued = 0; 1828 newsk->sk_forward_alloc = 0; 1829 atomic_set(&newsk->sk_drops, 0); 1830 newsk->sk_send_head = NULL; 1831 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1832 atomic_set(&newsk->sk_zckey, 0); 1833 1834 sock_reset_flag(newsk, SOCK_DONE); 1835 1836 /* sk->sk_memcg will be populated at accept() time */ 1837 newsk->sk_memcg = NULL; 1838 1839 cgroup_sk_alloc(&newsk->sk_cgrp_data); 1840 1841 rcu_read_lock(); 1842 filter = rcu_dereference(sk->sk_filter); 1843 if (filter != NULL) 1844 /* though it's an empty new sock, the charging may fail 1845 * if sysctl_optmem_max was changed between creation of 1846 * original socket and cloning 1847 */ 1848 is_charged = sk_filter_charge(newsk, filter); 1849 RCU_INIT_POINTER(newsk->sk_filter, filter); 1850 rcu_read_unlock(); 1851 1852 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1853 /* We need to make sure that we don't uncharge the new 1854 * socket if we couldn't charge it in the first place 1855 * as otherwise we uncharge the parent's filter. 1856 */ 1857 if (!is_charged) 1858 RCU_INIT_POINTER(newsk->sk_filter, NULL); 1859 sk_free_unlock_clone(newsk); 1860 newsk = NULL; 1861 goto out; 1862 } 1863 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1864 1865 if (bpf_sk_storage_clone(sk, newsk)) { 1866 sk_free_unlock_clone(newsk); 1867 newsk = NULL; 1868 goto out; 1869 } 1870 1871 /* Clear sk_user_data if parent had the pointer tagged 1872 * as not suitable for copying when cloning. 1873 */ 1874 if (sk_user_data_is_nocopy(newsk)) 1875 RCU_INIT_POINTER(newsk->sk_user_data, NULL); 1876 1877 newsk->sk_err = 0; 1878 newsk->sk_err_soft = 0; 1879 newsk->sk_priority = 0; 1880 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1881 if (likely(newsk->sk_net_refcnt)) 1882 sock_inuse_add(sock_net(newsk), 1); 1883 1884 /* 1885 * Before updating sk_refcnt, we must commit prior changes to memory 1886 * (Documentation/RCU/rculist_nulls.txt for details) 1887 */ 1888 smp_wmb(); 1889 refcount_set(&newsk->sk_refcnt, 2); 1890 1891 /* 1892 * Increment the counter in the same struct proto as the master 1893 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1894 * is the same as sk->sk_prot->socks, as this field was copied 1895 * with memcpy). 1896 * 1897 * This _changes_ the previous behaviour, where 1898 * tcp_create_openreq_child always was incrementing the 1899 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1900 * to be taken into account in all callers. -acme 1901 */ 1902 sk_refcnt_debug_inc(newsk); 1903 sk_set_socket(newsk, NULL); 1904 RCU_INIT_POINTER(newsk->sk_wq, NULL); 1905 1906 if (newsk->sk_prot->sockets_allocated) 1907 sk_sockets_allocated_inc(newsk); 1908 1909 if (sock_needs_netstamp(sk) && 1910 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1911 net_enable_timestamp(); 1912 } 1913 out: 1914 return newsk; 1915 } 1916 EXPORT_SYMBOL_GPL(sk_clone_lock); 1917 1918 void sk_free_unlock_clone(struct sock *sk) 1919 { 1920 /* It is still raw copy of parent, so invalidate 1921 * destructor and make plain sk_free() */ 1922 sk->sk_destruct = NULL; 1923 bh_unlock_sock(sk); 1924 sk_free(sk); 1925 } 1926 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 1927 1928 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1929 { 1930 u32 max_segs = 1; 1931 1932 sk_dst_set(sk, dst); 1933 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps; 1934 if (sk->sk_route_caps & NETIF_F_GSO) 1935 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1936 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1937 if (sk_can_gso(sk)) { 1938 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 1939 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1940 } else { 1941 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1942 sk->sk_gso_max_size = dst->dev->gso_max_size; 1943 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 1944 } 1945 } 1946 sk->sk_gso_max_segs = max_segs; 1947 } 1948 EXPORT_SYMBOL_GPL(sk_setup_caps); 1949 1950 /* 1951 * Simple resource managers for sockets. 1952 */ 1953 1954 1955 /* 1956 * Write buffer destructor automatically called from kfree_skb. 1957 */ 1958 void sock_wfree(struct sk_buff *skb) 1959 { 1960 struct sock *sk = skb->sk; 1961 unsigned int len = skb->truesize; 1962 1963 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1964 /* 1965 * Keep a reference on sk_wmem_alloc, this will be released 1966 * after sk_write_space() call 1967 */ 1968 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 1969 sk->sk_write_space(sk); 1970 len = 1; 1971 } 1972 /* 1973 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1974 * could not do because of in-flight packets 1975 */ 1976 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 1977 __sk_free(sk); 1978 } 1979 EXPORT_SYMBOL(sock_wfree); 1980 1981 /* This variant of sock_wfree() is used by TCP, 1982 * since it sets SOCK_USE_WRITE_QUEUE. 1983 */ 1984 void __sock_wfree(struct sk_buff *skb) 1985 { 1986 struct sock *sk = skb->sk; 1987 1988 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 1989 __sk_free(sk); 1990 } 1991 1992 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1993 { 1994 skb_orphan(skb); 1995 skb->sk = sk; 1996 #ifdef CONFIG_INET 1997 if (unlikely(!sk_fullsock(sk))) { 1998 skb->destructor = sock_edemux; 1999 sock_hold(sk); 2000 return; 2001 } 2002 #endif 2003 skb->destructor = sock_wfree; 2004 skb_set_hash_from_sk(skb, sk); 2005 /* 2006 * We used to take a refcount on sk, but following operation 2007 * is enough to guarantee sk_free() wont free this sock until 2008 * all in-flight packets are completed 2009 */ 2010 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2011 } 2012 EXPORT_SYMBOL(skb_set_owner_w); 2013 2014 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2015 { 2016 #ifdef CONFIG_TLS_DEVICE 2017 /* Drivers depend on in-order delivery for crypto offload, 2018 * partial orphan breaks out-of-order-OK logic. 2019 */ 2020 if (skb->decrypted) 2021 return false; 2022 #endif 2023 return (skb->destructor == sock_wfree || 2024 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2025 } 2026 2027 /* This helper is used by netem, as it can hold packets in its 2028 * delay queue. We want to allow the owner socket to send more 2029 * packets, as if they were already TX completed by a typical driver. 