xref: /openbmc/linux/net/core/sock.c (revision c6a7ed77ee6334f3a85a0f3db74ca80101e25304)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Generic socket support routines. Memory allocators, socket lock/release
8  *		handler for protocols to use and generic option handler.
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  */
85 
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87 
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
117 
118 #include <linux/uaccess.h>
119 
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
131 #include <linux/sock_diag.h>
132 
133 #include <linux/filter.h>
134 #include <net/sock_reuseport.h>
135 #include <net/bpf_sk_storage.h>
136 
137 #include <trace/events/sock.h>
138 
139 #include <net/tcp.h>
140 #include <net/busy_poll.h>
141 
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
144 
145 static void sock_inuse_add(struct net *net, int val);
146 
147 /**
148  * sk_ns_capable - General socket capability test
149  * @sk: Socket to use a capability on or through
150  * @user_ns: The user namespace of the capability to use
151  * @cap: The capability to use
152  *
153  * Test to see if the opener of the socket had when the socket was
154  * created and the current process has the capability @cap in the user
155  * namespace @user_ns.
156  */
157 bool sk_ns_capable(const struct sock *sk,
158 		   struct user_namespace *user_ns, int cap)
159 {
160 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
161 		ns_capable(user_ns, cap);
162 }
163 EXPORT_SYMBOL(sk_ns_capable);
164 
165 /**
166  * sk_capable - Socket global capability test
167  * @sk: Socket to use a capability on or through
168  * @cap: The global capability to use
169  *
170  * Test to see if the opener of the socket had when the socket was
171  * created and the current process has the capability @cap in all user
172  * namespaces.
173  */
174 bool sk_capable(const struct sock *sk, int cap)
175 {
176 	return sk_ns_capable(sk, &init_user_ns, cap);
177 }
178 EXPORT_SYMBOL(sk_capable);
179 
180 /**
181  * sk_net_capable - Network namespace socket capability test
182  * @sk: Socket to use a capability on or through
183  * @cap: The capability to use
184  *
185  * Test to see if the opener of the socket had when the socket was created
186  * and the current process has the capability @cap over the network namespace
187  * the socket is a member of.
188  */
189 bool sk_net_capable(const struct sock *sk, int cap)
190 {
191 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
192 }
193 EXPORT_SYMBOL(sk_net_capable);
194 
195 /*
196  * Each address family might have different locking rules, so we have
197  * one slock key per address family and separate keys for internal and
198  * userspace sockets.
199  */
200 static struct lock_class_key af_family_keys[AF_MAX];
201 static struct lock_class_key af_family_kern_keys[AF_MAX];
202 static struct lock_class_key af_family_slock_keys[AF_MAX];
203 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
204 
205 /*
206  * Make lock validator output more readable. (we pre-construct these
207  * strings build-time, so that runtime initialization of socket
208  * locks is fast):
209  */
210 
211 #define _sock_locks(x)						  \
212   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
213   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
214   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
215   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
216   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
217   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
218   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
219   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
220   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
221   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
222   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
223   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
224   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
225   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
226   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
227   x "AF_MAX"
228 
229 static const char *const af_family_key_strings[AF_MAX+1] = {
230 	_sock_locks("sk_lock-")
231 };
232 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
233 	_sock_locks("slock-")
234 };
235 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
236 	_sock_locks("clock-")
237 };
238 
239 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
240 	_sock_locks("k-sk_lock-")
241 };
242 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
243 	_sock_locks("k-slock-")
244 };
245 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
246 	_sock_locks("k-clock-")
247 };
248 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
249 	_sock_locks("rlock-")
250 };
251 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
252 	_sock_locks("wlock-")
253 };
254 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
255 	_sock_locks("elock-")
256 };
257 
258 /*
259  * sk_callback_lock and sk queues locking rules are per-address-family,
260  * so split the lock classes by using a per-AF key:
261  */
262 static struct lock_class_key af_callback_keys[AF_MAX];
263 static struct lock_class_key af_rlock_keys[AF_MAX];
264 static struct lock_class_key af_wlock_keys[AF_MAX];
265 static struct lock_class_key af_elock_keys[AF_MAX];
266 static struct lock_class_key af_kern_callback_keys[AF_MAX];
267 
268 /* Run time adjustable parameters. */
269 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
270 EXPORT_SYMBOL(sysctl_wmem_max);
271 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
272 EXPORT_SYMBOL(sysctl_rmem_max);
273 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
274 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
275 
276 /* Maximal space eaten by iovec or ancillary data plus some space */
277 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
278 EXPORT_SYMBOL(sysctl_optmem_max);
279 
280 int sysctl_tstamp_allow_data __read_mostly = 1;
281 
282 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
283 EXPORT_SYMBOL_GPL(memalloc_socks_key);
284 
285 /**
286  * sk_set_memalloc - sets %SOCK_MEMALLOC
287  * @sk: socket to set it on
288  *
289  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
290  * It's the responsibility of the admin to adjust min_free_kbytes
291  * to meet the requirements
292  */
293 void sk_set_memalloc(struct sock *sk)
294 {
295 	sock_set_flag(sk, SOCK_MEMALLOC);
296 	sk->sk_allocation |= __GFP_MEMALLOC;
297 	static_branch_inc(&memalloc_socks_key);
298 }
299 EXPORT_SYMBOL_GPL(sk_set_memalloc);
300 
301 void sk_clear_memalloc(struct sock *sk)
302 {
303 	sock_reset_flag(sk, SOCK_MEMALLOC);
304 	sk->sk_allocation &= ~__GFP_MEMALLOC;
305 	static_branch_dec(&memalloc_socks_key);
306 
307 	/*
308 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
309 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
310 	 * it has rmem allocations due to the last swapfile being deactivated
311 	 * but there is a risk that the socket is unusable due to exceeding
312 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
313 	 */
314 	sk_mem_reclaim(sk);
315 }
316 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
317 
318 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
319 {
320 	int ret;
321 	unsigned int noreclaim_flag;
322 
323 	/* these should have been dropped before queueing */
324 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
325 
326 	noreclaim_flag = memalloc_noreclaim_save();
327 	ret = sk->sk_backlog_rcv(sk, skb);
328 	memalloc_noreclaim_restore(noreclaim_flag);
329 
330 	return ret;
331 }
332 EXPORT_SYMBOL(__sk_backlog_rcv);
333 
334 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
335 {
336 	struct __kernel_sock_timeval tv;
337 
338 	if (timeo == MAX_SCHEDULE_TIMEOUT) {
339 		tv.tv_sec = 0;
340 		tv.tv_usec = 0;
341 	} else {
342 		tv.tv_sec = timeo / HZ;
343 		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344 	}
345 
346 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347 		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348 		*(struct old_timeval32 *)optval = tv32;
349 		return sizeof(tv32);
350 	}
351 
352 	if (old_timeval) {
353 		struct __kernel_old_timeval old_tv;
354 		old_tv.tv_sec = tv.tv_sec;
355 		old_tv.tv_usec = tv.tv_usec;
356 		*(struct __kernel_old_timeval *)optval = old_tv;
357 		return sizeof(old_tv);
358 	}
359 
360 	*(struct __kernel_sock_timeval *)optval = tv;
361 	return sizeof(tv);
362 }
363 
364 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
365 			    bool old_timeval)
366 {
367 	struct __kernel_sock_timeval tv;
368 
369 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
370 		struct old_timeval32 tv32;
371 
372 		if (optlen < sizeof(tv32))
373 			return -EINVAL;
374 
375 		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
376 			return -EFAULT;
377 		tv.tv_sec = tv32.tv_sec;
378 		tv.tv_usec = tv32.tv_usec;
379 	} else if (old_timeval) {
380 		struct __kernel_old_timeval old_tv;
381 
382 		if (optlen < sizeof(old_tv))
383 			return -EINVAL;
384 		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
385 			return -EFAULT;
386 		tv.tv_sec = old_tv.tv_sec;
387 		tv.tv_usec = old_tv.tv_usec;
388 	} else {
389 		if (optlen < sizeof(tv))
390 			return -EINVAL;
391 		if (copy_from_sockptr(&tv, optval, sizeof(tv)))
392 			return -EFAULT;
393 	}
394 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
395 		return -EDOM;
396 
397 	if (tv.tv_sec < 0) {
398 		static int warned __read_mostly;
399 
400 		*timeo_p = 0;
401 		if (warned < 10 && net_ratelimit()) {
402 			warned++;
403 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
404 				__func__, current->comm, task_pid_nr(current));
405 		}
406 		return 0;
407 	}
408 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
409 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
410 		return 0;
411 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
412 		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
413 	return 0;
414 }
415 
416 static bool sock_needs_netstamp(const struct sock *sk)
417 {
418 	switch (sk->sk_family) {
419 	case AF_UNSPEC:
420 	case AF_UNIX:
421 		return false;
422 	default:
423 		return true;
424 	}
425 }
426 
427 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
428 {
429 	if (sk->sk_flags & flags) {
430 		sk->sk_flags &= ~flags;
431 		if (sock_needs_netstamp(sk) &&
432 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
433 			net_disable_timestamp();
434 	}
435 }
436 
437 
438 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
439 {
440 	unsigned long flags;
441 	struct sk_buff_head *list = &sk->sk_receive_queue;
442 
443 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
444 		atomic_inc(&sk->sk_drops);
445 		trace_sock_rcvqueue_full(sk, skb);
446 		return -ENOMEM;
447 	}
448 
449 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
450 		atomic_inc(&sk->sk_drops);
451 		return -ENOBUFS;
452 	}
453 
454 	skb->dev = NULL;
455 	skb_set_owner_r(skb, sk);
456 
457 	/* we escape from rcu protected region, make sure we dont leak
458 	 * a norefcounted dst
459 	 */
460 	skb_dst_force(skb);
461 
462 	spin_lock_irqsave(&list->lock, flags);
463 	sock_skb_set_dropcount(sk, skb);
464 	__skb_queue_tail(list, skb);
465 	spin_unlock_irqrestore(&list->lock, flags);
466 
467 	if (!sock_flag(sk, SOCK_DEAD))
468 		sk->sk_data_ready(sk);
469 	return 0;
470 }
471 EXPORT_SYMBOL(__sock_queue_rcv_skb);
472 
473 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
474 {
475 	int err;
476 
477 	err = sk_filter(sk, skb);
478 	if (err)
479 		return err;
480 
481 	return __sock_queue_rcv_skb(sk, skb);
482 }
483 EXPORT_SYMBOL(sock_queue_rcv_skb);
484 
485 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
486 		     const int nested, unsigned int trim_cap, bool refcounted)
487 {
488 	int rc = NET_RX_SUCCESS;
489 
490 	if (sk_filter_trim_cap(sk, skb, trim_cap))
491 		goto discard_and_relse;
492 
493 	skb->dev = NULL;
494 
495 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
496 		atomic_inc(&sk->sk_drops);
497 		goto discard_and_relse;
498 	}
499 	if (nested)
500 		bh_lock_sock_nested(sk);
501 	else
502 		bh_lock_sock(sk);
503 	if (!sock_owned_by_user(sk)) {
504 		/*
505 		 * trylock + unlock semantics:
506 		 */
507 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
508 
509 		rc = sk_backlog_rcv(sk, skb);
510 
511 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
512 	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
513 		bh_unlock_sock(sk);
514 		atomic_inc(&sk->sk_drops);
515 		goto discard_and_relse;
516 	}
517 
518 	bh_unlock_sock(sk);
519 out:
520 	if (refcounted)
521 		sock_put(sk);
522 	return rc;
523 discard_and_relse:
524 	kfree_skb(skb);
525 	goto out;
526 }
527 EXPORT_SYMBOL(__sk_receive_skb);
528 
529 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
530 							  u32));
531 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
532 							   u32));
533 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
534 {
535 	struct dst_entry *dst = __sk_dst_get(sk);
536 
537 	if (dst && dst->obsolete &&
538 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
539 			       dst, cookie) == NULL) {
540 		sk_tx_queue_clear(sk);
541 		sk->sk_dst_pending_confirm = 0;
542 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
543 		dst_release(dst);
544 		return NULL;
545 	}
546 
547 	return dst;
548 }
549 EXPORT_SYMBOL(__sk_dst_check);
550 
551 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
552 {
553 	struct dst_entry *dst = sk_dst_get(sk);
554 
555 	if (dst && dst->obsolete &&
556 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
557 			       dst, cookie) == NULL) {
558 		sk_dst_reset(sk);
559 		dst_release(dst);
560 		return NULL;
561 	}
562 
563 	return dst;
564 }
565 EXPORT_SYMBOL(sk_dst_check);
566 
567 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
568 {
569 	int ret = -ENOPROTOOPT;
570 #ifdef CONFIG_NETDEVICES
571 	struct net *net = sock_net(sk);
572 
573 	/* Sorry... */
574 	ret = -EPERM;
575 	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
576 		goto out;
577 
578 	ret = -EINVAL;
579 	if (ifindex < 0)
580 		goto out;
581 
582 	sk->sk_bound_dev_if = ifindex;
583 	if (sk->sk_prot->rehash)
584 		sk->sk_prot->rehash(sk);
585 	sk_dst_reset(sk);
586 
587 	ret = 0;
588 
589 out:
590 #endif
591 
592 	return ret;
593 }
594 
595 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
596 {
597 	int ret;
598 
599 	if (lock_sk)
600 		lock_sock(sk);
601 	ret = sock_bindtoindex_locked(sk, ifindex);
602 	if (lock_sk)
603 		release_sock(sk);
604 
605 	return ret;
606 }
607 EXPORT_SYMBOL(sock_bindtoindex);
608 
609 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
610 {
611 	int ret = -ENOPROTOOPT;
612 #ifdef CONFIG_NETDEVICES
613 	struct net *net = sock_net(sk);
614 	char devname[IFNAMSIZ];
615 	int index;
616 
617 	ret = -EINVAL;
618 	if (optlen < 0)
619 		goto out;
620 
621 	/* Bind this socket to a particular device like "eth0",
622 	 * as specified in the passed interface name. If the
623 	 * name is "" or the option length is zero the socket
624 	 * is not bound.
