xref: /openbmc/linux/net/core/sock.c (revision c6fddb28)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Generic socket support routines. Memory allocators, socket lock/release
8  *		handler for protocols to use and generic option handler.
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  */
85 
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87 
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 
117 #include <linux/uaccess.h>
118 
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <linux/net_tstamp.h>
126 #include <net/xfrm.h>
127 #include <linux/ipsec.h>
128 #include <net/cls_cgroup.h>
129 #include <net/netprio_cgroup.h>
130 #include <linux/sock_diag.h>
131 
132 #include <linux/filter.h>
133 #include <net/sock_reuseport.h>
134 #include <net/bpf_sk_storage.h>
135 
136 #include <trace/events/sock.h>
137 
138 #include <net/tcp.h>
139 #include <net/busy_poll.h>
140 
141 static DEFINE_MUTEX(proto_list_mutex);
142 static LIST_HEAD(proto_list);
143 
144 static void sock_inuse_add(struct net *net, int val);
145 
146 /**
147  * sk_ns_capable - General socket capability test
148  * @sk: Socket to use a capability on or through
149  * @user_ns: The user namespace of the capability to use
150  * @cap: The capability to use
151  *
152  * Test to see if the opener of the socket had when the socket was
153  * created and the current process has the capability @cap in the user
154  * namespace @user_ns.
155  */
156 bool sk_ns_capable(const struct sock *sk,
157 		   struct user_namespace *user_ns, int cap)
158 {
159 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
160 		ns_capable(user_ns, cap);
161 }
162 EXPORT_SYMBOL(sk_ns_capable);
163 
164 /**
165  * sk_capable - Socket global capability test
166  * @sk: Socket to use a capability on or through
167  * @cap: The global capability to use
168  *
169  * Test to see if the opener of the socket had when the socket was
170  * created and the current process has the capability @cap in all user
171  * namespaces.
172  */
173 bool sk_capable(const struct sock *sk, int cap)
174 {
175 	return sk_ns_capable(sk, &init_user_ns, cap);
176 }
177 EXPORT_SYMBOL(sk_capable);
178 
179 /**
180  * sk_net_capable - Network namespace socket capability test
181  * @sk: Socket to use a capability on or through
182  * @cap: The capability to use
183  *
184  * Test to see if the opener of the socket had when the socket was created
185  * and the current process has the capability @cap over the network namespace
186  * the socket is a member of.
187  */
188 bool sk_net_capable(const struct sock *sk, int cap)
189 {
190 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
191 }
192 EXPORT_SYMBOL(sk_net_capable);
193 
194 /*
195  * Each address family might have different locking rules, so we have
196  * one slock key per address family and separate keys for internal and
197  * userspace sockets.
198  */
199 static struct lock_class_key af_family_keys[AF_MAX];
200 static struct lock_class_key af_family_kern_keys[AF_MAX];
201 static struct lock_class_key af_family_slock_keys[AF_MAX];
202 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
203 
204 /*
205  * Make lock validator output more readable. (we pre-construct these
206  * strings build-time, so that runtime initialization of socket
207  * locks is fast):
208  */
209 
210 #define _sock_locks(x)						  \
211   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
212   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
213   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
214   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
215   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
216   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
217   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
218   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
219   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
220   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
221   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
222   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
223   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
224   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
225   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
226   x "AF_MAX"
227 
228 static const char *const af_family_key_strings[AF_MAX+1] = {
229 	_sock_locks("sk_lock-")
230 };
231 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
232 	_sock_locks("slock-")
233 };
234 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
235 	_sock_locks("clock-")
236 };
237 
238 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
239 	_sock_locks("k-sk_lock-")
240 };
241 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
242 	_sock_locks("k-slock-")
243 };
244 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
245 	_sock_locks("k-clock-")
246 };
247 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
248 	_sock_locks("rlock-")
249 };
250 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
251 	_sock_locks("wlock-")
252 };
253 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
254 	_sock_locks("elock-")
255 };
256 
257 /*
258  * sk_callback_lock and sk queues locking rules are per-address-family,
259  * so split the lock classes by using a per-AF key:
260  */
261 static struct lock_class_key af_callback_keys[AF_MAX];
262 static struct lock_class_key af_rlock_keys[AF_MAX];
263 static struct lock_class_key af_wlock_keys[AF_MAX];
264 static struct lock_class_key af_elock_keys[AF_MAX];
265 static struct lock_class_key af_kern_callback_keys[AF_MAX];
266 
267 /* Run time adjustable parameters. */
268 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
269 EXPORT_SYMBOL(sysctl_wmem_max);
270 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
271 EXPORT_SYMBOL(sysctl_rmem_max);
272 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
273 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
274 
275 /* Maximal space eaten by iovec or ancillary data plus some space */
276 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
277 EXPORT_SYMBOL(sysctl_optmem_max);
278 
279 int sysctl_tstamp_allow_data __read_mostly = 1;
280 
281 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
282 EXPORT_SYMBOL_GPL(memalloc_socks_key);
283 
284 /**
285  * sk_set_memalloc - sets %SOCK_MEMALLOC
286  * @sk: socket to set it on
287  *
288  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
289  * It's the responsibility of the admin to adjust min_free_kbytes
290  * to meet the requirements
291  */
292 void sk_set_memalloc(struct sock *sk)
293 {
294 	sock_set_flag(sk, SOCK_MEMALLOC);
295 	sk->sk_allocation |= __GFP_MEMALLOC;
296 	static_branch_inc(&memalloc_socks_key);
297 }
298 EXPORT_SYMBOL_GPL(sk_set_memalloc);
299 
300 void sk_clear_memalloc(struct sock *sk)
301 {
302 	sock_reset_flag(sk, SOCK_MEMALLOC);
303 	sk->sk_allocation &= ~__GFP_MEMALLOC;
304 	static_branch_dec(&memalloc_socks_key);
305 
306 	/*
307 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
308 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
309 	 * it has rmem allocations due to the last swapfile being deactivated
310 	 * but there is a risk that the socket is unusable due to exceeding
311 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
312 	 */
313 	sk_mem_reclaim(sk);
314 }
315 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
316 
317 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
318 {
319 	int ret;
320 	unsigned int noreclaim_flag;
321 
322 	/* these should have been dropped before queueing */
323 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
324 
325 	noreclaim_flag = memalloc_noreclaim_save();
326 	ret = sk->sk_backlog_rcv(sk, skb);
327 	memalloc_noreclaim_restore(noreclaim_flag);
328 
329 	return ret;
330 }
331 EXPORT_SYMBOL(__sk_backlog_rcv);
332 
333 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
334 {
335 	struct __kernel_sock_timeval tv;
336 
337 	if (timeo == MAX_SCHEDULE_TIMEOUT) {
338 		tv.tv_sec = 0;
339 		tv.tv_usec = 0;
340 	} else {
341 		tv.tv_sec = timeo / HZ;
342 		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
343 	}
344 
345 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
346 		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
347 		*(struct old_timeval32 *)optval = tv32;
348 		return sizeof(tv32);
349 	}
350 
351 	if (old_timeval) {
352 		struct __kernel_old_timeval old_tv;
353 		old_tv.tv_sec = tv.tv_sec;
354 		old_tv.tv_usec = tv.tv_usec;
355 		*(struct __kernel_old_timeval *)optval = old_tv;
356 		return sizeof(old_tv);
357 	}
358 
359 	*(struct __kernel_sock_timeval *)optval = tv;
360 	return sizeof(tv);
361 }
362 
363 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval)
364 {
365 	struct __kernel_sock_timeval tv;
366 
367 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
368 		struct old_timeval32 tv32;
369 
370 		if (optlen < sizeof(tv32))
371 			return -EINVAL;
372 
373 		if (copy_from_user(&tv32, optval, sizeof(tv32)))
374 			return -EFAULT;
375 		tv.tv_sec = tv32.tv_sec;
376 		tv.tv_usec = tv32.tv_usec;
377 	} else if (old_timeval) {
378 		struct __kernel_old_timeval old_tv;
379 
380 		if (optlen < sizeof(old_tv))
381 			return -EINVAL;
382 		if (copy_from_user(&old_tv, optval, sizeof(old_tv)))
383 			return -EFAULT;
384 		tv.tv_sec = old_tv.tv_sec;
385 		tv.tv_usec = old_tv.tv_usec;
386 	} else {
387 		if (optlen < sizeof(tv))
388 			return -EINVAL;
389 		if (copy_from_user(&tv, optval, sizeof(tv)))
390 			return -EFAULT;
391 	}
392 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
393 		return -EDOM;
394 
395 	if (tv.tv_sec < 0) {
396 		static int warned __read_mostly;
397 
398 		*timeo_p = 0;
399 		if (warned < 10 && net_ratelimit()) {
400 			warned++;
401 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
402 				__func__, current->comm, task_pid_nr(current));
403 		}
404 		return 0;
405 	}
406 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
407 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
408 		return 0;
409 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
410 		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
411 	return 0;
412 }
413 
414 static void sock_warn_obsolete_bsdism(const char *name)
415 {
416 	static int warned;
417 	static char warncomm[TASK_COMM_LEN];
418 	if (strcmp(warncomm, current->comm) && warned < 5) {
419 		strcpy(warncomm,  current->comm);
420 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
421 			warncomm, name);
422 		warned++;
423 	}
424 }
425 
426 static bool sock_needs_netstamp(const struct sock *sk)
427 {
428 	switch (sk->sk_family) {
429 	case AF_UNSPEC:
430 	case AF_UNIX:
431 		return false;
432 	default:
433 		return true;
434 	}
435 }
436 
437 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
438 {
439 	if (sk->sk_flags & flags) {
440 		sk->sk_flags &= ~flags;
441 		if (sock_needs_netstamp(sk) &&
442 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
443 			net_disable_timestamp();
444 	}
445 }
446 
447 
448 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
449 {
450 	unsigned long flags;
451 	struct sk_buff_head *list = &sk->sk_receive_queue;
452 
453 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
454 		atomic_inc(&sk->sk_drops);
455 		trace_sock_rcvqueue_full(sk, skb);
456 		return -ENOMEM;
457 	}
458 
459 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
460 		atomic_inc(&sk->sk_drops);
461 		return -ENOBUFS;
462 	}
463 
464 	skb->dev = NULL;
465 	skb_set_owner_r(skb, sk);
466 
467 	/* we escape from rcu protected region, make sure we dont leak
468 	 * a norefcounted dst
469 	 */
470 	skb_dst_force(skb);
471 
472 	spin_lock_irqsave(&list->lock, flags);
473 	sock_skb_set_dropcount(sk, skb);
474 	__skb_queue_tail(list, skb);
475 	spin_unlock_irqrestore(&list->lock, flags);
476 
477 	if (!sock_flag(sk, SOCK_DEAD))
478 		sk->sk_data_ready(sk);
479 	return 0;
480 }
481 EXPORT_SYMBOL(__sock_queue_rcv_skb);
482 
483 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
484 {
485 	int err;
486 
487 	err = sk_filter(sk, skb);
488 	if (err)
489 		return err;
490 
491 	return __sock_queue_rcv_skb(sk, skb);
492 }
493 EXPORT_SYMBOL(sock_queue_rcv_skb);
494 
495 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
496 		     const int nested, unsigned int trim_cap, bool refcounted)
497 {
498 	int rc = NET_RX_SUCCESS;
499 
500 	if (sk_filter_trim_cap(sk, skb, trim_cap))
501 		goto discard_and_relse;
502 
503 	skb->dev = NULL;
504 
505 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
506 		atomic_inc(&sk->sk_drops);
507 		goto discard_and_relse;
508 	}
509 	if (nested)
510 		bh_lock_sock_nested(sk);
511 	else
512 		bh_lock_sock(sk);
513 	if (!sock_owned_by_user(sk)) {
514 		/*
515 		 * trylock + unlock semantics:
516 		 */
517 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
518 
519 		rc = sk_backlog_rcv(sk, skb);
520 
521 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
522 	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
523 		bh_unlock_sock(sk);
524 		atomic_inc(&sk->sk_drops);
525 		goto discard_and_relse;
526 	}
527 
528 	bh_unlock_sock(sk);
529 out:
530 	if (refcounted)
531 		sock_put(sk);
532 	return rc;
533 discard_and_relse:
534 	kfree_skb(skb);
535 	goto out;
536 }
537 EXPORT_SYMBOL(__sk_receive_skb);
538 
539 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
540 {
541 	struct dst_entry *dst = __sk_dst_get(sk);
542 
543 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
544 		sk_tx_queue_clear(sk);
545 		sk->sk_dst_pending_confirm = 0;
546 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
547 		dst_release(dst);
548 		return NULL;
549 	}
550 
551 	return dst;
552 }
553 EXPORT_SYMBOL(__sk_dst_check);
554 
555 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
556 {
557 	struct dst_entry *dst = sk_dst_get(sk);
558 
559 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
560 		sk_dst_reset(sk);
561 		dst_release(dst);
562 		return NULL;
563 	}
564 
565 	return dst;
566 }
567 EXPORT_SYMBOL(sk_dst_check);
568 
569 static int sock_setbindtodevice_locked(struct sock *sk, int ifindex)
570 {
571 	int ret = -ENOPROTOOPT;
572 #ifdef CONFIG_NETDEVICES
573 	struct net *net = sock_net(sk);
574 
575 	/* Sorry... */
576 	ret = -EPERM;
577 	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
578 		goto out;
579 
580 	ret = -EINVAL;
581 	if (ifindex < 0)
582 		goto out;
583 
584 	sk->sk_bound_dev_if = ifindex;
585 	if (sk->sk_prot->rehash)
586 		sk->sk_prot->rehash(sk);
587 	sk_dst_reset(sk);
588 
589 	ret = 0;
590 
591 out:
592 #endif
593 
594 	return ret;
595 }
596 
597 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
598 				int optlen)
599 {
600 	int ret = -ENOPROTOOPT;
601 #ifdef CONFIG_NETDEVICES
602 	struct net *net = sock_net(sk);
603 	char devname[IFNAMSIZ];
604 	int index;
605 
606 	ret = -EINVAL;
607 	if (optlen < 0)
608 		goto out;
609 
610 	/* Bind this socket to a particular device like "eth0",
611 	 * as specified in the passed interface name. If the
612 	 * name is "" or the option length is zero the socket
613 	 * is not bound.
