xref: /openbmc/linux/net/core/sock.c (revision c21b37f6)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Version:	$Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11  *
12  * Authors:	Ross Biro
13  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Alan Cox, <A.Cox@swansea.ac.uk>
16  *
17  * Fixes:
18  *		Alan Cox	: 	Numerous verify_area() problems
19  *		Alan Cox	:	Connecting on a connecting socket
20  *					now returns an error for tcp.
21  *		Alan Cox	:	sock->protocol is set correctly.
22  *					and is not sometimes left as 0.
23  *		Alan Cox	:	connect handles icmp errors on a
24  *					connect properly. Unfortunately there
25  *					is a restart syscall nasty there. I
26  *					can't match BSD without hacking the C
27  *					library. Ideas urgently sought!
28  *		Alan Cox	:	Disallow bind() to addresses that are
29  *					not ours - especially broadcast ones!!
30  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
31  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
32  *					instead they leave that for the DESTROY timer.
33  *		Alan Cox	:	Clean up error flag in accept
34  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
35  *					was buggy. Put a remove_sock() in the handler
36  *					for memory when we hit 0. Also altered the timer
37  *					code. The ACK stuff can wait and needs major
38  *					TCP layer surgery.
39  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
40  *					and fixed timer/inet_bh race.
41  *		Alan Cox	:	Added zapped flag for TCP
42  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
43  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
45  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
46  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
48  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
49  *	Pauline Middelink	:	identd support
50  *		Alan Cox	:	Fixed connect() taking signals I think.
51  *		Alan Cox	:	SO_LINGER supported
52  *		Alan Cox	:	Error reporting fixes
53  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
54  *		Alan Cox	:	inet sockets don't set sk->type!
55  *		Alan Cox	:	Split socket option code
56  *		Alan Cox	:	Callbacks
57  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
58  *		Alex		:	Removed restriction on inet fioctl
59  *		Alan Cox	:	Splitting INET from NET core
60  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
61  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
62  *		Alan Cox	:	Split IP from generic code
63  *		Alan Cox	:	New kfree_skbmem()
64  *		Alan Cox	:	Make SO_DEBUG superuser only.
65  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
66  *					(compatibility fix)
67  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
68  *		Alan Cox	:	Allocator for a socket is settable.
69  *		Alan Cox	:	SO_ERROR includes soft errors.
70  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
71  *		Alan Cox	: 	Generic socket allocation to make hooks
72  *					easier (suggested by Craig Metz).
73  *		Michael Pall	:	SO_ERROR returns positive errno again
74  *              Steve Whitehouse:       Added default destructor to free
75  *                                      protocol private data.
76  *              Steve Whitehouse:       Added various other default routines
77  *                                      common to several socket families.
78  *              Chris Evans     :       Call suser() check last on F_SETOWN
79  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
81  *		Andi Kleen	:	Fix write_space callback
82  *		Chris Evans	:	Security fixes - signedness again
83  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
84  *
85  * To Fix:
86  *
87  *
88  *		This program is free software; you can redistribute it and/or
89  *		modify it under the terms of the GNU General Public License
90  *		as published by the Free Software Foundation; either version
91  *		2 of the License, or (at your option) any later version.
92  */
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118 
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/request_sock.h>
123 #include <net/sock.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
126 
127 #include <linux/filter.h>
128 
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
132 
133 /*
134  * Each address family might have different locking rules, so we have
135  * one slock key per address family:
136  */
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
139 
140 #ifdef CONFIG_DEBUG_LOCK_ALLOC
141 /*
142  * Make lock validator output more readable. (we pre-construct these
143  * strings build-time, so that runtime initialization of socket
144  * locks is fast):
145  */
146 static const char *af_family_key_strings[AF_MAX+1] = {
147   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
148   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
149   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
150   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
151   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
152   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
153   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
154   "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
155   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
156   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-29"          ,
157   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
158   "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
159 };
160 static const char *af_family_slock_key_strings[AF_MAX+1] = {
161   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
162   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
163   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
164   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
165   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
166   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
167   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
168   "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
169   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
170   "slock-27"       , "slock-28"          , "slock-29"          ,
171   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
172   "slock-AF_RXRPC" , "slock-AF_MAX"
173 };
174 static const char *af_family_clock_key_strings[AF_MAX+1] = {
175   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
176   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
177   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
178   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
179   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
180   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
181   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
182   "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
183   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
184   "clock-27"       , "clock-28"          , "clock-29"          ,
185   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
186   "clock-AF_RXRPC" , "clock-AF_MAX"
187 };
188 #endif
189 
190 /*
191  * sk_callback_lock locking rules are per-address-family,
192  * so split the lock classes by using a per-AF key:
193  */
194 static struct lock_class_key af_callback_keys[AF_MAX];
195 
196 /* Take into consideration the size of the struct sk_buff overhead in the
197  * determination of these values, since that is non-constant across
198  * platforms.  This makes socket queueing behavior and performance
199  * not depend upon such differences.
200  */
201 #define _SK_MEM_PACKETS		256
202 #define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
203 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
204 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 
206 /* Run time adjustable parameters. */
207 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
208 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
209 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
210 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
211 
212 /* Maximal space eaten by iovec or ancilliary data plus some space */
213 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
214 
215 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
216 {
217 	struct timeval tv;
218 
219 	if (optlen < sizeof(tv))
220 		return -EINVAL;
221 	if (copy_from_user(&tv, optval, sizeof(tv)))
222 		return -EFAULT;
223 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
224 		return -EDOM;
225 
226 	if (tv.tv_sec < 0) {
227 		static int warned __read_mostly;
228 
229 		*timeo_p = 0;
230 		if (warned < 10 && net_ratelimit())
231 			warned++;
232 			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
233 			       "tries to set negative timeout\n",
234 				current->comm, current->pid);
235 		return 0;
236 	}
237 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
238 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
239 		return 0;
240 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
241 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
242 	return 0;
243 }
244 
245 static void sock_warn_obsolete_bsdism(const char *name)
246 {
247 	static int warned;
248 	static char warncomm[TASK_COMM_LEN];
249 	if (strcmp(warncomm, current->comm) && warned < 5) {
250 		strcpy(warncomm,  current->comm);
251 		printk(KERN_WARNING "process `%s' is using obsolete "
252 		       "%s SO_BSDCOMPAT\n", warncomm, name);
253 		warned++;
254 	}
255 }
256 
257 static void sock_disable_timestamp(struct sock *sk)
258 {
259 	if (sock_flag(sk, SOCK_TIMESTAMP)) {
260 		sock_reset_flag(sk, SOCK_TIMESTAMP);
261 		net_disable_timestamp();
262 	}
263 }
264 
265 
266 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
267 {
268 	int err = 0;
269 	int skb_len;
270 
271 	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
272 	   number of warnings when compiling with -W --ANK
273 	 */
274 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
275 	    (unsigned)sk->sk_rcvbuf) {
276 		err = -ENOMEM;
277 		goto out;
278 	}
279 
280 	err = sk_filter(sk, skb);
281 	if (err)
282 		goto out;
283 
284 	skb->dev = NULL;
285 	skb_set_owner_r(skb, sk);
286 
287 	/* Cache the SKB length before we tack it onto the receive
288 	 * queue.  Once it is added it no longer belongs to us and
289 	 * may be freed by other threads of control pulling packets
290 	 * from the queue.