625 	 */
626 	if (optlen > IFNAMSIZ - 1)
627 		optlen = IFNAMSIZ - 1;
628 	memset(devname, 0, sizeof(devname));
629 
630 	ret = -EFAULT;
631 	if (copy_from_sockptr(devname, optval, optlen))
632 		goto out;
633 
634 	index = 0;
635 	if (devname[0] != '\0') {
636 		struct net_device *dev;
637 
638 		rcu_read_lock();
639 		dev = dev_get_by_name_rcu(net, devname);
640 		if (dev)
641 			index = dev->ifindex;
642 		rcu_read_unlock();
643 		ret = -ENODEV;
644 		if (!dev)
645 			goto out;
646 	}
647 
648 	return sock_bindtoindex(sk, index, true);
649 out:
650 #endif
651 
652 	return ret;
653 }
654 
655 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
656 				int __user *optlen, int len)
657 {
658 	int ret = -ENOPROTOOPT;
659 #ifdef CONFIG_NETDEVICES
660 	struct net *net = sock_net(sk);
661 	char devname[IFNAMSIZ];
662 
663 	if (sk->sk_bound_dev_if == 0) {
664 		len = 0;
665 		goto zero;
666 	}
667 
668 	ret = -EINVAL;
669 	if (len < IFNAMSIZ)
670 		goto out;
671 
672 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
673 	if (ret)
674 		goto out;
675 
676 	len = strlen(devname) + 1;
677 
678 	ret = -EFAULT;
679 	if (copy_to_user(optval, devname, len))
680 		goto out;
681 
682 zero:
683 	ret = -EFAULT;
684 	if (put_user(len, optlen))
685 		goto out;
686 
687 	ret = 0;
688 
689 out:
690 #endif
691 
692 	return ret;
693 }
694 
695 bool sk_mc_loop(struct sock *sk)
696 {
697 	if (dev_recursion_level())
698 		return false;
699 	if (!sk)
700 		return true;
701 	switch (sk->sk_family) {
702 	case AF_INET:
703 		return inet_sk(sk)->mc_loop;
704 #if IS_ENABLED(CONFIG_IPV6)
705 	case AF_INET6:
706 		return inet6_sk(sk)->mc_loop;
707 #endif
708 	}
709 	WARN_ON_ONCE(1);
710 	return true;
711 }
712 EXPORT_SYMBOL(sk_mc_loop);
713 
714 void sock_set_reuseaddr(struct sock *sk)
715 {
716 	lock_sock(sk);
717 	sk->sk_reuse = SK_CAN_REUSE;
718 	release_sock(sk);
719 }
720 EXPORT_SYMBOL(sock_set_reuseaddr);
721 
722 void sock_set_reuseport(struct sock *sk)
723 {
724 	lock_sock(sk);
725 	sk->sk_reuseport = true;
726 	release_sock(sk);
727 }
728 EXPORT_SYMBOL(sock_set_reuseport);
729 
730 void sock_no_linger(struct sock *sk)
731 {
732 	lock_sock(sk);
733 	sk->sk_lingertime = 0;
734 	sock_set_flag(sk, SOCK_LINGER);
735 	release_sock(sk);
736 }
737 EXPORT_SYMBOL(sock_no_linger);
738 
739 void sock_set_priority(struct sock *sk, u32 priority)
740 {
741 	lock_sock(sk);
742 	sk->sk_priority = priority;
743 	release_sock(sk);
744 }
745 EXPORT_SYMBOL(sock_set_priority);
746 
747 void sock_set_sndtimeo(struct sock *sk, s64 secs)
748 {
749 	lock_sock(sk);
750 	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
751 		sk->sk_sndtimeo = secs * HZ;
752 	else
753 		sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
754 	release_sock(sk);
755 }
756 EXPORT_SYMBOL(sock_set_sndtimeo);
757 
758 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
759 {
760 	if (val)  {
761 		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
762 		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
763 		sock_set_flag(sk, SOCK_RCVTSTAMP);
764 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
765 	} else {
766 		sock_reset_flag(sk, SOCK_RCVTSTAMP);
767 		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
768 	}
769 }
770 
771 void sock_enable_timestamps(struct sock *sk)
772 {
773 	lock_sock(sk);
774 	__sock_set_timestamps(sk, true, false, true);
775 	release_sock(sk);
776 }
777 EXPORT_SYMBOL(sock_enable_timestamps);
778 
779 void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
780 {
781 	switch (optname) {
782 	case SO_TIMESTAMP_OLD:
783 		__sock_set_timestamps(sk, valbool, false, false);
784 		break;
785 	case SO_TIMESTAMP_NEW:
786 		__sock_set_timestamps(sk, valbool, true, false);
787 		break;
788 	case SO_TIMESTAMPNS_OLD:
789 		__sock_set_timestamps(sk, valbool, false, true);
790 		break;
791 	case SO_TIMESTAMPNS_NEW:
792 		__sock_set_timestamps(sk, valbool, true, true);
793 		break;
794 	}
795 }
796 
797 int sock_set_timestamping(struct sock *sk, int optname, int val)
798 {
799 	if (val & ~SOF_TIMESTAMPING_MASK)
800 		return -EINVAL;
801 
802 	if (val & SOF_TIMESTAMPING_OPT_ID &&
803 	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
804 		if (sk->sk_protocol == IPPROTO_TCP &&
805 		    sk->sk_type == SOCK_STREAM) {
806 			if ((1 << sk->sk_state) &
807 			    (TCPF_CLOSE | TCPF_LISTEN))
808 				return -EINVAL;
809 			sk->sk_tskey = tcp_sk(sk)->snd_una;
810 		} else {
811 			sk->sk_tskey = 0;
812 		}
813 	}
814 
815 	if (val & SOF_TIMESTAMPING_OPT_STATS &&
816 	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
817 		return -EINVAL;
818 
819 	sk->sk_tsflags = val;
820 	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
821 
822 	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
823 		sock_enable_timestamp(sk,
824 				      SOCK_TIMESTAMPING_RX_SOFTWARE);
825 	else
826 		sock_disable_timestamp(sk,
827 				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
828 	return 0;
829 }
830 
831 void sock_set_keepalive(struct sock *sk)
832 {
833 	lock_sock(sk);
834 	if (sk->sk_prot->keepalive)
835 		sk->sk_prot->keepalive(sk, true);
836 	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
837 	release_sock(sk);
838 }
839 EXPORT_SYMBOL(sock_set_keepalive);
840 
841 static void __sock_set_rcvbuf(struct sock *sk, int val)
842 {
843 	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
844 	 * as a negative value.
845 	 */
846 	val = min_t(int, val, INT_MAX / 2);
847 	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
848 
849 	/* We double it on the way in to account for "struct sk_buff" etc.
850 	 * overhead.   Applications assume that the SO_RCVBUF setting they make
851 	 * will allow that much actual data to be received on that socket.
852 	 *
853 	 * Applications are unaware that "struct sk_buff" and other overheads
854 	 * allocate from the receive buffer during socket buffer allocation.
855 	 *
856 	 * And after considering the possible alternatives, returning the value
857 	 * we actually used in getsockopt is the most desirable behavior.
858 	 */
859 	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
860 }
861 
862 void sock_set_rcvbuf(struct sock *sk, int val)
863 {
864 	lock_sock(sk);
865 	__sock_set_rcvbuf(sk, val);
866 	release_sock(sk);
867 }
868 EXPORT_SYMBOL(sock_set_rcvbuf);
869 
870 static void __sock_set_mark(struct sock *sk, u32 val)
871 {
872 	if (val != sk->sk_mark) {
873 		sk->sk_mark = val;
874 		sk_dst_reset(sk);
875 	}
876 }
877 
878 void sock_set_mark(struct sock *sk, u32 val)
879 {
880 	lock_sock(sk);
881 	__sock_set_mark(sk, val);
882 	release_sock(sk);
883 }
884 EXPORT_SYMBOL(sock_set_mark);
885 
886 /*
887  *	This is meant for all protocols to use and covers goings on
888  *	at the socket level. Everything here is generic.
889  */
890 
891 int sock_setsockopt(struct socket *sock, int level, int optname,
892 		    sockptr_t optval, unsigned int optlen)
893 {
894 	struct sock_txtime sk_txtime;
895 	struct sock *sk = sock->sk;
896 	int val;
897 	int valbool;
898 	struct linger ling;
899 	int ret = 0;
900 
901 	/*
902 	 *	Options without arguments
903 	 */
904 
905 	if (optname == SO_BINDTODEVICE)
906 		return sock_setbindtodevice(sk, optval, optlen);
907 
908 	if (optlen < sizeof(int))
909 		return -EINVAL;
910 
911 	if (copy_from_sockptr(&val, optval, sizeof(val)))
912 		return -EFAULT;
913 
914 	valbool = val ? 1 : 0;
915 
916 	lock_sock(sk);
917 
918 	switch (optname) {
919 	case SO_DEBUG:
920 		if (val && !capable(CAP_NET_ADMIN))
921 			ret = -EACCES;
922 		else
923 			sock_valbool_flag(sk, SOCK_DBG, valbool);
924 		break;
925 	case SO_REUSEADDR:
926 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
927 		break;
928 	case SO_REUSEPORT:
929 		sk->sk_reuseport = valbool;
930 		break;
931 	case SO_TYPE:
932 	case SO_PROTOCOL:
933 	case SO_DOMAIN:
934 	case SO_ERROR:
935 		ret = -ENOPROTOOPT;
936 		break;
937 	case SO_DONTROUTE:
938 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
939 		sk_dst_reset(sk);
940 		break;
941 	case SO_BROADCAST:
942 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
943 		break;
944 	case SO_SNDBUF:
945 		/* Don't error on this BSD doesn't and if you think
946 		 * about it this is right. Otherwise apps have to
947 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
948 		 * are treated in BSD as hints
949 		 */
950 		val = min_t(u32, val, sysctl_wmem_max);
951 set_sndbuf:
952 		/* Ensure val * 2 fits into an int, to prevent max_t()
953 		 * from treating it as a negative value.
954 		 */
955 		val = min_t(int, val, INT_MAX / 2);
956 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
957 		WRITE_ONCE(sk->sk_sndbuf,
958 			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
959 		/* Wake up sending tasks if we upped the value. */
960 		sk->sk_write_space(sk);
961 		break;
962 
963 	case SO_SNDBUFFORCE:
964 		if (!capable(CAP_NET_ADMIN)) {
965 			ret = -EPERM;
966 			break;
967 		}
968 
969 		/* No negative values (to prevent underflow, as val will be
970 		 * multiplied by 2).
971 		 */
972 		if (val < 0)
973 			val = 0;
974 		goto set_sndbuf;
975 
976 	case SO_RCVBUF:
977 		/* Don't error on this BSD doesn't and if you think
978 		 * about it this is right. Otherwise apps have to
979 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
980 		 * are treated in BSD as hints
981 		 */
982 		__sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
983 		break;
984 
985 	case SO_RCVBUFFORCE:
986 		if (!capable(CAP_NET_ADMIN)) {
987 			ret = -EPERM;
988 			break;
989 		}
990 
991 		/* No negative values (to prevent underflow, as val will be
992 		 * multiplied by 2).