614 	 */
615 	if (optlen > IFNAMSIZ - 1)
616 		optlen = IFNAMSIZ - 1;
617 	memset(devname, 0, sizeof(devname));
618 
619 	ret = -EFAULT;
620 	if (copy_from_user(devname, optval, optlen))
621 		goto out;
622 
623 	index = 0;
624 	if (devname[0] != '\0') {
625 		struct net_device *dev;
626 
627 		rcu_read_lock();
628 		dev = dev_get_by_name_rcu(net, devname);
629 		if (dev)
630 			index = dev->ifindex;
631 		rcu_read_unlock();
632 		ret = -ENODEV;
633 		if (!dev)
634 			goto out;
635 	}
636 
637 	lock_sock(sk);
638 	ret = sock_setbindtodevice_locked(sk, index);
639 	release_sock(sk);
640 
641 out:
642 #endif
643 
644 	return ret;
645 }
646 
647 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
648 				int __user *optlen, int len)
649 {
650 	int ret = -ENOPROTOOPT;
651 #ifdef CONFIG_NETDEVICES
652 	struct net *net = sock_net(sk);
653 	char devname[IFNAMSIZ];
654 
655 	if (sk->sk_bound_dev_if == 0) {
656 		len = 0;
657 		goto zero;
658 	}
659 
660 	ret = -EINVAL;
661 	if (len < IFNAMSIZ)
662 		goto out;
663 
664 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
665 	if (ret)
666 		goto out;
667 
668 	len = strlen(devname) + 1;
669 
670 	ret = -EFAULT;
671 	if (copy_to_user(optval, devname, len))
672 		goto out;
673 
674 zero:
675 	ret = -EFAULT;
676 	if (put_user(len, optlen))
677 		goto out;
678 
679 	ret = 0;
680 
681 out:
682 #endif
683 
684 	return ret;
685 }
686 
687 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
688 				     int valbool)
689 {
690 	if (valbool)
691 		sock_set_flag(sk, bit);
692 	else
693 		sock_reset_flag(sk, bit);
694 }
695 
696 bool sk_mc_loop(struct sock *sk)
697 {
698 	if (dev_recursion_level())
699 		return false;
700 	if (!sk)
701 		return true;
702 	switch (sk->sk_family) {
703 	case AF_INET:
704 		return inet_sk(sk)->mc_loop;
705 #if IS_ENABLED(CONFIG_IPV6)
706 	case AF_INET6:
707 		return inet6_sk(sk)->mc_loop;
708 #endif
709 	}
710 	WARN_ON(1);
711 	return true;
712 }
713 EXPORT_SYMBOL(sk_mc_loop);
714 
715 /*
716  *	This is meant for all protocols to use and covers goings on
717  *	at the socket level. Everything here is generic.
718  */
719 
720 int sock_setsockopt(struct socket *sock, int level, int optname,
721 		    char __user *optval, unsigned int optlen)
722 {
723 	struct sock_txtime sk_txtime;
724 	struct sock *sk = sock->sk;
725 	int val;
726 	int valbool;
727 	struct linger ling;
728 	int ret = 0;
729 
730 	/*
731 	 *	Options without arguments
732 	 */
733 
734 	if (optname == SO_BINDTODEVICE)
735 		return sock_setbindtodevice(sk, optval, optlen);
736 
737 	if (optlen < sizeof(int))
738 		return -EINVAL;
739 
740 	if (get_user(val, (int __user *)optval))
741 		return -EFAULT;
742 
743 	valbool = val ? 1 : 0;
744 
745 	lock_sock(sk);
746 
747 	switch (optname) {
748 	case SO_DEBUG:
749 		if (val && !capable(CAP_NET_ADMIN))
750 			ret = -EACCES;
751 		else
752 			sock_valbool_flag(sk, SOCK_DBG, valbool);
753 		break;
754 	case SO_REUSEADDR:
755 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
756 		break;
757 	case SO_REUSEPORT:
758 		sk->sk_reuseport = valbool;
759 		break;
760 	case SO_TYPE:
761 	case SO_PROTOCOL:
762 	case SO_DOMAIN:
763 	case SO_ERROR:
764 		ret = -ENOPROTOOPT;
765 		break;
766 	case SO_DONTROUTE:
767 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
768 		sk_dst_reset(sk);
769 		break;
770 	case SO_BROADCAST:
771 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
772 		break;
773 	case SO_SNDBUF:
774 		/* Don't error on this BSD doesn't and if you think
775 		 * about it this is right. Otherwise apps have to
776 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
777 		 * are treated in BSD as hints
778 		 */
779 		val = min_t(u32, val, sysctl_wmem_max);
780 set_sndbuf:
781 		/* Ensure val * 2 fits into an int, to prevent max_t()
782 		 * from treating it as a negative value.
783 		 */
784 		val = min_t(int, val, INT_MAX / 2);
785 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
786 		WRITE_ONCE(sk->sk_sndbuf,
787 			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
788 		/* Wake up sending tasks if we upped the value. */
789 		sk->sk_write_space(sk);
790 		break;
791 
792 	case SO_SNDBUFFORCE:
793 		if (!capable(CAP_NET_ADMIN)) {
794 			ret = -EPERM;
795 			break;
796 		}
797 
798 		/* No negative values (to prevent underflow, as val will be
799 		 * multiplied by 2).
800 		 */
801 		if (val < 0)
802 			val = 0;
803 		goto set_sndbuf;
804 
805 	case SO_RCVBUF:
806 		/* Don't error on this BSD doesn't and if you think
807 		 * about it this is right. Otherwise apps have to
808 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
809 		 * are treated in BSD as hints
810 		 */
811 		val = min_t(u32, val, sysctl_rmem_max);
812 set_rcvbuf:
813 		/* Ensure val * 2 fits into an int, to prevent max_t()
814 		 * from treating it as a negative value.
815 		 */
816 		val = min_t(int, val, INT_MAX / 2);
817 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
818 		/*
819 		 * We double it on the way in to account for
820 		 * "struct sk_buff" etc. overhead.   Applications
821 		 * assume that the SO_RCVBUF setting they make will
822 		 * allow that much actual data to be received on that
823 		 * socket.
824 		 *
825 		 * Applications are unaware that "struct sk_buff" and
826 		 * other overheads allocate from the receive buffer
827 		 * during socket buffer allocation.
828 		 *
829 		 * And after considering the possible alternatives,
830 		 * returning the value we actually used in getsockopt
831 		 * is the most desirable behavior.
832 		 */
833 		WRITE_ONCE(sk->sk_rcvbuf,
834 			   max_t(int, val * 2, SOCK_MIN_RCVBUF));
835 		break;
836 
837 	case SO_RCVBUFFORCE:
838 		if (!capable(CAP_NET_ADMIN)) {
839 			ret = -EPERM;
840 			break;
841 		}
842 
843 		/* No negative values (to prevent underflow, as val will be
844 		 * multiplied by 2).
845 		 */
846 		if (val < 0)
847 			val = 0;
848 		goto set_rcvbuf;
849 
850 	case SO_KEEPALIVE:
851 		if (sk->sk_prot->keepalive)
852 			sk->sk_prot->keepalive(sk, valbool);
853 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
854 		break;
855 
856 	case SO_OOBINLINE:
857 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
858 		break;
859 
860 	case SO_NO_CHECK:
861 		sk->sk_no_check_tx = valbool;
862 		break;
863 
864 	case SO_PRIORITY:
865 		if ((val >= 0 && val <= 6) ||
866 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
867 			sk->sk_priority = val;
868 		else
869 			ret = -EPERM;
870 		break;
871 
872 	case SO_LINGER:
873 		if (optlen < sizeof(ling)) {
874 			ret = -EINVAL;	/* 1003.1g */
875 			break;
876 		}
877 		if (copy_from_user(&ling, optval, sizeof(ling))) {
878 			ret = -EFAULT;
879 			break;
880 		}
881 		if (!ling.l_onoff)
882 			sock_reset_flag(sk, SOCK_LINGER);
883 		else {
884 #if (BITS_PER_LONG == 32)
885 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
886 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
887 			else
888 #endif
889 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
890 			sock_set_flag(sk, SOCK_LINGER);
891 		}
892 		break;
893 
894 	case SO_BSDCOMPAT:
895 		sock_warn_obsolete_bsdism("setsockopt");
896 		break;
897 
898 	case SO_PASSCRED:
899 		if (valbool)
900 			set_bit(SOCK_PASSCRED, &sock->flags);
901 		else
902 			clear_bit(SOCK_PASSCRED, &sock->flags);
903 		break;
904 
905 	case SO_TIMESTAMP_OLD:
906 	case SO_TIMESTAMP_NEW:
907 	case SO_TIMESTAMPNS_OLD:
908 	case SO_TIMESTAMPNS_NEW:
909 		if (valbool)  {
910 			if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW)
911 				sock_set_flag(sk, SOCK_TSTAMP_NEW);
912 			else
913 				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
914 
915 			if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW)
916 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
917 			else
918 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
919 			sock_set_flag(sk, SOCK_RCVTSTAMP);
920 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
921 		} else {
922 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
923 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
924 			sock_reset_flag(sk, SOCK_TSTAMP_NEW);
925 		}
926 		break;
927 
928 	case SO_TIMESTAMPING_NEW:
929 		sock_set_flag(sk, SOCK_TSTAMP_NEW);
930 		/* fall through */
931 	case SO_TIMESTAMPING_OLD:
932 		if (val & ~SOF_TIMESTAMPING_MASK) {
933 			ret = -EINVAL;
934 			break;
935 		}
936 
937 		if (val & SOF_TIMESTAMPING_OPT_ID &&
938 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
939 			if (sk->sk_protocol == IPPROTO_TCP &&
940 			    sk->sk_type == SOCK_STREAM) {
941 				if ((1 << sk->sk_state) &
942 				    (TCPF_CLOSE | TCPF_LISTEN)) {
943 					ret = -EINVAL;
944 					break;
945 				}
946 				sk->sk_tskey = tcp_sk(sk)->snd_una;
947 			} else {
948 				sk->sk_tskey = 0;
949 			}
950 		}
951 
952 		if (val & SOF_TIMESTAMPING_OPT_STATS &&
953 		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
954 			ret = -EINVAL;
955 			break;
956 		}
957 
958 		sk->sk_tsflags = val;
959 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
960 			sock_enable_timestamp(sk,
961 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
962 		else {
963 			if (optname == SO_TIMESTAMPING_NEW)
964 				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
965 
966 			sock_disable_timestamp(sk,
967 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
968 		}
969 		break;
970 
971 	case SO_RCVLOWAT:
972 		if (val < 0)
973 			val = INT_MAX;
974 		if (sock->ops->set_rcvlowat)
975 			ret = sock->ops->set_rcvlowat(sk, val);
976 		else
977 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
978 		break;
979 
980 	case SO_RCVTIMEO_OLD:
981 	case SO_RCVTIMEO_NEW:
982 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD);
983 		break;
984 
985 	case SO_SNDTIMEO_OLD:
986 	case SO_SNDTIMEO_NEW:
987 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD);
988 		break;
989 
990 	case SO_ATTACH_FILTER:
991 		ret = -EINVAL;
992 		if (optlen == sizeof(struct sock_fprog)) {
993 			struct sock_fprog fprog;
994 
995 			ret = -EFAULT;
996 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
997 				break;
998 
999 			ret = sk_attach_filter(&fprog, sk);
1000 		}
1001 		break;
1002 
1003 	case SO_ATTACH_BPF:
1004 		ret = -EINVAL;
1005 		if (optlen == sizeof(u32)) {
1006 			u32 ufd;
1007 
1008 			ret = -EFAULT;
1009 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1010 				break;
1011 
1012 			ret = sk_attach_bpf(ufd, sk);
1013 		}
1014 		break;
1015 
1016 	case SO_ATTACH_REUSEPORT_CBPF:
1017 		ret = -EINVAL;
1018 		if (optlen == sizeof(struct sock_fprog)) {
1019 			struct sock_fprog fprog;
1020 
1021 			ret = -EFAULT;
1022 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
1023 				break;
1024 
1025 			ret = sk_reuseport_attach_filter(&fprog, sk);
1026 		}
1027 		break;
1028 
1029 	case SO_ATTACH_REUSEPORT_EBPF:
1030 		ret = -EINVAL;
1031 		if (optlen == sizeof(u32)) {
1032 			u32 ufd;
1033 
1034 			ret = -EFAULT;
1035 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1036 				break;
1037 
1038 			ret = sk_reuseport_attach_bpf(ufd, sk);
1039 		}
1040 		break;
1041 
1042 	case SO_DETACH_REUSEPORT_BPF:
1043 		ret = reuseport_detach_prog(sk);
1044 		break;
1045 
1046 	case SO_DETACH_FILTER:
1047 		ret = sk_detach_filter(sk);
1048 		break;
1049 
1050 	case SO_LOCK_FILTER:
1051 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1052 			ret = -EPERM;
1053 		else
1054 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1055 		break;
1056 
1057 	case SO_PASSSEC:
1058 		if (valbool)
1059 			set_bit(SOCK_PASSSEC, &sock->flags);
1060 		else
1061 			clear_bit(SOCK_PASSSEC, &sock->flags);
1062 		break;