291 	 */
292 	skb_len = skb->len;
293 
294 	skb_queue_tail(&sk->sk_receive_queue, skb);
295 
296 	if (!sock_flag(sk, SOCK_DEAD))
297 		sk->sk_data_ready(sk, skb_len);
298 out:
299 	return err;
300 }
301 EXPORT_SYMBOL(sock_queue_rcv_skb);
302 
303 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
304 {
305 	int rc = NET_RX_SUCCESS;
306 
307 	if (sk_filter(sk, skb))
308 		goto discard_and_relse;
309 
310 	skb->dev = NULL;
311 
312 	if (nested)
313 		bh_lock_sock_nested(sk);
314 	else
315 		bh_lock_sock(sk);
316 	if (!sock_owned_by_user(sk)) {
317 		/*
318 		 * trylock + unlock semantics:
319 		 */
320 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
321 
322 		rc = sk->sk_backlog_rcv(sk, skb);
323 
324 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
325 	} else
326 		sk_add_backlog(sk, skb);
327 	bh_unlock_sock(sk);
328 out:
329 	sock_put(sk);
330 	return rc;
331 discard_and_relse:
332 	kfree_skb(skb);
333 	goto out;
334 }
335 EXPORT_SYMBOL(sk_receive_skb);
336 
337 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
338 {
339 	struct dst_entry *dst = sk->sk_dst_cache;
340 
341 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
342 		sk->sk_dst_cache = NULL;
343 		dst_release(dst);
344 		return NULL;
345 	}
346 
347 	return dst;
348 }
349 EXPORT_SYMBOL(__sk_dst_check);
350 
351 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
352 {
353 	struct dst_entry *dst = sk_dst_get(sk);
354 
355 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
356 		sk_dst_reset(sk);
357 		dst_release(dst);
358 		return NULL;
359 	}
360 
361 	return dst;
362 }
363 EXPORT_SYMBOL(sk_dst_check);
364 
365 /*
366  *	This is meant for all protocols to use and covers goings on
367  *	at the socket level. Everything here is generic.
368  */
369 
370 int sock_setsockopt(struct socket *sock, int level, int optname,
371 		    char __user *optval, int optlen)
372 {
373 	struct sock *sk=sock->sk;
374 	struct sk_filter *filter;
375 	int val;
376 	int valbool;
377 	struct linger ling;
378 	int ret = 0;
379 
380 	/*
381 	 *	Options without arguments
382 	 */
383 
384 #ifdef SO_DONTLINGER		/* Compatibility item... */
385 	if (optname == SO_DONTLINGER) {
386 		lock_sock(sk);
387 		sock_reset_flag(sk, SOCK_LINGER);
388 		release_sock(sk);
389 		return 0;
390 	}
391 #endif
392 
393 	if (optlen < sizeof(int))
394 		return -EINVAL;
395 
396 	if (get_user(val, (int __user *)optval))
397 		return -EFAULT;
398 
399 	valbool = val?1:0;
400 
401 	lock_sock(sk);
402 
403 	switch(optname) {
404 	case SO_DEBUG:
405 		if (val && !capable(CAP_NET_ADMIN)) {
406 			ret = -EACCES;
407 		}
408 		else if (valbool)
409 			sock_set_flag(sk, SOCK_DBG);
410 		else
411 			sock_reset_flag(sk, SOCK_DBG);
412 		break;
413 	case SO_REUSEADDR:
414 		sk->sk_reuse = valbool;
415 		break;
416 	case SO_TYPE:
417 	case SO_ERROR:
418 		ret = -ENOPROTOOPT;
419 		break;
420 	case SO_DONTROUTE:
421 		if (valbool)
422 			sock_set_flag(sk, SOCK_LOCALROUTE);
423 		else
424 			sock_reset_flag(sk, SOCK_LOCALROUTE);
425 		break;
426 	case SO_BROADCAST:
427 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
428 		break;
429 	case SO_SNDBUF:
430 		/* Don't error on this BSD doesn't and if you think
431 		   about it this is right. Otherwise apps have to
432 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
433 		   are treated in BSD as hints */
434 
435 		if (val > sysctl_wmem_max)
436 			val = sysctl_wmem_max;
437 set_sndbuf:
438 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
439 		if ((val * 2) < SOCK_MIN_SNDBUF)
440 			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
441 		else
442 			sk->sk_sndbuf = val * 2;
443 
444 		/*
445 		 *	Wake up sending tasks if we
446 		 *	upped the value.
447 		 */
448 		sk->sk_write_space(sk);
449 		break;
450 
451 	case SO_SNDBUFFORCE:
452 		if (!capable(CAP_NET_ADMIN)) {
453 			ret = -EPERM;
454 			break;
455 		}
456 		goto set_sndbuf;
457 
458 	case SO_RCVBUF:
459 		/* Don't error on this BSD doesn't and if you think
460 		   about it this is right. Otherwise apps have to
461 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
462 		   are treated in BSD as hints */
463 
464 		if (val > sysctl_rmem_max)
465 			val = sysctl_rmem_max;
466 set_rcvbuf:
467 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
468 		/*
469 		 * We double it on the way in to account for
470 		 * "struct sk_buff" etc. overhead.   Applications
471 		 * assume that the SO_RCVBUF setting they make will
472 		 * allow that much actual data to be received on that
473 		 * socket.
474 		 *
475 		 * Applications are unaware that "struct sk_buff" and
476 		 * other overheads allocate from the receive buffer
477 		 * during socket buffer allocation.
478 		 *
479 		 * And after considering the possible alternatives,
480 		 * returning the value we actually used in getsockopt
481 		 * is the most desirable behavior.
482 		 */
483 		if ((val * 2) < SOCK_MIN_RCVBUF)
484 			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
485 		else
486 			sk->sk_rcvbuf = val * 2;
487 		break;
488 
489 	case SO_RCVBUFFORCE:
490 		if (!capable(CAP_NET_ADMIN)) {
491 			ret = -EPERM;
492 			break;
493 		}
494 		goto set_rcvbuf;
495 
496 	case SO_KEEPALIVE:
497 #ifdef CONFIG_INET
498 		if (sk->sk_protocol == IPPROTO_TCP)
499 			tcp_set_keepalive(sk, valbool);
500 #endif
501 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
502 		break;
503 
504 	case SO_OOBINLINE:
505 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
506 		break;
507 
508 	case SO_NO_CHECK:
509 		sk->sk_no_check = valbool;
510 		break;
511 
512 	case SO_PRIORITY:
513 		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
514 			sk->sk_priority = val;
515 		else
516 			ret = -EPERM;
517 		break;
518 
519 	case SO_LINGER:
520 		if (optlen < sizeof(ling)) {
521 			ret = -EINVAL;	/* 1003.1g */
522 			break;
523 		}
524 		if (copy_from_user(&ling,optval,sizeof(ling))) {
525 			ret = -EFAULT;
526 			break;
527 		}
528 		if (!ling.l_onoff)
529 			sock_reset_flag(sk, SOCK_LINGER);
530 		else {
531 #if (BITS_PER_LONG == 32)
532 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
533 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
534 			else
535 #endif
536 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
537 			sock_set_flag(sk, SOCK_LINGER);
538 		}
539 		break;
540 
541 	case SO_BSDCOMPAT:
542 		sock_warn_obsolete_bsdism("setsockopt");
543 		break;
544 
545 	case SO_PASSCRED:
546 		if (valbool)
547 			set_bit(SOCK_PASSCRED, &sock->flags);
548 		else
549 			clear_bit(SOCK_PASSCRED, &sock->flags);
550 		break;
551 
552 	case SO_TIMESTAMP:
553 	case SO_TIMESTAMPNS:
554 		if (valbool)  {
555 			if (optname == SO_TIMESTAMP)
556 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
557 			else
558 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
559 			sock_set_flag(sk, SOCK_RCVTSTAMP);
560 			sock_enable_timestamp(sk);
561 		} else {
562 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
563 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
564 		}
565 		break;
566 
567 	case SO_RCVLOWAT:
568 		if (val < 0)
569 			val = INT_MAX;
570 		sk->sk_rcvlowat = val ? : 1;
571 		break;
572 
573 	case SO_RCVTIMEO:
574 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
575 		break;
576 
577 	case SO_SNDTIMEO:
578 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
579 		break;
580 
581 #ifdef CONFIG_NETDEVICES
582 	case SO_BINDTODEVICE:
583 	{
584 		char devname[IFNAMSIZ];
585 
586 		/* Sorry... */
587 		if (!capable(CAP_NET_RAW)) {
588 			ret = -EPERM;
589 			break;
590 		}
591 
592 		/* Bind this socket to a particular device like "eth0",
593 		 * as specified in the passed interface name. If the
594 		 * name is "" or the option length is zero the socket
595 		 * is not bound.
