xref: /openbmc/linux/net/core/sock.c (revision b2441318)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/sched/mm.h>
106 #include <linux/timer.h>
107 #include <linux/string.h>
108 #include <linux/sockios.h>
109 #include <linux/net.h>
110 #include <linux/mm.h>
111 #include <linux/slab.h>
112 #include <linux/interrupt.h>
113 #include <linux/poll.h>
114 #include <linux/tcp.h>
115 #include <linux/init.h>
116 #include <linux/highmem.h>
117 #include <linux/user_namespace.h>
118 #include <linux/static_key.h>
119 #include <linux/memcontrol.h>
120 #include <linux/prefetch.h>
121 
122 #include <linux/uaccess.h>
123 
124 #include <linux/netdevice.h>
125 #include <net/protocol.h>
126 #include <linux/skbuff.h>
127 #include <net/net_namespace.h>
128 #include <net/request_sock.h>
129 #include <net/sock.h>
130 #include <linux/net_tstamp.h>
131 #include <net/xfrm.h>
132 #include <linux/ipsec.h>
133 #include <net/cls_cgroup.h>
134 #include <net/netprio_cgroup.h>
135 #include <linux/sock_diag.h>
136 
137 #include <linux/filter.h>
138 #include <net/sock_reuseport.h>
139 
140 #include <trace/events/sock.h>
141 
142 #include <net/tcp.h>
143 #include <net/busy_poll.h>
144 
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
147 
148 /**
149  * sk_ns_capable - General socket capability test
150  * @sk: Socket to use a capability on or through
151  * @user_ns: The user namespace of the capability to use
152  * @cap: The capability to use
153  *
154  * Test to see if the opener of the socket had when the socket was
155  * created and the current process has the capability @cap in the user
156  * namespace @user_ns.
157  */
158 bool sk_ns_capable(const struct sock *sk,
159 		   struct user_namespace *user_ns, int cap)
160 {
161 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162 		ns_capable(user_ns, cap);
163 }
164 EXPORT_SYMBOL(sk_ns_capable);
165 
166 /**
167  * sk_capable - Socket global capability test
168  * @sk: Socket to use a capability on or through
169  * @cap: The global capability to use
170  *
171  * Test to see if the opener of the socket had when the socket was
172  * created and the current process has the capability @cap in all user
173  * namespaces.
174  */
175 bool sk_capable(const struct sock *sk, int cap)
176 {
177 	return sk_ns_capable(sk, &init_user_ns, cap);
178 }
179 EXPORT_SYMBOL(sk_capable);
180 
181 /**
182  * sk_net_capable - Network namespace socket capability test
183  * @sk: Socket to use a capability on or through
184  * @cap: The capability to use
185  *
186  * Test to see if the opener of the socket had when the socket was created
187  * and the current process has the capability @cap over the network namespace
188  * the socket is a member of.
189  */
190 bool sk_net_capable(const struct sock *sk, int cap)
191 {
192 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193 }
194 EXPORT_SYMBOL(sk_net_capable);
195 
196 /*
197  * Each address family might have different locking rules, so we have
198  * one slock key per address family and separate keys for internal and
199  * userspace sockets.
200  */
201 static struct lock_class_key af_family_keys[AF_MAX];
202 static struct lock_class_key af_family_kern_keys[AF_MAX];
203 static struct lock_class_key af_family_slock_keys[AF_MAX];
204 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
205 
206 /*
207  * Make lock validator output more readable. (we pre-construct these
208  * strings build-time, so that runtime initialization of socket
209  * locks is fast):
210  */
211 
212 #define _sock_locks(x)						  \
213   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
214   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
215   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
216   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
217   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
218   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
219   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
220   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
221   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
222   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
223   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
224   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
225   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
226   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
227   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_MAX"
228 
229 static const char *const af_family_key_strings[AF_MAX+1] = {
230 	_sock_locks("sk_lock-")
231 };
232 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
233 	_sock_locks("slock-")
234 };
235 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
236 	_sock_locks("clock-")
237 };
238 
239 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
240 	_sock_locks("k-sk_lock-")
241 };
242 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
243 	_sock_locks("k-slock-")
244 };
245 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
246 	_sock_locks("k-clock-")
247 };
248 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
249   "rlock-AF_UNSPEC", "rlock-AF_UNIX"     , "rlock-AF_INET"     ,
250   "rlock-AF_AX25"  , "rlock-AF_IPX"      , "rlock-AF_APPLETALK",
251   "rlock-AF_NETROM", "rlock-AF_BRIDGE"   , "rlock-AF_ATMPVC"   ,
252   "rlock-AF_X25"   , "rlock-AF_INET6"    , "rlock-AF_ROSE"     ,
253   "rlock-AF_DECnet", "rlock-AF_NETBEUI"  , "rlock-AF_SECURITY" ,
254   "rlock-AF_KEY"   , "rlock-AF_NETLINK"  , "rlock-AF_PACKET"   ,
255   "rlock-AF_ASH"   , "rlock-AF_ECONET"   , "rlock-AF_ATMSVC"   ,
256   "rlock-AF_RDS"   , "rlock-AF_SNA"      , "rlock-AF_IRDA"     ,
257   "rlock-AF_PPPOX" , "rlock-AF_WANPIPE"  , "rlock-AF_LLC"      ,
258   "rlock-27"       , "rlock-28"          , "rlock-AF_CAN"      ,
259   "rlock-AF_TIPC"  , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV"     ,
260   "rlock-AF_RXRPC" , "rlock-AF_ISDN"     , "rlock-AF_PHONET"   ,
261   "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG"      ,
262   "rlock-AF_NFC"   , "rlock-AF_VSOCK"    , "rlock-AF_KCM"      ,
263   "rlock-AF_QIPCRTR", "rlock-AF_SMC"     , "rlock-AF_MAX"
264 };
265 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
266   "wlock-AF_UNSPEC", "wlock-AF_UNIX"     , "wlock-AF_INET"     ,
267   "wlock-AF_AX25"  , "wlock-AF_IPX"      , "wlock-AF_APPLETALK",
268   "wlock-AF_NETROM", "wlock-AF_BRIDGE"   , "wlock-AF_ATMPVC"   ,
269   "wlock-AF_X25"   , "wlock-AF_INET6"    , "wlock-AF_ROSE"     ,
270   "wlock-AF_DECnet", "wlock-AF_NETBEUI"  , "wlock-AF_SECURITY" ,
271   "wlock-AF_KEY"   , "wlock-AF_NETLINK"  , "wlock-AF_PACKET"   ,
272   "wlock-AF_ASH"   , "wlock-AF_ECONET"   , "wlock-AF_ATMSVC"   ,
273   "wlock-AF_RDS"   , "wlock-AF_SNA"      , "wlock-AF_IRDA"     ,
274   "wlock-AF_PPPOX" , "wlock-AF_WANPIPE"  , "wlock-AF_LLC"      ,
275   "wlock-27"       , "wlock-28"          , "wlock-AF_CAN"      ,
276   "wlock-AF_TIPC"  , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV"     ,
277   "wlock-AF_RXRPC" , "wlock-AF_ISDN"     , "wlock-AF_PHONET"   ,
278   "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG"      ,
279   "wlock-AF_NFC"   , "wlock-AF_VSOCK"    , "wlock-AF_KCM"      ,
280   "wlock-AF_QIPCRTR", "wlock-AF_SMC"     , "wlock-AF_MAX"
281 };
282 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
283   "elock-AF_UNSPEC", "elock-AF_UNIX"     , "elock-AF_INET"     ,
284   "elock-AF_AX25"  , "elock-AF_IPX"      , "elock-AF_APPLETALK",
285   "elock-AF_NETROM", "elock-AF_BRIDGE"   , "elock-AF_ATMPVC"   ,
286   "elock-AF_X25"   , "elock-AF_INET6"    , "elock-AF_ROSE"     ,
287   "elock-AF_DECnet", "elock-AF_NETBEUI"  , "elock-AF_SECURITY" ,
288   "elock-AF_KEY"   , "elock-AF_NETLINK"  , "elock-AF_PACKET"   ,
289   "elock-AF_ASH"   , "elock-AF_ECONET"   , "elock-AF_ATMSVC"   ,
290   "elock-AF_RDS"   , "elock-AF_SNA"      , "elock-AF_IRDA"     ,
291   "elock-AF_PPPOX" , "elock-AF_WANPIPE"  , "elock-AF_LLC"      ,
292   "elock-27"       , "elock-28"          , "elock-AF_CAN"      ,
293   "elock-AF_TIPC"  , "elock-AF_BLUETOOTH", "elock-AF_IUCV"     ,
294   "elock-AF_RXRPC" , "elock-AF_ISDN"     , "elock-AF_PHONET"   ,
295   "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG"      ,
296   "elock-AF_NFC"   , "elock-AF_VSOCK"    , "elock-AF_KCM"      ,
297   "elock-AF_QIPCRTR", "elock-AF_SMC"     , "elock-AF_MAX"
298 };
299 
300 /*
301  * sk_callback_lock and sk queues locking rules are per-address-family,
302  * so split the lock classes by using a per-AF key:
303  */
304 static struct lock_class_key af_callback_keys[AF_MAX];
305 static struct lock_class_key af_rlock_keys[AF_MAX];
306 static struct lock_class_key af_wlock_keys[AF_MAX];
307 static struct lock_class_key af_elock_keys[AF_MAX];
308 static struct lock_class_key af_kern_callback_keys[AF_MAX];
309 
310 /* Run time adjustable parameters. */
311 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
312 EXPORT_SYMBOL(sysctl_wmem_max);
313 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
314 EXPORT_SYMBOL(sysctl_rmem_max);
315 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
316 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
317 
318 /* Maximal space eaten by iovec or ancillary data plus some space */