2030 * But we also want to keep skb->sk set because some packet schedulers 2031 * rely on it (sch_fq for example). 2032 */ 2033 void skb_orphan_partial(struct sk_buff *skb) 2034 { 2035 if (skb_is_tcp_pure_ack(skb)) 2036 return; 2037 2038 if (can_skb_orphan_partial(skb)) { 2039 struct sock *sk = skb->sk; 2040 2041 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 2042 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)); 2043 skb->destructor = sock_efree; 2044 } 2045 } else { 2046 skb_orphan(skb); 2047 } 2048 } 2049 EXPORT_SYMBOL(skb_orphan_partial); 2050 2051 /* 2052 * Read buffer destructor automatically called from kfree_skb. 2053 */ 2054 void sock_rfree(struct sk_buff *skb) 2055 { 2056 struct sock *sk = skb->sk; 2057 unsigned int len = skb->truesize; 2058 2059 atomic_sub(len, &sk->sk_rmem_alloc); 2060 sk_mem_uncharge(sk, len); 2061 } 2062 EXPORT_SYMBOL(sock_rfree); 2063 2064 /* 2065 * Buffer destructor for skbs that are not used directly in read or write 2066 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2067 */ 2068 void sock_efree(struct sk_buff *skb) 2069 { 2070 sock_put(skb->sk); 2071 } 2072 EXPORT_SYMBOL(sock_efree); 2073 2074 /* Buffer destructor for prefetch/receive path where reference count may 2075 * not be held, e.g. for listen sockets. 2076 */ 2077 #ifdef CONFIG_INET 2078 void sock_pfree(struct sk_buff *skb) 2079 { 2080 if (sk_is_refcounted(skb->sk)) 2081 sock_gen_put(skb->sk); 2082 } 2083 EXPORT_SYMBOL(sock_pfree); 2084 #endif /* CONFIG_INET */ 2085 2086 kuid_t sock_i_uid(struct sock *sk) 2087 { 2088 kuid_t uid; 2089 2090 read_lock_bh(&sk->sk_callback_lock); 2091 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2092 read_unlock_bh(&sk->sk_callback_lock); 2093 return uid; 2094 } 2095 EXPORT_SYMBOL(sock_i_uid); 2096 2097 unsigned long sock_i_ino(struct sock *sk) 2098 { 2099 unsigned long ino; 2100 2101 read_lock_bh(&sk->sk_callback_lock); 2102 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2103 read_unlock_bh(&sk->sk_callback_lock); 2104 return ino; 2105 } 2106 EXPORT_SYMBOL(sock_i_ino); 2107 2108 /* 2109 * Allocate a skb from the socket's send buffer. 2110 */ 2111 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2112 gfp_t priority) 2113 { 2114 if (force || 2115 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2116 struct sk_buff *skb = alloc_skb(size, priority); 2117 2118 if (skb) { 2119 skb_set_owner_w(skb, sk); 2120 return skb; 2121 } 2122 } 2123 return NULL; 2124 } 2125 EXPORT_SYMBOL(sock_wmalloc); 2126 2127 static void sock_ofree(struct sk_buff *skb) 2128 { 2129 struct sock *sk = skb->sk; 2130 2131 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2132 } 2133 2134 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2135 gfp_t priority) 2136 { 2137 struct sk_buff *skb; 2138 2139 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2140 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2141 sysctl_optmem_max) 2142 return NULL; 2143 2144 skb = alloc_skb(size, priority); 2145 if (!skb) 2146 return NULL; 2147 2148 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2149 skb->sk = sk; 2150 skb->destructor = sock_ofree; 2151 return skb; 2152 } 2153 2154 /* 2155 * Allocate a memory block from the socket's option memory buffer. 2156 */ 2157 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2158 { 2159 if ((unsigned int)size <= sysctl_optmem_max && 2160 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 2161 void *mem; 2162 /* First do the add, to avoid the race if kmalloc 2163 * might sleep. 2164 */ 2165 atomic_add(size, &sk->sk_omem_alloc); 2166 mem = kmalloc(size, priority); 2167 if (mem) 2168 return mem; 2169 atomic_sub(size, &sk->sk_omem_alloc); 2170 } 2171 return NULL; 2172 } 2173 EXPORT_SYMBOL(sock_kmalloc); 2174 2175 /* Free an option memory block. Note, we actually want the inline 2176 * here as this allows gcc to detect the nullify and fold away the 2177 * condition entirely. 2178 */ 2179 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2180 const bool nullify) 2181 { 2182 if (WARN_ON_ONCE(!mem)) 2183 return; 2184 if (nullify) 2185 kzfree(mem); 2186 else 2187 kfree(mem); 2188 atomic_sub(size, &sk->sk_omem_alloc); 2189 } 2190 2191 void sock_kfree_s(struct sock *sk, void *mem, int size) 2192 { 2193 __sock_kfree_s(sk, mem, size, false); 2194 } 2195 EXPORT_SYMBOL(sock_kfree_s); 2196 2197 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2198 { 2199 __sock_kfree_s(sk, mem, size, true); 2200 } 2201 EXPORT_SYMBOL(sock_kzfree_s); 2202 2203 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2204 I think, these locks should be removed for datagram sockets. 2205 */ 2206 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2207 { 2208 DEFINE_WAIT(wait); 2209 2210 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2211 for (;;) { 2212 if (!timeo) 2213 break; 2214 if (signal_pending(current)) 2215 break; 2216 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2217 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2218 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2219 break; 2220 if (sk->sk_shutdown & SEND_SHUTDOWN) 2221 break; 2222 if (sk->sk_err) 2223 break; 2224 timeo = schedule_timeout(timeo); 2225 } 2226 finish_wait(sk_sleep(sk), &wait); 2227 return timeo; 2228 } 2229 2230 2231 /* 2232 * Generic send/receive buffer handlers 2233 */ 2234 2235 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2236 unsigned long data_len, int noblock, 2237 int *errcode, int max_page_order) 2238 { 2239 struct sk_buff *skb; 2240 long timeo; 2241 int err; 2242 2243 timeo = sock_sndtimeo(sk, noblock); 2244 for (;;) { 2245 err = sock_error(sk); 2246 if (err != 0) 2247 goto failure; 2248 2249 err = -EPIPE; 2250 if (sk->sk_shutdown & SEND_SHUTDOWN) 2251 goto failure; 2252 2253 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2254 break; 2255 2256 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2257 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2258 err = -EAGAIN; 2259 if (!timeo) 2260 goto failure; 2261 if (signal_pending(current)) 2262 goto interrupted; 2263 timeo = sock_wait_for_wmem(sk, timeo); 2264 } 2265 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2266 errcode, sk->sk_allocation); 2267 if (skb) 2268 skb_set_owner_w(skb, sk); 2269 return skb; 2270 2271 interrupted: 2272 err = sock_intr_errno(timeo); 2273 failure: 