596 		 */
597 
598 		if (!valbool) {
599 			sk->sk_bound_dev_if = 0;
600 		} else {
601 			if (optlen > IFNAMSIZ - 1)
602 				optlen = IFNAMSIZ - 1;
603 			memset(devname, 0, sizeof(devname));
604 			if (copy_from_user(devname, optval, optlen)) {
605 				ret = -EFAULT;
606 				break;
607 			}
608 
609 			/* Remove any cached route for this socket. */
610 			sk_dst_reset(sk);
611 
612 			if (devname[0] == '\0') {
613 				sk->sk_bound_dev_if = 0;
614 			} else {
615 				struct net_device *dev = dev_get_by_name(devname);
616 				if (!dev) {
617 					ret = -ENODEV;
618 					break;
619 				}
620 				sk->sk_bound_dev_if = dev->ifindex;
621 				dev_put(dev);
622 			}
623 		}
624 		break;
625 	}
626 #endif
627 
628 
629 	case SO_ATTACH_FILTER:
630 		ret = -EINVAL;
631 		if (optlen == sizeof(struct sock_fprog)) {
632 			struct sock_fprog fprog;
633 
634 			ret = -EFAULT;
635 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
636 				break;
637 
638 			ret = sk_attach_filter(&fprog, sk);
639 		}
640 		break;
641 
642 	case SO_DETACH_FILTER:
643 		rcu_read_lock_bh();
644 		filter = rcu_dereference(sk->sk_filter);
645 		if (filter) {
646 			rcu_assign_pointer(sk->sk_filter, NULL);
647 			sk_filter_release(sk, filter);
648 			rcu_read_unlock_bh();
649 			break;
650 		}
651 		rcu_read_unlock_bh();
652 		ret = -ENONET;
653 		break;
654 
655 	case SO_PASSSEC:
656 		if (valbool)
657 			set_bit(SOCK_PASSSEC, &sock->flags);
658 		else
659 			clear_bit(SOCK_PASSSEC, &sock->flags);
660 		break;
661 
662 		/* We implement the SO_SNDLOWAT etc to
663 		   not be settable (1003.1g 5.3) */
664 	default:
665 		ret = -ENOPROTOOPT;
666 		break;
667 	}
668 	release_sock(sk);
669 	return ret;
670 }
671 
672 
673 int sock_getsockopt(struct socket *sock, int level, int optname,
674 		    char __user *optval, int __user *optlen)
675 {
676 	struct sock *sk = sock->sk;
677 
678 	union {
679 		int val;
680 		struct linger ling;
681 		struct timeval tm;
682 	} v;
683 
684 	unsigned int lv = sizeof(int);
685 	int len;
686 
687 	if (get_user(len, optlen))
688 		return -EFAULT;
689 	if (len < 0)
690 		return -EINVAL;
691 
692 	switch(optname) {
693 	case SO_DEBUG:
694 		v.val = sock_flag(sk, SOCK_DBG);
695 		break;
696 
697 	case SO_DONTROUTE:
698 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
699 		break;
700 
701 	case SO_BROADCAST:
702 		v.val = !!sock_flag(sk, SOCK_BROADCAST);
703 		break;
704 
705 	case SO_SNDBUF:
706 		v.val = sk->sk_sndbuf;
707 		break;
708 
709 	case SO_RCVBUF:
710 		v.val = sk->sk_rcvbuf;
711 		break;
712 
713 	case SO_REUSEADDR:
714 		v.val = sk->sk_reuse;
715 		break;
716 
717 	case SO_KEEPALIVE:
718 		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
719 		break;
720 
721 	case SO_TYPE:
722 		v.val = sk->sk_type;
723 		break;
724 
725 	case SO_ERROR:
726 		v.val = -sock_error(sk);
727 		if (v.val==0)
728 			v.val = xchg(&sk->sk_err_soft, 0);
729 		break;
730 
731 	case SO_OOBINLINE:
732 		v.val = !!sock_flag(sk, SOCK_URGINLINE);
733 		break;
734 
735 	case SO_NO_CHECK:
736 		v.val = sk->sk_no_check;
737 		break;
738 
739 	case SO_PRIORITY:
740 		v.val = sk->sk_priority;
741 		break;
742 
743 	case SO_LINGER:
744 		lv		= sizeof(v.ling);
745 		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
746 		v.ling.l_linger	= sk->sk_lingertime / HZ;
747 		break;
748 
749 	case SO_BSDCOMPAT:
750 		sock_warn_obsolete_bsdism("getsockopt");
751 		break;
752 
753 	case SO_TIMESTAMP:
754 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
755 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
756 		break;
757 
758 	case SO_TIMESTAMPNS:
759 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
760 		break;
761 
762 	case SO_RCVTIMEO:
763 		lv=sizeof(struct timeval);
764 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
765 			v.tm.tv_sec = 0;
766 			v.tm.tv_usec = 0;
767 		} else {
768 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
769 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
770 		}
771 		break;
772 
773 	case SO_SNDTIMEO:
774 		lv=sizeof(struct timeval);
775 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
776 			v.tm.tv_sec = 0;
777 			v.tm.tv_usec = 0;
778 		} else {
779 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
780 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
781 		}
782 		break;
783 
784 	case SO_RCVLOWAT:
785 		v.val = sk->sk_rcvlowat;
786 		break;
787 
788 	case SO_SNDLOWAT:
789 		v.val=1;
790 		break;
791 
792 	case SO_PASSCRED:
793 		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
794 		break;
795 
796 	case SO_PEERCRED:
797 		if (len > sizeof(sk->sk_peercred))
798 			len = sizeof(sk->sk_peercred);
799 		if (copy_to_user(optval, &sk->sk_peercred, len))
800 			return -EFAULT;
801 		goto lenout;
802 
803 	case SO_PEERNAME:
804 	{
805 		char address[128];
806 
807 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
808 			return -ENOTCONN;
809 		if (lv < len)
810 			return -EINVAL;
811 		if (copy_to_user(optval, address, len))
812 			return -EFAULT;
813 		goto lenout;
814 	}
815 
816 	/* Dubious BSD thing... Probably nobody even uses it, but
817 	 * the UNIX standard wants it for whatever reason... -DaveM
818 	 */
819 	case SO_ACCEPTCONN:
820 		v.val = sk->sk_state == TCP_LISTEN;
821 		break;
822 
823 	case SO_PASSSEC:
824 		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
825 		break;
826 
827 	case SO_PEERSEC:
828 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
829 
830 	default:
831 		return -ENOPROTOOPT;
832 	}
833 
834 	if (len > lv)
835 		len = lv;
836 	if (copy_to_user(optval, &v, len))
837 		return -EFAULT;
838 lenout:
839 	if (put_user(len, optlen))
840 		return -EFAULT;
841 	return 0;
842 }
843 
844 /*
845  * Initialize an sk_lock.