1063 	case SO_MARK:
1064 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1065 			ret = -EPERM;
1066 		} else if (val != sk->sk_mark) {
1067 			sk->sk_mark = val;
1068 			sk_dst_reset(sk);
1069 		}
1070 		break;
1071 
1072 	case SO_RXQ_OVFL:
1073 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1074 		break;
1075 
1076 	case SO_WIFI_STATUS:
1077 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1078 		break;
1079 
1080 	case SO_PEEK_OFF:
1081 		if (sock->ops->set_peek_off)
1082 			ret = sock->ops->set_peek_off(sk, val);
1083 		else
1084 			ret = -EOPNOTSUPP;
1085 		break;
1086 
1087 	case SO_NOFCS:
1088 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1089 		break;
1090 
1091 	case SO_SELECT_ERR_QUEUE:
1092 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1093 		break;
1094 
1095 #ifdef CONFIG_NET_RX_BUSY_POLL
1096 	case SO_BUSY_POLL:
1097 		/* allow unprivileged users to decrease the value */
1098 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1099 			ret = -EPERM;
1100 		else {
1101 			if (val < 0)
1102 				ret = -EINVAL;
1103 			else
1104 				sk->sk_ll_usec = val;
1105 		}
1106 		break;
1107 #endif
1108 
1109 	case SO_MAX_PACING_RATE:
1110 		{
1111 		unsigned long ulval = (val == ~0U) ? ~0UL : val;
1112 
1113 		if (sizeof(ulval) != sizeof(val) &&
1114 		    optlen >= sizeof(ulval) &&
1115 		    get_user(ulval, (unsigned long __user *)optval)) {
1116 			ret = -EFAULT;
1117 			break;
1118 		}
1119 		if (ulval != ~0UL)
1120 			cmpxchg(&sk->sk_pacing_status,
1121 				SK_PACING_NONE,
1122 				SK_PACING_NEEDED);
1123 		sk->sk_max_pacing_rate = ulval;
1124 		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1125 		break;
1126 		}
1127 	case SO_INCOMING_CPU:
1128 		WRITE_ONCE(sk->sk_incoming_cpu, val);
1129 		break;
1130 
1131 	case SO_CNX_ADVICE:
1132 		if (val == 1)
1133 			dst_negative_advice(sk);
1134 		break;
1135 
1136 	case SO_ZEROCOPY:
1137 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1138 			if (!((sk->sk_type == SOCK_STREAM &&
1139 			       sk->sk_protocol == IPPROTO_TCP) ||
1140 			      (sk->sk_type == SOCK_DGRAM &&
1141 			       sk->sk_protocol == IPPROTO_UDP)))
1142 				ret = -ENOTSUPP;
1143 		} else if (sk->sk_family != PF_RDS) {
1144 			ret = -ENOTSUPP;
1145 		}
1146 		if (!ret) {
1147 			if (val < 0 || val > 1)
1148 				ret = -EINVAL;
1149 			else
1150 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1151 		}
1152 		break;
1153 
1154 	case SO_TXTIME:
1155 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1156 			ret = -EPERM;
1157 		} else if (optlen != sizeof(struct sock_txtime)) {
1158 			ret = -EINVAL;
1159 		} else if (copy_from_user(&sk_txtime, optval,
1160 			   sizeof(struct sock_txtime))) {
1161 			ret = -EFAULT;
1162 		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1163 			ret = -EINVAL;
1164 		} else {
1165 			sock_valbool_flag(sk, SOCK_TXTIME, true);
1166 			sk->sk_clockid = sk_txtime.clockid;
1167 			sk->sk_txtime_deadline_mode =
1168 				!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1169 			sk->sk_txtime_report_errors =
1170 				!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1171 		}
1172 		break;
1173 
1174 	case SO_BINDTOIFINDEX:
1175 		ret = sock_setbindtodevice_locked(sk, val);
1176 		break;
1177 
1178 	default:
1179 		ret = -ENOPROTOOPT;
1180 		break;
1181 	}
1182 	release_sock(sk);
1183 	return ret;
1184 }
1185 EXPORT_SYMBOL(sock_setsockopt);
1186 
1187 
1188 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1189 			  struct ucred *ucred)
1190 {
1191 	ucred->pid = pid_vnr(pid);
1192 	ucred->uid = ucred->gid = -1;
1193 	if (cred) {
1194 		struct user_namespace *current_ns = current_user_ns();
1195 
1196 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1197 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1198 	}
1199 }
1200 
1201 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1202 {
1203 	struct user_namespace *user_ns = current_user_ns();
1204 	int i;
1205 
1206 	for (i = 0; i < src->ngroups; i++)
1207 		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1208 			return -EFAULT;
1209 
1210 	return 0;
1211 }
1212 
1213 int sock_getsockopt(struct socket *sock, int level, int optname,
1214 		    char __user *optval, int __user *optlen)
1215 {
1216 	struct sock *sk = sock->sk;
1217 
1218 	union {
1219 		int val;
1220 		u64 val64;
1221 		unsigned long ulval;
1222 		struct linger ling;
1223 		struct old_timeval32 tm32;
1224 		struct __kernel_old_timeval tm;
1225 		struct  __kernel_sock_timeval stm;
1226 		struct sock_txtime txtime;
1227 	} v;
1228 
1229 	int lv = sizeof(int);
1230 	int len;
1231 
1232 	if (get_user(len, optlen))
1233 		return -EFAULT;
1234 	if (len < 0)
1235 		return -EINVAL;
1236 
1237 	memset(&v, 0, sizeof(v));
1238 
1239 	switch (optname) {
1240 	case SO_DEBUG:
1241 		v.val = sock_flag(sk, SOCK_DBG);
1242 		break;
1243 
1244 	case SO_DONTROUTE:
1245 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1246 		break;
1247 
1248 	case SO_BROADCAST:
1249 		v.val = sock_flag(sk, SOCK_BROADCAST);
1250 		break;
1251 
1252 	case SO_SNDBUF:
1253 		v.val = sk->sk_sndbuf;
1254 		break;
1255 
1256 	case SO_RCVBUF:
1257 		v.val = sk->sk_rcvbuf;
1258 		break;
1259 
1260 	case SO_REUSEADDR:
1261 		v.val = sk->sk_reuse;
1262 		break;
1263 
1264 	case SO_REUSEPORT:
1265 		v.val = sk->sk_reuseport;
1266 		break;
1267 
1268 	case SO_KEEPALIVE:
1269 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1270 		break;
1271 
1272 	case SO_TYPE:
1273 		v.val = sk->sk_type;
1274 		break;
1275 
1276 	case SO_PROTOCOL:
1277 		v.val = sk->sk_protocol;
1278 		break;
1279 
1280 	case SO_DOMAIN:
1281 		v.val = sk->sk_family;
1282 		break;
1283 
1284 	case SO_ERROR:
1285 		v.val = -sock_error(sk);
1286 		if (v.val == 0)
1287 			v.val = xchg(&sk->sk_err_soft, 0);
1288 		break;
1289 
1290 	case SO_OOBINLINE:
1291 		v.val = sock_flag(sk, SOCK_URGINLINE);
1292 		break;
1293 
1294 	case SO_NO_CHECK:
1295 		v.val = sk->sk_no_check_tx;
1296 		break;
1297 
1298 	case SO_PRIORITY:
1299 		v.val = sk->sk_priority;
1300 		break;
1301 
1302 	case SO_LINGER:
1303 		lv		= sizeof(v.ling);
1304 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1305 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1306 		break;
1307 
1308 	case SO_BSDCOMPAT:
1309 		sock_warn_obsolete_bsdism("getsockopt");
1310 		break;
1311 
1312 	case SO_TIMESTAMP_OLD:
1313 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1314 				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1315 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1316 		break;
1317 
1318 	case SO_TIMESTAMPNS_OLD:
1319 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1320 		break;
1321 
1322 	case SO_TIMESTAMP_NEW:
1323 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1324 		break;
1325 
1326 	case SO_TIMESTAMPNS_NEW:
1327 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1328 		break;
1329 
1330 	case SO_TIMESTAMPING_OLD:
1331 		v.val = sk->sk_tsflags;
1332 		break;
1333 
1334 	case SO_RCVTIMEO_OLD:
1335 	case SO_RCVTIMEO_NEW:
1336 		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1337 		break;
1338 
1339 	case SO_SNDTIMEO_OLD:
1340 	case SO_SNDTIMEO_NEW:
1341 		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1342 		break;
1343 
1344 	case SO_RCVLOWAT:
1345 		v.val = sk->sk_rcvlowat;
1346 		break;
1347 
1348 	case SO_SNDLOWAT:
1349 		v.val = 1;
1350 		break;
1351 
1352 	case SO_PASSCRED:
1353 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1354 		break;
1355 
1356 	case SO_PEERCRED:
1357 	{
1358 		struct ucred peercred;
1359 		if (len > sizeof(peercred))
1360 			len = sizeof(peercred);
1361 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1362 		if (copy_to_user(optval, &peercred, len))
1363 			return -EFAULT;
1364 		goto lenout;
1365 	}
1366 
1367 	case SO_PEERGROUPS:
1368 	{
1369 		int ret, n;
1370 
1371 		if (!sk->sk_peer_cred)
1372 			return -ENODATA;
1373 
1374 		n = sk->sk_peer_cred->group_info->ngroups;
1375 		if (len < n * sizeof(gid_t)) {
1376 			len = n * sizeof(gid_t);
1377 			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1378 		}
1379 		len = n * sizeof(gid_t);
1380 
1381 		ret = groups_to_user((gid_t __user *)optval,
1382 				     sk->sk_peer_cred->group_info);
1383 		if (ret)
1384 			return ret;
1385 		goto lenout;
1386 	}
1387 
1388 	case SO_PEERNAME:
1389 	{
1390 		char address[128];
1391 
1392 		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1393 		if (lv < 0)
1394 			return -ENOTCONN;
1395 		if (lv < len)
1396 			return -EINVAL;
1397 		if (copy_to_user(optval, address, len))
1398 			return -EFAULT;
1399 		goto lenout;
1400 	}
1401 
1402 	/* Dubious BSD thing... Probably nobody even uses it, but
1403 	 * the UNIX standard wants it for whatever reason... -DaveM
1404 	 */
1405 	case SO_ACCEPTCONN:
1406 		v.val = sk->sk_state == TCP_LISTEN;
1407 		break;
1408 
1409 	case SO_PASSSEC:
1410 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1411 		break;
1412 
1413 	case SO_PEERSEC:
1414 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1415 
1416 	case SO_MARK:
1417 		v.val = sk->sk_mark;
1418 		break;
1419 
1420 	case SO_RXQ_OVFL:
1421 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1422 		break;
1423 
1424 	case SO_WIFI_STATUS:
1425 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1426 		break;
1427 
1428 	case SO_PEEK_OFF:
1429 		if (!sock->ops->set_peek_off)
1430 			return -EOPNOTSUPP;
1431 
1432 		v.val = sk->sk_peek_off;
1433 		break;
1434 	case SO_NOFCS:
1435 		v.val = sock_flag(sk, SOCK_NOFCS);
1436 		break;
1437 
1438 	case SO_BINDTODEVICE:
1439 		return sock_getbindtodevice(sk, optval, optlen, len);
1440 
1441 	case SO_GET_FILTER:
1442 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1443 		if (len < 0)
1444 			return len;
1445 
1446 		goto lenout;
1447 
1448 	case SO_LOCK_FILTER:
1449 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1450 		break;
1451 
1452 	case SO_BPF_EXTENSIONS:
1453 		v.val = bpf_tell_extensions();
1454 		break;
1455 
1456 	case SO_SELECT_ERR_QUEUE:
1457 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1458 		break;
1459 
1460 #ifdef CONFIG_NET_RX_BUSY_POLL
1461 	case SO_BUSY_POLL:
1462 		v.val = sk->sk_ll_usec;
1463 		break;
1464 #endif
1465 
1466 	case SO_MAX_PACING_RATE:
1467 		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1468 			lv = sizeof(v.ulval);
1469 			v.ulval = sk->sk_max_pacing_rate;
1470 		} else {
1471 			/* 32bit version */
1472 			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1473 		}
1474 		break;
1475 
1476 	case SO_INCOMING_CPU:
1477 		v.val = READ_ONCE(sk->sk_incoming_cpu);
1478 		break;
1479 
1480 	case SO_MEMINFO:
1481 	{
1482 		u32 meminfo[SK_MEMINFO_VARS];
1483 
1484 		sk_get_meminfo(sk, meminfo);
1485 
1486 		len = min_t(unsigned int, len, sizeof(meminfo));
1487 		if (copy_to_user(optval, &meminfo, len))
1488 			return -EFAULT;
1489 
1490 		goto lenout;
1491 	}
1492 
1493 #ifdef CONFIG_NET_RX_BUSY_POLL
1494 	case SO_INCOMING_NAPI_ID:
1495 		v.val = READ_ONCE(sk->sk_napi_id);
1496 
1497 		/* aggregate non-NAPI IDs down to 0 */
1498 		if (v.val < MIN_NAPI_ID)
1499 			v.val = 0;
1500 
1501 		break;
1502 #endif
1503 
1504 	case SO_COOKIE:
1505 		lv = sizeof(u64);
1506 		if (len < lv)
1507 			return -EINVAL;
1508 		v.val64 = sock_gen_cookie(sk);
1509 		break;
1510 
1511 	case SO_ZEROCOPY:
1512 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1513 		break;
1514 
1515 	case SO_TXTIME:
1516 		lv = sizeof(v.txtime);
1517 		v.txtime.clockid = sk->sk_clockid;
1518 		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1519 				  SOF_TXTIME_DEADLINE_MODE : 0;
1520 		v.txtime.flags |= sk->sk_txtime_report_errors ?