2274 *errcode = err; 2275 return NULL; 2276 } 2277 EXPORT_SYMBOL(sock_alloc_send_pskb); 2278 2279 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2280 int noblock, int *errcode) 2281 { 2282 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2283 } 2284 EXPORT_SYMBOL(sock_alloc_send_skb); 2285 2286 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2287 struct sockcm_cookie *sockc) 2288 { 2289 u32 tsflags; 2290 2291 switch (cmsg->cmsg_type) { 2292 case SO_MARK: 2293 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2294 return -EPERM; 2295 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2296 return -EINVAL; 2297 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2298 break; 2299 case SO_TIMESTAMPING_OLD: 2300 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2301 return -EINVAL; 2302 2303 tsflags = *(u32 *)CMSG_DATA(cmsg); 2304 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2305 return -EINVAL; 2306 2307 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2308 sockc->tsflags |= tsflags; 2309 break; 2310 case SCM_TXTIME: 2311 if (!sock_flag(sk, SOCK_TXTIME)) 2312 return -EINVAL; 2313 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2314 return -EINVAL; 2315 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2316 break; 2317 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2318 case SCM_RIGHTS: 2319 case SCM_CREDENTIALS: 2320 break; 2321 default: 2322 return -EINVAL; 2323 } 2324 return 0; 2325 } 2326 EXPORT_SYMBOL(__sock_cmsg_send); 2327 2328 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2329 struct sockcm_cookie *sockc) 2330 { 2331 struct cmsghdr *cmsg; 2332 int ret; 2333 2334 for_each_cmsghdr(cmsg, msg) { 2335 if (!CMSG_OK(msg, cmsg)) 2336 return -EINVAL; 2337 if (cmsg->cmsg_level != SOL_SOCKET) 2338 continue; 2339 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2340 if (ret) 2341 return ret; 2342 } 2343 return 0; 2344 } 2345 EXPORT_SYMBOL(sock_cmsg_send); 2346 2347 static void sk_enter_memory_pressure(struct sock *sk) 2348 { 2349 if (!sk->sk_prot->enter_memory_pressure) 2350 return; 2351 2352 sk->sk_prot->enter_memory_pressure(sk); 2353 } 2354 2355 static void sk_leave_memory_pressure(struct sock *sk) 2356 { 2357 if (sk->sk_prot->leave_memory_pressure) { 2358 sk->sk_prot->leave_memory_pressure(sk); 2359 } else { 2360 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2361 2362 if (memory_pressure && READ_ONCE(*memory_pressure)) 2363 WRITE_ONCE(*memory_pressure, 0); 2364 } 2365 } 2366 2367 /* On 32bit arches, an skb frag is limited to 2^15 */ 2368 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2369 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2370 2371 /** 2372 * skb_page_frag_refill - check that a page_frag contains enough room 2373 * @sz: minimum size of the fragment we want to get 2374 * @pfrag: pointer to page_frag 2375 * @gfp: priority for memory allocation 2376 * 2377 * Note: While this allocator tries to use high order pages, there is 2378 * no guarantee that allocations succeed. Therefore, @sz MUST be 2379 * less or equal than PAGE_SIZE. 2380 */ 2381 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2382 { 2383 if (pfrag->page) { 2384 if (page_ref_count(pfrag->page) == 1) { 2385 pfrag->offset = 0; 2386 return true; 2387 } 2388 if (pfrag->offset + sz <= pfrag->size) 2389 return true; 2390 put_page(pfrag->page); 2391 } 2392 2393 pfrag->offset = 0; 2394 if (SKB_FRAG_PAGE_ORDER && 2395 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2396 /* Avoid direct reclaim but allow kswapd to wake */ 2397 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2398 __GFP_COMP | __GFP_NOWARN | 2399 __GFP_NORETRY, 2400 SKB_FRAG_PAGE_ORDER); 2401 if (likely(pfrag->page)) { 2402 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2403 return true; 2404 } 2405 } 2406 pfrag->page = alloc_page(gfp); 2407 if (likely(pfrag->page)) { 2408 pfrag->size = PAGE_SIZE; 2409 return true; 2410 } 2411 return false; 2412 } 2413 EXPORT_SYMBOL(skb_page_frag_refill); 2414 2415 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2416 { 2417 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2418 return true; 2419 2420 sk_enter_memory_pressure(sk); 2421 sk_stream_moderate_sndbuf(sk); 2422 return false; 2423 } 2424 EXPORT_SYMBOL(sk_page_frag_refill); 2425 2426 static void __lock_sock(struct sock *sk) 2427 __releases(&sk->sk_lock.slock) 2428 __acquires(&sk->sk_lock.slock) 2429 { 2430 DEFINE_WAIT(wait); 2431 2432 for (;;) { 2433 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2434 TASK_UNINTERRUPTIBLE); 2435 spin_unlock_bh(&sk->sk_lock.slock); 2436 schedule(); 2437 spin_lock_bh(&sk->sk_lock.slock); 2438 if (!sock_owned_by_user(sk)) 2439 break; 2440 } 2441 finish_wait(&sk->sk_lock.wq, &wait); 2442 } 2443 2444 void __release_sock(struct sock *sk) 2445 __releases(&sk->sk_lock.slock) 2446 __acquires(&sk->sk_lock.slock) 2447 { 2448 struct sk_buff *skb, *next; 2449 2450 while ((skb = sk->sk_backlog.head) != NULL) { 2451 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2452 2453 spin_unlock_bh(&sk->sk_lock.slock); 2454 2455 do { 2456 next = skb->next; 2457 prefetch(next); 2458 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2459 skb_mark_not_on_list(skb); 2460 sk_backlog_rcv(sk, skb); 2461 2462 cond_resched(); 2463 2464 skb = next; 2465 } while (skb != NULL); 2466 2467 spin_lock_bh(&sk->sk_lock.slock); 2468 } 2469 2470 /* 2471 * Doing the zeroing here guarantee we can not loop forever 2472 * while a wild producer attempts to flood us. 2473 */ 2474 sk->sk_backlog.len = 0; 2475 } 2476 2477 void __sk_flush_backlog(struct sock *sk) 2478 { 2479 spin_lock_bh(&sk->sk_lock.slock); 2480 __release_sock(sk); 2481 spin_unlock_bh(&sk->sk_lock.slock); 2482 } 2483 2484 /** 2485 * sk_wait_data - wait for data to arrive at sk_receive_queue 2486 * @sk: sock to wait on 2487 * @timeo: for how long 2488 * @skb: last skb seen on sk_receive_queue 2489 * 2490 * Now socket state including sk->sk_err is changed only under lock, 2491 * hence we may omit checks after joining wait queue. 