319 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
320 EXPORT_SYMBOL(sysctl_optmem_max);
321 
322 int sysctl_tstamp_allow_data __read_mostly = 1;
323 
324 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
325 EXPORT_SYMBOL_GPL(memalloc_socks);
326 
327 /**
328  * sk_set_memalloc - sets %SOCK_MEMALLOC
329  * @sk: socket to set it on
330  *
331  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
332  * It's the responsibility of the admin to adjust min_free_kbytes
333  * to meet the requirements
334  */
335 void sk_set_memalloc(struct sock *sk)
336 {
337 	sock_set_flag(sk, SOCK_MEMALLOC);
338 	sk->sk_allocation |= __GFP_MEMALLOC;
339 	static_key_slow_inc(&memalloc_socks);
340 }
341 EXPORT_SYMBOL_GPL(sk_set_memalloc);
342 
343 void sk_clear_memalloc(struct sock *sk)
344 {
345 	sock_reset_flag(sk, SOCK_MEMALLOC);
346 	sk->sk_allocation &= ~__GFP_MEMALLOC;
347 	static_key_slow_dec(&memalloc_socks);
348 
349 	/*
350 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
351 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
352 	 * it has rmem allocations due to the last swapfile being deactivated
353 	 * but there is a risk that the socket is unusable due to exceeding
354 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
355 	 */
356 	sk_mem_reclaim(sk);
357 }
358 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
359 
360 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
361 {
362 	int ret;
363 	unsigned int noreclaim_flag;
364 
365 	/* these should have been dropped before queueing */
366 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
367 
368 	noreclaim_flag = memalloc_noreclaim_save();
369 	ret = sk->sk_backlog_rcv(sk, skb);
370 	memalloc_noreclaim_restore(noreclaim_flag);
371 
372 	return ret;
373 }
374 EXPORT_SYMBOL(__sk_backlog_rcv);
375 
376 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
377 {
378 	struct timeval tv;
379 
380 	if (optlen < sizeof(tv))
381 		return -EINVAL;
382 	if (copy_from_user(&tv, optval, sizeof(tv)))
383 		return -EFAULT;
384 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
385 		return -EDOM;
386 
387 	if (tv.tv_sec < 0) {
388 		static int warned __read_mostly;
389 
390 		*timeo_p = 0;
391 		if (warned < 10 && net_ratelimit()) {
392 			warned++;
393 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
394 				__func__, current->comm, task_pid_nr(current));
395 		}
396 		return 0;
397 	}
398 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
399 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
400 		return 0;
401 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
402 		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
403 	return 0;
404 }
405 
406 static void sock_warn_obsolete_bsdism(const char *name)
407 {
408 	static int warned;
409 	static char warncomm[TASK_COMM_LEN];
410 	if (strcmp(warncomm, current->comm) && warned < 5) {
411 		strcpy(warncomm,  current->comm);
412 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
413 			warncomm, name);
414 		warned++;
415 	}
416 }
417 
418 static bool sock_needs_netstamp(const struct sock *sk)
419 {
420 	switch (sk->sk_family) {
421 	case AF_UNSPEC:
422 	case AF_UNIX:
423 		return false;
424 	default:
425 		return true;
426 	}
427 }
428 
429 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
430 {
431 	if (sk->sk_flags & flags) {
432 		sk->sk_flags &= ~flags;
433 		if (sock_needs_netstamp(sk) &&
434 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
435 			net_disable_timestamp();
436 	}
437 }
438 
439 
440 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
441 {
442 	unsigned long flags;
443 	struct sk_buff_head *list = &sk->sk_receive_queue;
444 
445 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
446 		atomic_inc(&sk->sk_drops);
447 		trace_sock_rcvqueue_full(sk, skb);
448 		return -ENOMEM;
449 	}
450 
451 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
452 		atomic_inc(&sk->sk_drops);
453 		return -ENOBUFS;
454 	}
455 
456 	skb->dev = NULL;
457 	skb_set_owner_r(skb, sk);
458 
459 	/* we escape from rcu protected region, make sure we dont leak
460 	 * a norefcounted dst
461 	 */
462 	skb_dst_force(skb);
463 
464 	spin_lock_irqsave(&list->lock, flags);
465 	sock_skb_set_dropcount(sk, skb);
466 	__skb_queue_tail(list, skb);
467 	spin_unlock_irqrestore(&list->lock, flags);
468 
469 	if (!sock_flag(sk, SOCK_DEAD))
470 		sk->sk_data_ready(sk);
471 	return 0;
472 }
473 EXPORT_SYMBOL(__sock_queue_rcv_skb);
474 
475 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
476 {
477 	int err;
478 
479 	err = sk_filter(sk, skb);
480 	if (err)
481 		return err;
482 
483 	return __sock_queue_rcv_skb(sk, skb);
484 }
485 EXPORT_SYMBOL(sock_queue_rcv_skb);
486 
487 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
488 		     const int nested, unsigned int trim_cap, bool refcounted)
489 {
490 	int rc = NET_RX_SUCCESS;
491 
492 	if (sk_filter_trim_cap(sk, skb, trim_cap))
493 		goto discard_and_relse;
494 
495 	skb->dev = NULL;
496 
497 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
498 		atomic_inc(&sk->sk_drops);
499 		goto discard_and_relse;
500 	}
501 	if (nested)
502 		bh_lock_sock_nested(sk);
503 	else
504 		bh_lock_sock(sk);
505 	if (!sock_owned_by_user(sk)) {
506 		/*
507 		 * trylock + unlock semantics:
508 		 */
509 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
510 
511 		rc = sk_backlog_rcv(sk, skb);
512 
513 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
514 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
515 		bh_unlock_sock(sk);
516 		atomic_inc(&sk->sk_drops);
517 		goto discard_and_relse;
518 	}
519 
520 	bh_unlock_sock(sk);
521 out:
522 	if (refcounted)
523 		sock_put(sk);
524 	return rc;
525 discard_and_relse:
526 	kfree_skb(skb);
527 	goto out;
528 }
529 EXPORT_SYMBOL(__sk_receive_skb);
530 
531 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
532 {
533 	struct dst_entry *dst = __sk_dst_get(sk);
534 
535 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
536 		sk_tx_queue_clear(sk);
537 		sk->sk_dst_pending_confirm = 0;
538 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
539 		dst_release(dst);
540 		return NULL;
541 	}
542 
543 	return dst;
544 }
545 EXPORT_SYMBOL(__sk_dst_check);
546 
547 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
548 {
549 	struct dst_entry *dst = sk_dst_get(sk);
550 
551 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
552 		sk_dst_reset(sk);
553 		dst_release(dst);
554 		return NULL;
555 	}
556 
557 	return dst;
558 }
559 EXPORT_SYMBOL(sk_dst_check);
560 
561 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
562 				int optlen)
563 {
564 	int ret = -ENOPROTOOPT;
565 #ifdef CONFIG_NETDEVICES
566 	struct net *net = sock_net(sk);
567 	char devname[IFNAMSIZ];
568 	int index;
569 
570 	/* Sorry... */
571 	ret = -EPERM;
572 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
573 		goto out;
574 
575 	ret = -EINVAL;
576 	if (optlen < 0)
577 		goto out;
578 
579 	/* Bind this socket to a particular device like "eth0",
580 	 * as specified in the passed interface name. If the
581 	 * name is "" or the option length is zero the socket
582 	 * is not bound.
583 	 */
584 	if (optlen > IFNAMSIZ - 1)
585 		optlen = IFNAMSIZ - 1;
586 	memset(devname, 0, sizeof(devname));
587 
588 	ret = -EFAULT;
589 	if (copy_from_user(devname, optval, optlen))
590 		goto out;
591 
592 	index = 0;
593 	if (devname[0] != '\0') {
594 		struct net_device *dev;
595 
596 		rcu_read_lock();
597 		dev = dev_get_by_name_rcu(net, devname);
598 		if (dev)
599 			index = dev->ifindex;
600 		rcu_read_unlock();
601 		ret = -ENODEV;
602 		if (!dev)
603 			goto out;
604 	}
605 
606 	lock_sock(sk);
607 	sk->sk_bound_dev_if = index;
608 	sk_dst_reset(sk);
609 	release_sock(sk);
610 
611 	ret = 0;
612 
613 out:
614 #endif
615 
616 	return ret;
617 }
618 
619 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
620 				int __user *optlen, int len)
621 {
622 	int ret = -ENOPROTOOPT;
623 #ifdef CONFIG_NETDEVICES
624 	struct net *net = sock_net(sk);
625 	char devname[IFNAMSIZ];
626 
627 	if (sk->sk_bound_dev_if == 0) {
628 		len = 0;
629 		goto zero;
630 	}
631 
632 	ret = -EINVAL;
633 	if (len < IFNAMSIZ)
634 		goto out;
635 
636 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
637 	if (ret)
638 		goto out;
639 
640 	len = strlen(devname) + 1;
641 
642 	ret = -EFAULT;
643 	if (copy_to_user(optval, devname, len))
644 		goto out;
645 
646 zero:
647 	ret = -EFAULT;
648 	if (put_user(len, optlen))
649 		goto out;
650 
651 	ret = 0;
652 
653 out:
654 #endif
655 
656 	return ret;
657 }
658 
659 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
660 {
661 	if (valbool)
662 		sock_set_flag(sk, bit);
663 	else
664 		sock_reset_flag(sk, bit);
665 }
666 
667 bool sk_mc_loop(struct sock *sk)
668 {
669 	if (dev_recursion_level())
670 		return false;
671 	if (!sk)
672 		return true;
673 	switch (sk->sk_family) {
674 	case AF_INET:
675 		return inet_sk(sk)->mc_loop;
676 #if IS_ENABLED(CONFIG_IPV6)
677 	case AF_INET6:
678 		return inet6_sk(sk)->mc_loop;
679 #endif
680 	}
681 	WARN_ON(1);
682 	return true;
683 }
684 EXPORT_SYMBOL(sk_mc_loop);
685 
686 /*
687  *	This is meant for all protocols to use and covers goings on
688  *	at the socket level. Everything here is generic.