1521 				  SOF_TXTIME_REPORT_ERRORS : 0;
1522 		break;
1523 
1524 	case SO_BINDTOIFINDEX:
1525 		v.val = sk->sk_bound_dev_if;
1526 		break;
1527 
1528 	default:
1529 		/* We implement the SO_SNDLOWAT etc to not be settable
1530 		 * (1003.1g 7).
1531 		 */
1532 		return -ENOPROTOOPT;
1533 	}
1534 
1535 	if (len > lv)
1536 		len = lv;
1537 	if (copy_to_user(optval, &v, len))
1538 		return -EFAULT;
1539 lenout:
1540 	if (put_user(len, optlen))
1541 		return -EFAULT;
1542 	return 0;
1543 }
1544 
1545 /*
1546  * Initialize an sk_lock.
1547  *
1548  * (We also register the sk_lock with the lock validator.)
1549  */
1550 static inline void sock_lock_init(struct sock *sk)
1551 {
1552 	if (sk->sk_kern_sock)
1553 		sock_lock_init_class_and_name(
1554 			sk,
1555 			af_family_kern_slock_key_strings[sk->sk_family],
1556 			af_family_kern_slock_keys + sk->sk_family,
1557 			af_family_kern_key_strings[sk->sk_family],
1558 			af_family_kern_keys + sk->sk_family);
1559 	else
1560 		sock_lock_init_class_and_name(
1561 			sk,
1562 			af_family_slock_key_strings[sk->sk_family],
1563 			af_family_slock_keys + sk->sk_family,
1564 			af_family_key_strings[sk->sk_family],
1565 			af_family_keys + sk->sk_family);
1566 }
1567 
1568 /*
1569  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1570  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1571  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1572  */
1573 static void sock_copy(struct sock *nsk, const struct sock *osk)
1574 {
1575 	const struct proto *prot = READ_ONCE(osk->sk_prot);
1576 #ifdef CONFIG_SECURITY_NETWORK
1577 	void *sptr = nsk->sk_security;
1578 #endif
1579 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1580 
1581 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1582 	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1583 
1584 #ifdef CONFIG_SECURITY_NETWORK
1585 	nsk->sk_security = sptr;
1586 	security_sk_clone(osk, nsk);
1587 #endif
1588 }
1589 
1590 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1591 		int family)
1592 {
1593 	struct sock *sk;
1594 	struct kmem_cache *slab;
1595 
1596 	slab = prot->slab;
1597 	if (slab != NULL) {
1598 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1599 		if (!sk)
1600 			return sk;
1601 		if (want_init_on_alloc(priority))
1602 			sk_prot_clear_nulls(sk, prot->obj_size);
1603 	} else
1604 		sk = kmalloc(prot->obj_size, priority);
1605 
1606 	if (sk != NULL) {
1607 		if (security_sk_alloc(sk, family, priority))
1608 			goto out_free;
1609 
1610 		if (!try_module_get(prot->owner))
1611 			goto out_free_sec;
1612 		sk_tx_queue_clear(sk);
1613 	}
1614 
1615 	return sk;
1616 
1617 out_free_sec:
1618 	security_sk_free(sk);
1619 out_free:
1620 	if (slab != NULL)
1621 		kmem_cache_free(slab, sk);
1622 	else
1623 		kfree(sk);
1624 	return NULL;
1625 }
1626 
1627 static void sk_prot_free(struct proto *prot, struct sock *sk)
1628 {
1629 	struct kmem_cache *slab;
1630 	struct module *owner;
1631 
1632 	owner = prot->owner;
1633 	slab = prot->slab;
1634 
1635 	cgroup_sk_free(&sk->sk_cgrp_data);
1636 	mem_cgroup_sk_free(sk);
1637 	security_sk_free(sk);
1638 	if (slab != NULL)
1639 		kmem_cache_free(slab, sk);
1640 	else
1641 		kfree(sk);
1642 	module_put(owner);
1643 }
1644 
1645 /**
1646  *	sk_alloc - All socket objects are allocated here
1647  *	@net: the applicable net namespace
1648  *	@family: protocol family
1649  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1650  *	@prot: struct proto associated with this new sock instance
1651  *	@kern: is this to be a kernel socket?
1652  */
1653 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1654 		      struct proto *prot, int kern)
1655 {
1656 	struct sock *sk;
1657 
1658 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1659 	if (sk) {
1660 		sk->sk_family = family;
1661 		/*
1662 		 * See comment in struct sock definition to understand
1663 		 * why we need sk_prot_creator -acme
1664 		 */
1665 		sk->sk_prot = sk->sk_prot_creator = prot;
1666 		sk->sk_kern_sock = kern;
1667 		sock_lock_init(sk);
1668 		sk->sk_net_refcnt = kern ? 0 : 1;
1669 		if (likely(sk->sk_net_refcnt)) {
1670 			get_net(net);
1671 			sock_inuse_add(net, 1);
1672 		}
1673 
1674 		sock_net_set(sk, net);
1675 		refcount_set(&sk->sk_wmem_alloc, 1);
1676 
1677 		mem_cgroup_sk_alloc(sk);
1678 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1679 		sock_update_classid(&sk->sk_cgrp_data);
1680 		sock_update_netprioidx(&sk->sk_cgrp_data);
1681 	}
1682 
1683 	return sk;
1684 }
1685 EXPORT_SYMBOL(sk_alloc);
1686 
1687 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1688  * grace period. This is the case for UDP sockets and TCP listeners.
1689  */
1690 static void __sk_destruct(struct rcu_head *head)
1691 {
1692 	struct sock *sk = container_of(head, struct sock, sk_rcu);
1693 	struct sk_filter *filter;
1694 
1695 	if (sk->sk_destruct)
1696 		sk->sk_destruct(sk);
1697 
1698 	filter = rcu_dereference_check(sk->sk_filter,
1699 				       refcount_read(&sk->sk_wmem_alloc) == 0);
1700 	if (filter) {
1701 		sk_filter_uncharge(sk, filter);
1702 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1703 	}
1704 
1705 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1706 
1707 #ifdef CONFIG_BPF_SYSCALL
1708 	bpf_sk_storage_free(sk);
1709 #endif
1710 
1711 	if (atomic_read(&sk->sk_omem_alloc))
1712 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1713 			 __func__, atomic_read(&sk->sk_omem_alloc));
1714 
1715 	if (sk->sk_frag.page) {
1716 		put_page(sk->sk_frag.page);
1717 		sk->sk_frag.page = NULL;
1718 	}
1719 
1720 	if (sk->sk_peer_cred)
1721 		put_cred(sk->sk_peer_cred);
1722 	put_pid(sk->sk_peer_pid);
1723 	if (likely(sk->sk_net_refcnt))
1724 		put_net(sock_net(sk));
1725 	sk_prot_free(sk->sk_prot_creator, sk);
1726 }
1727 
1728 void sk_destruct(struct sock *sk)
1729 {
1730 	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1731 
1732 	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1733 		reuseport_detach_sock(sk);
1734 		use_call_rcu = true;
1735 	}
1736 
1737 	if (use_call_rcu)
1738 		call_rcu(&sk->sk_rcu, __sk_destruct);
1739 	else
1740 		__sk_destruct(&sk->sk_rcu);
1741 }
1742 
1743 static void __sk_free(struct sock *sk)
1744 {
1745 	if (likely(sk->sk_net_refcnt))
1746 		sock_inuse_add(sock_net(sk), -1);
1747 
1748 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1749 		sock_diag_broadcast_destroy(sk);
1750 	else
1751 		sk_destruct(sk);
1752 }
1753 
1754 void sk_free(struct sock *sk)
1755 {
1756 	/*
1757 	 * We subtract one from sk_wmem_alloc and can know if
1758 	 * some packets are still in some tx queue.
1759 	 * If not null, sock_wfree() will call __sk_free(sk) later
1760 	 */
1761 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1762 		__sk_free(sk);
1763 }
1764 EXPORT_SYMBOL(sk_free);
1765 
1766 static void sk_init_common(struct sock *sk)
1767 {
1768 	skb_queue_head_init(&sk->sk_receive_queue);
1769 	skb_queue_head_init(&sk->sk_write_queue);
1770 	skb_queue_head_init(&sk->sk_error_queue);
1771 
1772 	rwlock_init(&sk->sk_callback_lock);
1773 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1774 			af_rlock_keys + sk->sk_family,
1775 			af_family_rlock_key_strings[sk->sk_family]);
1776 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1777 			af_wlock_keys + sk->sk_family,
1778 			af_family_wlock_key_strings[sk->sk_family]);
1779 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1780 			af_elock_keys + sk->sk_family,
1781 			af_family_elock_key_strings[sk->sk_family]);
1782 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1783 			af_callback_keys + sk->sk_family,
1784 			af_family_clock_key_strings[sk->sk_family]);
1785 }
1786 
1787 /**
1788  *	sk_clone_lock - clone a socket, and lock its clone
1789  *	@sk: the socket to clone
1790  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1791  *
1792  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1793  */
1794 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1795 {
1796 	struct proto *prot = READ_ONCE(sk->sk_prot);
1797 	struct sock *newsk;
1798 	bool is_charged = true;
1799 
1800 	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
1801 	if (newsk != NULL) {
1802 		struct sk_filter *filter;
1803 
1804 		sock_copy(newsk, sk);
1805 
1806 		newsk->sk_prot_creator = prot;
1807 
1808 		/* SANITY */
1809 		if (likely(newsk->sk_net_refcnt))
1810 			get_net(sock_net(newsk));
1811 		sk_node_init(&newsk->sk_node);
1812 		sock_lock_init(newsk);
1813 		bh_lock_sock(newsk);
1814 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1815 		newsk->sk_backlog.len = 0;
1816 
1817 		atomic_set(&newsk->sk_rmem_alloc, 0);
1818 		/*
1819 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1820 		 */
1821 		refcount_set(&newsk->sk_wmem_alloc, 1);
1822 		atomic_set(&newsk->sk_omem_alloc, 0);
1823 		sk_init_common(newsk);
1824 
1825 		newsk->sk_dst_cache	= NULL;
1826 		newsk->sk_dst_pending_confirm = 0;
1827 		newsk->sk_wmem_queued	= 0;
1828 		newsk->sk_forward_alloc = 0;
1829 		atomic_set(&newsk->sk_drops, 0);
1830 		newsk->sk_send_head	= NULL;
1831 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1832 		atomic_set(&newsk->sk_zckey, 0);
1833 
1834 		sock_reset_flag(newsk, SOCK_DONE);
1835 
1836 		/* sk->sk_memcg will be populated at accept() time */
1837 		newsk->sk_memcg = NULL;
1838 
1839 		cgroup_sk_alloc(&newsk->sk_cgrp_data);
1840 
1841 		rcu_read_lock();
1842 		filter = rcu_dereference(sk->sk_filter);
1843 		if (filter != NULL)
1844 			/* though it's an empty new sock, the charging may fail
1845 			 * if sysctl_optmem_max was changed between creation of
1846 			 * original socket and cloning
1847 			 */
1848 			is_charged = sk_filter_charge(newsk, filter);
1849 		RCU_INIT_POINTER(newsk->sk_filter, filter);
1850 		rcu_read_unlock();
1851 
1852 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1853 			/* We need to make sure that we don't uncharge the new
1854 			 * socket if we couldn't charge it in the first place
1855 			 * as otherwise we uncharge the parent's filter.
1856 			 */
1857 			if (!is_charged)
1858 				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1859 			sk_free_unlock_clone(newsk);
1860 			newsk = NULL;
1861 			goto out;
1862 		}
1863 		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1864 
1865 		if (bpf_sk_storage_clone(sk, newsk)) {
1866 			sk_free_unlock_clone(newsk);
1867 			newsk = NULL;
1868 			goto out;
1869 		}
1870 
1871 		/* Clear sk_user_data if parent had the pointer tagged
1872 		 * as not suitable for copying when cloning.