2492 * We check receive queue before schedule() only as optimization; 2493 * it is very likely that release_sock() added new data. 2494 */ 2495 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2496 { 2497 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2498 int rc; 2499 2500 add_wait_queue(sk_sleep(sk), &wait); 2501 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2502 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2503 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2504 remove_wait_queue(sk_sleep(sk), &wait); 2505 return rc; 2506 } 2507 EXPORT_SYMBOL(sk_wait_data); 2508 2509 /** 2510 * __sk_mem_raise_allocated - increase memory_allocated 2511 * @sk: socket 2512 * @size: memory size to allocate 2513 * @amt: pages to allocate 2514 * @kind: allocation type 2515 * 2516 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2517 */ 2518 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2519 { 2520 struct proto *prot = sk->sk_prot; 2521 long allocated = sk_memory_allocated_add(sk, amt); 2522 bool charged = true; 2523 2524 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2525 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt))) 2526 goto suppress_allocation; 2527 2528 /* Under limit. */ 2529 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2530 sk_leave_memory_pressure(sk); 2531 return 1; 2532 } 2533 2534 /* Under pressure. */ 2535 if (allocated > sk_prot_mem_limits(sk, 1)) 2536 sk_enter_memory_pressure(sk); 2537 2538 /* Over hard limit. */ 2539 if (allocated > sk_prot_mem_limits(sk, 2)) 2540 goto suppress_allocation; 2541 2542 /* guarantee minimum buffer size under pressure */ 2543 if (kind == SK_MEM_RECV) { 2544 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2545 return 1; 2546 2547 } else { /* SK_MEM_SEND */ 2548 int wmem0 = sk_get_wmem0(sk, prot); 2549 2550 if (sk->sk_type == SOCK_STREAM) { 2551 if (sk->sk_wmem_queued < wmem0) 2552 return 1; 2553 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2554 return 1; 2555 } 2556 } 2557 2558 if (sk_has_memory_pressure(sk)) { 2559 u64 alloc; 2560 2561 if (!sk_under_memory_pressure(sk)) 2562 return 1; 2563 alloc = sk_sockets_allocated_read_positive(sk); 2564 if (sk_prot_mem_limits(sk, 2) > alloc * 2565 sk_mem_pages(sk->sk_wmem_queued + 2566 atomic_read(&sk->sk_rmem_alloc) + 2567 sk->sk_forward_alloc)) 2568 return 1; 2569 } 2570 2571 suppress_allocation: 2572 2573 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2574 sk_stream_moderate_sndbuf(sk); 2575 2576 /* Fail only if socket is _under_ its sndbuf. 2577 * In this case we cannot block, so that we have to fail. 2578 */ 2579 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2580 return 1; 2581 } 2582 2583 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 2584 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 2585 2586 sk_memory_allocated_sub(sk, amt); 2587 2588 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2589 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2590 2591 return 0; 2592 } 2593 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2594 2595 /** 2596 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2597 * @sk: socket 2598 * @size: memory size to allocate 2599 * @kind: allocation type 2600 * 2601 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2602 * rmem allocation. This function assumes that protocols which have 2603 * memory_pressure use sk_wmem_queued as write buffer accounting. 2604 */ 2605 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2606 { 2607 int ret, amt = sk_mem_pages(size); 2608 2609 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2610 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2611 if (!ret) 2612 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2613 return ret; 2614 } 2615 EXPORT_SYMBOL(__sk_mem_schedule); 2616 2617 /** 2618 * __sk_mem_reduce_allocated - reclaim memory_allocated 2619 * @sk: socket 2620 * @amount: number of quanta 2621 * 2622 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2623 */ 2624 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2625 { 2626 sk_memory_allocated_sub(sk, amount); 2627 2628 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2629 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2630 2631 if (sk_under_memory_pressure(sk) && 2632 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2633 sk_leave_memory_pressure(sk); 2634 } 2635 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2636 2637 /** 2638 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2639 * @sk: socket 2640 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2641 */ 2642 void __sk_mem_reclaim(struct sock *sk, int amount) 2643 { 2644 amount >>= SK_MEM_QUANTUM_SHIFT; 2645 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2646 __sk_mem_reduce_allocated(sk, amount); 2647 } 2648 EXPORT_SYMBOL(__sk_mem_reclaim); 2649 2650 int sk_set_peek_off(struct sock *sk, int val) 2651 { 2652 sk->sk_peek_off = val; 2653 return 0; 2654 } 2655 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2656 2657 /* 2658 * Set of default routines for initialising struct proto_ops when 2659 * the protocol does not support a particular function. In certain 2660 * cases where it makes no sense for a protocol to have a "do nothing" 2661 * function, some default processing is provided. 2662 */ 2663 2664 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2665 { 2666 return -EOPNOTSUPP; 2667 } 2668 EXPORT_SYMBOL(sock_no_bind); 2669 2670 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2671 int len, int flags) 2672 { 2673 return -EOPNOTSUPP; 2674 } 2675 EXPORT_SYMBOL(sock_no_connect); 2676 2677 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2678 { 2679 return -EOPNOTSUPP; 2680 } 2681 EXPORT_SYMBOL(sock_no_socketpair); 2682 2683 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 2684 bool kern) 2685 { 2686 return -EOPNOTSUPP; 2687 } 2688 EXPORT_SYMBOL(sock_no_accept); 2689 2690 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2691 int peer) 2692 { 2693 return -EOPNOTSUPP; 2694 } 2695 EXPORT_SYMBOL(sock_no_getname); 2696 2697 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2698 { 2699 return -EOPNOTSUPP; 2700 } 2701 EXPORT_SYMBOL(sock_no_ioctl); 2702 2703 int sock_no_listen(struct socket *sock, int backlog) 2704 { 2705 return -EOPNOTSUPP; 2706 } 2707 EXPORT_SYMBOL(sock_no_listen); 2708 2709 int sock_no_shutdown(struct socket *sock, int how) 2710 { 2711 return -EOPNOTSUPP; 2712 } 2713 EXPORT_SYMBOL(sock_no_shutdown); 2714 2715 int sock_no_setsockopt(struct socket *sock, int level, int optname, 2716 char __user *optval, unsigned int optlen) 2717 { 2718 return -EOPNOTSUPP; 2719 } 2720 EXPORT_SYMBOL(sock_no_setsockopt); 2721 2722 int sock_no_getsockopt(struct socket *sock, int level, int optname, 2723 char __user *optval, int __user *optlen) 2724 { 2725 return -EOPNOTSUPP; 2726 } 2727 EXPORT_SYMBOL(sock_no_getsockopt); 2728 2729 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2730 { 2731 return -EOPNOTSUPP; 2732 } 2733 EXPORT_SYMBOL(sock_no_sendmsg); 2734 2735 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 2736 { 2737 return -EOPNOTSUPP; 2738 } 2739 EXPORT_SYMBOL(sock_no_sendmsg_locked); 2740 2741 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2742 int flags) 2743 { 2744 return -EOPNOTSUPP; 2745 } 2746 EXPORT_SYMBOL(sock_no_recvmsg); 2747 2748 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2749 { 2750 /* Mirror missing mmap method error code */ 2751 return -ENODEV; 2752 } 2753 EXPORT_SYMBOL(sock_no_mmap); 2754 2755 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2756 { 2757 ssize_t res; 2758 struct msghdr msg = {.msg_flags = flags}; 2759 struct kvec iov; 2760 char *kaddr = kmap(page); 2761 iov.iov_base = kaddr + offset; 2762 iov.iov_len = size; 2763 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2764 kunmap(page); 2765 return res; 2766 } 2767 EXPORT_SYMBOL(sock_no_sendpage); 2768 2769 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 2770 int offset, size_t size, int flags) 2771 { 2772 ssize_t res; 2773 struct msghdr msg = {.msg_flags = flags}; 2774 struct kvec iov; 2775 char *kaddr = kmap(page); 2776 2777 iov.iov_base = kaddr + offset; 2778 iov.iov_len = size; 2779 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 2780 kunmap(page); 2781 return res; 2782 } 2783 EXPORT_SYMBOL(sock_no_sendpage_locked); 2784 2785 /* 2786 * Default Socket Callbacks 2787 */ 2788 2789 static void sock_def_wakeup(struct sock *sk) 2790 { 2791 struct socket_wq *wq; 2792 2793 rcu_read_lock(); 2794 wq = rcu_dereference(sk->sk_wq); 2795 if (skwq_has_sleeper(wq)) 2796 wake_up_interruptible_all(&wq->wait); 2797 rcu_read_unlock(); 2798 } 2799 2800 static void sock_def_error_report(struct sock *sk) 2801 { 2802 struct socket_wq *wq; 2803 2804 rcu_read_lock(); 2805 wq = rcu_dereference(sk->sk_wq); 2806 if (skwq_has_sleeper(wq)) 2807 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 2808 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2809 rcu_read_unlock(); 2810 } 2811 2812 void sock_def_readable(struct sock *sk) 2813 { 2814 struct socket_wq *wq; 2815 2816 rcu_read_lock(); 2817 wq = rcu_dereference(sk->sk_wq); 2818 if (skwq_has_sleeper(wq)) 2819 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 2820 EPOLLRDNORM | EPOLLRDBAND); 2821 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2822 rcu_read_unlock(); 2823 } 2824 2825 static void sock_def_write_space(struct sock *sk) 2826 { 2827 struct socket_wq *wq; 2828 2829 rcu_read_lock(); 2830 2831 /* Do not wake up a writer until he can make "significant" 2832 * progress. --DaveM 2833 */ 2834 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) { 2835 wq = rcu_dereference(sk->sk_wq); 2836 if (skwq_has_sleeper(wq)) 2837 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 2838 EPOLLWRNORM | EPOLLWRBAND); 2839 2840 /* Should agree with poll, otherwise some programs break */ 2841 if (sock_writeable(sk)) 2842 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2843 } 2844 2845 rcu_read_unlock(); 2846 } 2847 2848 static void sock_def_destruct(struct sock *sk) 2849 { 2850 } 2851 2852 void sk_send_sigurg(struct sock *sk) 2853 { 2854 if (sk->sk_socket && sk->sk_socket->file) 2855 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2856 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2857 } 2858 EXPORT_SYMBOL(sk_send_sigurg); 2859 2860 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2861 unsigned long expires) 2862 { 2863 if (!mod_timer(timer, expires)) 2864 sock_hold(sk); 2865 } 2866 EXPORT_SYMBOL(sk_reset_timer); 2867 2868 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2869 { 2870 if (del_timer(timer)) 2871 __sock_put(sk); 2872 } 2873 EXPORT_SYMBOL(sk_stop_timer); 2874 2875 void sock_init_data(struct socket *sock, struct sock *sk) 2876 { 2877 sk_init_common(sk); 2878 sk->sk_send_head = NULL; 2879 2880 timer_setup(&sk->sk_timer, NULL, 0); 2881 2882 sk->sk_allocation = GFP_KERNEL; 2883 sk->sk_rcvbuf = sysctl_rmem_default; 2884 sk->sk_sndbuf = sysctl_wmem_default; 2885 sk->sk_state = TCP_CLOSE; 2886 sk_set_socket(sk, sock); 2887 2888 sock_set_flag(sk, SOCK_ZAPPED); 2889 2890 if (sock) { 2891 sk->sk_type = sock->type; 2892 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 2893 sock->sk = sk; 2894 sk->sk_uid = SOCK_INODE(sock)->i_uid; 2895 } else { 2896 RCU_INIT_POINTER(sk->sk_wq, NULL); 2897 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 2898 } 2899 2900 rwlock_init(&sk->sk_callback_lock); 2901 if (sk->sk_kern_sock) 2902 lockdep_set_class_and_name( 2903 &sk->sk_callback_lock, 2904 af_kern_callback_keys + sk->sk_family, 2905 af_family_kern_clock_key_strings[sk->sk_family]); 2906 else 2907 lockdep_set_class_and_name( 2908 &sk->sk_callback_lock, 2909 af_callback_keys + sk->sk_family, 2910 af_family_clock_key_strings[sk->sk_family]); 2911 2912 sk->sk_state_change = sock_def_wakeup; 2913 sk->sk_data_ready = sock_def_readable; 2914 sk->sk_write_space = sock_def_write_space; 2915 sk->sk_error_report = sock_def_error_report; 2916 sk->sk_destruct = sock_def_destruct; 2917 2918 sk->sk_frag.page = NULL; 2919 sk->sk_frag.offset = 0; 2920 sk->sk_peek_off = -1; 2921 2922 sk->sk_peer_pid = NULL; 2923 sk->sk_peer_cred = NULL; 2924 sk->sk_write_pending = 0; 2925 sk->sk_rcvlowat = 1; 2926 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2927 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2928 2929 sk->sk_stamp = SK_DEFAULT_STAMP; 2930 #if BITS_PER_LONG==32 2931 seqlock_init(&sk->sk_stamp_seq); 2932 #endif 2933 atomic_set(&sk->sk_zckey, 0); 2934 2935 #ifdef CONFIG_NET_RX_BUSY_POLL 2936 sk->sk_napi_id = 0; 2937 sk->sk_ll_usec = sysctl_net_busy_read; 2938 #endif 2939 2940 sk->sk_max_pacing_rate = ~0UL; 2941 sk->sk_pacing_rate = ~0UL; 2942 WRITE_ONCE(sk->sk_pacing_shift, 10); 2943 sk->sk_incoming_cpu = -1; 2944 2945 sk_rx_queue_clear(sk); 2946 /* 2947 * Before updating sk_refcnt, we must