689  */
690 
691 int sock_setsockopt(struct socket *sock, int level, int optname,
692 		    char __user *optval, unsigned int optlen)
693 {
694 	struct sock *sk = sock->sk;
695 	int val;
696 	int valbool;
697 	struct linger ling;
698 	int ret = 0;
699 
700 	/*
701 	 *	Options without arguments
702 	 */
703 
704 	if (optname == SO_BINDTODEVICE)
705 		return sock_setbindtodevice(sk, optval, optlen);
706 
707 	if (optlen < sizeof(int))
708 		return -EINVAL;
709 
710 	if (get_user(val, (int __user *)optval))
711 		return -EFAULT;
712 
713 	valbool = val ? 1 : 0;
714 
715 	lock_sock(sk);
716 
717 	switch (optname) {
718 	case SO_DEBUG:
719 		if (val && !capable(CAP_NET_ADMIN))
720 			ret = -EACCES;
721 		else
722 			sock_valbool_flag(sk, SOCK_DBG, valbool);
723 		break;
724 	case SO_REUSEADDR:
725 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
726 		break;
727 	case SO_REUSEPORT:
728 		sk->sk_reuseport = valbool;
729 		break;
730 	case SO_TYPE:
731 	case SO_PROTOCOL:
732 	case SO_DOMAIN:
733 	case SO_ERROR:
734 		ret = -ENOPROTOOPT;
735 		break;
736 	case SO_DONTROUTE:
737 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
738 		break;
739 	case SO_BROADCAST:
740 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
741 		break;
742 	case SO_SNDBUF:
743 		/* Don't error on this BSD doesn't and if you think
744 		 * about it this is right. Otherwise apps have to
745 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
746 		 * are treated in BSD as hints
747 		 */
748 		val = min_t(u32, val, sysctl_wmem_max);
749 set_sndbuf:
750 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
751 		sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
752 		/* Wake up sending tasks if we upped the value. */
753 		sk->sk_write_space(sk);
754 		break;
755 
756 	case SO_SNDBUFFORCE:
757 		if (!capable(CAP_NET_ADMIN)) {
758 			ret = -EPERM;
759 			break;
760 		}
761 		goto set_sndbuf;
762 
763 	case SO_RCVBUF:
764 		/* Don't error on this BSD doesn't and if you think
765 		 * about it this is right. Otherwise apps have to
766 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
767 		 * are treated in BSD as hints
768 		 */
769 		val = min_t(u32, val, sysctl_rmem_max);
770 set_rcvbuf:
771 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
772 		/*
773 		 * We double it on the way in to account for
774 		 * "struct sk_buff" etc. overhead.   Applications
775 		 * assume that the SO_RCVBUF setting they make will
776 		 * allow that much actual data to be received on that
777 		 * socket.
778 		 *
779 		 * Applications are unaware that "struct sk_buff" and
780 		 * other overheads allocate from the receive buffer
781 		 * during socket buffer allocation.
782 		 *
783 		 * And after considering the possible alternatives,
784 		 * returning the value we actually used in getsockopt
785 		 * is the most desirable behavior.
786 		 */
787 		sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
788 		break;
789 
790 	case SO_RCVBUFFORCE:
791 		if (!capable(CAP_NET_ADMIN)) {
792 			ret = -EPERM;
793 			break;
794 		}
795 		goto set_rcvbuf;
796 
797 	case SO_KEEPALIVE:
798 		if (sk->sk_prot->keepalive)
799 			sk->sk_prot->keepalive(sk, valbool);
800 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
801 		break;
802 
803 	case SO_OOBINLINE:
804 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
805 		break;
806 
807 	case SO_NO_CHECK:
808 		sk->sk_no_check_tx = valbool;
809 		break;
810 
811 	case SO_PRIORITY:
812 		if ((val >= 0 && val <= 6) ||
813 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
814 			sk->sk_priority = val;
815 		else
816 			ret = -EPERM;
817 		break;
818 
819 	case SO_LINGER:
820 		if (optlen < sizeof(ling)) {
821 			ret = -EINVAL;	/* 1003.1g */
822 			break;
823 		}
824 		if (copy_from_user(&ling, optval, sizeof(ling))) {
825 			ret = -EFAULT;
826 			break;
827 		}
828 		if (!ling.l_onoff)
829 			sock_reset_flag(sk, SOCK_LINGER);
830 		else {
831 #if (BITS_PER_LONG == 32)
832 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
833 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
834 			else
835 #endif
836 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
837 			sock_set_flag(sk, SOCK_LINGER);
838 		}
839 		break;
840 
841 	case SO_BSDCOMPAT:
842 		sock_warn_obsolete_bsdism("setsockopt");
843 		break;
844 
845 	case SO_PASSCRED:
846 		if (valbool)
847 			set_bit(SOCK_PASSCRED, &sock->flags);
848 		else
849 			clear_bit(SOCK_PASSCRED, &sock->flags);
850 		break;
851 
852 	case SO_TIMESTAMP:
853 	case SO_TIMESTAMPNS:
854 		if (valbool)  {
855 			if (optname == SO_TIMESTAMP)
856 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
857 			else
858 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
859 			sock_set_flag(sk, SOCK_RCVTSTAMP);
860 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
861 		} else {
862 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
863 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
864 		}
865 		break;
866 
867 	case SO_TIMESTAMPING:
868 		if (val & ~SOF_TIMESTAMPING_MASK) {
869 			ret = -EINVAL;
870 			break;
871 		}
872 
873 		if (val & SOF_TIMESTAMPING_OPT_ID &&
874 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
875 			if (sk->sk_protocol == IPPROTO_TCP &&
876 			    sk->sk_type == SOCK_STREAM) {
877 				if ((1 << sk->sk_state) &
878 				    (TCPF_CLOSE | TCPF_LISTEN)) {
879 					ret = -EINVAL;
880 					break;
881 				}
882 				sk->sk_tskey = tcp_sk(sk)->snd_una;
883 			} else {
884 				sk->sk_tskey = 0;
885 			}
886 		}
887 
888 		if (val & SOF_TIMESTAMPING_OPT_STATS &&
889 		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
890 			ret = -EINVAL;
891 			break;
892 		}
893 
894 		sk->sk_tsflags = val;
895 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
896 			sock_enable_timestamp(sk,
897 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
898 		else
899 			sock_disable_timestamp(sk,
900 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
901 		break;
902 
903 	case SO_RCVLOWAT:
904 		if (val < 0)
905 			val = INT_MAX;
906 		sk->sk_rcvlowat = val ? : 1;
907 		break;
908 
909 	case SO_RCVTIMEO:
910 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
911 		break;
912 
913 	case SO_SNDTIMEO:
914 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
915 		break;
916 
917 	case SO_ATTACH_FILTER:
918 		ret = -EINVAL;
919 		if (optlen == sizeof(struct sock_fprog)) {
920 			struct sock_fprog fprog;
921 
922 			ret = -EFAULT;
923 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
924 				break;
925 
926 			ret = sk_attach_filter(&fprog, sk);
927 		}
928 		break;
929 
930 	case SO_ATTACH_BPF:
931 		ret = -EINVAL;
932 		if (optlen == sizeof(u32)) {
933 			u32 ufd;
934 
935 			ret = -EFAULT;
936 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
937 				break;
938 
939 			ret = sk_attach_bpf(ufd, sk);
940 		}
941 		break;
942 
943 	case SO_ATTACH_REUSEPORT_CBPF:
944 		ret = -EINVAL;
945 		if (optlen == sizeof(struct sock_fprog)) {
946 			struct sock_fprog fprog;
947 
948 			ret = -EFAULT;
949 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
950 				break;
951 
952 			ret = sk_reuseport_attach_filter(&fprog, sk);
953 		}
954 		break;
955 
956 	case SO_ATTACH_REUSEPORT_EBPF:
957 		ret = -EINVAL;
958 		if (optlen == sizeof(u32)) {
959 			u32 ufd;
960 
961 			ret = -EFAULT;
962 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
963 				break;
964 
965 			ret = sk_reuseport_attach_bpf(ufd, sk);
966 		}
967 		break;
968 
969 	case SO_DETACH_FILTER:
970 		ret = sk_detach_filter(sk);
971 		break;
972 
973 	case SO_LOCK_FILTER:
974 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
975 			ret = -EPERM;
976 		else
977 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
978 		break;
979 
980 	case SO_PASSSEC:
981 		if (valbool)
982 			set_bit(SOCK_PASSSEC, &sock->flags);
983 		else
984 			clear_bit(SOCK_PASSSEC, &sock->flags);
985 		break;
986 	case SO_MARK:
987 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
988 			ret = -EPERM;
989 		else
990 			sk->sk_mark = val;
991 		break;
992 
993 	case SO_RXQ_OVFL:
994 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
995 		break;
996 
997 	case SO_WIFI_STATUS:
998 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
999 		break;
1000 
1001 	case SO_PEEK_OFF:
1002 		if (sock->ops->set_peek_off)
1003 			ret = sock->ops->set_peek_off(sk, val);
1004 		else
1005 			ret = -EOPNOTSUPP;
1006 		break;
1007 
1008 	case SO_NOFCS:
1009 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1010 		break;
1011 
1012 	case SO_SELECT_ERR_QUEUE:
1013 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1014 		break;
1015 
1016 #ifdef CONFIG_NET_RX_BUSY_POLL
1017 	case SO_BUSY_POLL:
1018 		/* allow unprivileged users to decrease the value */
1019 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1020 			ret = -EPERM;
1021 		else {
1022 			if (val < 0)
1023 				ret = -EINVAL;
1024 			else
1025 				sk->sk_ll_usec = val;