1873 		 */
1874 		if (sk_user_data_is_nocopy(newsk))
1875 			RCU_INIT_POINTER(newsk->sk_user_data, NULL);
1876 
1877 		newsk->sk_err	   = 0;
1878 		newsk->sk_err_soft = 0;
1879 		newsk->sk_priority = 0;
1880 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1881 		if (likely(newsk->sk_net_refcnt))
1882 			sock_inuse_add(sock_net(newsk), 1);
1883 
1884 		/*
1885 		 * Before updating sk_refcnt, we must commit prior changes to memory
1886 		 * (Documentation/RCU/rculist_nulls.txt for details)
1887 		 */
1888 		smp_wmb();
1889 		refcount_set(&newsk->sk_refcnt, 2);
1890 
1891 		/*
1892 		 * Increment the counter in the same struct proto as the master
1893 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1894 		 * is the same as sk->sk_prot->socks, as this field was copied
1895 		 * with memcpy).
1896 		 *
1897 		 * This _changes_ the previous behaviour, where
1898 		 * tcp_create_openreq_child always was incrementing the
1899 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1900 		 * to be taken into account in all callers. -acme
1901 		 */
1902 		sk_refcnt_debug_inc(newsk);
1903 		sk_set_socket(newsk, NULL);
1904 		RCU_INIT_POINTER(newsk->sk_wq, NULL);
1905 
1906 		if (newsk->sk_prot->sockets_allocated)
1907 			sk_sockets_allocated_inc(newsk);
1908 
1909 		if (sock_needs_netstamp(sk) &&
1910 		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1911 			net_enable_timestamp();
1912 	}
1913 out:
1914 	return newsk;
1915 }
1916 EXPORT_SYMBOL_GPL(sk_clone_lock);
1917 
1918 void sk_free_unlock_clone(struct sock *sk)
1919 {
1920 	/* It is still raw copy of parent, so invalidate
1921 	 * destructor and make plain sk_free() */
1922 	sk->sk_destruct = NULL;
1923 	bh_unlock_sock(sk);
1924 	sk_free(sk);
1925 }
1926 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1927 
1928 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1929 {
1930 	u32 max_segs = 1;
1931 
1932 	sk_dst_set(sk, dst);
1933 	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1934 	if (sk->sk_route_caps & NETIF_F_GSO)
1935 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1936 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1937 	if (sk_can_gso(sk)) {
1938 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1939 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1940 		} else {
1941 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1942 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1943 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1944 		}
1945 	}
1946 	sk->sk_gso_max_segs = max_segs;
1947 }
1948 EXPORT_SYMBOL_GPL(sk_setup_caps);
1949 
1950 /*
1951  *	Simple resource managers for sockets.
1952  */
1953 
1954 
1955 /*
1956  * Write buffer destructor automatically called from kfree_skb.
1957  */
1958 void sock_wfree(struct sk_buff *skb)
1959 {
1960 	struct sock *sk = skb->sk;
1961 	unsigned int len = skb->truesize;
1962 
1963 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1964 		/*
1965 		 * Keep a reference on sk_wmem_alloc, this will be released
1966 		 * after sk_write_space() call
1967 		 */
1968 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1969 		sk->sk_write_space(sk);
1970 		len = 1;
1971 	}
1972 	/*
1973 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1974 	 * could not do because of in-flight packets
1975 	 */
1976 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1977 		__sk_free(sk);
1978 }
1979 EXPORT_SYMBOL(sock_wfree);
1980 
1981 /* This variant of sock_wfree() is used by TCP,
1982  * since it sets SOCK_USE_WRITE_QUEUE.
1983  */
1984 void __sock_wfree(struct sk_buff *skb)
1985 {
1986 	struct sock *sk = skb->sk;
1987 
1988 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1989 		__sk_free(sk);
1990 }
1991 
1992 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1993 {
1994 	skb_orphan(skb);
1995 	skb->sk = sk;
1996 #ifdef CONFIG_INET
1997 	if (unlikely(!sk_fullsock(sk))) {
1998 		skb->destructor = sock_edemux;
1999 		sock_hold(sk);
2000 		return;
2001 	}
2002 #endif
2003 	skb->destructor = sock_wfree;
2004 	skb_set_hash_from_sk(skb, sk);
2005 	/*
2006 	 * We used to take a refcount on sk, but following operation
2007 	 * is enough to guarantee sk_free() wont free this sock until
2008 	 * all in-flight packets are completed
2009 	 */
2010 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2011 }
2012 EXPORT_SYMBOL(skb_set_owner_w);
2013 
2014 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2015 {
2016 #ifdef CONFIG_TLS_DEVICE
2017 	/* Drivers depend on in-order delivery for crypto offload,
2018 	 * partial orphan breaks out-of-order-OK logic.
2019 	 */
2020 	if (skb->decrypted)
2021 		return false;
2022 #endif
2023 	return (skb->destructor == sock_wfree ||
2024 		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2025 }
2026 
2027 /* This helper is used by netem, as it can hold packets in its
2028  * delay queue. We want to allow the owner socket to send more
2029  * packets, as if they were already TX completed by a typical driver.
2030  * But we also want to keep skb->sk set because some packet schedulers
2031  * rely on it (sch_fq for example).
2032  */
2033 void skb_orphan_partial(struct sk_buff *skb)
2034 {
2035 	if (skb_is_tcp_pure_ack(skb))
2036 		return;
2037 
2038 	if (can_skb_orphan_partial(skb)) {
2039 		struct sock *sk = skb->sk;
2040 
2041 		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2042 			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2043 			skb->destructor = sock_efree;
2044 		}
2045 	} else {
2046 		skb_orphan(skb);
2047 	}
2048 }
2049 EXPORT_SYMBOL(skb_orphan_partial);
2050 
2051 /*
2052  * Read buffer destructor automatically called from kfree_skb.
2053  */
2054 void sock_rfree(struct sk_buff *skb)
2055 {
2056 	struct sock *sk = skb->sk;
2057 	unsigned int len = skb->truesize;
2058 
2059 	atomic_sub(len, &sk->sk_rmem_alloc);
2060 	sk_mem_uncharge(sk, len);
2061 }
2062 EXPORT_SYMBOL(sock_rfree);
2063 
2064 /*
2065  * Buffer destructor for skbs that are not used directly in read or write
2066  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2067  */
2068 void sock_efree(struct sk_buff *skb)
2069 {
2070 	sock_put(skb->sk);
2071 }
2072 EXPORT_SYMBOL(sock_efree);
2073 
2074 /* Buffer destructor for prefetch/receive path where reference count may
2075  * not be held, e.g. for listen sockets.
2076  */
2077 #ifdef CONFIG_INET
2078 void sock_pfree(struct sk_buff *skb)
2079 {
2080 	if (sk_is_refcounted(skb->sk))
2081 		sock_gen_put(skb->sk);
2082 }
2083 EXPORT_SYMBOL(sock_pfree);
2084 #endif /* CONFIG_INET */
2085 
2086 kuid_t sock_i_uid(struct sock *sk)
2087 {
2088 	kuid_t uid;
2089 
2090 	read_lock_bh(&sk->sk_callback_lock);
2091 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2092 	read_unlock_bh(&sk->sk_callback_lock);
2093 	return uid;
2094 }
2095 EXPORT_SYMBOL(sock_i_uid);
2096 
2097 unsigned long sock_i_ino(struct sock *sk)
2098 {
2099 	unsigned long ino;
2100 
2101 	read_lock_bh(&sk->sk_callback_lock);
2102 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2103 	read_unlock_bh(&sk->sk_callback_lock);
2104 	return ino;
2105 }
2106 EXPORT_SYMBOL(sock_i_ino);
2107 
2108 /*
2109  * Allocate a skb from the socket's send buffer.
2110  */
2111 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2112 			     gfp_t priority)
2113 {
2114 	if (force ||
2115 	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2116 		struct sk_buff *skb = alloc_skb(size, priority);
2117 
2118 		if (skb) {
2119 			skb_set_owner_w(skb, sk);
2120 			return skb;
2121 		}
2122 	}
2123 	return NULL;
2124 }
2125 EXPORT_SYMBOL(sock_wmalloc);
2126 
2127 static void sock_ofree(struct sk_buff *skb)
2128 {
2129 	struct sock *sk = skb->sk;
2130 
2131 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2132 }
2133 
2134 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2135 			     gfp_t priority)
2136 {
2137 	struct sk_buff *skb;
2138 
2139 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2140 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2141 	    sysctl_optmem_max)
2142 		return NULL;
2143 
2144 	skb = alloc_skb(size, priority);
2145 	if (!skb)
2146 		return NULL;
2147 
2148 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2149 	skb->sk = sk;
2150 	skb->destructor = sock_ofree;
2151 	return skb;
2152 }
2153 
2154 /*
2155  * Allocate a memory block from the socket's option memory buffer.
2156  */
2157 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2158 {
2159 	if ((unsigned int)size <= sysctl_optmem_max &&
2160 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2161 		void *mem;
2162 		/* First do the add, to avoid the race if kmalloc
2163 		 * might sleep.
2164 		 */
2165 		atomic_add(size, &sk->sk_omem_alloc);
2166 		mem = kmalloc(size, priority);
2167 		if (mem)
2168 			return mem;
2169 		atomic_sub(size, &sk->sk_omem_alloc);
2170 	}
2171 	return NULL;
2172 }
2173 EXPORT_SYMBOL(sock_kmalloc);
2174 
2175 /* Free an option memory block. Note, we actually want the inline
2176  * here as this allows gcc to detect the nullify and fold away the
2177  * condition entirely.
2178  */
2179 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2180 				  const bool nullify)
2181 {
2182 	if (WARN_ON_ONCE(!mem))
2183 		return;
2184 	if (nullify)
2185 		kzfree(mem);
2186 	else
2187 		kfree(mem);
2188 	atomic_sub(size, &sk->sk_omem_alloc);
2189 }
2190 
2191 void sock_kfree_s(struct sock *sk, void *mem, int size)
2192 {
2193 	__sock_kfree_s(sk, mem, size, false);
2194 }
2195 EXPORT_SYMBOL(sock_kfree_s);
2196 
2197 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2198 {
2199 	__sock_kfree_s(sk, mem, size, true);
2200 }
2201 EXPORT_SYMBOL(sock_kzfree_s);
2202 
2203 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2204    I think, these locks should be removed for datagram sockets.
2205  */
2206 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2207 {
2208 	DEFINE_WAIT(wait);
2209 
2210 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2211 	for (;;) {
2212 		if (!timeo)
2213 			break;
2214 		if (signal_pending(current))
2215 			break;
2216 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2217 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2218 		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2219 			break;
2220 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2221 			break;
2222 		if (sk->sk_err)
2223 			break;
2224 		timeo = schedule_timeout(timeo);
2225 	}
2226 	finish_wait(sk_sleep(sk), &wait);
2227 	return timeo;
2228 }
2229 
2230 
2231 /*
2232  *	Generic send/receive buffer handlers
2233  */
2234 
2235 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2236 				     unsigned long data_len, int noblock,
2237 				     int *errcode, int max_page_order)
2238 {
2239 	struct sk_buff *skb;
2240 	long timeo;
2241 	int err;
2242 
2243 	timeo = sock_sndtimeo(sk, noblock);
2244 	for (;;) {
2245 		err = sock_error(sk);
2246 		if (err != 0)
2247 			goto failure;
2248 
2249 		err = -EPIPE;
2250 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2251 			goto failure;
2252 
2253 		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2254 			break;
2255 
2256 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2257 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2258 		err = -EAGAIN;
2259 		if (!timeo)
2260 			goto failure;
2261 		if (signal_pending(current))
2262 			goto interrupted;
2263 		timeo = sock_wait_for_wmem(sk, timeo);
2264 	}
2265 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2266 				   errcode, sk->sk_allocation);
2267 	if (skb)
2268 		skb_set_owner_w(skb, sk);
2269 	return skb;
2270 
2271 interrupted:
2272 	err = sock_intr_errno(timeo);
2273 failure:
2274 	*errcode = err;
2275 	return NULL;
2276 }
2277 EXPORT_SYMBOL(sock_alloc_send_pskb);
2278 
2279 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2280 				    int noblock, int *errcode)
2281 {
2282 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2283 }
2284 EXPORT_SYMBOL(sock_alloc_send_skb);
2285 
2286 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2287 		     struct sockcm_cookie *sockc)
2288 {
2289 	u32 tsflags;
2290 
2291 	switch (cmsg->cmsg_type) {
2292 	case SO_MARK:
2293 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2294 			return -EPERM;
2295 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2296 			return -EINVAL;
2297 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2298 		break;
2299 	case SO_TIMESTAMPING_OLD:
2300 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2301 			return -EINVAL;
2302 
2303 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2304 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2305 			return -EINVAL;
2306 
2307 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2308 		sockc->tsflags |= tsflags;
2309 		break;
2310 	case SCM_TXTIME:
2311 		if (!sock_flag(sk, SOCK_TXTIME))
2312 			return -EINVAL;
2313 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2314 			return -EINVAL;
2315 		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2316 		break;
2317 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2318 	case SCM_RIGHTS:
2319 	case SCM_CREDENTIALS:
2320 		break;
2321 	default:
2322 		return -EINVAL;
2323 	}
2324 	return 0;
2325 }
2326 EXPORT_SYMBOL(__sock_cmsg_send);
2327 
2328 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2329 		   struct sockcm_cookie *sockc)
2330 {
2331 	struct cmsghdr *cmsg;
2332 	int ret;
2333 
2334 	for_each_cmsghdr(cmsg, msg) {
2335 		if (!CMSG_OK(msg, cmsg))
2336 			return -EINVAL;
2337 		if (cmsg->cmsg_level != SOL_SOCKET)
2338 			continue;
2339 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2340 		if (ret)
2341 			return ret;
2342 	}
2343 	return 0;
2344 }
2345 EXPORT_SYMBOL(sock_cmsg_send);
2346 
2347 static void sk_enter_memory_pressure(struct sock *sk)
2348 {
2349 	if (!sk->sk_prot->enter_memory_pressure)
2350 		return;
2351 
2352 	sk->sk_prot->enter_memory_pressure(sk);
2353 }
2354 
2355 static void sk_leave_memory_pressure(struct sock *sk)
2356 {
2357 	if (sk->sk_prot->leave_memory_pressure) {
2358 		sk->sk_prot->leave_memory_pressure(sk);
2359 	} else {
2360 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2361 
2362 		if (memory_pressure && READ_ONCE(*memory_pressure))
2363 			WRITE_ONCE(*memory_pressure, 0);
2364 	}
2365 }
2366 
2367 /* On 32bit arches, an skb frag is limited to 2^15 */
2368 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2369 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2370 
2371 /**
2372  * skb_page_frag_refill - check that a page_frag contains enough room
2373  * @sz: minimum size of the fragment we want to get
2374  * @pfrag: pointer to page_frag
2375  * @gfp: priority for memory allocation
2376  *
2377  * Note: While this allocator tries to use high order pages, there is
2378  * no guarantee that allocations succeed. Therefore, @sz MUST be
2379  * less or equal than PAGE_SIZE.