846  *
847  * (We also register the sk_lock with the lock validator.)
848  */
849 static inline void sock_lock_init(struct sock *sk)
850 {
851 	sock_lock_init_class_and_name(sk,
852 			af_family_slock_key_strings[sk->sk_family],
853 			af_family_slock_keys + sk->sk_family,
854 			af_family_key_strings[sk->sk_family],
855 			af_family_keys + sk->sk_family);
856 }
857 
858 /**
859  *	sk_alloc - All socket objects are allocated here
860  *	@family: protocol family
861  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
862  *	@prot: struct proto associated with this new sock instance
863  *	@zero_it: if we should zero the newly allocated sock
864  */
865 struct sock *sk_alloc(int family, gfp_t priority,
866 		      struct proto *prot, int zero_it)
867 {
868 	struct sock *sk = NULL;
869 	struct kmem_cache *slab = prot->slab;
870 
871 	if (slab != NULL)
872 		sk = kmem_cache_alloc(slab, priority);
873 	else
874 		sk = kmalloc(prot->obj_size, priority);
875 
876 	if (sk) {
877 		if (zero_it) {
878 			memset(sk, 0, prot->obj_size);
879 			sk->sk_family = family;
880 			/*
881 			 * See comment in struct sock definition to understand
882 			 * why we need sk_prot_creator -acme
883 			 */
884 			sk->sk_prot = sk->sk_prot_creator = prot;
885 			sock_lock_init(sk);
886 		}
887 
888 		if (security_sk_alloc(sk, family, priority))
889 			goto out_free;
890 
891 		if (!try_module_get(prot->owner))
892 			goto out_free;
893 	}
894 	return sk;
895 
896 out_free:
897 	if (slab != NULL)
898 		kmem_cache_free(slab, sk);
899 	else
900 		kfree(sk);
901 	return NULL;
902 }
903 
904 void sk_free(struct sock *sk)
905 {
906 	struct sk_filter *filter;
907 	struct module *owner = sk->sk_prot_creator->owner;
908 
909 	if (sk->sk_destruct)
910 		sk->sk_destruct(sk);
911 
912 	filter = rcu_dereference(sk->sk_filter);
913 	if (filter) {
914 		sk_filter_release(sk, filter);
915 		rcu_assign_pointer(sk->sk_filter, NULL);
916 	}
917 
918 	sock_disable_timestamp(sk);
919 
920 	if (atomic_read(&sk->sk_omem_alloc))
921 		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
922 		       __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
923 
924 	security_sk_free(sk);
925 	if (sk->sk_prot_creator->slab != NULL)
926 		kmem_cache_free(sk->sk_prot_creator->slab, sk);
927 	else
928 		kfree(sk);
929 	module_put(owner);
930 }
931 
932 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
933 {
934 	struct sock *newsk = sk_alloc(sk->sk_family, priority, sk->sk_prot, 0);
935 
936 	if (newsk != NULL) {
937 		struct sk_filter *filter;
938 
939 		sock_copy(newsk, sk);
940 
941 		/* SANITY */
942 		sk_node_init(&newsk->sk_node);
943 		sock_lock_init(newsk);
944 		bh_lock_sock(newsk);
945 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
946 
947 		atomic_set(&newsk->sk_rmem_alloc, 0);
948 		atomic_set(&newsk->sk_wmem_alloc, 0);
949 		atomic_set(&newsk->sk_omem_alloc, 0);
950 		skb_queue_head_init(&newsk->sk_receive_queue);
951 		skb_queue_head_init(&newsk->sk_write_queue);
952 #ifdef CONFIG_NET_DMA
953 		skb_queue_head_init(&newsk->sk_async_wait_queue);
954 #endif
955 
956 		rwlock_init(&newsk->sk_dst_lock);
957 		rwlock_init(&newsk->sk_callback_lock);
958 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
959 				af_callback_keys + newsk->sk_family,
960 				af_family_clock_key_strings[newsk->sk_family]);
961 
962 		newsk->sk_dst_cache	= NULL;
963 		newsk->sk_wmem_queued	= 0;
964 		newsk->sk_forward_alloc = 0;
965 		newsk->sk_send_head	= NULL;
966 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
967 
968 		sock_reset_flag(newsk, SOCK_DONE);
969 		skb_queue_head_init(&newsk->sk_error_queue);
970 
971 		filter = newsk->sk_filter;
972 		if (filter != NULL)
973 			sk_filter_charge(newsk, filter);
974 
975 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
976 			/* It is still raw copy of parent, so invalidate
977 			 * destructor and make plain sk_free() */
978 			newsk->sk_destruct = NULL;
979 			sk_free(newsk);
980 			newsk = NULL;
981 			goto out;
982 		}
983 
984 		newsk->sk_err	   = 0;
985 		newsk->sk_priority = 0;
986 		atomic_set(&newsk->sk_refcnt, 2);
987 
988 		/*
989 		 * Increment the counter in the same struct proto as the master
990 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
991 		 * is the same as sk->sk_prot->socks, as this field was copied
992 		 * with memcpy).
993 		 *
994 		 * This _changes_ the previous behaviour, where
995 		 * tcp_create_openreq_child always was incrementing the
996 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
997 		 * to be taken into account in all callers. -acme
998 		 */
999 		sk_refcnt_debug_inc(newsk);
1000 		newsk->sk_socket = NULL;
1001 		newsk->sk_sleep	 = NULL;
1002 
1003 		if (newsk->sk_prot->sockets_allocated)
1004 			atomic_inc(newsk->sk_prot->sockets_allocated);
1005 	}
1006 out:
1007 	return newsk;
1008 }
1009 
1010 EXPORT_SYMBOL_GPL(sk_clone);
1011 
1012 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1013 {
1014 	__sk_dst_set(sk, dst);
1015 	sk->sk_route_caps = dst->dev->features;
1016 	if (sk->sk_route_caps & NETIF_F_GSO)
1017 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1018 	if (sk_can_gso(sk)) {
1019 		if (dst->header_len)
1020 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1021 		else
1022 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1023 	}
1024 }
1025 EXPORT_SYMBOL_GPL(sk_setup_caps);
1026 
1027 void __init sk_init(void)
1028 {
1029 	if (num_physpages <= 4096) {
1030 		sysctl_wmem_max = 32767;
1031 		sysctl_rmem_max = 32767;
1032 		sysctl_wmem_default = 32767;
1033 		sysctl_rmem_default = 32767;
1034 	} else if (num_physpages >= 131072) {
1035 		sysctl_wmem_max = 131071;
1036 		sysctl_rmem_max = 131071;
1037 	}
1038 }
1039 
1040 /*
1041  *	Simple resource managers for sockets.
1042  */
1043 
1044 
1045 /*
1046  * Write buffer destructor automatically called from kfree_skb.
1047  */
1048 void sock_wfree(struct sk_buff *skb)
1049 {
1050 	struct sock *sk = skb->sk;
1051 
1052 	/* In case it might be waiting for more memory. */
1053 	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1054 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1055 		sk->sk_write_space(sk);
1056 	sock_put(sk);
1057 }
1058 
1059 /*
1060  * Read buffer destructor automatically called from kfree_skb.