993 		 */
994 		__sock_set_rcvbuf(sk, max(val, 0));
995 		break;
996 
997 	case SO_KEEPALIVE:
998 		if (sk->sk_prot->keepalive)
999 			sk->sk_prot->keepalive(sk, valbool);
1000 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1001 		break;
1002 
1003 	case SO_OOBINLINE:
1004 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1005 		break;
1006 
1007 	case SO_NO_CHECK:
1008 		sk->sk_no_check_tx = valbool;
1009 		break;
1010 
1011 	case SO_PRIORITY:
1012 		if ((val >= 0 && val <= 6) ||
1013 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1014 			sk->sk_priority = val;
1015 		else
1016 			ret = -EPERM;
1017 		break;
1018 
1019 	case SO_LINGER:
1020 		if (optlen < sizeof(ling)) {
1021 			ret = -EINVAL;	/* 1003.1g */
1022 			break;
1023 		}
1024 		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1025 			ret = -EFAULT;
1026 			break;
1027 		}
1028 		if (!ling.l_onoff)
1029 			sock_reset_flag(sk, SOCK_LINGER);
1030 		else {
1031 #if (BITS_PER_LONG == 32)
1032 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1033 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1034 			else
1035 #endif
1036 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1037 			sock_set_flag(sk, SOCK_LINGER);
1038 		}
1039 		break;
1040 
1041 	case SO_BSDCOMPAT:
1042 		break;
1043 
1044 	case SO_PASSCRED:
1045 		if (valbool)
1046 			set_bit(SOCK_PASSCRED, &sock->flags);
1047 		else
1048 			clear_bit(SOCK_PASSCRED, &sock->flags);
1049 		break;
1050 
1051 	case SO_TIMESTAMP_OLD:
1052 	case SO_TIMESTAMP_NEW:
1053 	case SO_TIMESTAMPNS_OLD:
1054 	case SO_TIMESTAMPNS_NEW:
1055 		sock_set_timestamp(sk, valbool, optname);
1056 		break;
1057 
1058 	case SO_TIMESTAMPING_NEW:
1059 	case SO_TIMESTAMPING_OLD:
1060 		ret = sock_set_timestamping(sk, optname, val);
1061 		break;
1062 
1063 	case SO_RCVLOWAT:
1064 		if (val < 0)
1065 			val = INT_MAX;
1066 		if (sock->ops->set_rcvlowat)
1067 			ret = sock->ops->set_rcvlowat(sk, val);
1068 		else
1069 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1070 		break;
1071 
1072 	case SO_RCVTIMEO_OLD:
1073 	case SO_RCVTIMEO_NEW:
1074 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1075 				       optlen, optname == SO_RCVTIMEO_OLD);
1076 		break;
1077 
1078 	case SO_SNDTIMEO_OLD:
1079 	case SO_SNDTIMEO_NEW:
1080 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1081 				       optlen, optname == SO_SNDTIMEO_OLD);
1082 		break;
1083 
1084 	case SO_ATTACH_FILTER: {
1085 		struct sock_fprog fprog;
1086 
1087 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1088 		if (!ret)
1089 			ret = sk_attach_filter(&fprog, sk);
1090 		break;
1091 	}
1092 	case SO_ATTACH_BPF:
1093 		ret = -EINVAL;
1094 		if (optlen == sizeof(u32)) {
1095 			u32 ufd;
1096 
1097 			ret = -EFAULT;
1098 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1099 				break;
1100 
1101 			ret = sk_attach_bpf(ufd, sk);
1102 		}
1103 		break;
1104 
1105 	case SO_ATTACH_REUSEPORT_CBPF: {
1106 		struct sock_fprog fprog;
1107 
1108 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1109 		if (!ret)
1110 			ret = sk_reuseport_attach_filter(&fprog, sk);
1111 		break;
1112 	}
1113 	case SO_ATTACH_REUSEPORT_EBPF:
1114 		ret = -EINVAL;
1115 		if (optlen == sizeof(u32)) {
1116 			u32 ufd;
1117 
1118 			ret = -EFAULT;
1119 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1120 				break;
1121 
1122 			ret = sk_reuseport_attach_bpf(ufd, sk);
1123 		}
1124 		break;
1125 
1126 	case SO_DETACH_REUSEPORT_BPF:
1127 		ret = reuseport_detach_prog(sk);
1128 		break;
1129 
1130 	case SO_DETACH_FILTER:
1131 		ret = sk_detach_filter(sk);
1132 		break;
1133 
1134 	case SO_LOCK_FILTER:
1135 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1136 			ret = -EPERM;
1137 		else
1138 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1139 		break;
1140 
1141 	case SO_PASSSEC:
1142 		if (valbool)
1143 			set_bit(SOCK_PASSSEC, &sock->flags);
1144 		else
1145 			clear_bit(SOCK_PASSSEC, &sock->flags);
1146 		break;
1147 	case SO_MARK:
1148 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1149 			ret = -EPERM;
1150 			break;
1151 		}
1152 
1153 		__sock_set_mark(sk, val);
1154 		break;
1155 
1156 	case SO_RXQ_OVFL:
1157 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1158 		break;
1159 
1160 	case SO_WIFI_STATUS:
1161 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1162 		break;
1163 
1164 	case SO_PEEK_OFF:
1165 		if (sock->ops->set_peek_off)
1166 			ret = sock->ops->set_peek_off(sk, val);
1167 		else
1168 			ret = -EOPNOTSUPP;
1169 		break;
1170 
1171 	case SO_NOFCS:
1172 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1173 		break;
1174 
1175 	case SO_SELECT_ERR_QUEUE:
1176 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1177 		break;
1178 
1179 #ifdef CONFIG_NET_RX_BUSY_POLL
1180 	case SO_BUSY_POLL:
1181 		/* allow unprivileged users to decrease the value */
1182 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1183 			ret = -EPERM;
1184 		else {
1185 			if (val < 0)
1186 				ret = -EINVAL;
1187 			else
1188 				sk->sk_ll_usec = val;
1189 		}
1190 		break;
1191 	case SO_PREFER_BUSY_POLL:
1192 		if (valbool && !capable(CAP_NET_ADMIN))
1193 			ret = -EPERM;
1194 		else
1195 			WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1196 		break;
1197 	case SO_BUSY_POLL_BUDGET:
1198 		if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) {
1199 			ret = -EPERM;
1200 		} else {
1201 			if (val < 0 || val > U16_MAX)
1202 				ret = -EINVAL;
1203 			else
1204 				WRITE_ONCE(sk->sk_busy_poll_budget, val);
1205 		}
1206 		break;
1207 #endif
1208 
1209 	case SO_MAX_PACING_RATE:
1210 		{
1211 		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1212 
1213 		if (sizeof(ulval) != sizeof(val) &&
1214 		    optlen >= sizeof(ulval) &&
1215 		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1216 			ret = -EFAULT;
1217 			break;
1218 		}
1219 		if (ulval != ~0UL)
1220 			cmpxchg(&sk->sk_pacing_status,
1221 				SK_PACING_NONE,
1222 				SK_PACING_NEEDED);
1223 		sk->sk_max_pacing_rate = ulval;
1224 		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1225 		break;
1226 		}
1227 	case SO_INCOMING_CPU:
1228 		WRITE_ONCE(sk->sk_incoming_cpu, val);
1229 		break;
1230 
1231 	case SO_CNX_ADVICE:
1232 		if (val == 1)
1233 			dst_negative_advice(sk);
1234 		break;
1235 
1236 	case SO_ZEROCOPY:
1237 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1238 			if (!((sk->sk_type == SOCK_STREAM &&
1239 			       sk->sk_protocol == IPPROTO_TCP) ||
1240 			      (sk->sk_type == SOCK_DGRAM &&
1241 			       sk->sk_protocol == IPPROTO_UDP)))
1242 				ret = -ENOTSUPP;
1243 		} else if (sk->sk_family != PF_RDS) {
1244 			ret = -ENOTSUPP;
1245 		}
1246 		if (!ret) {
1247 			if (val < 0 || val > 1)
1248 				ret = -EINVAL;
1249 			else
1250 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1251 		}
1252 		break;
1253 
1254 	case SO_TXTIME:
1255 		if (optlen != sizeof(struct sock_txtime)) {
1256 			ret = -EINVAL;
1257 			break;
1258 		} else if (copy_from_sockptr(&sk_txtime, optval,
1259 			   sizeof(struct sock_txtime))) {
1260 			ret = -EFAULT;
1261 			break;
1262 		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1263 			ret = -EINVAL;
1264 			break;
1265 		}
1266 		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1267 		 * scheduler has enough safe guards.
1268 		 */
1269 		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1270 		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1271 			ret = -EPERM;
1272 			break;
1273 		}
1274 		sock_valbool_flag(sk, SOCK_TXTIME, true);
1275 		sk->sk_clockid = sk_txtime.clockid;
1276 		sk->sk_txtime_deadline_mode =
1277 			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1278 		sk->sk_txtime_report_errors =
1279 			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1280 		break;
1281 
1282 	case SO_BINDTOIFINDEX:
1283 		ret = sock_bindtoindex_locked(sk, val);
1284 		break;
1285 
1286 	default:
1287 		ret = -ENOPROTOOPT;
1288 		break;
1289 	}
1290 	release_sock(sk);
1291 	return ret;
1292 }
1293 EXPORT_SYMBOL(sock_setsockopt);
1294 
1295 
1296 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1297 			  struct ucred *ucred)
1298 {
1299 	ucred->pid = pid_vnr(pid);
1300 	ucred->uid = ucred->gid = -1;
1301 	if (cred) {
1302 		struct user_namespace *current_ns = current_user_ns();
1303 
1304 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1305 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1306 	}
1307 }
1308 
1309 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1310 {
1311 	struct user_namespace *user_ns = current_user_ns();
1312 	int i;
1313 
1314 	for (i = 0; i < src->ngroups; i++)
1315 		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1316 			return -EFAULT;
1317 
1318 	return 0;
1319 }
1320 
1321 int sock_getsockopt(struct socket *sock, int level, int optname,
1322 		    char __user *optval, int __user *optlen)
1323 {
1324 	struct sock *sk = sock->sk;
1325 
1326 	union {
1327 		int val;
1328 		u64 val64;
1329 		unsigned long ulval;
1330 		struct linger ling;
1331 		struct old_timeval32 tm32;
1332 		struct __kernel_old_timeval tm;
1333 		struct  __kernel_sock_timeval stm;
1334 		struct sock_txtime txtime;
1335 	} v;
1336 
1337 	int lv = sizeof(int);
1338 	int len;
1339 
1340 	if (get_user(len, optlen))
1341 		return -EFAULT;
1342 	if (len < 0)
1343 		return -EINVAL;
1344 
1345 	memset(&v, 0, sizeof(v));
1346 
1347 	switch (optname) {
1348 	case SO_DEBUG:
1349 		v.val = sock_flag(sk, SOCK_DBG);
1350 		break;
1351 
1352 	case SO_DONTROUTE:
1353 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1354 		break;
1355 
1356 	case SO_BROADCAST:
1357 		v.val = sock_flag(sk, SOCK_BROADCAST);
1358 		break;
1359 
1360 	case SO_SNDBUF:
1361 		v.val = sk->sk_sndbuf;
1362 		break;
1363 
1364 	case SO_RCVBUF:
1365 		v.val = sk->sk_rcvbuf;
1366 		break;
1367 
1368 	case SO_REUSEADDR:
1369 		v.val = sk->sk_reuse;
1370 		break;
1371 
1372 	case SO_REUSEPORT:
1373 		v.val = sk->sk_reuseport;
1374 		break;
1375 
1376 	case SO_KEEPALIVE:
1377 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1378 		break;
1379 
1380 	case SO_TYPE:
1381 		v.val = sk->sk_type;
1382 		break;
1383 
1384 	case SO_PROTOCOL:
1385 		v.val = sk->sk_protocol;
1386 		break;
1387 
1388 	case SO_DOMAIN:
1389 		v.val = sk->sk_family;
1390 		break;
1391 
1392 	case SO_ERROR:
1393 		v.val = -sock_error(sk);
1394 		if (v.val == 0)
1395 			v.val = xchg(&sk->sk_err_soft, 0);
1396 		break;
1397 
1398 	case SO_OOBINLINE:
1399 		v.val = sock_flag(sk, SOCK_URGINLINE);
1400 		break;
1401 
1402 	case SO_NO_CHECK:
1403 		v.val = sk->sk_no_check_tx;
1404 		break;
1405 
1406 	case SO_PRIORITY:
1407 		v.val = sk->sk_priority;
1408 		break;
1409 
1410 	case SO_LINGER:
1411 		lv		= sizeof(v.ling);
1412 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1413 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1414 		break;
1415 
1416 	case SO_BSDCOMPAT:
1417 		break;
1418 
1419 	case SO_TIMESTAMP_OLD:
1420 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1421 				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1422 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1423 		break;
1424 
1425 	case SO_TIMESTAMPNS_OLD:
1426 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1427 		break;
1428 
1429 	case SO_TIMESTAMP_NEW:
1430 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1431 		break;
1432 
1433 	case SO_TIMESTAMPNS_NEW:
1434 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1435 		break;
1436 
1437 	case SO_TIMESTAMPING_OLD:
1438 		v.val = sk->sk_tsflags;
1439 		break;
1440 
1441 	case SO_RCVTIMEO_OLD:
1442 	case SO_RCVTIMEO_NEW:
1443 		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1444 		break;
1445 
1446 	case SO_SNDTIMEO_OLD:
1447 	case SO_SNDTIMEO_NEW:
1448 		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1449 		break;
1450 
1451 	case SO_RCVLOWAT:
1452 		v.val = sk->sk_rcvlowat;
1453 		break;
1454 
1455 	case SO_SNDLOWAT:
1456 		v.val = 1;
1457 		break;
1458 
1459 	case SO_PASSCRED:
1460 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1461 		break;
1462 
1463 	case SO_PEERCRED:
1464 	{
1465 		struct ucred peercred;
1466 		if (len > sizeof(peercred))
1467 			len = sizeof(peercred);
1468 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1469 		if (copy_to_user(optval, &peercred, len))
1470 			return -EFAULT;
1471 		goto lenout;
1472 	}
1473 
1474 	case SO_PEERGROUPS:
1475 	{
1476 		int ret, n;
1477 
1478 		if (!sk->sk_peer_cred)
1479 			return -ENODATA;
1480 
1481 		n = sk->sk_peer_cred->group_info->ngroups;
1482 		if (len < n * sizeof(gid_t)) {
1483 			len = n * sizeof(gid_t);
1484 			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1485 		}
1486 		len = n * sizeof(gid_t);
1487 
1488 		ret = groups_to_user((gid_t __user *)optval,
1489 				     sk->sk_peer_cred->group_info);
1490 		if (ret)
1491 			return ret;
1492 		goto lenout;
1493 	}
1494 
1495 	case SO_PEERNAME:
1496 	{
1497 		char address[128];
1498 
1499 		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1500 		if (lv < 0)
1501 			return -ENOTCONN;
1502 		if (lv < len)
1503 			return -EINVAL;
1504 		if (copy_to_user(optval, address, len))
1505 			return -EFAULT;
1506 		goto lenout;
1507 	}
1508 
1509 	/* Dubious BSD thing... Probably nobody even uses it, but
1510 	 * the UNIX standard wants it for whatever reason... -DaveM
1511 	 */
1512 	case SO_ACCEPTCONN:
1513 		v.val = sk->sk_state == TCP_LISTEN;
1514 		break;
1515 
1516 	case SO_PASSSEC:
1517 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1518 		break;
1519 
1520 	case SO_PEERSEC:
1521 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1522 
1523 	case SO_MARK:
1524 		v.val = sk->sk_mark;
1525 		break;
1526 
1527 	case SO_RXQ_OVFL:
1528 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1529 		break;
1530 
1531 	case SO_WIFI_STATUS:
1532 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1533 		break;
1534 
1535 	case SO_PEEK_OFF:
1536 		if (!sock->ops->set_peek_off)
1537 			return -EOPNOTSUPP;
1538 
1539 		v.val = sk->sk_peek_off;
1540 		break;
1541 	case SO_NOFCS:
1542 		v.val = sock_flag(sk, SOCK_NOFCS);
1543 		break;
1544 
1545 	case SO_BINDTODEVICE:
1546 		return sock_getbindtodevice(sk, optval, optlen, len);
1547 
1548 	case SO_GET_FILTER:
1549 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1550 		if (len < 0)
1551 			return len;
1552 
1553 		goto lenout;
1554 
1555 	case SO_LOCK_FILTER:
1556 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1557 		break;
1558 
1559 	case SO_BPF_EXTENSIONS:
1560 		v.val = bpf_tell_extensions();
1561 		break;
1562 
1563 	case SO_SELECT_ERR_QUEUE:
1564 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1565 		break;
1566 
1567 #ifdef CONFIG_NET_RX_BUSY_POLL
1568 	case SO_BUSY_POLL:
1569 		v.val = sk->sk_ll_usec;
1570 		break;
1571 	case SO_PREFER_BUSY_POLL:
1572 		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1573 		break;
1574 #endif
1575 
1576 	case SO_MAX_PACING_RATE:
1577 		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1578 			lv = sizeof(v.ulval);
1579 			v.ulval = sk->sk_max_pacing_rate;
1580 		} else {
1581 			/* 32bit version */
1582 			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1583 		}
1584 		break;
1585 
1586 	case SO_INCOMING_CPU:
1587 		v.val = READ_ONCE(sk->sk_incoming_cpu);
1588 		break;
1589 
1590 	case SO_MEMINFO:
1591 	{
1592 		u32 meminfo[SK_MEMINFO_VARS];
1593 
1594 		sk_get_meminfo(sk, meminfo);
1595 
1596 		len = min_t(unsigned int, len, sizeof(meminfo));
1597 		if (copy_to_user(optval, &meminfo, len))
1598 			return -EFAULT;
1599 
1600 		goto lenout;
1601 	}
1602 
1603 #ifdef CONFIG_NET_RX_BUSY_POLL
1604 	case SO_INCOMING_NAPI_ID:
1605 		v.val = READ_ONCE(sk->sk_napi_id);
1606 
1607 		/* aggregate non-NAPI IDs down to 0 */
1608 		if (v.val < MIN_NAPI_ID)
1609 			v.val = 0;
1610 
1611 		break;
1612 #endif
1613 
1614 	case SO_COOKIE:
1615 		lv = sizeof(u64);
1616 		if (len < lv)
1617 			return -EINVAL;
1618 		v.val64 = sock_gen_cookie(sk);
1619 		break;
1620 
1621 	case SO_ZEROCOPY:
1622 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1623 		break;
1624 
1625 	case SO_TXTIME:
1626 		lv = sizeof(v.txtime);
1627 		v.txtime.clockid = sk->sk_clockid;
1628 		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1629 				  SOF_TXTIME_DEADLINE_MODE : 0;
1630 		v.txtime.flags |= sk->sk_txtime_report_errors ?