2380  */
2381 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2382 {
2383 	if (pfrag->page) {
2384 		if (page_ref_count(pfrag->page) == 1) {
2385 			pfrag->offset = 0;
2386 			return true;
2387 		}
2388 		if (pfrag->offset + sz <= pfrag->size)
2389 			return true;
2390 		put_page(pfrag->page);
2391 	}
2392 
2393 	pfrag->offset = 0;
2394 	if (SKB_FRAG_PAGE_ORDER &&
2395 	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2396 		/* Avoid direct reclaim but allow kswapd to wake */
2397 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2398 					  __GFP_COMP | __GFP_NOWARN |
2399 					  __GFP_NORETRY,
2400 					  SKB_FRAG_PAGE_ORDER);
2401 		if (likely(pfrag->page)) {
2402 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2403 			return true;
2404 		}
2405 	}
2406 	pfrag->page = alloc_page(gfp);
2407 	if (likely(pfrag->page)) {
2408 		pfrag->size = PAGE_SIZE;
2409 		return true;
2410 	}
2411 	return false;
2412 }
2413 EXPORT_SYMBOL(skb_page_frag_refill);
2414 
2415 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2416 {
2417 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2418 		return true;
2419 
2420 	sk_enter_memory_pressure(sk);
2421 	sk_stream_moderate_sndbuf(sk);
2422 	return false;
2423 }
2424 EXPORT_SYMBOL(sk_page_frag_refill);
2425 
2426 static void __lock_sock(struct sock *sk)
2427 	__releases(&sk->sk_lock.slock)
2428 	__acquires(&sk->sk_lock.slock)
2429 {
2430 	DEFINE_WAIT(wait);
2431 
2432 	for (;;) {
2433 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2434 					TASK_UNINTERRUPTIBLE);
2435 		spin_unlock_bh(&sk->sk_lock.slock);
2436 		schedule();
2437 		spin_lock_bh(&sk->sk_lock.slock);
2438 		if (!sock_owned_by_user(sk))
2439 			break;
2440 	}
2441 	finish_wait(&sk->sk_lock.wq, &wait);
2442 }
2443 
2444 void __release_sock(struct sock *sk)
2445 	__releases(&sk->sk_lock.slock)
2446 	__acquires(&sk->sk_lock.slock)
2447 {
2448 	struct sk_buff *skb, *next;
2449 
2450 	while ((skb = sk->sk_backlog.head) != NULL) {
2451 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2452 
2453 		spin_unlock_bh(&sk->sk_lock.slock);
2454 
2455 		do {
2456 			next = skb->next;
2457 			prefetch(next);
2458 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2459 			skb_mark_not_on_list(skb);
2460 			sk_backlog_rcv(sk, skb);
2461 
2462 			cond_resched();
2463 
2464 			skb = next;
2465 		} while (skb != NULL);
2466 
2467 		spin_lock_bh(&sk->sk_lock.slock);
2468 	}
2469 
2470 	/*
2471 	 * Doing the zeroing here guarantee we can not loop forever
2472 	 * while a wild producer attempts to flood us.
2473 	 */
2474 	sk->sk_backlog.len = 0;
2475 }
2476 
2477 void __sk_flush_backlog(struct sock *sk)
2478 {
2479 	spin_lock_bh(&sk->sk_lock.slock);
2480 	__release_sock(sk);
2481 	spin_unlock_bh(&sk->sk_lock.slock);
2482 }
2483 
2484 /**
2485  * sk_wait_data - wait for data to arrive at sk_receive_queue
2486  * @sk:    sock to wait on
2487  * @timeo: for how long
2488  * @skb:   last skb seen on sk_receive_queue
2489  *
2490  * Now socket state including sk->sk_err is changed only under lock,
2491  * hence we may omit checks after joining wait queue.
2492  * We check receive queue before schedule() only as optimization;
2493  * it is very likely that release_sock() added new data.
2494  */
2495 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2496 {
2497 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2498 	int rc;
2499 
2500 	add_wait_queue(sk_sleep(sk), &wait);
2501 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2502 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2503 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2504 	remove_wait_queue(sk_sleep(sk), &wait);
2505 	return rc;
2506 }
2507 EXPORT_SYMBOL(sk_wait_data);
2508 
2509 /**
2510  *	__sk_mem_raise_allocated - increase memory_allocated
2511  *	@sk: socket
2512  *	@size: memory size to allocate
2513  *	@amt: pages to allocate
2514  *	@kind: allocation type
2515  *
2516  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2517  */
2518 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2519 {
2520 	struct proto *prot = sk->sk_prot;
2521 	long allocated = sk_memory_allocated_add(sk, amt);
2522 	bool charged = true;
2523 
2524 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2525 	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2526 		goto suppress_allocation;
2527 
2528 	/* Under limit. */
2529 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2530 		sk_leave_memory_pressure(sk);
2531 		return 1;
2532 	}
2533 
2534 	/* Under pressure. */
2535 	if (allocated > sk_prot_mem_limits(sk, 1))
2536 		sk_enter_memory_pressure(sk);
2537 
2538 	/* Over hard limit. */
2539 	if (allocated > sk_prot_mem_limits(sk, 2))
2540 		goto suppress_allocation;
2541 
2542 	/* guarantee minimum buffer size under pressure */
2543 	if (kind == SK_MEM_RECV) {
2544 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2545 			return 1;
2546 
2547 	} else { /* SK_MEM_SEND */
2548 		int wmem0 = sk_get_wmem0(sk, prot);
2549 
2550 		if (sk->sk_type == SOCK_STREAM) {
2551 			if (sk->sk_wmem_queued < wmem0)
2552 				return 1;
2553 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2554 				return 1;
2555 		}
2556 	}
2557 
2558 	if (sk_has_memory_pressure(sk)) {
2559 		u64 alloc;
2560 
2561 		if (!sk_under_memory_pressure(sk))
2562 			return 1;
2563 		alloc = sk_sockets_allocated_read_positive(sk);
2564 		if (sk_prot_mem_limits(sk, 2) > alloc *
2565 		    sk_mem_pages(sk->sk_wmem_queued +
2566 				 atomic_read(&sk->sk_rmem_alloc) +
2567 				 sk->sk_forward_alloc))
2568 			return 1;
2569 	}
2570 
2571 suppress_allocation:
2572 
2573 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2574 		sk_stream_moderate_sndbuf(sk);
2575 
2576 		/* Fail only if socket is _under_ its sndbuf.
2577 		 * In this case we cannot block, so that we have to fail.
2578 		 */
2579 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2580 			return 1;
2581 	}
2582 
2583 	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2584 		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2585 
2586 	sk_memory_allocated_sub(sk, amt);
2587 
2588 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2589 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2590 
2591 	return 0;
2592 }
2593 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2594 
2595 /**
2596  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2597  *	@sk: socket
2598  *	@size: memory size to allocate
2599  *	@kind: allocation type
2600  *
2601  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2602  *	rmem allocation. This function assumes that protocols which have
2603  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2604  */
2605 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2606 {
2607 	int ret, amt = sk_mem_pages(size);
2608 
2609 	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2610 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2611 	if (!ret)
2612 		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2613 	return ret;
2614 }
2615 EXPORT_SYMBOL(__sk_mem_schedule);
2616 
2617 /**
2618  *	__sk_mem_reduce_allocated - reclaim memory_allocated
2619  *	@sk: socket
2620  *	@amount: number of quanta
2621  *
2622  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2623  */
2624 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2625 {
2626 	sk_memory_allocated_sub(sk, amount);
2627 
2628 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2629 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2630 
2631 	if (sk_under_memory_pressure(sk) &&
2632 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2633 		sk_leave_memory_pressure(sk);
2634 }
2635 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2636 
2637 /**
2638  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2639  *	@sk: socket
2640  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2641  */
2642 void __sk_mem_reclaim(struct sock *sk, int amount)
2643 {
2644 	amount >>= SK_MEM_QUANTUM_SHIFT;
2645 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2646 	__sk_mem_reduce_allocated(sk, amount);
2647 }
2648 EXPORT_SYMBOL(__sk_mem_reclaim);
2649 
2650 int sk_set_peek_off(struct sock *sk, int val)
2651 {
2652 	sk->sk_peek_off = val;
2653 	return 0;
2654 }
2655 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2656 
2657 /*
2658  * Set of default routines for initialising struct proto_ops when
2659  * the protocol does not support a particular function. In certain
2660  * cases where it makes no sense for a protocol to have a "do nothing"
2661  * function, some default processing is provided.