1026 		}
1027 		break;
1028 #endif
1029 
1030 	case SO_MAX_PACING_RATE:
1031 		if (val != ~0U)
1032 			cmpxchg(&sk->sk_pacing_status,
1033 				SK_PACING_NONE,
1034 				SK_PACING_NEEDED);
1035 		sk->sk_max_pacing_rate = val;
1036 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1037 					 sk->sk_max_pacing_rate);
1038 		break;
1039 
1040 	case SO_INCOMING_CPU:
1041 		sk->sk_incoming_cpu = val;
1042 		break;
1043 
1044 	case SO_CNX_ADVICE:
1045 		if (val == 1)
1046 			dst_negative_advice(sk);
1047 		break;
1048 
1049 	case SO_ZEROCOPY:
1050 		if (sk->sk_family != PF_INET && sk->sk_family != PF_INET6)
1051 			ret = -ENOTSUPP;
1052 		else if (sk->sk_protocol != IPPROTO_TCP)
1053 			ret = -ENOTSUPP;
1054 		else if (sk->sk_state != TCP_CLOSE)
1055 			ret = -EBUSY;
1056 		else if (val < 0 || val > 1)
1057 			ret = -EINVAL;
1058 		else
1059 			sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1060 		break;
1061 
1062 	default:
1063 		ret = -ENOPROTOOPT;
1064 		break;
1065 	}
1066 	release_sock(sk);
1067 	return ret;
1068 }
1069 EXPORT_SYMBOL(sock_setsockopt);
1070 
1071 
1072 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1073 			  struct ucred *ucred)
1074 {
1075 	ucred->pid = pid_vnr(pid);
1076 	ucred->uid = ucred->gid = -1;
1077 	if (cred) {
1078 		struct user_namespace *current_ns = current_user_ns();
1079 
1080 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1081 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1082 	}
1083 }
1084 
1085 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1086 {
1087 	struct user_namespace *user_ns = current_user_ns();
1088 	int i;
1089 
1090 	for (i = 0; i < src->ngroups; i++)
1091 		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1092 			return -EFAULT;
1093 
1094 	return 0;
1095 }
1096 
1097 int sock_getsockopt(struct socket *sock, int level, int optname,
1098 		    char __user *optval, int __user *optlen)
1099 {
1100 	struct sock *sk = sock->sk;
1101 
1102 	union {
1103 		int val;
1104 		u64 val64;
1105 		struct linger ling;
1106 		struct timeval tm;
1107 	} v;
1108 
1109 	int lv = sizeof(int);
1110 	int len;
1111 
1112 	if (get_user(len, optlen))
1113 		return -EFAULT;
1114 	if (len < 0)
1115 		return -EINVAL;
1116 
1117 	memset(&v, 0, sizeof(v));
1118 
1119 	switch (optname) {
1120 	case SO_DEBUG:
1121 		v.val = sock_flag(sk, SOCK_DBG);
1122 		break;
1123 
1124 	case SO_DONTROUTE:
1125 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1126 		break;
1127 
1128 	case SO_BROADCAST:
1129 		v.val = sock_flag(sk, SOCK_BROADCAST);
1130 		break;
1131 
1132 	case SO_SNDBUF:
1133 		v.val = sk->sk_sndbuf;
1134 		break;
1135 
1136 	case SO_RCVBUF:
1137 		v.val = sk->sk_rcvbuf;
1138 		break;
1139 
1140 	case SO_REUSEADDR:
1141 		v.val = sk->sk_reuse;
1142 		break;
1143 
1144 	case SO_REUSEPORT:
1145 		v.val = sk->sk_reuseport;
1146 		break;
1147 
1148 	case SO_KEEPALIVE:
1149 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1150 		break;
1151 
1152 	case SO_TYPE:
1153 		v.val = sk->sk_type;
1154 		break;
1155 
1156 	case SO_PROTOCOL:
1157 		v.val = sk->sk_protocol;
1158 		break;
1159 
1160 	case SO_DOMAIN:
1161 		v.val = sk->sk_family;
1162 		break;
1163 
1164 	case SO_ERROR:
1165 		v.val = -sock_error(sk);
1166 		if (v.val == 0)
1167 			v.val = xchg(&sk->sk_err_soft, 0);
1168 		break;
1169 
1170 	case SO_OOBINLINE:
1171 		v.val = sock_flag(sk, SOCK_URGINLINE);
1172 		break;
1173 
1174 	case SO_NO_CHECK:
1175 		v.val = sk->sk_no_check_tx;
1176 		break;
1177 
1178 	case SO_PRIORITY:
1179 		v.val = sk->sk_priority;
1180 		break;
1181 
1182 	case SO_LINGER:
1183 		lv		= sizeof(v.ling);
1184 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1185 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1186 		break;
1187 
1188 	case SO_BSDCOMPAT:
1189 		sock_warn_obsolete_bsdism("getsockopt");
1190 		break;
1191 
1192 	case SO_TIMESTAMP:
1193 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1194 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1195 		break;
1196 
1197 	case SO_TIMESTAMPNS:
1198 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1199 		break;
1200 
1201 	case SO_TIMESTAMPING:
1202 		v.val = sk->sk_tsflags;
1203 		break;
1204 
1205 	case SO_RCVTIMEO:
1206 		lv = sizeof(struct timeval);
1207 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1208 			v.tm.tv_sec = 0;
1209 			v.tm.tv_usec = 0;
1210 		} else {
1211 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1212 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1213 		}
1214 		break;
1215 
1216 	case SO_SNDTIMEO:
1217 		lv = sizeof(struct timeval);
1218 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1219 			v.tm.tv_sec = 0;
1220 			v.tm.tv_usec = 0;
1221 		} else {
1222 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1223 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1224 		}
1225 		break;
1226 
1227 	case SO_RCVLOWAT:
1228 		v.val = sk->sk_rcvlowat;
1229 		break;
1230 
1231 	case SO_SNDLOWAT:
1232 		v.val = 1;
1233 		break;
1234 
1235 	case SO_PASSCRED:
1236 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1237 		break;
1238 
1239 	case SO_PEERCRED:
1240 	{
1241 		struct ucred peercred;
1242 		if (len > sizeof(peercred))
1243 			len = sizeof(peercred);
1244 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1245 		if (copy_to_user(optval, &peercred, len))
1246 			return -EFAULT;
1247 		goto lenout;
1248 	}
1249 
1250 	case SO_PEERGROUPS:
1251 	{
1252 		int ret, n;
1253 
1254 		if (!sk->sk_peer_cred)
1255 			return -ENODATA;
1256 
1257 		n = sk->sk_peer_cred->group_info->ngroups;
1258 		if (len < n * sizeof(gid_t)) {
1259 			len = n * sizeof(gid_t);
1260 			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1261 		}
1262 		len = n * sizeof(gid_t);
1263 
1264 		ret = groups_to_user((gid_t __user *)optval,
1265 				     sk->sk_peer_cred->group_info);
1266 		if (ret)
1267 			return ret;
1268 		goto lenout;
1269 	}
1270 
1271 	case SO_PEERNAME:
1272 	{
1273 		char address[128];
1274 
1275 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1276 			return -ENOTCONN;
1277 		if (lv < len)
1278 			return -EINVAL;
1279 		if (copy_to_user(optval, address, len))
1280 			return -EFAULT;
1281 		goto lenout;
1282 	}
1283 
1284 	/* Dubious BSD thing... Probably nobody even uses it, but
1285 	 * the UNIX standard wants it for whatever reason... -DaveM
1286 	 */
1287 	case SO_ACCEPTCONN:
1288 		v.val = sk->sk_state == TCP_LISTEN;
1289 		break;
1290 
1291 	case SO_PASSSEC:
1292 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1293 		break;
1294 
1295 	case SO_PEERSEC:
1296 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1297 
1298 	case SO_MARK:
1299 		v.val = sk->sk_mark;
1300 		break;
1301 
1302 	case SO_RXQ_OVFL:
1303 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1304 		break;
1305 
1306 	case SO_WIFI_STATUS:
1307 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1308 		break;
1309 
1310 	case SO_PEEK_OFF:
1311 		if (!sock->ops->set_peek_off)
1312 			return -EOPNOTSUPP;
1313 
1314 		v.val = sk->sk_peek_off;
1315 		break;
1316 	case SO_NOFCS:
1317 		v.val = sock_flag(sk, SOCK_NOFCS);
1318 		break;
1319 
1320 	case SO_BINDTODEVICE:
1321 		return sock_getbindtodevice(sk, optval, optlen, len);
1322 
1323 	case SO_GET_FILTER:
1324 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1325 		if (len < 0)
1326 			return len;
1327 
1328 		goto lenout;
1329 
1330 	case SO_LOCK_FILTER:
1331 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1332 		break;
1333 
1334 	case SO_BPF_EXTENSIONS:
1335 		v.val = bpf_tell_extensions();
1336 		break;
1337 
1338 	case SO_SELECT_ERR_QUEUE:
1339 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1340 		break;
1341 
1342 #ifdef CONFIG_NET_RX_BUSY_POLL
1343 	case SO_BUSY_POLL:
1344 		v.val = sk->sk_ll_usec;
1345 		break;
1346 #endif
1347 
1348 	case SO_MAX_PACING_RATE:
1349 		v.val = sk->sk_max_pacing_rate;
1350 		break;
1351 
1352 	case SO_INCOMING_CPU:
1353 		v.val = sk->sk_incoming_cpu;
1354 		break;
1355 
1356 	case SO_MEMINFO:
1357 	{
1358 		u32 meminfo[SK_MEMINFO_VARS];
1359 
1360 		if (get_user(len, optlen))
1361 			return -EFAULT;
1362 
1363 		sk_get_meminfo(sk, meminfo);
1364 
1365 		len = min_t(unsigned int, len, sizeof(meminfo));
1366 		if (copy_to_user(optval, &meminfo, len))
1367 			return -EFAULT;
1368 
1369 		goto lenout;
1370 	}
1371 
1372 #ifdef CONFIG_NET_RX_BUSY_POLL
1373 	case SO_INCOMING_NAPI_ID:
1374 		v.val = READ_ONCE(sk->sk_napi_id);
1375 
1376 		/* aggregate non-NAPI IDs down to 0 */
1377 		if (v.val < MIN_NAPI_ID)
1378 			v.val = 0;
1379 
1380 		break;
1381 #endif
1382 
1383 	case SO_COOKIE:
1384 		lv = sizeof(u64);
1385 		if (len < lv)
1386 			return -EINVAL;
1387 		v.val64 = sock_gen_cookie(sk);
1388 		break;
1389 
1390 	case SO_ZEROCOPY:
1391 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1392 		break;
1393 
1394 	default:
1395 		/* We implement the SO_SNDLOWAT etc to not be settable
1396 		 * (1003.1g 7).