1631 				  SOF_TXTIME_REPORT_ERRORS : 0;
1632 		break;
1633 
1634 	case SO_BINDTOIFINDEX:
1635 		v.val = sk->sk_bound_dev_if;
1636 		break;
1637 
1638 	case SO_NETNS_COOKIE:
1639 		lv = sizeof(u64);
1640 		if (len != lv)
1641 			return -EINVAL;
1642 		v.val64 = sock_net(sk)->net_cookie;
1643 		break;
1644 
1645 	default:
1646 		/* We implement the SO_SNDLOWAT etc to not be settable
1647 		 * (1003.1g 7).
1648 		 */
1649 		return -ENOPROTOOPT;
1650 	}
1651 
1652 	if (len > lv)
1653 		len = lv;
1654 	if (copy_to_user(optval, &v, len))
1655 		return -EFAULT;
1656 lenout:
1657 	if (put_user(len, optlen))
1658 		return -EFAULT;
1659 	return 0;
1660 }
1661 
1662 /*
1663  * Initialize an sk_lock.
1664  *
1665  * (We also register the sk_lock with the lock validator.)
1666  */
1667 static inline void sock_lock_init(struct sock *sk)
1668 {
1669 	if (sk->sk_kern_sock)
1670 		sock_lock_init_class_and_name(
1671 			sk,
1672 			af_family_kern_slock_key_strings[sk->sk_family],
1673 			af_family_kern_slock_keys + sk->sk_family,
1674 			af_family_kern_key_strings[sk->sk_family],
1675 			af_family_kern_keys + sk->sk_family);
1676 	else
1677 		sock_lock_init_class_and_name(
1678 			sk,
1679 			af_family_slock_key_strings[sk->sk_family],
1680 			af_family_slock_keys + sk->sk_family,
1681 			af_family_key_strings[sk->sk_family],
1682 			af_family_keys + sk->sk_family);
1683 }
1684 
1685 /*
1686  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1687  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1688  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1689  */
1690 static void sock_copy(struct sock *nsk, const struct sock *osk)
1691 {
1692 	const struct proto *prot = READ_ONCE(osk->sk_prot);
1693 #ifdef CONFIG_SECURITY_NETWORK
1694 	void *sptr = nsk->sk_security;
1695 #endif
1696 
1697 	/* If we move sk_tx_queue_mapping out of the private section,
1698 	 * we must check if sk_tx_queue_clear() is called after
1699 	 * sock_copy() in sk_clone_lock().
1700 	 */
1701 	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
1702 		     offsetof(struct sock, sk_dontcopy_begin) ||
1703 		     offsetof(struct sock, sk_tx_queue_mapping) >=
1704 		     offsetof(struct sock, sk_dontcopy_end));
1705 
1706 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1707 
1708 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1709 	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1710 
1711 #ifdef CONFIG_SECURITY_NETWORK
1712 	nsk->sk_security = sptr;
1713 	security_sk_clone(osk, nsk);
1714 #endif
1715 }
1716 
1717 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1718 		int family)
1719 {
1720 	struct sock *sk;
1721 	struct kmem_cache *slab;
1722 
1723 	slab = prot->slab;
1724 	if (slab != NULL) {
1725 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1726 		if (!sk)
1727 			return sk;
1728 		if (want_init_on_alloc(priority))
1729 			sk_prot_clear_nulls(sk, prot->obj_size);
1730 	} else
1731 		sk = kmalloc(prot->obj_size, priority);
1732 
1733 	if (sk != NULL) {
1734 		if (security_sk_alloc(sk, family, priority))
1735 			goto out_free;
1736 
1737 		if (!try_module_get(prot->owner))
1738 			goto out_free_sec;
1739 	}
1740 
1741 	return sk;
1742 
1743 out_free_sec:
1744 	security_sk_free(sk);
1745 out_free:
1746 	if (slab != NULL)
1747 		kmem_cache_free(slab, sk);
1748 	else
1749 		kfree(sk);
1750 	return NULL;
1751 }
1752 
1753 static void sk_prot_free(struct proto *prot, struct sock *sk)
1754 {
1755 	struct kmem_cache *slab;
1756 	struct module *owner;
1757 
1758 	owner = prot->owner;
1759 	slab = prot->slab;
1760 
1761 	cgroup_sk_free(&sk->sk_cgrp_data);
1762 	mem_cgroup_sk_free(sk);
1763 	security_sk_free(sk);
1764 	if (slab != NULL)
1765 		kmem_cache_free(slab, sk);
1766 	else
1767 		kfree(sk);
1768 	module_put(owner);
1769 }
1770 
1771 /**
1772  *	sk_alloc - All socket objects are allocated here
1773  *	@net: the applicable net namespace
1774  *	@family: protocol family
1775  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1776  *	@prot: struct proto associated with this new sock instance
1777  *	@kern: is this to be a kernel socket?
1778  */
1779 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1780 		      struct proto *prot, int kern)
1781 {
1782 	struct sock *sk;
1783 
1784 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1785 	if (sk) {
1786 		sk->sk_family = family;
1787 		/*
1788 		 * See comment in struct sock definition to understand
1789 		 * why we need sk_prot_creator -acme
1790 		 */
1791 		sk->sk_prot = sk->sk_prot_creator = prot;
1792 		sk->sk_kern_sock = kern;
1793 		sock_lock_init(sk);
1794 		sk->sk_net_refcnt = kern ? 0 : 1;
1795 		if (likely(sk->sk_net_refcnt)) {
1796 			get_net(net);
1797 			sock_inuse_add(net, 1);
1798 		}
1799 
1800 		sock_net_set(sk, net);
1801 		refcount_set(&sk->sk_wmem_alloc, 1);
1802 
1803 		mem_cgroup_sk_alloc(sk);
1804 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1805 		sock_update_classid(&sk->sk_cgrp_data);
1806 		sock_update_netprioidx(&sk->sk_cgrp_data);
1807 		sk_tx_queue_clear(sk);
1808 	}
1809 
1810 	return sk;
1811 }
1812 EXPORT_SYMBOL(sk_alloc);
1813 
1814 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1815  * grace period. This is the case for UDP sockets and TCP listeners.
1816  */
1817 static void __sk_destruct(struct rcu_head *head)
1818 {
1819 	struct sock *sk = container_of(head, struct sock, sk_rcu);
1820 	struct sk_filter *filter;
1821 
1822 	if (sk->sk_destruct)
1823 		sk->sk_destruct(sk);
1824 
1825 	filter = rcu_dereference_check(sk->sk_filter,
1826 				       refcount_read(&sk->sk_wmem_alloc) == 0);
1827 	if (filter) {
1828 		sk_filter_uncharge(sk, filter);
1829 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1830 	}
1831 
1832 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1833 
1834 #ifdef CONFIG_BPF_SYSCALL
1835 	bpf_sk_storage_free(sk);
1836 #endif
1837 
1838 	if (atomic_read(&sk->sk_omem_alloc))
1839 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1840 			 __func__, atomic_read(&sk->sk_omem_alloc));
1841 
1842 	if (sk->sk_frag.page) {
1843 		put_page(sk->sk_frag.page);
1844 		sk->sk_frag.page = NULL;
1845 	}
1846 
1847 	if (sk->sk_peer_cred)
1848 		put_cred(sk->sk_peer_cred);
1849 	put_pid(sk->sk_peer_pid);
1850 	if (likely(sk->sk_net_refcnt))
1851 		put_net(sock_net(sk));
1852 	sk_prot_free(sk->sk_prot_creator, sk);
1853 }
1854 
1855 void sk_destruct(struct sock *sk)
1856 {
1857 	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1858 
1859 	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1860 		reuseport_detach_sock(sk);
1861 		use_call_rcu = true;
1862 	}
1863 
1864 	if (use_call_rcu)
1865 		call_rcu(&sk->sk_rcu, __sk_destruct);
1866 	else
1867 		__sk_destruct(&sk->sk_rcu);
1868 }
1869 
1870 static void __sk_free(struct sock *sk)
1871 {
1872 	if (likely(sk->sk_net_refcnt))
1873 		sock_inuse_add(sock_net(sk), -1);
1874 
1875 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1876 		sock_diag_broadcast_destroy(sk);
1877 	else
1878 		sk_destruct(sk);
1879 }
1880 
1881 void sk_free(struct sock *sk)
1882 {
1883 	/*
1884 	 * We subtract one from sk_wmem_alloc and can know if
1885 	 * some packets are still in some tx queue.
1886 	 * If not null, sock_wfree() will call __sk_free(sk) later
1887 	 */
1888 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1889 		__sk_free(sk);
1890 }
1891 EXPORT_SYMBOL(sk_free);
1892 
1893 static void sk_init_common(struct sock *sk)
1894 {
1895 	skb_queue_head_init(&sk->sk_receive_queue);
1896 	skb_queue_head_init(&sk->sk_write_queue);
1897 	skb_queue_head_init(&sk->sk_error_queue);
1898 
1899 	rwlock_init(&sk->sk_callback_lock);
1900 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1901 			af_rlock_keys + sk->sk_family,
1902 			af_family_rlock_key_strings[sk->sk_family]);
1903 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1904 			af_wlock_keys + sk->sk_family,
1905 			af_family_wlock_key_strings[sk->sk_family]);
1906 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1907 			af_elock_keys + sk->sk_family,
1908 			af_family_elock_key_strings[sk->sk_family]);
1909 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1910 			af_callback_keys + sk->sk_family,
1911 			af_family_clock_key_strings[sk->sk_family]);
1912 }
1913 
1914 /**
1915  *	sk_clone_lock - clone a socket, and lock its clone
1916  *	@sk: the socket to clone
1917  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1918  *
1919  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1920  */
1921 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1922 {
1923 	struct proto *prot = READ_ONCE(sk->sk_prot);
1924 	struct sk_filter *filter;
1925 	bool is_charged = true;
1926 	struct sock *newsk;
1927 
1928 	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
1929 	if (!newsk)
1930 		goto out;
1931 
1932 	sock_copy(newsk, sk);
1933 
1934 	newsk->sk_prot_creator = prot;
1935 
1936 	/* SANITY */
1937 	if (likely(newsk->sk_net_refcnt))
1938 		get_net(sock_net(newsk));
1939 	sk_node_init(&newsk->sk_node);
1940 	sock_lock_init(newsk);
1941 	bh_lock_sock(newsk);
1942 	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1943 	newsk->sk_backlog.len = 0;
1944 
1945 	atomic_set(&newsk->sk_rmem_alloc, 0);
1946 
1947 	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
1948 	refcount_set(&newsk->sk_wmem_alloc, 1);
1949 
1950 	atomic_set(&newsk->sk_omem_alloc, 0);
1951 	sk_init_common(newsk);
1952 
1953 	newsk->sk_dst_cache	= NULL;
1954 	newsk->sk_dst_pending_confirm = 0;
1955 	newsk->sk_wmem_queued	= 0;
1956 	newsk->sk_forward_alloc = 0;
1957 	atomic_set(&newsk->sk_drops, 0);
1958 	newsk->sk_send_head	= NULL;
1959 	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1960 	atomic_set(&newsk->sk_zckey, 0);
1961 
1962 	sock_reset_flag(newsk, SOCK_DONE);
1963 
1964 	/* sk->sk_memcg will be populated at accept() time */
1965 	newsk->sk_memcg = NULL;
1966 
1967 	cgroup_sk_clone(&newsk->sk_cgrp_data);
1968 
1969 	rcu_read_lock();
1970 	filter = rcu_dereference(sk->sk_filter);
1971 	if (filter != NULL)
1972 		/* though it's an empty new sock, the charging may fail
1973 		 * if sysctl_optmem_max was changed between creation of
1974 		 * original socket and cloning
1975 		 */
1976 		is_charged = sk_filter_charge(newsk, filter);
1977 	RCU_INIT_POINTER(newsk->sk_filter, filter);
1978 	rcu_read_unlock();
1979 
1980 	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1981 		/* We need to make sure that we don't uncharge the new
1982 		 * socket if we couldn't charge it in the first place
1983 		 * as otherwise we uncharge the parent's filter.