1061  */
1062 void sock_rfree(struct sk_buff *skb)
1063 {
1064 	struct sock *sk = skb->sk;
1065 
1066 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1067 }
1068 
1069 
1070 int sock_i_uid(struct sock *sk)
1071 {
1072 	int uid;
1073 
1074 	read_lock(&sk->sk_callback_lock);
1075 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1076 	read_unlock(&sk->sk_callback_lock);
1077 	return uid;
1078 }
1079 
1080 unsigned long sock_i_ino(struct sock *sk)
1081 {
1082 	unsigned long ino;
1083 
1084 	read_lock(&sk->sk_callback_lock);
1085 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1086 	read_unlock(&sk->sk_callback_lock);
1087 	return ino;
1088 }
1089 
1090 /*
1091  * Allocate a skb from the socket's send buffer.
1092  */
1093 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1094 			     gfp_t priority)
1095 {
1096 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1097 		struct sk_buff * skb = alloc_skb(size, priority);
1098 		if (skb) {
1099 			skb_set_owner_w(skb, sk);
1100 			return skb;
1101 		}
1102 	}
1103 	return NULL;
1104 }
1105 
1106 /*
1107  * Allocate a skb from the socket's receive buffer.
1108  */
1109 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1110 			     gfp_t priority)
1111 {
1112 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1113 		struct sk_buff *skb = alloc_skb(size, priority);
1114 		if (skb) {
1115 			skb_set_owner_r(skb, sk);
1116 			return skb;
1117 		}
1118 	}
1119 	return NULL;
1120 }
1121 
1122 /*
1123  * Allocate a memory block from the socket's option memory buffer.
1124  */
1125 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1126 {
1127 	if ((unsigned)size <= sysctl_optmem_max &&
1128 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1129 		void *mem;
1130 		/* First do the add, to avoid the race if kmalloc
1131 		 * might sleep.
1132 		 */
1133 		atomic_add(size, &sk->sk_omem_alloc);
1134 		mem = kmalloc(size, priority);
1135 		if (mem)
1136 			return mem;
1137 		atomic_sub(size, &sk->sk_omem_alloc);
1138 	}
1139 	return NULL;
1140 }
1141 
1142 /*
1143  * Free an option memory block.
1144  */
1145 void sock_kfree_s(struct sock *sk, void *mem, int size)
1146 {
1147 	kfree(mem);
1148 	atomic_sub(size, &sk->sk_omem_alloc);
1149 }
1150 
1151 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1152    I think, these locks should be removed for datagram sockets.
1153  */
1154 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1155 {
1156 	DEFINE_WAIT(wait);
1157 
1158 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1159 	for (;;) {
1160 		if (!timeo)
1161 			break;
1162 		if (signal_pending(current))
1163 			break;
1164 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1165 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1166 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1167 			break;
1168 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1169 			break;
1170 		if (sk->sk_err)
1171 			break;
1172 		timeo = schedule_timeout(timeo);
1173 	}
1174 	finish_wait(sk->sk_sleep, &wait);
1175 	return timeo;
1176 }
1177 
1178 
1179 /*
1180  *	Generic send/receive buffer handlers
1181  */
1182 
1183 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1184 					    unsigned long header_len,
1185 					    unsigned long data_len,
1186 					    int noblock, int *errcode)
1187 {
1188 	struct sk_buff *skb;
1189 	gfp_t gfp_mask;
1190 	long timeo;
1191 	int err;
1192 
1193 	gfp_mask = sk->sk_allocation;
1194 	if (gfp_mask & __GFP_WAIT)
1195 		gfp_mask |= __GFP_REPEAT;
1196 
1197 	timeo = sock_sndtimeo(sk, noblock);
1198 	while (1) {
1199 		err = sock_error(sk);
1200 		if (err != 0)
1201 			goto failure;
1202 
1203 		err = -EPIPE;
1204 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1205 			goto failure;
1206 
1207 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1208 			skb = alloc_skb(header_len, gfp_mask);
1209 			if (skb) {
1210 				int npages;
1211 				int i;
1212 
1213 				/* No pages, we're done... */
1214 				if (!data_len)
1215 					break;
1216 
1217 				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1218 				skb->truesize += data_len;
1219 				skb_shinfo(skb)->nr_frags = npages;
1220 				for (i = 0; i < npages; i++) {
1221 					struct page *page;
1222 					skb_frag_t *frag;
1223 
1224 					page = alloc_pages(sk->sk_allocation, 0);
1225 					if (!page) {
1226 						err = -ENOBUFS;
1227 						skb_shinfo(skb)->nr_frags = i;
1228 						kfree_skb(skb);
1229 						goto failure;
1230 					}
1231 
1232 					frag = &skb_shinfo(skb)->frags[i];
1233 					frag->page = page;
1234 					frag->page_offset = 0;
1235 					frag->size = (data_len >= PAGE_SIZE ?
1236 						      PAGE_SIZE :
1237 						      data_len);
1238 					data_len -= PAGE_SIZE;
1239 				}
1240 
1241 				/* Full success... */
1242 				break;
1243 			}
1244 			err = -ENOBUFS;
1245 			goto failure;
1246 		}
1247 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1248 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1249 		err = -EAGAIN;
1250 		if (!timeo)
1251 			goto failure;
1252 		if (signal_pending(current))
1253 			goto interrupted;
1254 		timeo = sock_wait_for_wmem(sk, timeo);
1255 	}
1256 
1257 	skb_set_owner_w(skb, sk);
1258 	return skb;
1259 
1260 interrupted:
1261 	err = sock_intr_errno(timeo);
1262 failure:
1263 	*errcode = err;
1264 	return NULL;
1265 }
1266 
1267 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1268 				    int noblock, int *errcode)
1269 {
1270 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1271 }
1272 
1273 static void __lock_sock(struct sock *sk)
1274 {
1275 	DEFINE_WAIT(wait);
1276 
1277 	for (;;) {
1278 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1279 					TASK_UNINTERRUPTIBLE);
1280 		spin_unlock_bh(&sk->sk_lock.slock);
1281 		schedule();
1282 		spin_lock_bh(&sk->sk_lock.slock);
1283 		if (!sock_owned_by_user(sk))
1284 			break;
1285 	}
1286 	finish_wait(&sk->sk_lock.wq, &wait);
1287 }
1288 
1289 static void __release_sock(struct sock *sk)
1290 {
1291 	struct sk_buff *skb = sk->sk_backlog.head;
1292 
1293 	do {
1294 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1295 		bh_unlock_sock(sk);
1296 
1297 		do {
1298 			struct sk_buff *next = skb->next;
1299 
1300 			skb->next = NULL;
1301 			sk->sk_backlog_rcv(sk, skb);
1302 
1303 			/*
1304 			 * We are in process context here with softirqs
1305 			 * disabled, use cond_resched_softirq() to preempt.
1306 			 * This is safe to do because we've taken the backlog
1307 			 * queue private:
1308 			 */
1309 			cond_resched_softirq();
1310 
1311 			skb = next;
1312 		} while (skb != NULL);
1313 
1314 		bh_lock_sock(sk);
1315 	} while ((skb = sk->sk_backlog.head) != NULL);
1316 }
1317 
1318 /**
1319  * sk_wait_data - wait for data to arrive at sk_receive_queue
1320  * @sk:    sock to wait on
1321  * @timeo: for how long
1322  *
1323  * Now socket state including sk->sk_err is changed only under lock,
1324  * hence we may omit checks after joining wait queue.
1325  * We check receive queue before schedule() only as optimization;
1326  * it is very likely that release_sock() added new data.