1397 		 */
1398 		return -ENOPROTOOPT;
1399 	}
1400 
1401 	if (len > lv)
1402 		len = lv;
1403 	if (copy_to_user(optval, &v, len))
1404 		return -EFAULT;
1405 lenout:
1406 	if (put_user(len, optlen))
1407 		return -EFAULT;
1408 	return 0;
1409 }
1410 
1411 /*
1412  * Initialize an sk_lock.
1413  *
1414  * (We also register the sk_lock with the lock validator.)
1415  */
1416 static inline void sock_lock_init(struct sock *sk)
1417 {
1418 	if (sk->sk_kern_sock)
1419 		sock_lock_init_class_and_name(
1420 			sk,
1421 			af_family_kern_slock_key_strings[sk->sk_family],
1422 			af_family_kern_slock_keys + sk->sk_family,
1423 			af_family_kern_key_strings[sk->sk_family],
1424 			af_family_kern_keys + sk->sk_family);
1425 	else
1426 		sock_lock_init_class_and_name(
1427 			sk,
1428 			af_family_slock_key_strings[sk->sk_family],
1429 			af_family_slock_keys + sk->sk_family,
1430 			af_family_key_strings[sk->sk_family],
1431 			af_family_keys + sk->sk_family);
1432 }
1433 
1434 /*
1435  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1436  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1437  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1438  */
1439 static void sock_copy(struct sock *nsk, const struct sock *osk)
1440 {
1441 #ifdef CONFIG_SECURITY_NETWORK
1442 	void *sptr = nsk->sk_security;
1443 #endif
1444 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1445 
1446 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1447 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1448 
1449 #ifdef CONFIG_SECURITY_NETWORK
1450 	nsk->sk_security = sptr;
1451 	security_sk_clone(osk, nsk);
1452 #endif
1453 }
1454 
1455 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1456 		int family)
1457 {
1458 	struct sock *sk;
1459 	struct kmem_cache *slab;
1460 
1461 	slab = prot->slab;
1462 	if (slab != NULL) {
1463 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1464 		if (!sk)
1465 			return sk;
1466 		if (priority & __GFP_ZERO)
1467 			sk_prot_clear_nulls(sk, prot->obj_size);
1468 	} else
1469 		sk = kmalloc(prot->obj_size, priority);
1470 
1471 	if (sk != NULL) {
1472 		kmemcheck_annotate_bitfield(sk, flags);
1473 
1474 		if (security_sk_alloc(sk, family, priority))
1475 			goto out_free;
1476 
1477 		if (!try_module_get(prot->owner))
1478 			goto out_free_sec;
1479 		sk_tx_queue_clear(sk);
1480 	}
1481 
1482 	return sk;
1483 
1484 out_free_sec:
1485 	security_sk_free(sk);
1486 out_free:
1487 	if (slab != NULL)
1488 		kmem_cache_free(slab, sk);
1489 	else
1490 		kfree(sk);
1491 	return NULL;
1492 }
1493 
1494 static void sk_prot_free(struct proto *prot, struct sock *sk)
1495 {
1496 	struct kmem_cache *slab;
1497 	struct module *owner;
1498 
1499 	owner = prot->owner;
1500 	slab = prot->slab;
1501 
1502 	cgroup_sk_free(&sk->sk_cgrp_data);
1503 	mem_cgroup_sk_free(sk);
1504 	security_sk_free(sk);
1505 	if (slab != NULL)
1506 		kmem_cache_free(slab, sk);
1507 	else
1508 		kfree(sk);
1509 	module_put(owner);
1510 }
1511 
1512 /**
1513  *	sk_alloc - All socket objects are allocated here
1514  *	@net: the applicable net namespace
1515  *	@family: protocol family
1516  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1517  *	@prot: struct proto associated with this new sock instance
1518  *	@kern: is this to be a kernel socket?
1519  */
1520 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1521 		      struct proto *prot, int kern)
1522 {
1523 	struct sock *sk;
1524 
1525 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1526 	if (sk) {
1527 		sk->sk_family = family;
1528 		/*
1529 		 * See comment in struct sock definition to understand
1530 		 * why we need sk_prot_creator -acme
1531 		 */
1532 		sk->sk_prot = sk->sk_prot_creator = prot;
1533 		sk->sk_kern_sock = kern;
1534 		sock_lock_init(sk);
1535 		sk->sk_net_refcnt = kern ? 0 : 1;
1536 		if (likely(sk->sk_net_refcnt))
1537 			get_net(net);
1538 		sock_net_set(sk, net);
1539 		refcount_set(&sk->sk_wmem_alloc, 1);
1540 
1541 		mem_cgroup_sk_alloc(sk);
1542 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1543 		sock_update_classid(&sk->sk_cgrp_data);
1544 		sock_update_netprioidx(&sk->sk_cgrp_data);
1545 	}
1546 
1547 	return sk;
1548 }
1549 EXPORT_SYMBOL(sk_alloc);
1550 
1551 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1552  * grace period. This is the case for UDP sockets and TCP listeners.
1553  */
1554 static void __sk_destruct(struct rcu_head *head)
1555 {
1556 	struct sock *sk = container_of(head, struct sock, sk_rcu);
1557 	struct sk_filter *filter;
1558 
1559 	if (sk->sk_destruct)
1560 		sk->sk_destruct(sk);
1561 
1562 	filter = rcu_dereference_check(sk->sk_filter,
1563 				       refcount_read(&sk->sk_wmem_alloc) == 0);
1564 	if (filter) {
1565 		sk_filter_uncharge(sk, filter);
1566 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1567 	}
1568 	if (rcu_access_pointer(sk->sk_reuseport_cb))
1569 		reuseport_detach_sock(sk);
1570 
1571 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1572 
1573 	if (atomic_read(&sk->sk_omem_alloc))
1574 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1575 			 __func__, atomic_read(&sk->sk_omem_alloc));
1576 
1577 	if (sk->sk_frag.page) {
1578 		put_page(sk->sk_frag.page);
1579 		sk->sk_frag.page = NULL;
1580 	}
1581 
1582 	if (sk->sk_peer_cred)
1583 		put_cred(sk->sk_peer_cred);
1584 	put_pid(sk->sk_peer_pid);
1585 	if (likely(sk->sk_net_refcnt))
1586 		put_net(sock_net(sk));
1587 	sk_prot_free(sk->sk_prot_creator, sk);
1588 }
1589 
1590 void sk_destruct(struct sock *sk)
1591 {
1592 	if (sock_flag(sk, SOCK_RCU_FREE))
1593 		call_rcu(&sk->sk_rcu, __sk_destruct);
1594 	else
1595 		__sk_destruct(&sk->sk_rcu);
1596 }
1597 
1598 static void __sk_free(struct sock *sk)
1599 {
1600 	if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1601 		sock_diag_broadcast_destroy(sk);
1602 	else
1603 		sk_destruct(sk);
1604 }
1605 
1606 void sk_free(struct sock *sk)
1607 {
1608 	/*
1609 	 * We subtract one from sk_wmem_alloc and can know if
1610 	 * some packets are still in some tx queue.