commit prior changes to memory 2948 * (Documentation/RCU/rculist_nulls.txt for details) 2949 */ 2950 smp_wmb(); 2951 refcount_set(&sk->sk_refcnt, 1); 2952 atomic_set(&sk->sk_drops, 0); 2953 } 2954 EXPORT_SYMBOL(sock_init_data); 2955 2956 void lock_sock_nested(struct sock *sk, int subclass) 2957 { 2958 might_sleep(); 2959 spin_lock_bh(&sk->sk_lock.slock); 2960 if (sk->sk_lock.owned) 2961 __lock_sock(sk); 2962 sk->sk_lock.owned = 1; 2963 spin_unlock(&sk->sk_lock.slock); 2964 /* 2965 * The sk_lock has mutex_lock() semantics here: 2966 */ 2967 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2968 local_bh_enable(); 2969 } 2970 EXPORT_SYMBOL(lock_sock_nested); 2971 2972 void release_sock(struct sock *sk) 2973 { 2974 spin_lock_bh(&sk->sk_lock.slock); 2975 if (sk->sk_backlog.tail) 2976 __release_sock(sk); 2977 2978 /* Warning : release_cb() might need to release sk ownership, 2979 * ie call sock_release_ownership(sk) before us. 2980 */ 2981 if (sk->sk_prot->release_cb) 2982 sk->sk_prot->release_cb(sk); 2983 2984 sock_release_ownership(sk); 2985 if (waitqueue_active(&sk->sk_lock.wq)) 2986 wake_up(&sk->sk_lock.wq); 2987 spin_unlock_bh(&sk->sk_lock.slock); 2988 } 2989 EXPORT_SYMBOL(release_sock); 2990 2991 /** 2992 * lock_sock_fast - fast version of lock_sock 2993 * @sk: socket 2994 * 2995 * This version should be used for very small section, where process wont block 2996 * return false if fast path is taken: 2997 * 2998 * sk_lock.slock locked, owned = 0, BH disabled 2999 * 3000 * return true if slow path is taken: 3001 * 3002 * sk_lock.slock unlocked, owned = 1, BH enabled 3003 */ 3004 bool lock_sock_fast(struct sock *sk) 3005 { 3006 might_sleep(); 3007 spin_lock_bh(&sk->sk_lock.slock); 3008 3009 if (!sk->sk_lock.owned) 3010 /* 3011 * Note : We must disable BH 3012 */ 3013 return false; 3014 3015 __lock_sock(sk); 3016 sk->sk_lock.owned = 1; 3017 spin_unlock(&sk->sk_lock.slock); 3018 /* 3019 * The sk_lock has mutex_lock() semantics here: 3020 */ 3021 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 3022 local_bh_enable(); 3023 return true; 3024 } 3025 EXPORT_SYMBOL(lock_sock_fast); 3026 3027 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3028 bool timeval, bool time32) 3029 { 3030 struct sock *sk = sock->sk; 3031 struct timespec64 ts; 3032 3033 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3034 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3035 if (ts.tv_sec == -1) 3036 return -ENOENT; 3037 if (ts.tv_sec == 0) { 3038 ktime_t kt = ktime_get_real(); 3039 sock_write_timestamp(sk, kt); 3040 ts = ktime_to_timespec64(kt); 3041 } 3042 3043 if (timeval) 3044 ts.tv_nsec /= 1000; 3045 3046 #ifdef CONFIG_COMPAT_32BIT_TIME 3047 if (time32) 3048 return put_old_timespec32(&ts, userstamp); 3049 #endif 3050 #ifdef CONFIG_SPARC64 3051 /* beware of padding in sparc64 timeval */ 3052 if (timeval && !in_compat_syscall()) { 3053 struct __kernel_old_timeval __user tv = { 3054 .tv_sec = ts.tv_sec, 3055 .tv_usec = ts.tv_nsec, 3056 }; 3057 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3058 return -EFAULT; 3059 return 0; 3060 } 3061 #endif 3062 return put_timespec64(&ts, userstamp); 3063 } 3064 EXPORT_SYMBOL(sock_gettstamp); 3065 3066 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3067 { 3068 if (!sock_flag(sk, flag)) { 3069 unsigned long previous_flags = sk->sk_flags; 3070 3071 sock_set_flag(sk, flag); 3072 /* 3073 * we just set one of the two flags which require net 3074 * time stamping, but time stamping might have been on 3075 * already because of the other one 3076 */ 3077 if (sock_needs_netstamp(sk) && 3078 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3079 net_enable_timestamp(); 3080 } 3081 } 3082 3083 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3084 int level, int type) 3085 { 3086 struct sock_exterr_skb *serr; 3087 struct sk_buff *skb; 3088 int copied, err; 3089 3090 err = -EAGAIN; 3091 skb = sock_dequeue_err_skb(sk); 3092 if (skb == NULL) 3093 goto out; 3094 3095 copied = skb->len; 3096 if (copied > len) { 3097 msg->msg_flags |= MSG_TRUNC; 3098 copied = len; 3099 } 3100 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3101 if (err) 3102 goto out_free_skb; 3103 3104 sock_recv_timestamp(msg, sk, skb); 3105 3106 serr = SKB_EXT_ERR(skb); 3107 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3108 3109 msg->msg_flags |= MSG_ERRQUEUE; 3110 err = copied; 3111 3112 out_free_skb: 3113 kfree_skb(skb); 3114 out: 3115 return err; 3116 } 3117 EXPORT_SYMBOL(sock_recv_errqueue); 3118 3119 /* 3120 * Get a socket option on an socket. 3121 * 3122 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3123 * asynchronous errors should be reported by getsockopt. We assume 3124 * this means if you specify SO_ERROR (otherwise whats the point of it). 3125 */ 3126 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3127 char __user *optval, int __user *optlen) 3128 { 3129 struct sock *sk = sock->sk; 3130 3131 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3132 } 3133 EXPORT_SYMBOL(sock_common_getsockopt); 3134 3135 #ifdef CONFIG_COMPAT 3136 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 3137 char __user *optval, int __user *optlen) 3138 { 3139 struct sock *sk = sock->sk; 3140 3141 if (sk->sk_prot->compat_getsockopt != NULL) 3142 return sk->sk_prot->compat_getsockopt(sk, level, optname, 3143 optval, optlen); 3144 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3145 } 3146 EXPORT_SYMBOL(compat_sock_common_getsockopt); 3147 #endif 3148 3149 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3150 int flags) 3151 { 3152 struct sock *sk = sock->sk; 3153 int addr_len = 0; 3154 int err; 3155 3156 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 3157 flags & ~MSG_DONTWAIT, &addr_len); 3158 if (err >= 0) 3159 msg->msg_namelen = addr_len; 3160 return err; 3161 } 3162 EXPORT_SYMBOL(sock_common_recvmsg); 3163 3164 /* 3165 * Set socket options on an inet socket. 