1327  */
1328 int sk_wait_data(struct sock *sk, long *timeo)
1329 {
1330 	int rc;
1331 	DEFINE_WAIT(wait);
1332 
1333 	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1334 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1335 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1336 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1337 	finish_wait(sk->sk_sleep, &wait);
1338 	return rc;
1339 }
1340 
1341 EXPORT_SYMBOL(sk_wait_data);
1342 
1343 /*
1344  * Set of default routines for initialising struct proto_ops when
1345  * the protocol does not support a particular function. In certain
1346  * cases where it makes no sense for a protocol to have a "do nothing"
1347  * function, some default processing is provided.
1348  */
1349 
1350 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1351 {
1352 	return -EOPNOTSUPP;
1353 }
1354 
1355 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1356 		    int len, int flags)
1357 {
1358 	return -EOPNOTSUPP;
1359 }
1360 
1361 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1362 {
1363 	return -EOPNOTSUPP;
1364 }
1365 
1366 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1367 {
1368 	return -EOPNOTSUPP;
1369 }
1370 
1371 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1372 		    int *len, int peer)
1373 {
1374 	return -EOPNOTSUPP;
1375 }
1376 
1377 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1378 {
1379 	return 0;
1380 }
1381 
1382 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1383 {
1384 	return -EOPNOTSUPP;
1385 }
1386 
1387 int sock_no_listen(struct socket *sock, int backlog)
1388 {
1389 	return -EOPNOTSUPP;
1390 }
1391 
1392 int sock_no_shutdown(struct socket *sock, int how)
1393 {
1394 	return -EOPNOTSUPP;
1395 }
1396 
1397 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1398 		    char __user *optval, int optlen)
1399 {
1400 	return -EOPNOTSUPP;
1401 }
1402 
1403 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1404 		    char __user *optval, int __user *optlen)
1405 {
1406 	return -EOPNOTSUPP;
1407 }
1408 
1409 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1410 		    size_t len)
1411 {
1412 	return -EOPNOTSUPP;
1413 }
1414 
1415 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1416 		    size_t len, int flags)
1417 {
1418 	return -EOPNOTSUPP;
1419 }
1420 
1421 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1422 {
1423 	/* Mirror missing mmap method error code */
1424 	return -ENODEV;
1425 }
1426 
1427 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1428 {
1429 	ssize_t res;
1430 	struct msghdr msg = {.msg_flags = flags};
1431 	struct kvec iov;
1432 	char *kaddr = kmap(page);
1433 	iov.iov_base = kaddr + offset;
1434 	iov.iov_len = size;
1435 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1436 	kunmap(page);
1437 	return res;
1438 }
1439 
1440 /*
1441  *	Default Socket Callbacks
1442  */
1443 
1444 static void sock_def_wakeup(struct sock *sk)
1445 {
1446 	read_lock(&sk->sk_callback_lock);
1447 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1448 		wake_up_interruptible_all(sk->sk_sleep);
1449 	read_unlock(&sk->sk_callback_lock);
1450 }
1451 
1452 static void sock_def_error_report(struct sock *sk)
1453 {
1454 	read_lock(&sk->sk_callback_lock);
1455 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1456 		wake_up_interruptible(sk->sk_sleep);
1457 	sk_wake_async(sk,0,POLL_ERR);
1458 	read_unlock(&sk->sk_callback_lock);
1459 }
1460 
1461 static void sock_def_readable(struct sock *sk, int len)
1462 {
1463 	read_lock(&sk->sk_callback_lock);
1464 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1465 		wake_up_interruptible(sk->sk_sleep);
1466 	sk_wake_async(sk,1,POLL_IN);
1467 	read_unlock(&sk->sk_callback_lock);
1468 }
1469 
1470 static void sock_def_write_space(struct sock *sk)
1471 {
1472 	read_lock(&sk->sk_callback_lock);
1473 
1474 	/* Do not wake up a writer until he can make "significant"
1475 	 * progress.  --DaveM
1476 	 */
1477 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1478 		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1479 			wake_up_interruptible(sk->sk_sleep);
1480 
1481 		/* Should agree with poll, otherwise some programs break */
1482 		if (sock_writeable(sk))
1483 			sk_wake_async(sk, 2, POLL_OUT);
1484 	}
1485 
1486 	read_unlock(&sk->sk_callback_lock);
1487 }
1488 
1489 static void sock_def_destruct(struct sock *sk)
1490 {
1491 	kfree(sk->sk_protinfo);
1492 }
1493 
1494 void sk_send_sigurg(struct sock *sk)
1495 {
1496 	if (sk->sk_socket && sk->sk_socket->file)
1497 		if (send_sigurg(&sk->sk_socket->file->f_owner))
1498 			sk_wake_async(sk, 3, POLL_PRI);
1499 }
1500 
1501 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1502 		    unsigned long expires)
1503 {
1504 	if (!mod_timer(timer, expires))
1505 		sock_hold(sk);
1506 }
1507 
1508 EXPORT_SYMBOL(sk_reset_timer);
1509 
1510 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1511 {
1512 	if (timer_pending(timer) && del_timer(timer))
1513 		__sock_put(sk);
1514 }
1515 
1516 EXPORT_SYMBOL(sk_stop_timer);
1517 
1518 void sock_init_data(struct socket *sock, struct sock *sk)
1519 {
1520 	skb_queue_head_init(&sk->sk_receive_queue);
1521 	skb_queue_head_init(&sk->sk_write_queue);
1522 	skb_queue_head_init(&sk->sk_error_queue);
1523 #ifdef CONFIG_NET_DMA
1524 	skb_queue_head_init(&sk->sk_async_wait_queue);
1525 #endif
1526 
1527 	sk->sk_send_head	=	NULL;
1528 
1529 	init_timer(&sk->sk_timer);
1530 
1531 	sk->sk_allocation	=	GFP_KERNEL;
1532 	sk->sk_rcvbuf		=	sysctl_rmem_default;
1533 	sk->sk_sndbuf		=	sysctl_wmem_default;
1534 	sk->sk_state		=	TCP_CLOSE;
1535 	sk->sk_socket		=	sock;
1536 
1537 	sock_set_flag(sk, SOCK_ZAPPED);
1538 
1539 	if (sock) {
1540 		sk->sk_type	=	sock->type;
1541 		sk->sk_sleep	=	&sock->wait;
1542 		sock->sk	=	sk;
1543 	} else
1544 		sk->sk_sleep	=	NULL;
1545 
1546 	rwlock_init(&sk->sk_dst_lock);
1547 	rwlock_init(&sk->sk_callback_lock);
1548 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1549 			af_callback_keys + sk->sk_family,
1550 			af_family_clock_key_strings[sk->sk_family]);
1551 
1552 	sk->sk_state_change	=	sock_def_wakeup;