1611 	 * If not null, sock_wfree() will call __sk_free(sk) later
1612 	 */
1613 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1614 		__sk_free(sk);
1615 }
1616 EXPORT_SYMBOL(sk_free);
1617 
1618 static void sk_init_common(struct sock *sk)
1619 {
1620 	skb_queue_head_init(&sk->sk_receive_queue);
1621 	skb_queue_head_init(&sk->sk_write_queue);
1622 	skb_queue_head_init(&sk->sk_error_queue);
1623 
1624 	rwlock_init(&sk->sk_callback_lock);
1625 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1626 			af_rlock_keys + sk->sk_family,
1627 			af_family_rlock_key_strings[sk->sk_family]);
1628 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1629 			af_wlock_keys + sk->sk_family,
1630 			af_family_wlock_key_strings[sk->sk_family]);
1631 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1632 			af_elock_keys + sk->sk_family,
1633 			af_family_elock_key_strings[sk->sk_family]);
1634 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1635 			af_callback_keys + sk->sk_family,
1636 			af_family_clock_key_strings[sk->sk_family]);
1637 }
1638 
1639 /**
1640  *	sk_clone_lock - clone a socket, and lock its clone
1641  *	@sk: the socket to clone
1642  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1643  *
1644  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1645  */
1646 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1647 {
1648 	struct sock *newsk;
1649 	bool is_charged = true;
1650 
1651 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1652 	if (newsk != NULL) {
1653 		struct sk_filter *filter;
1654 
1655 		sock_copy(newsk, sk);
1656 
1657 		newsk->sk_prot_creator = sk->sk_prot;
1658 
1659 		/* SANITY */
1660 		if (likely(newsk->sk_net_refcnt))
1661 			get_net(sock_net(newsk));
1662 		sk_node_init(&newsk->sk_node);
1663 		sock_lock_init(newsk);
1664 		bh_lock_sock(newsk);
1665 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1666 		newsk->sk_backlog.len = 0;
1667 
1668 		atomic_set(&newsk->sk_rmem_alloc, 0);
1669 		/*
1670 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1671 		 */
1672 		refcount_set(&newsk->sk_wmem_alloc, 1);
1673 		atomic_set(&newsk->sk_omem_alloc, 0);
1674 		sk_init_common(newsk);
1675 
1676 		newsk->sk_dst_cache	= NULL;
1677 		newsk->sk_dst_pending_confirm = 0;
1678 		newsk->sk_wmem_queued	= 0;
1679 		newsk->sk_forward_alloc = 0;
1680 
1681 		/* sk->sk_memcg will be populated at accept() time */
1682 		newsk->sk_memcg = NULL;
1683 
1684 		atomic_set(&newsk->sk_drops, 0);
1685 		newsk->sk_send_head	= NULL;
1686 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1687 		atomic_set(&newsk->sk_zckey, 0);
1688 
1689 		sock_reset_flag(newsk, SOCK_DONE);
1690 		cgroup_sk_alloc(&newsk->sk_cgrp_data);
1691 
1692 		rcu_read_lock();
1693 		filter = rcu_dereference(sk->sk_filter);
1694 		if (filter != NULL)
1695 			/* though it's an empty new sock, the charging may fail
1696 			 * if sysctl_optmem_max was changed between creation of
1697 			 * original socket and cloning
1698 			 */
1699 			is_charged = sk_filter_charge(newsk, filter);
1700 		RCU_INIT_POINTER(newsk->sk_filter, filter);
1701 		rcu_read_unlock();
1702 
1703 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1704 			/* We need to make sure that we don't uncharge the new
1705 			 * socket if we couldn't charge it in the first place
1706 			 * as otherwise we uncharge the parent's filter.
1707 			 */
1708 			if (!is_charged)
1709 				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1710 			sk_free_unlock_clone(newsk);
1711 			newsk = NULL;
1712 			goto out;
1713 		}
1714 		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1715 
1716 		newsk->sk_err	   = 0;
1717 		newsk->sk_err_soft = 0;
1718 		newsk->sk_priority = 0;
1719 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1720 		atomic64_set(&newsk->sk_cookie, 0);
1721 
1722 		/*
1723 		 * Before updating sk_refcnt, we must commit prior changes to memory
1724 		 * (Documentation/RCU/rculist_nulls.txt for details)
1725 		 */
1726 		smp_wmb();
1727 		refcount_set(&newsk->sk_refcnt, 2);
1728 
1729 		/*
1730 		 * Increment the counter in the same struct proto as the master
1731 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1732 		 * is the same as sk->sk_prot->socks, as this field was copied
1733 		 * with memcpy).
1734 		 *
1735 		 * This _changes_ the previous behaviour, where
1736 		 * tcp_create_openreq_child always was incrementing the
1737 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1738 		 * to be taken into account in all callers. -acme
1739 		 */
1740 		sk_refcnt_debug_inc(newsk);
1741 		sk_set_socket(newsk, NULL);
1742 		newsk->sk_wq = NULL;
1743 
1744 		if (newsk->sk_prot->sockets_allocated)
1745 			sk_sockets_allocated_inc(newsk);
1746 
1747 		if (sock_needs_netstamp(sk) &&
1748 		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1749 			net_enable_timestamp();
1750 	}
1751 out:
1752 	return newsk;
1753 }
1754 EXPORT_SYMBOL_GPL(sk_clone_lock);
1755 
1756 void sk_free_unlock_clone(struct sock *sk)
1757 {
1758 	/* It is still raw copy of parent, so invalidate
1759 	 * destructor and make plain sk_free() */
1760 	sk->sk_destruct = NULL;
1761 	bh_unlock_sock(sk);
1762 	sk_free(sk);
1763 }
1764 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1765 
1766 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1767 {
1768 	u32 max_segs = 1;
1769 
1770 	sk_dst_set(sk, dst);
1771 	sk->sk_route_caps = dst->dev->features;
1772 	if (sk->sk_route_caps & NETIF_F_GSO)
1773 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1774 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1775 	if (sk_can_gso(sk)) {
1776 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1777 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1778 		} else {
1779 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1780 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1781 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1782 		}
1783 	}
1784 	sk->sk_gso_max_segs = max_segs;
1785 }
1786 EXPORT_SYMBOL_GPL(sk_setup_caps);
1787 
1788 /*
1789  *	Simple resource managers for sockets.
1790  */
1791 
1792 
1793 /*
1794  * Write buffer destructor automatically called from kfree_skb.
1795  */
1796 void sock_wfree(struct sk_buff *skb)
1797 {
1798 	struct sock *sk = skb->sk;
1799 	unsigned int len = skb->truesize;
1800 
1801 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1802 		/*
1803 		 * Keep a reference on sk_wmem_alloc, this will be released
1804 		 * after sk_write_space() call
1805 		 */
1806 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1807 		sk->sk_write_space(sk);
1808 		len = 1;
1809 	}
1810 	/*
1811 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1812 	 * could not do because of in-flight packets
1813 	 */
1814 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1815 		__sk_free(sk);
1816 }
1817 EXPORT_SYMBOL(sock_wfree);
1818 
1819 /* This variant of sock_wfree() is used by TCP,
1820  * since it sets SOCK_USE_WRITE_QUEUE.
1821  */
1822 void __sock_wfree(struct sk_buff *skb)
1823 {
1824 	struct sock *sk = skb->sk;
1825 
1826 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1827 		__sk_free(sk);
1828 }
1829 
1830 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1831 {
1832 	skb_orphan(skb);
1833 	skb->sk = sk;
1834 #ifdef CONFIG_INET
1835 	if (unlikely(!sk_fullsock(sk))) {
1836 		skb->destructor = sock_edemux;
1837 		sock_hold(sk);
1838 		return;
1839 	}
1840 #endif
1841 	skb->destructor = sock_wfree;
1842 	skb_set_hash_from_sk(skb, sk);
1843 	/*
1844 	 * We used to take a refcount on sk, but following operation
1845 	 * is enough to guarantee sk_free() wont free this sock until
1846 	 * all in-flight packets are completed
1847 	 */
1848 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1849 }
1850 EXPORT_SYMBOL(skb_set_owner_w);
1851 
1852 /* This helper is used by netem, as it can hold packets in its
1853  * delay queue. We want to allow the owner socket to send more
1854  * packets, as if they were already TX completed by a typical driver.
1855  * But we also want to keep skb->sk set because some packet schedulers
1856  * rely on it (sch_fq for example).
1857  */
1858 void skb_orphan_partial(struct sk_buff *skb)
1859 {
1860 	if (skb_is_tcp_pure_ack(skb))
1861 		return;
1862 
1863 	if (skb->destructor == sock_wfree
1864 #ifdef CONFIG_INET
1865 	    || skb->destructor == tcp_wfree
1866 #endif
1867 		) {
1868 		struct sock *sk = skb->sk;
1869 
1870 		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1871 			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
1872 			skb->destructor = sock_efree;
1873 		}
1874 	} else {
1875 		skb_orphan(skb);
1876 	}
1877 }
1878 EXPORT_SYMBOL(skb_orphan_partial);
1879 
1880 /*
1881  * Read buffer destructor automatically called from kfree_skb.
1882  */
1883 void sock_rfree(struct sk_buff *skb)
1884 {
1885 	struct sock *sk = skb->sk;
1886 	unsigned int len = skb->truesize;
1887 
1888 	atomic_sub(len, &sk->sk_rmem_alloc);
1889 	sk_mem_uncharge(sk, len);
1890 }
1891 EXPORT_SYMBOL(sock_rfree);
1892 
1893 /*
1894  * Buffer destructor for skbs that are not used directly in read or write
1895  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1896  */
1897 void sock_efree(struct sk_buff *skb)
1898 {
1899 	sock_put(skb->sk);
1900 }
1901 EXPORT_SYMBOL(sock_efree);
1902 
1903 kuid_t sock_i_uid(struct sock *sk)
1904 {
1905 	kuid_t uid;
1906 
1907 	read_lock_bh(&sk->sk_callback_lock);
1908 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1909 	read_unlock_bh(&sk->sk_callback_lock);
1910 	return uid;
1911 }
1912 EXPORT_SYMBOL(sock_i_uid);
1913 
1914 unsigned long sock_i_ino(struct sock *sk)
1915 {
1916 	unsigned long ino;
1917 
1918 	read_lock_bh(&sk->sk_callback_lock);
1919 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1920 	read_unlock_bh(&sk->sk_callback_lock);
1921 	return ino;
1922 }
1923 EXPORT_SYMBOL(sock_i_ino);
1924 
1925 /*
1926  * Allocate a skb from the socket's send buffer.
1927  */
1928 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1929 			     gfp_t priority)
1930 {
1931 	if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1932 		struct sk_buff *skb = alloc_skb(size, priority);
1933 		if (skb) {
1934 			skb_set_owner_w(skb, sk);
1935 			return skb;
1936 		}
1937 	}
1938 	return NULL;
1939 }
1940 EXPORT_SYMBOL(sock_wmalloc);
1941 
1942 static void sock_ofree(struct sk_buff *skb)
1943 {
1944 	struct sock *sk = skb->sk;
1945 
1946 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
1947 }
1948 
1949 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1950 			     gfp_t priority)
1951 {
1952 	struct sk_buff *skb;
1953 
1954 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1955 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
1956 	    sysctl_optmem_max)
1957 		return NULL;
1958 
1959 	skb = alloc_skb(size, priority);
1960 	if (!skb)
1961 		return NULL;
1962 
1963 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
1964 	skb->sk = sk;
1965 	skb->destructor = sock_ofree;
1966 	return skb;
1967 }
1968 
1969 /*
1970  * Allocate a memory block from the socket's option memory buffer.