1984 		 */
1985 		if (!is_charged)
1986 			RCU_INIT_POINTER(newsk->sk_filter, NULL);
1987 		sk_free_unlock_clone(newsk);
1988 		newsk = NULL;
1989 		goto out;
1990 	}
1991 	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1992 
1993 	if (bpf_sk_storage_clone(sk, newsk)) {
1994 		sk_free_unlock_clone(newsk);
1995 		newsk = NULL;
1996 		goto out;
1997 	}
1998 
1999 	/* Clear sk_user_data if parent had the pointer tagged
2000 	 * as not suitable for copying when cloning.
2001 	 */
2002 	if (sk_user_data_is_nocopy(newsk))
2003 		newsk->sk_user_data = NULL;
2004 
2005 	newsk->sk_err	   = 0;
2006 	newsk->sk_err_soft = 0;
2007 	newsk->sk_priority = 0;
2008 	newsk->sk_incoming_cpu = raw_smp_processor_id();
2009 	if (likely(newsk->sk_net_refcnt))
2010 		sock_inuse_add(sock_net(newsk), 1);
2011 
2012 	/* Before updating sk_refcnt, we must commit prior changes to memory
2013 	 * (Documentation/RCU/rculist_nulls.rst for details)
2014 	 */
2015 	smp_wmb();
2016 	refcount_set(&newsk->sk_refcnt, 2);
2017 
2018 	/* Increment the counter in the same struct proto as the master
2019 	 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2020 	 * is the same as sk->sk_prot->socks, as this field was copied
2021 	 * with memcpy).
2022 	 *
2023 	 * This _changes_ the previous behaviour, where
2024 	 * tcp_create_openreq_child always was incrementing the
2025 	 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2026 	 * to be taken into account in all callers. -acme
2027 	 */
2028 	sk_refcnt_debug_inc(newsk);
2029 	sk_set_socket(newsk, NULL);
2030 	sk_tx_queue_clear(newsk);
2031 	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2032 
2033 	if (newsk->sk_prot->sockets_allocated)
2034 		sk_sockets_allocated_inc(newsk);
2035 
2036 	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2037 		net_enable_timestamp();
2038 out:
2039 	return newsk;
2040 }
2041 EXPORT_SYMBOL_GPL(sk_clone_lock);
2042 
2043 void sk_free_unlock_clone(struct sock *sk)
2044 {
2045 	/* It is still raw copy of parent, so invalidate
2046 	 * destructor and make plain sk_free() */
2047 	sk->sk_destruct = NULL;
2048 	bh_unlock_sock(sk);
2049 	sk_free(sk);
2050 }
2051 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2052 
2053 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2054 {
2055 	u32 max_segs = 1;
2056 
2057 	sk_dst_set(sk, dst);
2058 	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2059 	if (sk->sk_route_caps & NETIF_F_GSO)
2060 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2061 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
2062 	if (sk_can_gso(sk)) {
2063 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2064 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2065 		} else {
2066 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2067 			sk->sk_gso_max_size = dst->dev->gso_max_size;
2068 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2069 		}
2070 	}
2071 	sk->sk_gso_max_segs = max_segs;
2072 }
2073 EXPORT_SYMBOL_GPL(sk_setup_caps);
2074 
2075 /*
2076  *	Simple resource managers for sockets.
2077  */
2078 
2079 
2080 /*
2081  * Write buffer destructor automatically called from kfree_skb.
2082  */
2083 void sock_wfree(struct sk_buff *skb)
2084 {
2085 	struct sock *sk = skb->sk;
2086 	unsigned int len = skb->truesize;
2087 
2088 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2089 		/*
2090 		 * Keep a reference on sk_wmem_alloc, this will be released
2091 		 * after sk_write_space() call
2092 		 */
2093 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2094 		sk->sk_write_space(sk);
2095 		len = 1;
2096 	}
2097 	/*
2098 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2099 	 * could not do because of in-flight packets
2100 	 */
2101 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2102 		__sk_free(sk);
2103 }
2104 EXPORT_SYMBOL(sock_wfree);
2105 
2106 /* This variant of sock_wfree() is used by TCP,
2107  * since it sets SOCK_USE_WRITE_QUEUE.
2108  */
2109 void __sock_wfree(struct sk_buff *skb)
2110 {
2111 	struct sock *sk = skb->sk;
2112 
2113 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2114 		__sk_free(sk);
2115 }
2116 
2117 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2118 {
2119 	skb_orphan(skb);
2120 	skb->sk = sk;
2121 #ifdef CONFIG_INET
2122 	if (unlikely(!sk_fullsock(sk))) {
2123 		skb->destructor = sock_edemux;
2124 		sock_hold(sk);
2125 		return;
2126 	}
2127 #endif
2128 	skb->destructor = sock_wfree;
2129 	skb_set_hash_from_sk(skb, sk);
2130 	/*
2131 	 * We used to take a refcount on sk, but following operation
2132 	 * is enough to guarantee sk_free() wont free this sock until
2133 	 * all in-flight packets are completed
2134 	 */
2135 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2136 }
2137 EXPORT_SYMBOL(skb_set_owner_w);
2138 
2139 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2140 {
2141 #ifdef CONFIG_TLS_DEVICE
2142 	/* Drivers depend on in-order delivery for crypto offload,
2143 	 * partial orphan breaks out-of-order-OK logic.
2144 	 */
2145 	if (skb->decrypted)
2146 		return false;
2147 #endif
2148 	return (skb->destructor == sock_wfree ||
2149 		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2150 }
2151 
2152 /* This helper is used by netem, as it can hold packets in its
2153  * delay queue. We want to allow the owner socket to send more
2154  * packets, as if they were already TX completed by a typical driver.
2155  * But we also want to keep skb->sk set because some packet schedulers
2156  * rely on it (sch_fq for example).
2157  */
2158 void skb_orphan_partial(struct sk_buff *skb)
2159 {
2160 	if (skb_is_tcp_pure_ack(skb))
2161 		return;
2162 
2163 	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2164 		return;
2165 
2166 	skb_orphan(skb);
2167 }
2168 EXPORT_SYMBOL(skb_orphan_partial);
2169 
2170 /*
2171  * Read buffer destructor automatically called from kfree_skb.
2172  */
2173 void sock_rfree(struct sk_buff *skb)
2174 {
2175 	struct sock *sk = skb->sk;
2176 	unsigned int len = skb->truesize;
2177 
2178 	atomic_sub(len, &sk->sk_rmem_alloc);
2179 	sk_mem_uncharge(sk, len);
2180 }
2181 EXPORT_SYMBOL(sock_rfree);
2182 
2183 /*
2184  * Buffer destructor for skbs that are not used directly in read or write
2185  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2186  */
2187 void sock_efree(struct sk_buff *skb)
2188 {
2189 	sock_put(skb->sk);
2190 }
2191 EXPORT_SYMBOL(sock_efree);
2192 
2193 /* Buffer destructor for prefetch/receive path where reference count may
2194  * not be held, e.g. for listen sockets.
2195  */
2196 #ifdef CONFIG_INET
2197 void sock_pfree(struct sk_buff *skb)
2198 {
2199 	if (sk_is_refcounted(skb->sk))
2200 		sock_gen_put(skb->sk);
2201 }
2202 EXPORT_SYMBOL(sock_pfree);
2203 #endif /* CONFIG_INET */
2204 
2205 kuid_t sock_i_uid(struct sock *sk)
2206 {
2207 	kuid_t uid;
2208 
2209 	read_lock_bh(&sk->sk_callback_lock);
2210 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2211 	read_unlock_bh(&sk->sk_callback_lock);
2212 	return uid;
2213 }
2214 EXPORT_SYMBOL(sock_i_uid);
2215 
2216 unsigned long sock_i_ino(struct sock *sk)
2217 {
2218 	unsigned long ino;
2219 
2220 	read_lock_bh(&sk->sk_callback_lock);
2221 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2222 	read_unlock_bh(&sk->sk_callback_lock);
2223 	return ino;
2224 }
2225 EXPORT_SYMBOL(sock_i_ino);
2226 
2227 /*
2228  * Allocate a skb from the socket's send buffer.
2229  */
2230 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2231 			     gfp_t priority)
2232 {
2233 	if (force ||
2234 	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2235 		struct sk_buff *skb = alloc_skb(size, priority);
2236 
2237 		if (skb) {
2238 			skb_set_owner_w(skb, sk);
2239 			return skb;
2240 		}
2241 	}
2242 	return NULL;
2243 }
2244 EXPORT_SYMBOL(sock_wmalloc);
2245 
2246 static void sock_ofree(struct sk_buff *skb)
2247 {
2248 	struct sock *sk = skb->sk;
2249 
2250 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2251 }
2252 
2253 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2254 			     gfp_t priority)
2255 {
2256 	struct sk_buff *skb;
2257 
2258 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2259 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2260 	    sysctl_optmem_max)
2261 		return NULL;
2262 
2263 	skb = alloc_skb(size, priority);
2264 	if (!skb)
2265 		return NULL;
2266 
2267 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2268 	skb->sk = sk;
2269 	skb->destructor = sock_ofree;
2270 	return skb;
2271 }
2272 
2273 /*
2274  * Allocate a memory block from the socket's option memory buffer.
2275  */
2276 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2277 {
2278 	if ((unsigned int)size <= sysctl_optmem_max &&
2279 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2280 		void *mem;
2281 		/* First do the add, to avoid the race if kmalloc
2282 		 * might sleep.
2283 		 */
2284 		atomic_add(size, &sk->sk_omem_alloc);
2285 		mem = kmalloc(size, priority);
2286 		if (mem)
2287 			return mem;
2288 		atomic_sub(size, &sk->sk_omem_alloc);
2289 	}
2290 	return NULL;
2291 }
2292 EXPORT_SYMBOL(sock_kmalloc);
2293 
2294 /* Free an option memory block. Note, we actually want the inline
2295  * here as this allows gcc to detect the nullify and fold away the
2296  * condition entirely.
2297  */
2298 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2299 				  const bool nullify)
2300 {
2301 	if (WARN_ON_ONCE(!mem))
2302 		return;
2303 	if (nullify)
2304 		kfree_sensitive(mem);
2305 	else
2306 		kfree(mem);
2307 	atomic_sub(size, &sk->sk_omem_alloc);
2308 }
2309 
2310 void sock_kfree_s(struct sock *sk, void *mem, int size)
2311 {
2312 	__sock_kfree_s(sk, mem, size, false);
2313 }
2314 EXPORT_SYMBOL(sock_kfree_s);
2315 
2316 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2317 {
2318 	__sock_kfree_s(sk, mem, size, true);
2319 }
2320 EXPORT_SYMBOL(sock_kzfree_s);
2321 
2322 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2323    I think, these locks should be removed for datagram sockets.