1553 	sk->sk_data_ready	=	sock_def_readable;
1554 	sk->sk_write_space	=	sock_def_write_space;
1555 	sk->sk_error_report	=	sock_def_error_report;
1556 	sk->sk_destruct		=	sock_def_destruct;
1557 
1558 	sk->sk_sndmsg_page	=	NULL;
1559 	sk->sk_sndmsg_off	=	0;
1560 
1561 	sk->sk_peercred.pid 	=	0;
1562 	sk->sk_peercred.uid	=	-1;
1563 	sk->sk_peercred.gid	=	-1;
1564 	sk->sk_write_pending	=	0;
1565 	sk->sk_rcvlowat		=	1;
1566 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1567 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1568 
1569 	sk->sk_stamp = ktime_set(-1L, -1L);
1570 
1571 	atomic_set(&sk->sk_refcnt, 1);
1572 }
1573 
1574 void fastcall lock_sock_nested(struct sock *sk, int subclass)
1575 {
1576 	might_sleep();
1577 	spin_lock_bh(&sk->sk_lock.slock);
1578 	if (sk->sk_lock.owner)
1579 		__lock_sock(sk);
1580 	sk->sk_lock.owner = (void *)1;
1581 	spin_unlock(&sk->sk_lock.slock);
1582 	/*
1583 	 * The sk_lock has mutex_lock() semantics here:
1584 	 */
1585 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1586 	local_bh_enable();
1587 }
1588 
1589 EXPORT_SYMBOL(lock_sock_nested);
1590 
1591 void fastcall release_sock(struct sock *sk)
1592 {
1593 	/*
1594 	 * The sk_lock has mutex_unlock() semantics:
1595 	 */
1596 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1597 
1598 	spin_lock_bh(&sk->sk_lock.slock);
1599 	if (sk->sk_backlog.tail)
1600 		__release_sock(sk);
1601 	sk->sk_lock.owner = NULL;
1602 	if (waitqueue_active(&sk->sk_lock.wq))
1603 		wake_up(&sk->sk_lock.wq);
1604 	spin_unlock_bh(&sk->sk_lock.slock);
1605 }
1606 EXPORT_SYMBOL(release_sock);
1607 
1608 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1609 {
1610 	struct timeval tv;
1611 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1612 		sock_enable_timestamp(sk);
1613 	tv = ktime_to_timeval(sk->sk_stamp);
1614 	if (tv.tv_sec == -1)
1615 		return -ENOENT;
1616 	if (tv.tv_sec == 0) {
1617 		sk->sk_stamp = ktime_get_real();
1618 		tv = ktime_to_timeval(sk->sk_stamp);
1619 	}
1620 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1621 }
1622 EXPORT_SYMBOL(sock_get_timestamp);
1623 
1624 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1625 {
1626 	struct timespec ts;
1627 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1628 		sock_enable_timestamp(sk);
1629 	ts = ktime_to_timespec(sk->sk_stamp);
1630 	if (ts.tv_sec == -1)
1631 		return -ENOENT;
1632 	if (ts.tv_sec == 0) {
1633 		sk->sk_stamp = ktime_get_real();
1634 		ts = ktime_to_timespec(sk->sk_stamp);
1635 	}
1636 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1637 }
1638 EXPORT_SYMBOL(sock_get_timestampns);
1639 
1640 void sock_enable_timestamp(struct sock *sk)
1641 {
1642 	if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1643 		sock_set_flag(sk, SOCK_TIMESTAMP);
1644 		net_enable_timestamp();
1645 	}
1646 }
1647 EXPORT_SYMBOL(sock_enable_timestamp);
1648 
1649 /*
1650  *	Get a socket option on an socket.
1651  *
1652  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1653  *	asynchronous errors should be reported by getsockopt. We assume
1654  *	this means if you specify SO_ERROR (otherwise whats the point of it).
1655  */
1656 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1657 			   char __user *optval, int __user *optlen)
1658 {
1659 	struct sock *sk = sock->sk;
1660 
1661 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1662 }
1663 
1664 EXPORT_SYMBOL(sock_common_getsockopt);
1665 
1666 #ifdef CONFIG_COMPAT
1667 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1668 				  char __user *optval, int __user *optlen)
1669 {
1670 	struct sock *sk = sock->sk;
1671 
1672 	if (sk->sk_prot->compat_getsockopt != NULL)
1673 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1674 						      optval, optlen);
1675 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1676 }
1677 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1678 #endif
1679 
1680 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1681 			struct msghdr *msg, size_t size, int flags)
1682 {
1683 	struct sock *sk = sock->sk;
1684 	int addr_len = 0;
1685 	int err;
1686 
1687 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1688 				   flags & ~MSG_DONTWAIT, &addr_len);
1689 	if (err >= 0)
1690 		msg->msg_namelen = addr_len;
1691 	return err;
1692 }
1693 
1694 EXPORT_SYMBOL(sock_common_recvmsg);
1695 
1696 /*
1697  *	Set socket options on an inet socket.
1698  */
1699 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1700 			   char __user *optval, int optlen)
1701 {
1702 	struct sock *sk = sock->sk;
1703 
1704 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1705 }
1706 
1707 EXPORT_SYMBOL(sock_common_setsockopt);
1708 
1709 #ifdef CONFIG_COMPAT
1710 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1711 				  char __user *optval, int optlen)
1712 {
1713 	struct sock *sk = sock->sk;
1714 
1715 	if (sk->sk_prot->compat_setsockopt != NULL)
1716 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1717 						      optval, optlen);
1718 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1719 }
1720 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1721 #endif
1722 
1723 void sk_common_release(struct sock *sk)
1724 {
1725 	if (sk->sk_prot->destroy)
1726 		sk->sk_prot->destroy(sk);
1727 
1728 	/*
1729 	 * Observation: when sock_common_release is called, processes have
1730 	 * no access to socket. But net still has.
1731 	 * Step one, detach it from networking:
1732 	 *
1733 	 * A. Remove from hash tables.
1734 	 */
1735 
1736 	sk->sk_prot->unhash(sk);
1737 
1738 	/*
1739 	 * In this point socket cannot receive new packets, but it is possible
1740 	 * that some packets are in flight because some CPU runs receiver and
1741 	 * did hash table lookup before we unhashed socket. They will achieve
1742 	 * receive queue and will be purged by socket destructor.
1743 	 *
1744 	 * Also we still have packets pending on receive queue and probably,
1745 	 * our own packets waiting in device queues. sock_destroy will drain
1746 	 * receive queue, but transmitted packets will delay socket destruction
1747 	 * until the last reference will be released.