2662  */
2663 
2664 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2665 {
2666 	return -EOPNOTSUPP;
2667 }
2668 EXPORT_SYMBOL(sock_no_bind);
2669 
2670 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2671 		    int len, int flags)
2672 {
2673 	return -EOPNOTSUPP;
2674 }
2675 EXPORT_SYMBOL(sock_no_connect);
2676 
2677 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2678 {
2679 	return -EOPNOTSUPP;
2680 }
2681 EXPORT_SYMBOL(sock_no_socketpair);
2682 
2683 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2684 		   bool kern)
2685 {
2686 	return -EOPNOTSUPP;
2687 }
2688 EXPORT_SYMBOL(sock_no_accept);
2689 
2690 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2691 		    int peer)
2692 {
2693 	return -EOPNOTSUPP;
2694 }
2695 EXPORT_SYMBOL(sock_no_getname);
2696 
2697 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2698 {
2699 	return -EOPNOTSUPP;
2700 }
2701 EXPORT_SYMBOL(sock_no_ioctl);
2702 
2703 int sock_no_listen(struct socket *sock, int backlog)
2704 {
2705 	return -EOPNOTSUPP;
2706 }
2707 EXPORT_SYMBOL(sock_no_listen);
2708 
2709 int sock_no_shutdown(struct socket *sock, int how)
2710 {
2711 	return -EOPNOTSUPP;
2712 }
2713 EXPORT_SYMBOL(sock_no_shutdown);
2714 
2715 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2716 		    char __user *optval, unsigned int optlen)
2717 {
2718 	return -EOPNOTSUPP;
2719 }
2720 EXPORT_SYMBOL(sock_no_setsockopt);
2721 
2722 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2723 		    char __user *optval, int __user *optlen)
2724 {
2725 	return -EOPNOTSUPP;
2726 }
2727 EXPORT_SYMBOL(sock_no_getsockopt);
2728 
2729 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2730 {
2731 	return -EOPNOTSUPP;
2732 }
2733 EXPORT_SYMBOL(sock_no_sendmsg);
2734 
2735 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2736 {
2737 	return -EOPNOTSUPP;
2738 }
2739 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2740 
2741 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2742 		    int flags)
2743 {
2744 	return -EOPNOTSUPP;
2745 }
2746 EXPORT_SYMBOL(sock_no_recvmsg);
2747 
2748 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2749 {
2750 	/* Mirror missing mmap method error code */
2751 	return -ENODEV;
2752 }
2753 EXPORT_SYMBOL(sock_no_mmap);
2754 
2755 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2756 {
2757 	ssize_t res;
2758 	struct msghdr msg = {.msg_flags = flags};
2759 	struct kvec iov;
2760 	char *kaddr = kmap(page);
2761 	iov.iov_base = kaddr + offset;
2762 	iov.iov_len = size;
2763 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2764 	kunmap(page);
2765 	return res;
2766 }
2767 EXPORT_SYMBOL(sock_no_sendpage);
2768 
2769 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2770 				int offset, size_t size, int flags)
2771 {
2772 	ssize_t res;
2773 	struct msghdr msg = {.msg_flags = flags};
2774 	struct kvec iov;
2775 	char *kaddr = kmap(page);
2776 
2777 	iov.iov_base = kaddr + offset;
2778 	iov.iov_len = size;
2779 	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2780 	kunmap(page);
2781 	return res;
2782 }
2783 EXPORT_SYMBOL(sock_no_sendpage_locked);
2784 
2785 /*
2786  *	Default Socket Callbacks
2787  */
2788 
2789 static void sock_def_wakeup(struct sock *sk)
2790 {
2791 	struct socket_wq *wq;
2792 
2793 	rcu_read_lock();
2794 	wq = rcu_dereference(sk->sk_wq);
2795 	if (skwq_has_sleeper(wq))
2796 		wake_up_interruptible_all(&wq->wait);
2797 	rcu_read_unlock();
2798 }
2799 
2800 static void sock_def_error_report(struct sock *sk)
2801 {
2802 	struct socket_wq *wq;
2803 
2804 	rcu_read_lock();
2805 	wq = rcu_dereference(sk->sk_wq);
2806 	if (skwq_has_sleeper(wq))
2807 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2808 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2809 	rcu_read_unlock();
2810 }
2811 
2812 void sock_def_readable(struct sock *sk)
2813 {
2814 	struct socket_wq *wq;
2815 
2816 	rcu_read_lock();
2817 	wq = rcu_dereference(sk->sk_wq);
2818 	if (skwq_has_sleeper(wq))
2819 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2820 						EPOLLRDNORM | EPOLLRDBAND);
2821 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2822 	rcu_read_unlock();
2823 }
2824 
2825 static void sock_def_write_space(struct sock *sk)
2826 {
2827 	struct socket_wq *wq;
2828 
2829 	rcu_read_lock();
2830 
2831 	/* Do not wake up a writer until he can make "significant"
2832 	 * progress.  --DaveM
2833 	 */
2834 	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2835 		wq = rcu_dereference(sk->sk_wq);
2836 		if (skwq_has_sleeper(wq))
2837 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2838 						EPOLLWRNORM | EPOLLWRBAND);
2839 
2840 		/* Should agree with poll, otherwise some programs break */
2841 		if (sock_writeable(sk))
2842 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2843 	}
2844 
2845 	rcu_read_unlock();
2846 }
2847 
2848 static void sock_def_destruct(struct sock *sk)
2849 {
2850 }
2851 
2852 void sk_send_sigurg(struct sock *sk)
2853 {
2854 	if (sk->sk_socket && sk->sk_socket->file)
2855 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2856 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2857 }
2858 EXPORT_SYMBOL(sk_send_sigurg);
2859 
2860 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2861 		    unsigned long expires)
2862 {
2863 	if (!mod_timer(timer, expires))
2864 		sock_hold(sk);
2865 }
2866 EXPORT_SYMBOL(sk_reset_timer);
2867 
2868 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2869 {
2870 	if (del_timer(timer))
2871 		__sock_put(sk);
2872 }
2873 EXPORT_SYMBOL(sk_stop_timer);
2874 
2875 void sock_init_data(struct socket *sock, struct sock *sk)
2876 {
2877 	sk_init_common(sk);
2878 	sk->sk_send_head	=	NULL;
2879 
2880 	timer_setup(&sk->sk_timer, NULL, 0);
2881 
2882 	sk->sk_allocation	=	GFP_KERNEL;
2883 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2884 	sk->sk_sndbuf		=	sysctl_wmem_default;
2885 	sk->sk_state		=	TCP_CLOSE;
2886 	sk_set_socket(sk, sock);
2887 
2888 	sock_set_flag(sk, SOCK_ZAPPED);
2889 
2890 	if (sock) {
2891 		sk->sk_type	=	sock->type;
2892 		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2893 		sock->sk	=	sk;
2894 		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2895 	} else {
2896 		RCU_INIT_POINTER(sk->sk_wq, NULL);
2897 		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2898 	}
2899 
2900 	rwlock_init(&sk->sk_callback_lock);
2901 	if (sk->sk_kern_sock)
2902 		lockdep_set_class_and_name(
2903 			&sk->sk_callback_lock,
2904 			af_kern_callback_keys + sk->sk_family,
2905 			af_family_kern_clock_key_strings[sk->sk_family]);
2906 	else
2907 		lockdep_set_class_and_name(
2908 			&sk->sk_callback_lock,
2909 			af_callback_keys + sk->sk_family,
2910 			af_family_clock_key_strings[sk->sk_family]);
2911 
2912 	sk->sk_state_change	=	sock_def_wakeup;
2913 	sk->sk_data_ready	=	sock_def_readable;
2914 	sk->sk_write_space	=	sock_def_write_space;
2915 	sk->sk_error_report	=	sock_def_error_report;
2916 	sk->sk_destruct		=	sock_def_destruct;
2917 
2918 	sk->sk_frag.page	=	NULL;
2919 	sk->sk_frag.offset	=	0;
2920 	sk->sk_peek_off		=	-1;
2921 
2922 	sk->sk_peer_pid 	=	NULL;
2923 	sk->sk_peer_cred	=	NULL;
2924 	sk->sk_write_pending	=	0;
2925 	sk->sk_rcvlowat		=	1;
2926 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2927 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2928 
2929 	sk->sk_stamp = SK_DEFAULT_STAMP;
2930 #if BITS_PER_LONG==32
2931 	seqlock_init(&sk->sk_stamp_seq);
2932 #endif
2933 	atomic_set(&sk->sk_zckey, 0);
2934 
2935 #ifdef CONFIG_NET_RX_BUSY_POLL
2936 	sk->sk_napi_id		=	0;
2937 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2938 #endif
2939 
2940 	sk->sk_max_pacing_rate = ~0UL;
2941 	sk->sk_pacing_rate = ~0UL;
2942 	WRITE_ONCE(sk->sk_pacing_shift, 10);
2943 	sk->sk_incoming_cpu = -1;
2944 
2945 	sk_rx_queue_clear(sk);
2946 	/*
2947 	 * Before updating sk_refcnt, we must commit prior changes to memory
2948 	 * (Documentation/RCU/rculist_nulls.txt for details)
2949 	 */
2950 	smp_wmb();
2951 	refcount_set(&sk->sk_refcnt, 1);
2952 	atomic_set(&sk->sk_drops, 0);
2953 }
2954 EXPORT_SYMBOL(sock_init_data);
2955 
2956 void lock_sock_nested(struct sock *sk, int subclass)
2957 {
2958 	might_sleep();
2959 	spin_lock_bh(&sk->sk_lock.slock);
2960 	if (sk->sk_lock.owned)
2961 		__lock_sock(sk);
2962 	sk->sk_lock.owned = 1;
2963 	spin_unlock(&sk->sk_lock.slock);
2964 	/*
2965 	 * The sk_lock has mutex_lock() semantics here:
2966 	 */
2967 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2968 	local_bh_enable();
2969 }
2970 EXPORT_SYMBOL(lock_sock_nested);
2971 
2972 void release_sock(struct sock *sk)
2973 {
2974 	spin_lock_bh(&sk->sk_lock.slock);
2975 	if (sk->sk_backlog.tail)
2976 		__release_sock(sk);
2977 
2978 	/* Warning : release_cb() might need to release sk ownership,
2979 	 * ie call sock_release_ownership(sk) before us.
2980 	 */
2981 	if (sk->sk_prot->release_cb)
2982 		sk->sk_prot->release_cb(sk);
2983 
2984 	sock_release_ownership(sk);
2985 	if (waitqueue_active(&sk->sk_lock.wq))
2986 		wake_up(&sk->sk_lock.wq);
2987 	spin_unlock_bh(&sk->sk_lock.slock);
2988 }
2989 EXPORT_SYMBOL(release_sock);
2990 
2991 /**
2992  * lock_sock_fast - fast version of lock_sock
2993  * @sk: socket
2994  *
2995  * This version should be used for very small section, where process wont block
2996  * return false if fast path is taken:
2997  *
2998  *   sk_lock.slock locked, owned = 0, BH disabled
2999  *
3000  * return true if slow path is taken:
3001  *
3002  *   sk_lock.slock unlocked, owned = 1, BH enabled
3003  */
3004 bool lock_sock_fast(struct sock *sk)
3005 {
3006 	might_sleep();
3007 	spin_lock_bh(&sk->sk_lock.slock);
3008 
3009 	if (!sk->sk_lock.owned)
3010 		/*
3011 		 * Note : We must disable BH
3012 		 */
3013 		return false;
3014 
3015 	__lock_sock(sk);
3016 	sk->sk_lock.owned = 1;
3017 	spin_unlock(&sk->sk_lock.slock);
3018 	/*
3019 	 * The sk_lock has mutex_lock() semantics here:
3020 	 */
3021 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3022 	local_bh_enable();
3023 	return true;
3024 }
3025 EXPORT_SYMBOL(lock_sock_fast);
3026 
3027 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3028 		   bool timeval, bool time32)
3029 {
3030 	struct sock *sk = sock->sk;
3031 	struct timespec64 ts;
3032 
3033 	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3034 	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3035 	if (ts.tv_sec == -1)
3036 		return -ENOENT;
3037 	if (ts.tv_sec == 0) {
3038 		ktime_t kt = ktime_get_real();
3039 		sock_write_timestamp(sk, kt);
3040 		ts = ktime_to_timespec64(kt);
3041 	}
3042 
3043 	if (timeval)
3044 		ts.tv_nsec /= 1000;
3045 
3046 #ifdef CONFIG_COMPAT_32BIT_TIME
3047 	if (time32)
3048 		return put_old_timespec32(&ts, userstamp);
3049 #endif
3050 #ifdef CONFIG_SPARC64
3051 	/* beware of padding in sparc64 timeval */
3052 	if (timeval && !in_compat_syscall()) {
3053 		struct __kernel_old_timeval __user tv = {
3054 			.tv_sec = ts.tv_sec,
3055 			.tv_usec = ts.tv_nsec,
3056 		};
3057 		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3058 			return -EFAULT;
3059 		return 0;
3060 	}
3061 #endif
3062 	return put_timespec64(&ts, userstamp);
3063 }
3064 EXPORT_SYMBOL(sock_gettstamp);
3065 
3066 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3067 {
3068 	if (!sock_flag(sk, flag)) {
3069 		unsigned long previous_flags = sk->sk_flags;
3070 
3071 		sock_set_flag(sk, flag);
3072 		/*
3073 		 * we just set one of the two flags which require net
3074 		 * time stamping, but time stamping might have been on
3075 		 * already because of the other one
3076 		 */
3077 		if (sock_needs_netstamp(sk) &&
3078 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3079 			net_enable_timestamp();
3080 	}
3081 }
3082 
3083 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3084 		       int level, int type)
3085 {
3086 	struct sock_exterr_skb *serr;
3087 	struct sk_buff *skb;
3088 	int copied, err;
3089 
3090 	err = -EAGAIN;
3091 	skb = sock_dequeue_err_skb(sk);
3092 	if (skb == NULL)
3093 		goto out;
3094 
3095 	copied = skb->len;
3096 	if (copied > len) {
3097 		msg->msg_flags |= MSG_TRUNC;
3098 		copied = len;
3099 	}
3100 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3101 	if (err)
3102 		goto out_free_skb;
3103 
3104 	sock_recv_timestamp(msg, sk, skb);
3105 
3106 	serr = SKB_EXT_ERR(skb);
3107 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3108 
3109 	msg->msg_flags |= MSG_ERRQUEUE;
3110 	err = copied;
3111 
3112 out_free_skb:
3113 	kfree_skb(skb);
3114 out:
3115 	return err;
3116 }
3117 EXPORT_SYMBOL(sock_recv_errqueue);
3118 
3119 /*
3120  *	Get a socket option on an socket.
3121  *
3122  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3123  *	asynchronous errors should be reported by getsockopt. We assume
3124  *	this means if you specify SO_ERROR (otherwise whats the point of it).
3125  */
3126 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3127 			   char __user *optval, int __user *optlen)
3128 {
3129 	struct sock *sk = sock->sk;
3130 
3131 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3132 }
3133 EXPORT_SYMBOL(sock_common_getsockopt);
3134 
3135 #ifdef CONFIG_COMPAT
3136 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3137 				  char __user *optval, int __user *optlen)
3138 {
3139 	struct sock *sk = sock->sk;
3140 
3141 	if (sk->sk_prot->compat_getsockopt != NULL)
3142 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
3143 						      optval, optlen);
3144 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3145 }
3146 EXPORT_SYMBOL(compat_sock_common_getsockopt);
3147 #endif
3148 
3149 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3150 			int flags)
3151 {
3152 	struct sock *sk = sock->sk;
3153 	int addr_len = 0;
3154 	int err;
3155 
3156 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3157 				   flags & ~MSG_DONTWAIT, &addr_len);
3158 	if (err >= 0)
3159 		msg->msg_namelen = addr_len;
3160 	return err;
3161 }
3162 EXPORT_SYMBOL(sock_common_recvmsg);
3163 
3164 /*
3165  *	Set socket options on an inet socket.
3166  */
3167 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3168 			   char __user *optval, unsigned int optlen)
3169 {
3170 	struct sock *sk = sock->sk;
3171 
3172 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3173 }
3174 EXPORT_SYMBOL(sock_common_setsockopt);
3175 
3176 #ifdef CONFIG_COMPAT
3177 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3178 				  char __user *optval, unsigned int optlen)
3179 {
3180 	struct sock *sk = sock->sk;
3181 
3182 	if (sk->sk_prot->compat_setsockopt != NULL)
3183 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
3184 						      optval, optlen);
3185 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3186 }
3187 EXPORT_SYMBOL(compat_sock_common_setsockopt);
3188 #endif
3189 
3190 void sk_common_release(struct sock *sk)
3191 {
3192 	if (sk->sk_prot->destroy)
3193 		sk->sk_prot->destroy(sk);
3194 
3195 	/*
3196 	 * Observation: when sock_common_release is called, processes have
3197 	 * no access to socket. But net still has.