2324  */
2325 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2326 {
2327 	DEFINE_WAIT(wait);
2328 
2329 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2330 	for (;;) {
2331 		if (!timeo)
2332 			break;
2333 		if (signal_pending(current))
2334 			break;
2335 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2336 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2337 		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2338 			break;
2339 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2340 			break;
2341 		if (sk->sk_err)
2342 			break;
2343 		timeo = schedule_timeout(timeo);
2344 	}
2345 	finish_wait(sk_sleep(sk), &wait);
2346 	return timeo;
2347 }
2348 
2349 
2350 /*
2351  *	Generic send/receive buffer handlers
2352  */
2353 
2354 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2355 				     unsigned long data_len, int noblock,
2356 				     int *errcode, int max_page_order)
2357 {
2358 	struct sk_buff *skb;
2359 	long timeo;
2360 	int err;
2361 
2362 	timeo = sock_sndtimeo(sk, noblock);
2363 	for (;;) {
2364 		err = sock_error(sk);
2365 		if (err != 0)
2366 			goto failure;
2367 
2368 		err = -EPIPE;
2369 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2370 			goto failure;
2371 
2372 		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2373 			break;
2374 
2375 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2376 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2377 		err = -EAGAIN;
2378 		if (!timeo)
2379 			goto failure;
2380 		if (signal_pending(current))
2381 			goto interrupted;
2382 		timeo = sock_wait_for_wmem(sk, timeo);
2383 	}
2384 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2385 				   errcode, sk->sk_allocation);
2386 	if (skb)
2387 		skb_set_owner_w(skb, sk);
2388 	return skb;
2389 
2390 interrupted:
2391 	err = sock_intr_errno(timeo);
2392 failure:
2393 	*errcode = err;
2394 	return NULL;
2395 }
2396 EXPORT_SYMBOL(sock_alloc_send_pskb);
2397 
2398 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2399 				    int noblock, int *errcode)
2400 {
2401 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2402 }
2403 EXPORT_SYMBOL(sock_alloc_send_skb);
2404 
2405 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2406 		     struct sockcm_cookie *sockc)
2407 {
2408 	u32 tsflags;
2409 
2410 	switch (cmsg->cmsg_type) {
2411 	case SO_MARK:
2412 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2413 			return -EPERM;
2414 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2415 			return -EINVAL;
2416 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2417 		break;
2418 	case SO_TIMESTAMPING_OLD:
2419 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2420 			return -EINVAL;
2421 
2422 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2423 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2424 			return -EINVAL;
2425 
2426 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2427 		sockc->tsflags |= tsflags;
2428 		break;
2429 	case SCM_TXTIME:
2430 		if (!sock_flag(sk, SOCK_TXTIME))
2431 			return -EINVAL;
2432 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2433 			return -EINVAL;
2434 		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2435 		break;
2436 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2437 	case SCM_RIGHTS:
2438 	case SCM_CREDENTIALS:
2439 		break;
2440 	default:
2441 		return -EINVAL;
2442 	}
2443 	return 0;
2444 }
2445 EXPORT_SYMBOL(__sock_cmsg_send);
2446 
2447 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2448 		   struct sockcm_cookie *sockc)
2449 {
2450 	struct cmsghdr *cmsg;
2451 	int ret;
2452 
2453 	for_each_cmsghdr(cmsg, msg) {
2454 		if (!CMSG_OK(msg, cmsg))
2455 			return -EINVAL;
2456 		if (cmsg->cmsg_level != SOL_SOCKET)
2457 			continue;
2458 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2459 		if (ret)
2460 			return ret;
2461 	}
2462 	return 0;
2463 }
2464 EXPORT_SYMBOL(sock_cmsg_send);
2465 
2466 static void sk_enter_memory_pressure(struct sock *sk)
2467 {
2468 	if (!sk->sk_prot->enter_memory_pressure)
2469 		return;
2470 
2471 	sk->sk_prot->enter_memory_pressure(sk);
2472 }
2473 
2474 static void sk_leave_memory_pressure(struct sock *sk)
2475 {
2476 	if (sk->sk_prot->leave_memory_pressure) {
2477 		sk->sk_prot->leave_memory_pressure(sk);
2478 	} else {
2479 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2480 
2481 		if (memory_pressure && READ_ONCE(*memory_pressure))
2482 			WRITE_ONCE(*memory_pressure, 0);
2483 	}
2484 }
2485 
2486 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2487 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2488 
2489 /**
2490  * skb_page_frag_refill - check that a page_frag contains enough room
2491  * @sz: minimum size of the fragment we want to get
2492  * @pfrag: pointer to page_frag
2493  * @gfp: priority for memory allocation
2494  *
2495  * Note: While this allocator tries to use high order pages, there is
2496  * no guarantee that allocations succeed. Therefore, @sz MUST be
2497  * less or equal than PAGE_SIZE.
2498  */
2499 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2500 {
2501 	if (pfrag->page) {
2502 		if (page_ref_count(pfrag->page) == 1) {
2503 			pfrag->offset = 0;
2504 			return true;
2505 		}
2506 		if (pfrag->offset + sz <= pfrag->size)
2507 			return true;
2508 		put_page(pfrag->page);
2509 	}
2510 
2511 	pfrag->offset = 0;
2512 	if (SKB_FRAG_PAGE_ORDER &&
2513 	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2514 		/* Avoid direct reclaim but allow kswapd to wake */
2515 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2516 					  __GFP_COMP | __GFP_NOWARN |
2517 					  __GFP_NORETRY,
2518 					  SKB_FRAG_PAGE_ORDER);
2519 		if (likely(pfrag->page)) {
2520 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2521 			return true;
2522 		}
2523 	}
2524 	pfrag->page = alloc_page(gfp);
2525 	if (likely(pfrag->page)) {
2526 		pfrag->size = PAGE_SIZE;
2527 		return true;
2528 	}
2529 	return false;
2530 }
2531 EXPORT_SYMBOL(skb_page_frag_refill);
2532 
2533 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2534 {
2535 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2536 		return true;
2537 
2538 	sk_enter_memory_pressure(sk);
2539 	sk_stream_moderate_sndbuf(sk);
2540 	return false;
2541 }
2542 EXPORT_SYMBOL(sk_page_frag_refill);
2543 
2544 void __lock_sock(struct sock *sk)
2545 	__releases(&sk->sk_lock.slock)
2546 	__acquires(&sk->sk_lock.slock)
2547 {
2548 	DEFINE_WAIT(wait);
2549 
2550 	for (;;) {
2551 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2552 					TASK_UNINTERRUPTIBLE);
2553 		spin_unlock_bh(&sk->sk_lock.slock);
2554 		schedule();
2555 		spin_lock_bh(&sk->sk_lock.slock);
2556 		if (!sock_owned_by_user(sk))
2557 			break;
2558 	}
2559 	finish_wait(&sk->sk_lock.wq, &wait);
2560 }
2561 
2562 void __release_sock(struct sock *sk)
2563 	__releases(&sk->sk_lock.slock)
2564 	__acquires(&sk->sk_lock.slock)
2565 {
2566 	struct sk_buff *skb, *next;
2567 
2568 	while ((skb = sk->sk_backlog.head) != NULL) {
2569 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2570 
2571 		spin_unlock_bh(&sk->sk_lock.slock);
2572 
2573 		do {
2574 			next = skb->next;
2575 			prefetch(next);
2576 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2577 			skb_mark_not_on_list(skb);
2578 			sk_backlog_rcv(sk, skb);
2579 
2580 			cond_resched();
2581 
2582 			skb = next;
2583 		} while (skb != NULL);
2584 
2585 		spin_lock_bh(&sk->sk_lock.slock);
2586 	}
2587 
2588 	/*
2589 	 * Doing the zeroing here guarantee we can not loop forever
2590 	 * while a wild producer attempts to flood us.
2591 	 */
2592 	sk->sk_backlog.len = 0;
2593 }
2594 
2595 void __sk_flush_backlog(struct sock *sk)
2596 {
2597 	spin_lock_bh(&sk->sk_lock.slock);
2598 	__release_sock(sk);
2599 	spin_unlock_bh(&sk->sk_lock.slock);
2600 }
2601 
2602 /**
2603  * sk_wait_data - wait for data to arrive at sk_receive_queue
2604  * @sk:    sock to wait on
2605  * @timeo: for how long
2606  * @skb:   last skb seen on sk_receive_queue
2607  *
2608  * Now socket state including sk->sk_err is changed only under lock,
2609  * hence we may omit checks after joining wait queue.
2610  * We check receive queue before schedule() only as optimization;
2611  * it is very likely that release_sock() added new data.
2612  */
2613 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2614 {
2615 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2616 	int rc;
2617 
2618 	add_wait_queue(sk_sleep(sk), &wait);
2619 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2620 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2621 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2622 	remove_wait_queue(sk_sleep(sk), &wait);
2623 	return rc;
2624 }
2625 EXPORT_SYMBOL(sk_wait_data);
2626 
2627 /**
2628  *	__sk_mem_raise_allocated - increase memory_allocated
2629  *	@sk: socket
2630  *	@size: memory size to allocate
2631  *	@amt: pages to allocate
2632  *	@kind: allocation type
2633  *
2634  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2635  */
2636 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2637 {
2638 	struct proto *prot = sk->sk_prot;
2639 	long allocated = sk_memory_allocated_add(sk, amt);
2640 	bool charged = true;
2641 
2642 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2643 	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2644 		goto suppress_allocation;
2645 
2646 	/* Under limit. */
2647 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2648 		sk_leave_memory_pressure(sk);
2649 		return 1;
2650 	}
2651 
2652 	/* Under pressure. */
2653 	if (allocated > sk_prot_mem_limits(sk, 1))
2654 		sk_enter_memory_pressure(sk);
2655 
2656 	/* Over hard limit. */
2657 	if (allocated > sk_prot_mem_limits(sk, 2))
2658 		goto suppress_allocation;
2659 
2660 	/* guarantee minimum buffer size under pressure */
2661 	if (kind == SK_MEM_RECV) {
2662 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2663 			return 1;
2664 
2665 	} else { /* SK_MEM_SEND */
2666 		int wmem0 = sk_get_wmem0(sk, prot);
2667 
2668 		if (sk->sk_type == SOCK_STREAM) {
2669 			if (sk->sk_wmem_queued < wmem0)
2670 				return 1;
2671 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2672 				return 1;
2673 		}
2674 	}
2675 
2676 	if (sk_has_memory_pressure(sk)) {
2677 		u64 alloc;
2678 
2679 		if (!sk_under_memory_pressure(sk))
2680 			return 1;
2681 		alloc = sk_sockets_allocated_read_positive(sk);
2682 		if (sk_prot_mem_limits(sk, 2) > alloc *
2683 		    sk_mem_pages(sk->sk_wmem_queued +
2684 				 atomic_read(&sk->sk_rmem_alloc) +
2685 				 sk->sk_forward_alloc))
2686 			return 1;
2687 	}
2688 
2689 suppress_allocation:
2690 
2691 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2692 		sk_stream_moderate_sndbuf(sk);
2693 
2694 		/* Fail only if socket is _under_ its sndbuf.
2695 		 * In this case we cannot block, so that we have to fail.
2696 		 */
2697 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2698 			return 1;
2699 	}
2700 
2701 	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2702 		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2703 
2704 	sk_memory_allocated_sub(sk, amt);
2705 
2706 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2707 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2708 
2709 	return 0;
2710 }
2711 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2712 
2713 /**
2714  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2715  *	@sk: socket
2716  *	@size: memory size to allocate
2717  *	@kind: allocation type
2718  *
2719  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2720  *	rmem allocation. This function assumes that protocols which have
2721  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2722  */
2723 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2724 {
2725 	int ret, amt = sk_mem_pages(size);
2726 
2727 	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2728 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2729 	if (!ret)
2730 		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2731 	return ret;
2732 }
2733 EXPORT_SYMBOL(__sk_mem_schedule);
2734 
2735 /**
2736  *	__sk_mem_reduce_allocated - reclaim memory_allocated
2737  *	@sk: socket
2738  *	@amount: number of quanta
2739  *
2740  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2741  */
2742 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2743 {
2744 	sk_memory_allocated_sub(sk, amount);
2745 
2746 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2747 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2748 
2749 	if (sk_under_memory_pressure(sk) &&
2750 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2751 		sk_leave_memory_pressure(sk);
2752 }
2753 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2754 
2755 /**
2756  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2757  *	@sk: socket
2758  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2759  */
2760 void __sk_mem_reclaim(struct sock *sk, int amount)
2761 {
2762 	amount >>= SK_MEM_QUANTUM_SHIFT;
2763 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2764 	__sk_mem_reduce_allocated(sk, amount);
2765 }
2766 EXPORT_SYMBOL(__sk_mem_reclaim);
2767 
2768 int sk_set_peek_off(struct sock *sk, int val)
2769 {
2770 	sk->sk_peek_off = val;
2771 	return 0;
2772 }
2773 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2774 
2775 /*
2776  * Set of default routines for initialising struct proto_ops when
2777  * the protocol does not support a particular function. In certain
2778  * cases where it makes no sense for a protocol to have a "do nothing"
2779  * function, some default processing is provided.
2780  */
2781 
2782 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2783 {
2784 	return -EOPNOTSUPP;
2785 }
2786 EXPORT_SYMBOL(sock_no_bind);
2787 
2788 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2789 		    int len, int flags)
2790 {
2791 	return -EOPNOTSUPP;
2792 }
2793 EXPORT_SYMBOL(sock_no_connect);
2794 
2795 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2796 {
2797 	return -EOPNOTSUPP;
2798 }
2799 EXPORT_SYMBOL(sock_no_socketpair);
2800 
2801 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2802 		   bool kern)
2803 {
2804 	return -EOPNOTSUPP;
2805 }
2806 EXPORT_SYMBOL(sock_no_accept);
2807 
2808 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2809 		    int peer)
2810 {
2811 	return -EOPNOTSUPP;
2812 }
2813 EXPORT_SYMBOL(sock_no_getname);
2814 
2815 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2816 {
2817 	return -EOPNOTSUPP;
2818 }
2819 EXPORT_SYMBOL(sock_no_ioctl);
2820 
2821 int sock_no_listen(struct socket *sock, int backlog)
2822 {
2823 	return -EOPNOTSUPP;
2824 }
2825 EXPORT_SYMBOL(sock_no_listen);
2826 
2827 int sock_no_shutdown(struct socket *sock, int how)
2828 {
2829 	return -EOPNOTSUPP;
2830 }
2831 EXPORT_SYMBOL(sock_no_shutdown);
2832 
2833 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2834 {
2835 	return -EOPNOTSUPP;
2836 }
2837 EXPORT_SYMBOL(sock_no_sendmsg);
2838 
2839 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2840 {
2841 	return -EOPNOTSUPP;
2842 }
2843 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2844 
2845 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2846 		    int flags)
2847 {
2848 	return -EOPNOTSUPP;
2849 }
2850 EXPORT_SYMBOL(sock_no_recvmsg);
2851 
2852 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2853 {
2854 	/* Mirror missing mmap method error code */
2855 	return -ENODEV;
2856 }
2857 EXPORT_SYMBOL(sock_no_mmap);
2858 
2859 /*
2860  * When a file is received (via SCM_RIGHTS, etc), we must bump the
2861  * various sock-based usage counts.