1971  */
1972 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1973 {
1974 	if ((unsigned int)size <= sysctl_optmem_max &&
1975 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1976 		void *mem;
1977 		/* First do the add, to avoid the race if kmalloc
1978 		 * might sleep.
1979 		 */
1980 		atomic_add(size, &sk->sk_omem_alloc);
1981 		mem = kmalloc(size, priority);
1982 		if (mem)
1983 			return mem;
1984 		atomic_sub(size, &sk->sk_omem_alloc);
1985 	}
1986 	return NULL;
1987 }
1988 EXPORT_SYMBOL(sock_kmalloc);
1989 
1990 /* Free an option memory block. Note, we actually want the inline
1991  * here as this allows gcc to detect the nullify and fold away the
1992  * condition entirely.
1993  */
1994 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1995 				  const bool nullify)
1996 {
1997 	if (WARN_ON_ONCE(!mem))
1998 		return;
1999 	if (nullify)
2000 		kzfree(mem);
2001 	else
2002 		kfree(mem);
2003 	atomic_sub(size, &sk->sk_omem_alloc);
2004 }
2005 
2006 void sock_kfree_s(struct sock *sk, void *mem, int size)
2007 {
2008 	__sock_kfree_s(sk, mem, size, false);
2009 }
2010 EXPORT_SYMBOL(sock_kfree_s);
2011 
2012 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2013 {
2014 	__sock_kfree_s(sk, mem, size, true);
2015 }
2016 EXPORT_SYMBOL(sock_kzfree_s);
2017 
2018 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2019    I think, these locks should be removed for datagram sockets.
2020  */
2021 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2022 {
2023 	DEFINE_WAIT(wait);
2024 
2025 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2026 	for (;;) {
2027 		if (!timeo)
2028 			break;
2029 		if (signal_pending(current))
2030 			break;
2031 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2032 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2033 		if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2034 			break;
2035 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2036 			break;
2037 		if (sk->sk_err)
2038 			break;
2039 		timeo = schedule_timeout(timeo);
2040 	}
2041 	finish_wait(sk_sleep(sk), &wait);
2042 	return timeo;
2043 }
2044 
2045 
2046 /*
2047  *	Generic send/receive buffer handlers
2048  */
2049 
2050 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2051 				     unsigned long data_len, int noblock,
2052 				     int *errcode, int max_page_order)
2053 {
2054 	struct sk_buff *skb;
2055 	long timeo;
2056 	int err;
2057 
2058 	timeo = sock_sndtimeo(sk, noblock);
2059 	for (;;) {
2060 		err = sock_error(sk);
2061 		if (err != 0)
2062 			goto failure;
2063 
2064 		err = -EPIPE;
2065 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2066 			goto failure;
2067 
2068 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2069 			break;
2070 
2071 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2072 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2073 		err = -EAGAIN;
2074 		if (!timeo)
2075 			goto failure;
2076 		if (signal_pending(current))
2077 			goto interrupted;
2078 		timeo = sock_wait_for_wmem(sk, timeo);
2079 	}
2080 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2081 				   errcode, sk->sk_allocation);
2082 	if (skb)
2083 		skb_set_owner_w(skb, sk);
2084 	return skb;
2085 
2086 interrupted:
2087 	err = sock_intr_errno(timeo);
2088 failure:
2089 	*errcode = err;
2090 	return NULL;
2091 }
2092 EXPORT_SYMBOL(sock_alloc_send_pskb);
2093 
2094 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2095 				    int noblock, int *errcode)
2096 {
2097 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2098 }
2099 EXPORT_SYMBOL(sock_alloc_send_skb);
2100 
2101 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2102 		     struct sockcm_cookie *sockc)
2103 {
2104 	u32 tsflags;
2105 
2106 	switch (cmsg->cmsg_type) {
2107 	case SO_MARK:
2108 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2109 			return -EPERM;
2110 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2111 			return -EINVAL;
2112 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2113 		break;
2114 	case SO_TIMESTAMPING:
2115 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2116 			return -EINVAL;
2117 
2118 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2119 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2120 			return -EINVAL;
2121 
2122 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2123 		sockc->tsflags |= tsflags;
2124 		break;
2125 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2126 	case SCM_RIGHTS:
2127 	case SCM_CREDENTIALS:
2128 		break;
2129 	default:
2130 		return -EINVAL;
2131 	}
2132 	return 0;
2133 }
2134 EXPORT_SYMBOL(__sock_cmsg_send);
2135 
2136 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2137 		   struct sockcm_cookie *sockc)
2138 {
2139 	struct cmsghdr *cmsg;
2140 	int ret;
2141 
2142 	for_each_cmsghdr(cmsg, msg) {
2143 		if (!CMSG_OK(msg, cmsg))
2144 			return -EINVAL;
2145 		if (cmsg->cmsg_level != SOL_SOCKET)
2146 			continue;
2147 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2148 		if (ret)
2149 			return ret;
2150 	}
2151 	return 0;
2152 }
2153 EXPORT_SYMBOL(sock_cmsg_send);
2154 
2155 static void sk_enter_memory_pressure(struct sock *sk)
2156 {
2157 	if (!sk->sk_prot->enter_memory_pressure)
2158 		return;
2159 
2160 	sk->sk_prot->enter_memory_pressure(sk);
2161 }
2162 
2163 static void sk_leave_memory_pressure(struct sock *sk)
2164 {
2165 	if (sk->sk_prot->leave_memory_pressure) {
2166 		sk->sk_prot->leave_memory_pressure(sk);
2167 	} else {
2168 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2169 
2170 		if (memory_pressure && *memory_pressure)
2171 			*memory_pressure = 0;
2172 	}
2173 }
2174 
2175 /* On 32bit arches, an skb frag is limited to 2^15 */
2176 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2177 
2178 /**
2179  * skb_page_frag_refill - check that a page_frag contains enough room
2180  * @sz: minimum size of the fragment we want to get
2181  * @pfrag: pointer to page_frag
2182  * @gfp: priority for memory allocation
2183  *
2184  * Note: While this allocator tries to use high order pages, there is
2185  * no guarantee that allocations succeed. Therefore, @sz MUST be
2186  * less or equal than PAGE_SIZE.
2187  */
2188 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2189 {
2190 	if (pfrag->page) {
2191 		if (page_ref_count(pfrag->page) == 1) {
2192 			pfrag->offset = 0;
2193 			return true;
2194 		}
2195 		if (pfrag->offset + sz <= pfrag->size)
2196 			return true;
2197 		put_page(pfrag->page);
2198 	}
2199 
2200 	pfrag->offset = 0;
2201 	if (SKB_FRAG_PAGE_ORDER) {
2202 		/* Avoid direct reclaim but allow kswapd to wake */
2203 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2204 					  __GFP_COMP | __GFP_NOWARN |
2205 					  __GFP_NORETRY,
2206 					  SKB_FRAG_PAGE_ORDER);
2207 		if (likely(pfrag->page)) {
2208 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2209 			return true;
2210 		}
2211 	}
2212 	pfrag->page = alloc_page(gfp);
2213 	if (likely(pfrag->page)) {
2214 		pfrag->size = PAGE_SIZE;
2215 		return true;
2216 	}
2217 	return false;
2218 }
2219 EXPORT_SYMBOL(skb_page_frag_refill);
2220 
2221 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2222 {
2223 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2224 		return true;
2225 
2226 	sk_enter_memory_pressure(sk);
2227 	sk_stream_moderate_sndbuf(sk);
2228 	return false;
2229 }
2230 EXPORT_SYMBOL(sk_page_frag_refill);
2231 
2232 static void __lock_sock(struct sock *sk)
2233 	__releases(&sk->sk_lock.slock)
2234 	__acquires(&sk->sk_lock.slock)
2235 {
2236 	DEFINE_WAIT(wait);
2237 
2238 	for (;;) {
2239 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2240 					TASK_UNINTERRUPTIBLE);
2241 		spin_unlock_bh(&sk->sk_lock.slock);
2242 		schedule();
2243 		spin_lock_bh(&sk->sk_lock.slock);
2244 		if (!sock_owned_by_user(sk))
2245 			break;
2246 	}
2247 	finish_wait(&sk->sk_lock.wq, &wait);
2248 }
2249 
2250 static void __release_sock(struct sock *sk)
2251 	__releases(&sk->sk_lock.slock)
2252 	__acquires(&sk->sk_lock.slock)
2253 {
2254 	struct sk_buff *skb, *next;
2255 
2256 	while ((skb = sk->sk_backlog.head) != NULL) {
2257 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2258 
2259 		spin_unlock_bh(&sk->sk_lock.slock);
2260 
2261 		do {
2262 			next = skb->next;
2263 			prefetch(next);
2264 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2265 			skb->next = NULL;
2266 			sk_backlog_rcv(sk, skb);
2267 
2268 			cond_resched();
2269 
2270 			skb = next;
2271 		} while (skb != NULL);
2272 
2273 		spin_lock_bh(&sk->sk_lock.slock);
2274 	}
2275 
2276 	/*
2277 	 * Doing the zeroing here guarantee we can not loop forever
2278 	 * while a wild producer attempts to flood us.