3198 	 * Step one, detach it from networking:
3199 	 *
3200 	 * A. Remove from hash tables.
3201 	 */
3202 
3203 	sk->sk_prot->unhash(sk);
3204 
3205 	/*
3206 	 * In this point socket cannot receive new packets, but it is possible
3207 	 * that some packets are in flight because some CPU runs receiver and
3208 	 * did hash table lookup before we unhashed socket. They will achieve
3209 	 * receive queue and will be purged by socket destructor.
3210 	 *
3211 	 * Also we still have packets pending on receive queue and probably,
3212 	 * our own packets waiting in device queues. sock_destroy will drain
3213 	 * receive queue, but transmitted packets will delay socket destruction
3214 	 * until the last reference will be released.
3215 	 */
3216 
3217 	sock_orphan(sk);
3218 
3219 	xfrm_sk_free_policy(sk);
3220 
3221 	sk_refcnt_debug_release(sk);
3222 
3223 	sock_put(sk);
3224 }
3225 EXPORT_SYMBOL(sk_common_release);
3226 
3227 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3228 {
3229 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3230 
3231 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3232 	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3233 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3234 	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3235 	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3236 	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3237 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3238 	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3239 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3240 }
3241 
3242 #ifdef CONFIG_PROC_FS
3243 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
3244 struct prot_inuse {
3245 	int val[PROTO_INUSE_NR];
3246 };
3247 
3248 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3249 
3250 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3251 {
3252 	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3253 }
3254 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3255 
3256 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3257 {
3258 	int cpu, idx = prot->inuse_idx;
3259 	int res = 0;
3260 
3261 	for_each_possible_cpu(cpu)
3262 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3263 
3264 	return res >= 0 ? res : 0;
3265 }
3266 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3267 
3268 static void sock_inuse_add(struct net *net, int val)
3269 {
3270 	this_cpu_add(*net->core.sock_inuse, val);
3271 }
3272 
3273 int sock_inuse_get(struct net *net)
3274 {
3275 	int cpu, res = 0;
3276 
3277 	for_each_possible_cpu(cpu)
3278 		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3279 
3280 	return res;
3281 }
3282 
3283 EXPORT_SYMBOL_GPL(sock_inuse_get);
3284 
3285 static int __net_init sock_inuse_init_net(struct net *net)
3286 {
3287 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3288 	if (net->core.prot_inuse == NULL)
3289 		return -ENOMEM;
3290 
3291 	net->core.sock_inuse = alloc_percpu(int);
3292 	if (net->core.sock_inuse == NULL)
3293 		goto out;
3294 
3295 	return 0;
3296 
3297 out:
3298 	free_percpu(net->core.prot_inuse);
3299 	return -ENOMEM;
3300 }
3301 
3302 static void __net_exit sock_inuse_exit_net(struct net *net)
3303 {
3304 	free_percpu(net->core.prot_inuse);
3305 	free_percpu(net->core.sock_inuse);
3306 }
3307 
3308 static struct pernet_operations net_inuse_ops = {
3309 	.init = sock_inuse_init_net,
3310 	.exit = sock_inuse_exit_net,
3311 };
3312 
3313 static __init int net_inuse_init(void)
3314 {
3315 	if (register_pernet_subsys(&net_inuse_ops))
3316 		panic("Cannot initialize net inuse counters");
3317 
3318 	return 0;
3319 }
3320 
3321 core_initcall(net_inuse_init);
3322 
3323 static int assign_proto_idx(struct proto *prot)
3324 {
3325 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3326 
3327 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3328 		pr_err("PROTO_INUSE_NR exhausted\n");
3329 		return -ENOSPC;
3330 	}
3331 
3332 	set_bit(prot->inuse_idx, proto_inuse_idx);
3333 	return 0;
3334 }
3335 
3336 static void release_proto_idx(struct proto *prot)
3337 {
3338 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3339 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3340 }
3341 #else
3342 static inline int assign_proto_idx(struct proto *prot)
3343 {
3344 	return 0;
3345 }
3346 
3347 static inline void release_proto_idx(struct proto *prot)
3348 {
3349 }
3350 
3351 static void sock_inuse_add(struct net *net, int val)
3352 {
3353 }
3354 #endif
3355 
3356 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3357 {
3358 	if (!rsk_prot)
3359 		return;
3360 	kfree(rsk_prot->slab_name);
3361 	rsk_prot->slab_name = NULL;
3362 	kmem_cache_destroy(rsk_prot->slab);
3363 	rsk_prot->slab = NULL;
3364 }
3365 
3366 static int req_prot_init(const struct proto *prot)
3367 {
3368 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3369 
3370 	if (!rsk_prot)
3371 		return 0;
3372 
3373 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3374 					prot->name);
3375 	if (!rsk_prot->slab_name)
3376 		return -ENOMEM;
3377 
3378 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3379 					   rsk_prot->obj_size, 0,
3380 					   SLAB_ACCOUNT | prot->slab_flags,
3381 					   NULL);
3382 
3383 	if (!rsk_prot->slab) {
3384 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3385 			prot->name);
3386 		return -ENOMEM;
3387 	}
3388 	return 0;
3389 }
3390 
3391 int proto_register(struct proto *prot, int alloc_slab)
3392 {
3393 	int ret = -ENOBUFS;
3394 
3395 	if (alloc_slab) {
3396 		prot->slab = kmem_cache_create_usercopy(prot->name,
3397 					prot->obj_size, 0,
3398 					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3399 					prot->slab_flags,
3400 					prot->useroffset, prot->usersize,
3401 					NULL);
3402 
3403 		if (prot->slab == NULL) {
3404 			pr_crit("%s: Can't create sock SLAB cache!\n",
3405 				prot->name);
3406 			goto out;
3407 		}
3408 
3409 		if (req_prot_init(prot))
3410 			goto out_free_request_sock_slab;
3411 
3412 		if (prot->twsk_prot != NULL) {
3413 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3414 
3415 			if (prot->twsk_prot->twsk_slab_name == NULL)
3416 				goto out_free_request_sock_slab;
3417 
3418 			prot->twsk_prot->twsk_slab =
3419 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3420 						  prot->twsk_prot->twsk_obj_size,
3421 						  0,
3422 						  SLAB_ACCOUNT |
3423 						  prot->slab_flags,
3424 						  NULL);
3425 			if (prot->twsk_prot->twsk_slab == NULL)
3426 				goto out_free_timewait_sock_slab_name;
3427 		}
3428 	}
3429 
3430 	mutex_lock(&proto_list_mutex);
3431 	ret = assign_proto_idx(prot);
3432 	if (ret) {
3433 		mutex_unlock(&proto_list_mutex);
3434 		goto out_free_timewait_sock_slab_name;
3435 	}
3436 	list_add(&prot->node, &proto_list);
3437 	mutex_unlock(&proto_list_mutex);
3438 	return ret;
3439 
3440 out_free_timewait_sock_slab_name:
3441 	if (alloc_slab && prot->twsk_prot)
3442 		kfree(prot->twsk_prot->twsk_slab_name);
3443 out_free_request_sock_slab:
3444 	if (alloc_slab) {
3445 		req_prot_cleanup(prot->rsk_prot);
3446 
3447 		kmem_cache_destroy(prot->slab);
3448 		prot->slab = NULL;
3449 	}
3450 out:
3451 	return ret;
3452 }
3453 EXPORT_SYMBOL(proto_register);
3454 
3455 void proto_unregister(struct proto *prot)
3456 {
3457 	mutex_lock(&proto_list_mutex);
3458 	release_proto_idx(prot);
3459 	list_del(&prot->node);
3460 	mutex_unlock(&proto_list_mutex);
3461 
3462 	kmem_cache_destroy(prot->slab);
3463 	prot->slab = NULL;
3464 
3465 	req_prot_cleanup(prot->rsk_prot);
3466 
3467 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3468 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3469 		kfree(prot->twsk_prot->twsk_slab_name);
3470 		prot->twsk_prot->twsk_slab = NULL;
3471 	}
3472 }
3473 EXPORT_SYMBOL(proto_unregister);
3474 
3475 int sock_load_diag_module(int family, int protocol)
3476 {
3477 	if (!protocol) {
3478 		if (!sock_is_registered(family))
3479 			return -ENOENT;
3480 
3481 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3482 				      NETLINK_SOCK_DIAG, family);
3483 	}
3484 
3485 #ifdef CONFIG_INET
3486 	if (family == AF_INET &&
3487 	    protocol != IPPROTO_RAW &&
3488 	    !rcu_access_pointer(inet_protos[protocol]))
3489 		return -ENOENT;
3490 #endif
3491 
3492 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3493 			      NETLINK_SOCK_DIAG, family, protocol);
3494 }
3495 EXPORT_SYMBOL(sock_load_diag_module);
3496 
3497 #ifdef CONFIG_PROC_FS
3498 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3499 	__acquires(proto_list_mutex)
3500 {
3501 	mutex_lock(&proto_list_mutex);
3502 	return seq_list_start_head(&proto_list, *pos);
3503 }
3504 
3505 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3506 {
3507 	return seq_list_next(v, &proto_list, pos);
3508 }
3509 
3510 static void proto_seq_stop(struct seq_file *seq, void *v)
3511 	__releases(proto_list_mutex)
3512 {
3513 	mutex_unlock(&proto_list_mutex);
3514 }
3515 
3516 static char proto_method_implemented(const void *method)
3517 {
3518 	return method == NULL ? 'n' : 'y';
3519 }
3520 static long sock_prot_memory_allocated(struct proto *proto)
3521 {
3522 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3523 }
3524 
3525 static const char *sock_prot_memory_pressure(struct proto *proto)
3526 {
3527 	return proto->memory_pressure != NULL ?
3528 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3529 }
3530 
3531 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3532 {
3533 
3534 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3535 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3536 		   proto->name,
3537 		   proto->obj_size,
3538 		   sock_prot_inuse_get(seq_file_net(seq), proto),
3539 		   sock_prot_memory_allocated(proto),
3540 		   sock_prot_memory_pressure(proto),
3541 		   proto->max_header,
3542 		   proto->slab == NULL ? "no" : "yes",
3543 		   module_name(proto->owner),
3544 		   proto_method_implemented(proto->close),
3545 		   proto_method_implemented(proto->connect),
3546 		   proto_method_implemented(proto->disconnect),
3547 		   proto_method_implemented(proto->accept),
3548 		   proto_method_implemented(proto->ioctl),
3549 		   proto_method_implemented(proto->init),
3550 		   proto_method_implemented(proto->destroy),
3551 		   proto_method_implemented(proto->shutdown),
3552 		   proto_method_implemented(proto->setsockopt),
3553 		   proto_method_implemented(proto->getsockopt),
3554 		   proto_method_implemented(proto->sendmsg),
3555 		   proto_method_implemented(proto->recvmsg),
3556 		   proto_method_implemented(proto->sendpage),
3557 		   proto_method_implemented(proto->bind),
3558 		   proto_method_implemented(proto->backlog_rcv),
3559 		   proto_method_implemented(proto->hash),
3560 		   proto_method_implemented(proto->unhash),
3561 		   proto_method_implemented(proto->get_port),
3562 		   proto_method_implemented(proto->enter_memory_pressure));
3563 }
3564 
3565 static int proto_seq_show(struct seq_file *seq, void *v)
3566 {
3567 	if (v == &proto_list)
3568 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3569 			   "protocol",
3570 			   "size",
3571 			   "sockets",
3572 			   "memory",
3573 			   "press",
3574 			   "maxhdr",
3575 			   "slab",
3576 			   "module",
3577 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3578 	else
3579 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3580 	return 0;
3581 }
3582 
3583 static const struct seq_operations proto_seq_ops = {
3584 	.start  = proto_seq_start,
3585 	.next   = proto_seq_next,
3586 	.stop   = proto_seq_stop,
3587 	.show   = proto_seq_show,
3588 };
3589 
3590 static __net_init int proto_init_net(struct net *net)
3591 {
3592 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3593 			sizeof(struct seq_net_private)))
3594 		return -ENOMEM;
3595 
3596 	return 0;
3597 }
3598 
3599 static __net_exit void proto_exit_net(struct net *net)
3600 {
3601 	remove_proc_entry("protocols", net->proc_net);
3602 }
3603 
3604 
3605 static __net_initdata struct pernet_operations proto_net_ops = {
3606 	.init = proto_init_net,
3607 	.exit = proto_exit_net,
3608 };
3609 
3610 static int __init proto_init(void)
3611 {
3612 	return register_pernet_subsys(&proto_net_ops);
3613 }
3614 
3615 subsys_initcall(proto_init);
3616 
3617 #endif /* PROC_FS */
3618 
3619 #ifdef CONFIG_NET_RX_BUSY_POLL
3620 bool sk_busy_loop_end(void *p, unsigned long start_time)
3621 {
3622 	struct sock *sk = p;
3623 
3624 	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3625 	       sk_busy_loop_timeout(sk, start_time);
3626 }
3627 EXPORT_SYMBOL(sk_busy_loop_end);
3628 #endif /* CONFIG_NET_RX_BUSY_POLL */
3629