2862  */
2863 void __receive_sock(struct file *file)
2864 {
2865 	struct socket *sock;
2866 
2867 	sock = sock_from_file(file);
2868 	if (sock) {
2869 		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2870 		sock_update_classid(&sock->sk->sk_cgrp_data);
2871 	}
2872 }
2873 
2874 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2875 {
2876 	ssize_t res;
2877 	struct msghdr msg = {.msg_flags = flags};
2878 	struct kvec iov;
2879 	char *kaddr = kmap(page);
2880 	iov.iov_base = kaddr + offset;
2881 	iov.iov_len = size;
2882 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2883 	kunmap(page);
2884 	return res;
2885 }
2886 EXPORT_SYMBOL(sock_no_sendpage);
2887 
2888 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2889 				int offset, size_t size, int flags)
2890 {
2891 	ssize_t res;
2892 	struct msghdr msg = {.msg_flags = flags};
2893 	struct kvec iov;
2894 	char *kaddr = kmap(page);
2895 
2896 	iov.iov_base = kaddr + offset;
2897 	iov.iov_len = size;
2898 	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2899 	kunmap(page);
2900 	return res;
2901 }
2902 EXPORT_SYMBOL(sock_no_sendpage_locked);
2903 
2904 /*
2905  *	Default Socket Callbacks
2906  */
2907 
2908 static void sock_def_wakeup(struct sock *sk)
2909 {
2910 	struct socket_wq *wq;
2911 
2912 	rcu_read_lock();
2913 	wq = rcu_dereference(sk->sk_wq);
2914 	if (skwq_has_sleeper(wq))
2915 		wake_up_interruptible_all(&wq->wait);
2916 	rcu_read_unlock();
2917 }
2918 
2919 static void sock_def_error_report(struct sock *sk)
2920 {
2921 	struct socket_wq *wq;
2922 
2923 	rcu_read_lock();
2924 	wq = rcu_dereference(sk->sk_wq);
2925 	if (skwq_has_sleeper(wq))
2926 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2927 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2928 	rcu_read_unlock();
2929 }
2930 
2931 void sock_def_readable(struct sock *sk)
2932 {
2933 	struct socket_wq *wq;
2934 
2935 	rcu_read_lock();
2936 	wq = rcu_dereference(sk->sk_wq);
2937 	if (skwq_has_sleeper(wq))
2938 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2939 						EPOLLRDNORM | EPOLLRDBAND);
2940 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2941 	rcu_read_unlock();
2942 }
2943 
2944 static void sock_def_write_space(struct sock *sk)
2945 {
2946 	struct socket_wq *wq;
2947 
2948 	rcu_read_lock();
2949 
2950 	/* Do not wake up a writer until he can make "significant"
2951 	 * progress.  --DaveM
2952 	 */
2953 	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2954 		wq = rcu_dereference(sk->sk_wq);
2955 		if (skwq_has_sleeper(wq))
2956 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2957 						EPOLLWRNORM | EPOLLWRBAND);
2958 
2959 		/* Should agree with poll, otherwise some programs break */
2960 		if (sock_writeable(sk))
2961 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2962 	}
2963 
2964 	rcu_read_unlock();
2965 }
2966 
2967 static void sock_def_destruct(struct sock *sk)
2968 {
2969 }
2970 
2971 void sk_send_sigurg(struct sock *sk)
2972 {
2973 	if (sk->sk_socket && sk->sk_socket->file)
2974 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2975 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2976 }
2977 EXPORT_SYMBOL(sk_send_sigurg);
2978 
2979 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2980 		    unsigned long expires)
2981 {
2982 	if (!mod_timer(timer, expires))
2983 		sock_hold(sk);
2984 }
2985 EXPORT_SYMBOL(sk_reset_timer);
2986 
2987 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2988 {
2989 	if (del_timer(timer))
2990 		__sock_put(sk);
2991 }
2992 EXPORT_SYMBOL(sk_stop_timer);
2993 
2994 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
2995 {
2996 	if (del_timer_sync(timer))
2997 		__sock_put(sk);
2998 }
2999 EXPORT_SYMBOL(sk_stop_timer_sync);
3000 
3001 void sock_init_data(struct socket *sock, struct sock *sk)
3002 {
3003 	sk_init_common(sk);
3004 	sk->sk_send_head	=	NULL;
3005 
3006 	timer_setup(&sk->sk_timer, NULL, 0);
3007 
3008 	sk->sk_allocation	=	GFP_KERNEL;
3009 	sk->sk_rcvbuf		=	sysctl_rmem_default;
3010 	sk->sk_sndbuf		=	sysctl_wmem_default;
3011 	sk->sk_state		=	TCP_CLOSE;
3012 	sk_set_socket(sk, sock);
3013 
3014 	sock_set_flag(sk, SOCK_ZAPPED);
3015 
3016 	if (sock) {
3017 		sk->sk_type	=	sock->type;
3018 		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3019 		sock->sk	=	sk;
3020 		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
3021 	} else {
3022 		RCU_INIT_POINTER(sk->sk_wq, NULL);
3023 		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
3024 	}
3025 
3026 	rwlock_init(&sk->sk_callback_lock);
3027 	if (sk->sk_kern_sock)
3028 		lockdep_set_class_and_name(
3029 			&sk->sk_callback_lock,
3030 			af_kern_callback_keys + sk->sk_family,
3031 			af_family_kern_clock_key_strings[sk->sk_family]);
3032 	else
3033 		lockdep_set_class_and_name(
3034 			&sk->sk_callback_lock,
3035 			af_callback_keys + sk->sk_family,
3036 			af_family_clock_key_strings[sk->sk_family]);
3037 
3038 	sk->sk_state_change	=	sock_def_wakeup;
3039 	sk->sk_data_ready	=	sock_def_readable;
3040 	sk->sk_write_space	=	sock_def_write_space;
3041 	sk->sk_error_report	=	sock_def_error_report;
3042 	sk->sk_destruct		=	sock_def_destruct;
3043 
3044 	sk->sk_frag.page	=	NULL;
3045 	sk->sk_frag.offset	=	0;
3046 	sk->sk_peek_off		=	-1;
3047 
3048 	sk->sk_peer_pid 	=	NULL;
3049 	sk->sk_peer_cred	=	NULL;
3050 	sk->sk_write_pending	=	0;
3051 	sk->sk_rcvlowat		=	1;
3052 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3053 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3054 
3055 	sk->sk_stamp = SK_DEFAULT_STAMP;
3056 #if BITS_PER_LONG==32
3057 	seqlock_init(&sk->sk_stamp_seq);
3058 #endif
3059 	atomic_set(&sk->sk_zckey, 0);
3060 
3061 #ifdef CONFIG_NET_RX_BUSY_POLL
3062 	sk->sk_napi_id		=	0;
3063 	sk->sk_ll_usec		=	sysctl_net_busy_read;
3064 #endif
3065 
3066 	sk->sk_max_pacing_rate = ~0UL;
3067 	sk->sk_pacing_rate = ~0UL;
3068 	WRITE_ONCE(sk->sk_pacing_shift, 10);
3069 	sk->sk_incoming_cpu = -1;
3070 
3071 	sk_rx_queue_clear(sk);
3072 	/*
3073 	 * Before updating sk_refcnt, we must commit prior changes to memory
3074 	 * (Documentation/RCU/rculist_nulls.rst for details)
3075 	 */
3076 	smp_wmb();
3077 	refcount_set(&sk->sk_refcnt, 1);
3078 	atomic_set(&sk->sk_drops, 0);
3079 }
3080 EXPORT_SYMBOL(sock_init_data);
3081 
3082 void lock_sock_nested(struct sock *sk, int subclass)
3083 {
3084 	might_sleep();
3085 	spin_lock_bh(&sk->sk_lock.slock);
3086 	if (sk->sk_lock.owned)
3087 		__lock_sock(sk);
3088 	sk->sk_lock.owned = 1;
3089 	spin_unlock(&sk->sk_lock.slock);
3090 	/*
3091 	 * The sk_lock has mutex_lock() semantics here:
3092 	 */
3093 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3094 	local_bh_enable();
3095 }
3096 EXPORT_SYMBOL(lock_sock_nested);
3097 
3098 void release_sock(struct sock *sk)
3099 {
3100 	spin_lock_bh(&sk->sk_lock.slock);
3101 	if (sk->sk_backlog.tail)
3102 		__release_sock(sk);
3103 
3104 	/* Warning : release_cb() might need to release sk ownership,
3105 	 * ie call sock_release_ownership(sk) before us.
3106 	 */
3107 	if (sk->sk_prot->release_cb)
3108 		sk->sk_prot->release_cb(sk);
3109 
3110 	sock_release_ownership(sk);
3111 	if (waitqueue_active(&sk->sk_lock.wq))
3112 		wake_up(&sk->sk_lock.wq);
3113 	spin_unlock_bh(&sk->sk_lock.slock);
3114 }
3115 EXPORT_SYMBOL(release_sock);
3116 
3117 /**
3118  * lock_sock_fast - fast version of lock_sock
3119  * @sk: socket
3120  *
3121  * This version should be used for very small section, where process wont block
3122  * return false if fast path is taken:
3123  *
3124  *   sk_lock.slock locked, owned = 0, BH disabled
3125  *
3126  * return true if slow path is taken:
3127  *
3128  *   sk_lock.slock unlocked, owned = 1, BH enabled
3129  */
3130 bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3131 {
3132 	might_sleep();
3133 	spin_lock_bh(&sk->sk_lock.slock);
3134 
3135 	if (!sk->sk_lock.owned)
3136 		/*
3137 		 * Note : We must disable BH
3138 		 */
3139 		return false;
3140 
3141 	__lock_sock(sk);
3142 	sk->sk_lock.owned = 1;
3143 	spin_unlock(&sk->sk_lock.slock);
3144 	/*
3145 	 * The sk_lock has mutex_lock() semantics here:
3146 	 */
3147 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3148 	__acquire(&sk->sk_lock.slock);
3149 	local_bh_enable();
3150 	return true;
3151 }
3152 EXPORT_SYMBOL(lock_sock_fast);
3153 
3154 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3155 		   bool timeval, bool time32)
3156 {
3157 	struct sock *sk = sock->sk;
3158 	struct timespec64 ts;
3159 
3160 	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3161 	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3162 	if (ts.tv_sec == -1)
3163 		return -ENOENT;
3164 	if (ts.tv_sec == 0) {
3165 		ktime_t kt = ktime_get_real();
3166 		sock_write_timestamp(sk, kt);
3167 		ts = ktime_to_timespec64(kt);
3168 	}
3169 
3170 	if (timeval)
3171 		ts.tv_nsec /= 1000;
3172 
3173 #ifdef CONFIG_COMPAT_32BIT_TIME
3174 	if (time32)
3175 		return put_old_timespec32(&ts, userstamp);
3176 #endif
3177 #ifdef CONFIG_SPARC64
3178 	/* beware of padding in sparc64 timeval */
3179 	if (timeval && !in_compat_syscall()) {
3180 		struct __kernel_old_timeval __user tv = {
3181 			.tv_sec = ts.tv_sec,
3182 			.tv_usec = ts.tv_nsec,
3183 		};
3184 		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3185 			return -EFAULT;
3186 		return 0;
3187 	}
3188 #endif
3189 	return put_timespec64(&ts, userstamp);
3190 }
3191 EXPORT_SYMBOL(sock_gettstamp);
3192 
3193 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3194 {
3195 	if (!sock_flag(sk, flag)) {
3196 		unsigned long previous_flags = sk->sk_flags;
3197 
3198 		sock_set_flag(sk, flag);
3199 		/*
3200 		 * we just set one of the two flags which require net
3201 		 * time stamping, but time stamping might have been on
3202 		 * already because of the other one
3203 		 */
3204 		if (sock_needs_netstamp(sk) &&
3205 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3206 			net_enable_timestamp();
3207 	}
3208 }
3209 
3210 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3211 		       int level, int type)
3212 {
3213 	struct sock_exterr_skb *serr;
3214 	struct sk_buff *skb;
3215 	int copied, err;
3216 
3217 	err = -EAGAIN;
3218 	skb = sock_dequeue_err_skb(sk);
3219 	if (skb == NULL)
3220 		goto out;
3221 
3222 	copied = skb->len;
3223 	if (copied > len) {
3224 		msg->msg_flags |= MSG_TRUNC;
3225 		copied = len;
3226 	}
3227 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3228 	if (err)
3229 		goto out_free_skb;
3230 
3231 	sock_recv_timestamp(msg, sk, skb);
3232 
3233 	serr = SKB_EXT_ERR(skb);
3234 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3235 
3236 	msg->msg_flags |= MSG_ERRQUEUE;
3237 	err = copied;
3238 
3239 out_free_skb:
3240 	kfree_skb(skb);
3241 out:
3242 	return err;
3243 }
3244 EXPORT_SYMBOL(sock_recv_errqueue);
3245 
3246 /*
3247  *	Get a socket option on an socket.
3248  *
3249  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3250  *	asynchronous errors should be reported by getsockopt. We assume
3251  *	this means if you specify SO_ERROR (otherwise whats the point of it).
3252  */
3253 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3254 			   char __user *optval, int __user *optlen)
3255 {
3256 	struct sock *sk = sock->sk;
3257 
3258 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3259 }
3260 EXPORT_SYMBOL(sock_common_getsockopt);
3261 
3262 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3263 			int flags)
3264 {
3265 	struct sock *sk = sock->sk;
3266 	int addr_len = 0;
3267 	int err;
3268 
3269 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3270 				   flags & ~MSG_DONTWAIT, &addr_len);
3271 	if (err >= 0)
3272 		msg->msg_namelen = addr_len;
3273 	return err;
3274 }
3275 EXPORT_SYMBOL(sock_common_recvmsg);
3276 
3277 /*
3278  *	Set socket options on an inet socket.
3279  */
3280 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3281 			   sockptr_t optval, unsigned int optlen)
3282 {
3283 	struct sock *sk = sock->sk;
3284 
3285 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3286 }
3287 EXPORT_SYMBOL(sock_common_setsockopt);
3288 
3289 void sk_common_release(struct sock *sk)
3290 {
3291 	if (sk->sk_prot->destroy)
3292 		sk->sk_prot->destroy(sk);
3293 
3294 	/*
3295 	 * Observation: when sk_common_release is called, processes have
3296 	 * no access to socket. But net still has.