3166 */ 3167 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3168 char __user *optval, unsigned int optlen) 3169 { 3170 struct sock *sk = sock->sk; 3171 3172 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3173 } 3174 EXPORT_SYMBOL(sock_common_setsockopt); 3175 3176 #ifdef CONFIG_COMPAT 3177 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 3178 char __user *optval, unsigned int optlen) 3179 { 3180 struct sock *sk = sock->sk; 3181 3182 if (sk->sk_prot->compat_setsockopt != NULL) 3183 return sk->sk_prot->compat_setsockopt(sk, level, optname, 3184 optval, optlen); 3185 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3186 } 3187 EXPORT_SYMBOL(compat_sock_common_setsockopt); 3188 #endif 3189 3190 void sk_common_release(struct sock *sk) 3191 { 3192 if (sk->sk_prot->destroy) 3193 sk->sk_prot->destroy(sk); 3194 3195 /* 3196 * Observation: when sock_common_release is called, processes have 3197 * no access to socket. But net still has. 3198 * Step one, detach it from networking: 3199 * 3200 * A. Remove from hash tables. 3201 */ 3202 3203 sk->sk_prot->unhash(sk); 3204 3205 /* 3206 * In this point socket cannot receive new packets, but it is possible 3207 * that some packets are in flight because some CPU runs receiver and 3208 * did hash table lookup before we unhashed socket. They will achieve 3209 * receive queue and will be purged by socket destructor. 3210 * 3211 * Also we still have packets pending on receive queue and probably, 3212 * our own packets waiting in device queues. sock_destroy will drain 3213 * receive queue, but transmitted packets will delay socket destruction 3214 * until the last reference will be released. 3215 */ 3216 3217 sock_orphan(sk); 3218 3219 xfrm_sk_free_policy(sk); 3220 3221 sk_refcnt_debug_release(sk); 3222 3223 sock_put(sk); 3224 } 3225 EXPORT_SYMBOL(sk_common_release); 3226 3227 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3228 { 3229 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3230 3231 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3232 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3233 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3234 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3235 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3236 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3237 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3238 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3239 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3240 } 3241 3242 #ifdef CONFIG_PROC_FS 3243 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 3244 struct prot_inuse { 3245 int val[PROTO_INUSE_NR]; 3246 }; 3247 3248 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3249 3250 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 3251 { 3252 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 3253 } 3254 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 3255 3256 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3257 { 3258 int cpu, idx = prot->inuse_idx; 3259 int res = 0; 3260 3261 for_each_possible_cpu(cpu) 3262 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3263 3264 return res >= 0 ? res : 0; 3265 } 3266 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3267 3268 static void sock_inuse_add(struct net *net, int val) 3269 { 3270 this_cpu_add(*net->core.sock_inuse, val); 3271 } 3272 3273 int sock_inuse_get(struct net *net) 3274 { 3275 int cpu, res = 0; 3276 3277 for_each_possible_cpu(cpu) 3278 res += *per_cpu_ptr(net->core.sock_inuse, cpu); 3279 3280 return res; 3281 } 3282 3283 EXPORT_SYMBOL_GPL(sock_inuse_get); 3284 3285 static int __net_init sock_inuse_init_net(struct net *net) 3286 { 3287 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3288 if (net->core.prot_inuse == NULL) 3289 return -ENOMEM; 3290 3291 net->core.sock_inuse = alloc_percpu(int); 3292 if (net->core.sock_inuse == NULL) 3293 goto out; 3294 3295 return 0; 3296 3297 out: 3298 free_percpu(net->core.prot_inuse); 3299 return -ENOMEM; 3300 } 3301 3302 static void __net_exit sock_inuse_exit_net(struct net *net) 3303 { 3304 free_percpu(net->core.prot_inuse); 3305 free_percpu(net->core.sock_inuse); 3306 } 3307 3308 static struct pernet_operations net_inuse_ops = { 3309 .init = sock_inuse_init_net, 3310 .exit = sock_inuse_exit_net, 3311 }; 3312 3313 static __init int net_inuse_init(void) 3314 { 3315 if (register_pernet_subsys(&net_inuse_ops)) 3316 panic("Cannot initialize net inuse counters"); 3317 3318 return 0; 3319 } 3320 3321 core_initcall(net_inuse_init); 3322 3323 static int assign_proto_idx(struct proto *prot) 3324 { 3325 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3326 3327 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3328 pr_err("PROTO_INUSE_NR exhausted\n"); 3329 return -ENOSPC; 3330 } 3331 3332 set_bit(prot->inuse_idx, proto_inuse_idx); 3333 return 0; 3334 } 3335 3336 static void release_proto_idx(struct proto *prot) 3337 { 3338 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3339 clear_bit(prot->inuse_idx, proto_inuse_idx); 3340 } 3341 #else 3342 static inline int assign_proto_idx(struct proto *prot) 3343 { 3344 return 0; 3345 } 3346 3347 static inline void release_proto_idx(struct proto *prot) 3348 { 3349 } 3350 3351 static void sock_inuse_add(struct net *net, int val) 3352 { 3353 } 3354 #endif 3355 3356 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3357 { 3358 if (!rsk_prot) 3359 return; 3360 kfree(rsk_prot->slab_name); 3361 rsk_prot->slab_name = NULL; 3362 kmem_cache_destroy(rsk_prot->slab); 3363 rsk_prot->slab = NULL; 3364 } 3365 3366 static int req_prot_init(const struct proto *prot) 3367 { 3368 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3369 3370 if (!rsk_prot) 3371 return 0; 3372 3373 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3374 prot->name); 3375 if (!rsk_prot->slab_name) 3376 return -ENOMEM; 3377 3378 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3379 rsk_prot->obj_size, 0, 3380 SLAB_ACCOUNT | prot->slab_flags, 3381 NULL); 3382 3383 if (!rsk_prot->slab) { 3384 pr_crit("%s: Can't create request sock SLAB cache!\n", 3385 prot->name); 3386 return -ENOMEM; 3387 } 3388 return 0; 3389 } 3390 3391 int proto_register(struct proto *prot, int alloc_slab) 3392 { 3393 int ret = -ENOBUFS; 3394 3395 if (alloc_slab) { 3396 prot->slab = kmem_cache_create_usercopy(prot->name, 3397 prot->obj_size, 0, 3398 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3399 prot->slab_flags, 3400 prot->useroffset, prot->usersize, 3401 NULL); 3402 3403 if (prot->slab == NULL) { 3404 pr_crit("%s: Can't create sock SLAB cache!