1748 	 */
1749 
1750 	sock_orphan(sk);
1751 
1752 	xfrm_sk_free_policy(sk);
1753 
1754 	sk_refcnt_debug_release(sk);
1755 	sock_put(sk);
1756 }
1757 
1758 EXPORT_SYMBOL(sk_common_release);
1759 
1760 static DEFINE_RWLOCK(proto_list_lock);
1761 static LIST_HEAD(proto_list);
1762 
1763 int proto_register(struct proto *prot, int alloc_slab)
1764 {
1765 	char *request_sock_slab_name = NULL;
1766 	char *timewait_sock_slab_name;
1767 	int rc = -ENOBUFS;
1768 
1769 	if (alloc_slab) {
1770 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1771 					       SLAB_HWCACHE_ALIGN, NULL);
1772 
1773 		if (prot->slab == NULL) {
1774 			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1775 			       prot->name);
1776 			goto out;
1777 		}
1778 
1779 		if (prot->rsk_prot != NULL) {
1780 			static const char mask[] = "request_sock_%s";
1781 
1782 			request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1783 			if (request_sock_slab_name == NULL)
1784 				goto out_free_sock_slab;
1785 
1786 			sprintf(request_sock_slab_name, mask, prot->name);
1787 			prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1788 								 prot->rsk_prot->obj_size, 0,
1789 								 SLAB_HWCACHE_ALIGN, NULL);
1790 
1791 			if (prot->rsk_prot->slab == NULL) {
1792 				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1793 				       prot->name);
1794 				goto out_free_request_sock_slab_name;
1795 			}
1796 		}
1797 
1798 		if (prot->twsk_prot != NULL) {
1799 			static const char mask[] = "tw_sock_%s";
1800 
1801 			timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1802 
1803 			if (timewait_sock_slab_name == NULL)
1804 				goto out_free_request_sock_slab;
1805 
1806 			sprintf(timewait_sock_slab_name, mask, prot->name);
1807 			prot->twsk_prot->twsk_slab =
1808 				kmem_cache_create(timewait_sock_slab_name,
1809 						  prot->twsk_prot->twsk_obj_size,
1810 						  0, SLAB_HWCACHE_ALIGN,
1811 						  NULL);
1812 			if (prot->twsk_prot->twsk_slab == NULL)
1813 				goto out_free_timewait_sock_slab_name;
1814 		}
1815 	}
1816 
1817 	write_lock(&proto_list_lock);
1818 	list_add(&prot->node, &proto_list);
1819 	write_unlock(&proto_list_lock);
1820 	rc = 0;
1821 out:
1822 	return rc;
1823 out_free_timewait_sock_slab_name:
1824 	kfree(timewait_sock_slab_name);
1825 out_free_request_sock_slab:
1826 	if (prot->rsk_prot && prot->rsk_prot->slab) {
1827 		kmem_cache_destroy(prot->rsk_prot->slab);
1828 		prot->rsk_prot->slab = NULL;
1829 	}
1830 out_free_request_sock_slab_name:
1831 	kfree(request_sock_slab_name);
1832 out_free_sock_slab:
1833 	kmem_cache_destroy(prot->slab);
1834 	prot->slab = NULL;
1835 	goto out;
1836 }
1837 
1838 EXPORT_SYMBOL(proto_register);
1839 
1840 void proto_unregister(struct proto *prot)
1841 {
1842 	write_lock(&proto_list_lock);
1843 	list_del(&prot->node);
1844 	write_unlock(&proto_list_lock);
1845 
1846 	if (prot->slab != NULL) {
1847 		kmem_cache_destroy(prot->slab);
1848 		prot->slab = NULL;
1849 	}
1850 
1851 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1852 		const char *name = kmem_cache_name(prot->rsk_prot->slab);
1853 
1854 		kmem_cache_destroy(prot->rsk_prot->slab);
1855 		kfree(name);
1856 		prot->rsk_prot->slab = NULL;
1857 	}
1858 
1859 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1860 		const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1861 
1862 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1863 		kfree(name);
1864 		prot->twsk_prot->twsk_slab = NULL;
1865 	}
1866 }
1867 
1868 EXPORT_SYMBOL(proto_unregister);
1869 
1870 #ifdef CONFIG_PROC_FS
1871 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1872 {
1873 	read_lock(&proto_list_lock);
1874 	return seq_list_start_head(&proto_list, *pos);
1875 }
1876 
1877 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1878 {
1879 	return seq_list_next(v, &proto_list, pos);
1880 }
1881 
1882 static void proto_seq_stop(struct seq_file *seq, void *v)
1883 {
1884 	read_unlock(&proto_list_lock);
1885 }
1886 
1887 static char proto_method_implemented(const void *method)
1888 {
1889 	return method == NULL ? 'n' : 'y';
1890 }
1891 
1892 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1893 {
1894 	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
1895 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1896 		   proto->name,
1897 		   proto->obj_size,
1898 		   proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1899 		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1900 		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1901 		   proto->max_header,
1902 		   proto->slab == NULL ? "no" : "yes",
1903 		   module_name(proto->owner),
1904 		   proto_method_implemented(proto->close),
1905 		   proto_method_implemented(proto->connect),
1906 		   proto_method_implemented(proto->disconnect),
1907 		   proto_method_implemented(proto->accept),
1908 		   proto_method_implemented(proto->ioctl),
1909 		   proto_method_implemented(proto->init),
1910 		   proto_method_implemented(proto->destroy),
1911 		   proto_method_implemented(proto->shutdown),
1912 		   proto_method_implemented(proto->setsockopt),
1913 		   proto_method_implemented(proto->getsockopt),
1914 		   proto_method_implemented(proto->sendmsg),
1915 		   proto_method_implemented(proto->recvmsg),
1916 		   proto_method_implemented(proto->sendpage),
1917 		   proto_method_implemented(proto->bind),
1918 		   proto_method_implemented(proto->backlog_rcv),
1919 		   proto_method_implemented(proto->hash),
1920 		   proto_method_implemented(proto->unhash),
1921 		   proto_method_implemented(proto->get_port),
1922 		   proto_method_implemented(proto->enter_memory_pressure));
1923 }
1924 
1925 static int proto_seq_show(struct seq_file *seq, void *v)
1926 {
1927 	if (v == &proto_list)
1928 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1929 			   "protocol",
1930 			   "size",
1931 			   "sockets",
1932 			   "memory",
1933 			   "press",
1934 			   "maxhdr",
1935 			   "slab",
1936 			   "module",
1937 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1938 	else
1939 		proto_seq_printf(seq, list_entry(v, struct proto, node));
1940 	return 0;
1941 }
1942 
1943 static const struct seq_operations proto_seq_ops = {
1944 	.start  = proto_seq_start,
1945 	.next   = proto_seq_next,
1946 	.stop   = proto_seq_stop,
1947 	.show   = proto_seq_show,
1948 };
1949 
1950 static int proto_seq_open(struct inode *inode, struct file *file)
1951 {
1952 	return seq_open(file, &proto_seq_ops);
1953 }
1954 
1955 static const struct file_operations proto_seq_fops = {
1956 	.owner		= THIS_MODULE,
1957 	.open		= proto_seq_open,
1958 	.read		= seq_read,
1959 	.llseek		= seq_lseek,
1960 	.release	= seq_release,
1961 };
1962 
1963 static int __init proto_init(void)
1964 {
1965 	/* register /proc/net/protocols */
1966 	return proc_net_fops_create("protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
1967 }
1968 
1969 subsys_initcall(proto_init);
1970 
1971 #endif /* PROC_FS */
1972 
1973 EXPORT_SYMBOL(sk_alloc);
1974 EXPORT_SYMBOL(sk_free);
1975 EXPORT_SYMBOL(sk_send_sigurg);
1976 EXPORT_SYMBOL(sock_alloc_send_skb);
1977 EXPORT_SYMBOL(sock_init_data);
1978 EXPORT_SYMBOL(sock_kfree_s);
1979 EXPORT_SYMBOL(sock_kmalloc);
1980 EXPORT_SYMBOL(sock_no_accept);
1981 EXPORT_SYMBOL(sock_no_bind);
1982 EXPORT_SYMBOL(sock_no_connect);
1983 EXPORT_SYMBOL(sock_no_getname);
1984 EXPORT_SYMBOL(sock_no_getsockopt);
1985 EXPORT_SYMBOL(sock_no_ioctl);
1986 EXPORT_SYMBOL(sock_no_listen);
1987 EXPORT_SYMBOL(sock_no_mmap);
1988 EXPORT_SYMBOL(sock_no_poll);
1989 EXPORT_SYMBOL(sock_no_recvmsg);
1990 EXPORT_SYMBOL(sock_no_sendmsg);
1991 EXPORT_SYMBOL(sock_no_sendpage);
1992 EXPORT_SYMBOL(sock_no_setsockopt);
1993 EXPORT_SYMBOL(sock_no_shutdown);
1994 EXPORT_SYMBOL(sock_no_socketpair);
1995 EXPORT_SYMBOL(sock_rfree);
1996 EXPORT_SYMBOL(sock_setsockopt);
1997 EXPORT_SYMBOL(sock_wfree);
1998 EXPORT_SYMBOL(sock_wmalloc);
1999 EXPORT_SYMBOL(sock_i_uid);
2000 EXPORT_SYMBOL(sock_i_ino);
2001 EXPORT_SYMBOL(sysctl_optmem_max);
2002 #ifdef CONFIG_SYSCTL
2003 EXPORT_SYMBOL(sysctl_rmem_max);
2004 EXPORT_SYMBOL(sysctl_wmem_max);
2005 #endif
2006