3297 	 * Step one, detach it from networking:
3298 	 *
3299 	 * A. Remove from hash tables.
3300 	 */
3301 
3302 	sk->sk_prot->unhash(sk);
3303 
3304 	/*
3305 	 * In this point socket cannot receive new packets, but it is possible
3306 	 * that some packets are in flight because some CPU runs receiver and
3307 	 * did hash table lookup before we unhashed socket. They will achieve
3308 	 * receive queue and will be purged by socket destructor.
3309 	 *
3310 	 * Also we still have packets pending on receive queue and probably,
3311 	 * our own packets waiting in device queues. sock_destroy will drain
3312 	 * receive queue, but transmitted packets will delay socket destruction
3313 	 * until the last reference will be released.
3314 	 */
3315 
3316 	sock_orphan(sk);
3317 
3318 	xfrm_sk_free_policy(sk);
3319 
3320 	sk_refcnt_debug_release(sk);
3321 
3322 	sock_put(sk);
3323 }
3324 EXPORT_SYMBOL(sk_common_release);
3325 
3326 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3327 {
3328 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3329 
3330 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3331 	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3332 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3333 	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3334 	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3335 	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3336 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3337 	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3338 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3339 }
3340 
3341 #ifdef CONFIG_PROC_FS
3342 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
3343 struct prot_inuse {
3344 	int val[PROTO_INUSE_NR];
3345 };
3346 
3347 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3348 
3349 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3350 {
3351 	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3352 }
3353 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3354 
3355 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3356 {
3357 	int cpu, idx = prot->inuse_idx;
3358 	int res = 0;
3359 
3360 	for_each_possible_cpu(cpu)
3361 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3362 
3363 	return res >= 0 ? res : 0;
3364 }
3365 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3366 
3367 static void sock_inuse_add(struct net *net, int val)
3368 {
3369 	this_cpu_add(*net->core.sock_inuse, val);
3370 }
3371 
3372 int sock_inuse_get(struct net *net)
3373 {
3374 	int cpu, res = 0;
3375 
3376 	for_each_possible_cpu(cpu)
3377 		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3378 
3379 	return res;
3380 }
3381 
3382 EXPORT_SYMBOL_GPL(sock_inuse_get);
3383 
3384 static int __net_init sock_inuse_init_net(struct net *net)
3385 {
3386 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3387 	if (net->core.prot_inuse == NULL)
3388 		return -ENOMEM;
3389 
3390 	net->core.sock_inuse = alloc_percpu(int);
3391 	if (net->core.sock_inuse == NULL)
3392 		goto out;
3393 
3394 	return 0;
3395 
3396 out:
3397 	free_percpu(net->core.prot_inuse);
3398 	return -ENOMEM;
3399 }
3400 
3401 static void __net_exit sock_inuse_exit_net(struct net *net)
3402 {
3403 	free_percpu(net->core.prot_inuse);
3404 	free_percpu(net->core.sock_inuse);
3405 }
3406 
3407 static struct pernet_operations net_inuse_ops = {
3408 	.init = sock_inuse_init_net,
3409 	.exit = sock_inuse_exit_net,
3410 };
3411 
3412 static __init int net_inuse_init(void)
3413 {
3414 	if (register_pernet_subsys(&net_inuse_ops))
3415 		panic("Cannot initialize net inuse counters");
3416 
3417 	return 0;
3418 }
3419 
3420 core_initcall(net_inuse_init);
3421 
3422 static int assign_proto_idx(struct proto *prot)
3423 {
3424 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3425 
3426 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3427 		pr_err("PROTO_INUSE_NR exhausted\n");
3428 		return -ENOSPC;
3429 	}
3430 
3431 	set_bit(prot->inuse_idx, proto_inuse_idx);
3432 	return 0;
3433 }
3434 
3435 static void release_proto_idx(struct proto *prot)
3436 {
3437 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3438 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3439 }
3440 #else
3441 static inline int assign_proto_idx(struct proto *prot)
3442 {
3443 	return 0;
3444 }
3445 
3446 static inline void release_proto_idx(struct proto *prot)
3447 {
3448 }
3449 
3450 static void sock_inuse_add(struct net *net, int val)
3451 {
3452 }
3453 #endif
3454 
3455 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3456 {
3457 	if (!twsk_prot)
3458 		return;
3459 	kfree(twsk_prot->twsk_slab_name);
3460 	twsk_prot->twsk_slab_name = NULL;
3461 	kmem_cache_destroy(twsk_prot->twsk_slab);
3462 	twsk_prot->twsk_slab = NULL;
3463 }
3464 
3465 static int tw_prot_init(const struct proto *prot)
3466 {
3467 	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3468 
3469 	if (!twsk_prot)
3470 		return 0;
3471 
3472 	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3473 					      prot->name);
3474 	if (!twsk_prot->twsk_slab_name)
3475 		return -ENOMEM;
3476 
3477 	twsk_prot->twsk_slab =
3478 		kmem_cache_create(twsk_prot->twsk_slab_name,
3479 				  twsk_prot->twsk_obj_size, 0,
3480 				  SLAB_ACCOUNT | prot->slab_flags,
3481 				  NULL);
3482 	if (!twsk_prot->twsk_slab) {
3483 		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3484 			prot->name);
3485 		return -ENOMEM;
3486 	}
3487 
3488 	return 0;
3489 }
3490 
3491 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3492 {
3493 	if (!rsk_prot)
3494 		return;
3495 	kfree(rsk_prot->slab_name);
3496 	rsk_prot->slab_name = NULL;
3497 	kmem_cache_destroy(rsk_prot->slab);
3498 	rsk_prot->slab = NULL;
3499 }
3500 
3501 static int req_prot_init(const struct proto *prot)
3502 {
3503 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3504 
3505 	if (!rsk_prot)
3506 		return 0;
3507 
3508 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3509 					prot->name);
3510 	if (!rsk_prot->slab_name)
3511 		return -ENOMEM;
3512 
3513 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3514 					   rsk_prot->obj_size, 0,
3515 					   SLAB_ACCOUNT | prot->slab_flags,
3516 					   NULL);
3517 
3518 	if (!rsk_prot->slab) {
3519 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3520 			prot->name);
3521 		return -ENOMEM;
3522 	}
3523 	return 0;
3524 }
3525 
3526 int proto_register(struct proto *prot, int alloc_slab)
3527 {
3528 	int ret = -ENOBUFS;
3529 
3530 	if (alloc_slab) {
3531 		prot->slab = kmem_cache_create_usercopy(prot->name,
3532 					prot->obj_size, 0,
3533 					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3534 					prot->slab_flags,
3535 					prot->useroffset, prot->usersize,
3536 					NULL);
3537 
3538 		if (prot->slab == NULL) {
3539 			pr_crit("%s: Can't create sock SLAB cache!\n",
3540 				prot->name);
3541 			goto out;
3542 		}
3543 
3544 		if (req_prot_init(prot))
3545 			goto out_free_request_sock_slab;
3546 
3547 		if (tw_prot_init(prot))
3548 			goto out_free_timewait_sock_slab;
3549 	}
3550 
3551 	mutex_lock(&proto_list_mutex);
3552 	ret = assign_proto_idx(prot);
3553 	if (ret) {
3554 		mutex_unlock(&proto_list_mutex);
3555 		goto out_free_timewait_sock_slab;
3556 	}
3557 	list_add(&prot->node, &proto_list);
3558 	mutex_unlock(&proto_list_mutex);
3559 	return ret;
3560 
3561 out_free_timewait_sock_slab:
3562 	if (alloc_slab)
3563 		tw_prot_cleanup(prot->twsk_prot);
3564 out_free_request_sock_slab:
3565 	if (alloc_slab) {
3566 		req_prot_cleanup(prot->rsk_prot);
3567 
3568 		kmem_cache_destroy(prot->slab);
3569 		prot->slab = NULL;
3570 	}
3571 out:
3572 	return ret;
3573 }
3574 EXPORT_SYMBOL(proto_register);
3575 
3576 void proto_unregister(struct proto *prot)
3577 {
3578 	mutex_lock(&proto_list_mutex);
3579 	release_proto_idx(prot);
3580 	list_del(&prot->node);
3581 	mutex_unlock(&proto_list_mutex);
3582 
3583 	kmem_cache_destroy(prot->slab);
3584 	prot->slab = NULL;
3585 
3586 	req_prot_cleanup(prot->rsk_prot);
3587 	tw_prot_cleanup(prot->twsk_prot);
3588 }
3589 EXPORT_SYMBOL(proto_unregister);
3590 
3591 int sock_load_diag_module(int family, int protocol)
3592 {
3593 	if (!protocol) {
3594 		if (!sock_is_registered(family))
3595 			return -ENOENT;
3596 
3597 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3598 				      NETLINK_SOCK_DIAG, family);
3599 	}
3600 
3601 #ifdef CONFIG_INET
3602 	if (family == AF_INET &&
3603 	    protocol != IPPROTO_RAW &&
3604 	    protocol < MAX_INET_PROTOS &&
3605 	    !rcu_access_pointer(inet_protos[protocol]))
3606 		return -ENOENT;
3607 #endif
3608 
3609 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3610 			      NETLINK_SOCK_DIAG, family, protocol);
3611 }
3612 EXPORT_SYMBOL(sock_load_diag_module);
3613 
3614 #ifdef CONFIG_PROC_FS
3615 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3616 	__acquires(proto_list_mutex)
3617 {
3618 	mutex_lock(&proto_list_mutex);
3619 	return seq_list_start_head(&proto_list, *pos);
3620 }
3621 
3622 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3623 {
3624 	return seq_list_next(v, &proto_list, pos);
3625 }
3626 
3627 static void proto_seq_stop(struct seq_file *seq, void *v)
3628 	__releases(proto_list_mutex)
3629 {
3630 	mutex_unlock(&proto_list_mutex);
3631 }
3632 
3633 static char proto_method_implemented(const void *method)
3634 {
3635 	return method == NULL ? 'n' : 'y';
3636 }
3637 static long sock_prot_memory_allocated(struct proto *proto)
3638 {
3639 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3640 }
3641 
3642 static const char *sock_prot_memory_pressure(struct proto *proto)
3643 {
3644 	return proto->memory_pressure != NULL ?
3645 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3646 }
3647 
3648 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3649 {
3650 
3651 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3652 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3653 		   proto->name,
3654 		   proto->obj_size,
3655 		   sock_prot_inuse_get(seq_file_net(seq), proto),
3656 		   sock_prot_memory_allocated(proto),
3657 		   sock_prot_memory_pressure(proto),
3658 		   proto->max_header,
3659 		   proto->slab == NULL ? "no" : "yes",
3660 		   module_name(proto->owner),
3661 		   proto_method_implemented(proto->close),
3662 		   proto_method_implemented(proto->connect),
3663 		   proto_method_implemented(proto->disconnect),
3664 		   proto_method_implemented(proto->accept),
3665 		   proto_method_implemented(proto->ioctl),
3666 		   proto_method_implemented(proto->init),
3667 		   proto_method_implemented(proto->destroy),
3668 		   proto_method_implemented(proto->shutdown),
3669 		   proto_method_implemented(proto->setsockopt),
3670 		   proto_method_implemented(proto->getsockopt),
3671 		   proto_method_implemented(proto->sendmsg),
3672 		   proto_method_implemented(proto->recvmsg),
3673 		   proto_method_implemented(proto->sendpage),
3674 		   proto_method_implemented(proto->bind),
3675 		   proto_method_implemented(proto->backlog_rcv),
3676 		   proto_method_implemented(proto->hash),
3677 		   proto_method_implemented(proto->unhash),
3678 		   proto_method_implemented(proto->get_port),
3679 		   proto_method_implemented(proto->enter_memory_pressure));
3680 }
3681 
3682 static int proto_seq_show(struct seq_file *seq, void *v)
3683 {
3684 	if (v == &proto_list)
3685 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3686 			   "protocol",
3687 			   "size",
3688 			   "sockets",
3689 			   "memory",
3690 			   "press",
3691 			   "maxhdr",
3692 			   "slab",
3693 			   "module",
3694 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3695 	else
3696 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3697 	return 0;
3698 }
3699 
3700 static const struct seq_operations proto_seq_ops = {
3701 	.start  = proto_seq_start,
3702 	.next   = proto_seq_next,
3703 	.stop   = proto_seq_stop,
3704 	.show   = proto_seq_show,
3705 };
3706 
3707 static __net_init int proto_init_net(struct net *net)
3708 {
3709 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3710 			sizeof(struct seq_net_private)))
3711 		return -ENOMEM;
3712 
3713 	return 0;
3714 }
3715 
3716 static __net_exit void proto_exit_net(struct net *net)
3717 {
3718 	remove_proc_entry("protocols", net->proc_net);
3719 }
3720 
3721 
3722 static __net_initdata struct pernet_operations proto_net_ops = {
3723 	.init = proto_init_net,
3724 	.exit = proto_exit_net,
3725 };
3726 
3727 static int __init proto_init(void)
3728 {
3729 	return register_pernet_subsys(&proto_net_ops);
3730 }
3731 
3732 subsys_initcall(proto_init);
3733 
3734 #endif /* PROC_FS */
3735 
3736 #ifdef CONFIG_NET_RX_BUSY_POLL
3737 bool sk_busy_loop_end(void *p, unsigned long start_time)
3738 {
3739 	struct sock *sk = p;
3740 
3741 	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3742 	       sk_busy_loop_timeout(sk, start_time);
3743 }
3744 EXPORT_SYMBOL(sk_busy_loop_end);
3745 #endif /* CONFIG_NET_RX_BUSY_POLL */
3746 
3747 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3748 {
3749 	if (!sk->sk_prot->bind_add)
3750 		return -EOPNOTSUPP;
3751 	return sk->sk_prot->bind_add(sk, addr, addr_len);
3752 }
3753 EXPORT_SYMBOL(sock_bind_add);
3754