\n", 3405 prot->name); 3406 goto out; 3407 } 3408 3409 if (req_prot_init(prot)) 3410 goto out_free_request_sock_slab; 3411 3412 if (prot->twsk_prot != NULL) { 3413 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 3414 3415 if (prot->twsk_prot->twsk_slab_name == NULL) 3416 goto out_free_request_sock_slab; 3417 3418 prot->twsk_prot->twsk_slab = 3419 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 3420 prot->twsk_prot->twsk_obj_size, 3421 0, 3422 SLAB_ACCOUNT | 3423 prot->slab_flags, 3424 NULL); 3425 if (prot->twsk_prot->twsk_slab == NULL) 3426 goto out_free_timewait_sock_slab_name; 3427 } 3428 } 3429 3430 mutex_lock(&proto_list_mutex); 3431 ret = assign_proto_idx(prot); 3432 if (ret) { 3433 mutex_unlock(&proto_list_mutex); 3434 goto out_free_timewait_sock_slab_name; 3435 } 3436 list_add(&prot->node, &proto_list); 3437 mutex_unlock(&proto_list_mutex); 3438 return ret; 3439 3440 out_free_timewait_sock_slab_name: 3441 if (alloc_slab && prot->twsk_prot) 3442 kfree(prot->twsk_prot->twsk_slab_name); 3443 out_free_request_sock_slab: 3444 if (alloc_slab) { 3445 req_prot_cleanup(prot->rsk_prot); 3446 3447 kmem_cache_destroy(prot->slab); 3448 prot->slab = NULL; 3449 } 3450 out: 3451 return ret; 3452 } 3453 EXPORT_SYMBOL(proto_register); 3454 3455 void proto_unregister(struct proto *prot) 3456 { 3457 mutex_lock(&proto_list_mutex); 3458 release_proto_idx(prot); 3459 list_del(&prot->node); 3460 mutex_unlock(&proto_list_mutex); 3461 3462 kmem_cache_destroy(prot->slab); 3463 prot->slab = NULL; 3464 3465 req_prot_cleanup(prot->rsk_prot); 3466 3467 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 3468 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 3469 kfree(prot->twsk_prot->twsk_slab_name); 3470 prot->twsk_prot->twsk_slab = NULL; 3471 } 3472 } 3473 EXPORT_SYMBOL(proto_unregister); 3474 3475 int sock_load_diag_module(int family, int protocol) 3476 { 3477 if (!protocol) { 3478 if (!sock_is_registered(family)) 3479 return -ENOENT; 3480 3481 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3482 NETLINK_SOCK_DIAG, family); 3483 } 3484 3485 #ifdef CONFIG_INET 3486 if (family == AF_INET && 3487 protocol != IPPROTO_RAW && 3488 !rcu_access_pointer(inet_protos[protocol])) 3489 return -ENOENT; 3490 #endif 3491 3492 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3493 NETLINK_SOCK_DIAG, family, protocol); 3494 } 3495 EXPORT_SYMBOL(sock_load_diag_module); 3496 3497 #ifdef CONFIG_PROC_FS 3498 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3499 __acquires(proto_list_mutex) 3500 { 3501 mutex_lock(&proto_list_mutex); 3502 return seq_list_start_head(&proto_list, *pos); 3503 } 3504 3505 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3506 { 3507 return seq_list_next(v, &proto_list, pos); 3508 } 3509 3510 static void proto_seq_stop(struct seq_file *seq, void *v) 3511 __releases(proto_list_mutex) 3512 { 3513 mutex_unlock(&proto_list_mutex); 3514 } 3515 3516 static char proto_method_implemented(const void *method) 3517 { 3518 return method == NULL ? 'n' : 'y'; 3519 } 3520 static long sock_prot_memory_allocated(struct proto *proto) 3521 { 3522 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3523 } 3524 3525 static const char *sock_prot_memory_pressure(struct proto *proto) 3526 { 3527 return proto->memory_pressure != NULL ? 3528 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3529 } 3530 3531 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3532 { 3533 3534 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3535 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3536 proto->name, 3537 proto->obj_size, 3538 sock_prot_inuse_get(seq_file_net(seq), proto), 3539 sock_prot_memory_allocated(proto), 3540 sock_prot_memory_pressure(proto), 3541 proto->max_header, 3542 proto->slab == NULL ? "no" : "yes", 3543 module_name(proto->owner), 3544 proto_method_implemented(proto->close), 3545 proto_method_implemented(proto->connect), 3546 proto_method_implemented(proto->disconnect), 3547 proto_method_implemented(proto->accept), 3548 proto_method_implemented(proto->ioctl), 3549 proto_method_implemented(proto->init), 3550 proto_method_implemented(proto->destroy), 3551 proto_method_implemented(proto->shutdown), 3552 proto_method_implemented(proto->setsockopt), 3553 proto_method_implemented(proto->getsockopt), 3554 proto_method_implemented(proto->sendmsg), 3555 proto_method_implemented(proto->recvmsg), 3556 proto_method_implemented(proto->sendpage), 3557 proto_method_implemented(proto->bind), 3558 proto_method_implemented(proto->backlog_rcv), 3559 proto_method_implemented(proto->hash), 3560 proto_method_implemented(proto->unhash), 3561 proto_method_implemented(proto->get_port), 3562 proto_method_implemented(proto->enter_memory_pressure)); 3563 } 3564 3565 static int proto_seq_show(struct seq_file *seq, void *v) 3566 { 3567 if (v == &proto_list) 3568 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3569 "protocol", 3570 "size", 3571 "sockets", 3572 "memory", 3573 "press", 3574 "maxhdr", 3575 "slab", 3576 "module", 3577 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3578 else 3579 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3580 return 0; 3581 } 3582 3583 static const struct seq_operations proto_seq_ops = { 3584 .start = proto_seq_start, 3585 .next = proto_seq_next, 3586 .stop = proto_seq_stop, 3587 .show = proto_seq_show, 3588 }; 3589 3590 static __net_init int proto_init_net(struct net *net) 3591 { 3592 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 3593 sizeof(struct seq_net_private))) 3594 return -ENOMEM; 3595 3596 return 0; 3597 } 3598 3599 static __net_exit void proto_exit_net(struct net *net) 3600 { 3601 remove_proc_entry("protocols", net->proc_net); 3602 } 3603 3604 3605 static __net_initdata struct pernet_operations proto_net_ops = { 3606 .init = proto_init_net, 3607 .exit = proto_exit_net, 3608 }; 3609 3610 static int __init proto_init(void) 3611 { 3612 return register_pernet_subsys(&proto_net_ops); 3613 } 3614 3615 subsys_initcall(proto_init); 3616 3617 #endif /* PROC_FS */ 3618 3619 #ifdef CONFIG_NET_RX_BUSY_POLL 3620 bool sk_busy_loop_end(void *p, unsigned long start_time) 3621 { 3622 struct sock *sk = p; 3623 3624 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 3625 sk_busy_loop_timeout(sk, start_time); 3626 } 3627 EXPORT_SYMBOL(sk_busy_loop_end); 3628 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3629