2279 	 */
2280 	sk->sk_backlog.len = 0;
2281 }
2282 
2283 void __sk_flush_backlog(struct sock *sk)
2284 {
2285 	spin_lock_bh(&sk->sk_lock.slock);
2286 	__release_sock(sk);
2287 	spin_unlock_bh(&sk->sk_lock.slock);
2288 }
2289 
2290 /**
2291  * sk_wait_data - wait for data to arrive at sk_receive_queue
2292  * @sk:    sock to wait on
2293  * @timeo: for how long
2294  * @skb:   last skb seen on sk_receive_queue
2295  *
2296  * Now socket state including sk->sk_err is changed only under lock,
2297  * hence we may omit checks after joining wait queue.
2298  * We check receive queue before schedule() only as optimization;
2299  * it is very likely that release_sock() added new data.
2300  */
2301 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2302 {
2303 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2304 	int rc;
2305 
2306 	add_wait_queue(sk_sleep(sk), &wait);
2307 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2308 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2309 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2310 	remove_wait_queue(sk_sleep(sk), &wait);
2311 	return rc;
2312 }
2313 EXPORT_SYMBOL(sk_wait_data);
2314 
2315 /**
2316  *	__sk_mem_raise_allocated - increase memory_allocated
2317  *	@sk: socket
2318  *	@size: memory size to allocate
2319  *	@amt: pages to allocate
2320  *	@kind: allocation type
2321  *
2322  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2323  */
2324 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2325 {
2326 	struct proto *prot = sk->sk_prot;
2327 	long allocated = sk_memory_allocated_add(sk, amt);
2328 
2329 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2330 	    !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2331 		goto suppress_allocation;
2332 
2333 	/* Under limit. */
2334 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2335 		sk_leave_memory_pressure(sk);
2336 		return 1;
2337 	}
2338 
2339 	/* Under pressure. */
2340 	if (allocated > sk_prot_mem_limits(sk, 1))
2341 		sk_enter_memory_pressure(sk);
2342 
2343 	/* Over hard limit. */
2344 	if (allocated > sk_prot_mem_limits(sk, 2))
2345 		goto suppress_allocation;
2346 
2347 	/* guarantee minimum buffer size under pressure */
2348 	if (kind == SK_MEM_RECV) {
2349 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2350 			return 1;
2351 
2352 	} else { /* SK_MEM_SEND */
2353 		if (sk->sk_type == SOCK_STREAM) {
2354 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2355 				return 1;
2356 		} else if (refcount_read(&sk->sk_wmem_alloc) <
2357 			   prot->sysctl_wmem[0])
2358 				return 1;
2359 	}
2360 
2361 	if (sk_has_memory_pressure(sk)) {
2362 		int alloc;
2363 
2364 		if (!sk_under_memory_pressure(sk))
2365 			return 1;
2366 		alloc = sk_sockets_allocated_read_positive(sk);
2367 		if (sk_prot_mem_limits(sk, 2) > alloc *
2368 		    sk_mem_pages(sk->sk_wmem_queued +
2369 				 atomic_read(&sk->sk_rmem_alloc) +
2370 				 sk->sk_forward_alloc))
2371 			return 1;
2372 	}
2373 
2374 suppress_allocation:
2375 
2376 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2377 		sk_stream_moderate_sndbuf(sk);
2378 
2379 		/* Fail only if socket is _under_ its sndbuf.
2380 		 * In this case we cannot block, so that we have to fail.
2381 		 */
2382 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2383 			return 1;
2384 	}
2385 
2386 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2387 
2388 	sk_memory_allocated_sub(sk, amt);
2389 
2390 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2391 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2392 
2393 	return 0;
2394 }
2395 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2396 
2397 /**
2398  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2399  *	@sk: socket
2400  *	@size: memory size to allocate
2401  *	@kind: allocation type
2402  *
2403  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2404  *	rmem allocation. This function assumes that protocols which have
2405  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2406  */
2407 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2408 {
2409 	int ret, amt = sk_mem_pages(size);
2410 
2411 	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2412 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2413 	if (!ret)
2414 		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2415 	return ret;
2416 }
2417 EXPORT_SYMBOL(__sk_mem_schedule);
2418 
2419 /**
2420  *	__sk_mem_reduce_allocated - reclaim memory_allocated
2421  *	@sk: socket
2422  *	@amount: number of quanta
2423  *
2424  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2425  */
2426 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2427 {
2428 	sk_memory_allocated_sub(sk, amount);
2429 
2430 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2431 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2432 
2433 	if (sk_under_memory_pressure(sk) &&
2434 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2435 		sk_leave_memory_pressure(sk);
2436 }
2437 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2438 
2439 /**
2440  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2441  *	@sk: socket
2442  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2443  */
2444 void __sk_mem_reclaim(struct sock *sk, int amount)
2445 {
2446 	amount >>= SK_MEM_QUANTUM_SHIFT;
2447 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2448 	__sk_mem_reduce_allocated(sk, amount);
2449 }
2450 EXPORT_SYMBOL(__sk_mem_reclaim);
2451 
2452 int sk_set_peek_off(struct sock *sk, int val)
2453 {
2454 	sk->sk_peek_off = val;
2455 	return 0;
2456 }
2457 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2458 
2459 /*
2460  * Set of default routines for initialising struct proto_ops when
2461  * the protocol does not support a particular function. In certain
2462  * cases where it makes no sense for a protocol to have a "do nothing"
2463  * function, some default processing is provided.
2464  */
2465 
2466 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2467 {
2468 	return -EOPNOTSUPP;
2469 }
2470 EXPORT_SYMBOL(sock_no_bind);
2471 
2472 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2473 		    int len, int flags)
2474 {
2475 	return -EOPNOTSUPP;
2476 }
2477 EXPORT_SYMBOL(sock_no_connect);
2478 
2479 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2480 {
2481 	return -EOPNOTSUPP;
2482 }
2483 EXPORT_SYMBOL(sock_no_socketpair);
2484 
2485 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2486 		   bool kern)
2487 {
2488 	return -EOPNOTSUPP;
2489 }
2490 EXPORT_SYMBOL(sock_no_accept);
2491 
2492 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2493 		    int *len, int peer)
2494 {
2495 	return -EOPNOTSUPP;
2496 }
2497 EXPORT_SYMBOL(sock_no_getname);
2498 
2499 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2500 {
2501 	return 0;
2502 }
2503 EXPORT_SYMBOL(sock_no_poll);
2504 
2505 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2506 {
2507 	return -EOPNOTSUPP;
2508 }
2509 EXPORT_SYMBOL(sock_no_ioctl);
2510 
2511 int sock_no_listen(struct socket *sock, int backlog)
2512 {
2513 	return -EOPNOTSUPP;
2514 }
2515 EXPORT_SYMBOL(sock_no_listen);
2516 
2517 int sock_no_shutdown(struct socket *sock, int how)
2518 {
2519 	return -EOPNOTSUPP;
2520 }
2521 EXPORT_SYMBOL(sock_no_shutdown);
2522 
2523 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2524 		    char __user *optval, unsigned int optlen)
2525 {
2526 	return -EOPNOTSUPP;
2527 }
2528 EXPORT_SYMBOL(sock_no_setsockopt);
2529 
2530 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2531 		    char __user *optval, int __user *optlen)
2532 {
2533 	return -EOPNOTSUPP;
2534 }
2535 EXPORT_SYMBOL(sock_no_getsockopt);
2536 
2537 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2538 {
2539 	return -EOPNOTSUPP;
2540 }
2541 EXPORT_SYMBOL(sock_no_sendmsg);
2542 
2543 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2544 {
2545 	return -EOPNOTSUPP;
2546 }
2547 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2548 
2549 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2550 		    int flags)
2551 {
2552 	return -EOPNOTSUPP;
2553 }
2554 EXPORT_SYMBOL(sock_no_recvmsg);
2555 
2556 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2557 {
2558 	/* Mirror missing mmap method error code */
2559 	return -ENODEV;
2560 }
2561 EXPORT_SYMBOL(sock_no_mmap);
2562 
2563 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2564 {
2565 	ssize_t res;
2566 	struct msghdr msg = {.msg_flags = flags};
2567 	struct kvec iov;
2568 	char *kaddr = kmap(page);
2569 	iov.iov_base = kaddr + offset;
2570 	iov.iov_len = size;
2571 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2572 	kunmap(page);
2573 	return res;
2574 }
2575 EXPORT_SYMBOL(sock_no_sendpage);
2576 
2577 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2578 				int offset, size_t size, int flags)
2579 {
2580 	ssize_t res;
2581 	struct msghdr msg = {.msg_flags = flags};
2582 	struct kvec iov;
2583 	char *kaddr = kmap(page);
2584 
2585 	iov.iov_base = kaddr + offset;
2586 	iov.iov_len = size;
2587 	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2588 	kunmap(page);
2589 	return res;
2590 }
2591 EXPORT_SYMBOL(sock_no_sendpage_locked);
2592 
2593 /*
2594  *	Default Socket Callbacks
2595  */
2596 
2597 static void sock_def_wakeup(struct sock *sk)
2598 {
2599 	struct socket_wq *wq;
2600 
2601 	rcu_read_lock();
2602 	wq = rcu_dereference(sk->sk_wq);
2603 	if (skwq_has_sleeper(wq))
2604 		wake_up_interruptible_all(&wq->wait);
2605 	rcu_read_unlock();
2606 }
2607 
2608 static void sock_def_error_report(struct sock *sk)
2609 {
2610 	struct socket_wq *wq;
2611 
2612 	rcu_read_lock();
2613 	wq = rcu_dereference(sk->sk_wq);
2614 	if (skwq_has_sleeper(wq))
2615 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2616 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2617 	rcu_read_unlock();
2618 }
2619 
2620 static void sock_def_readable(struct sock *sk)
2621 {
2622 	struct socket_wq *wq;
2623 
2624 	rcu_read_lock();
2625 	wq = rcu_dereference(sk->sk_wq);
2626 	if (skwq_has_sleeper(wq))
2627 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2628 						POLLRDNORM | POLLRDBAND);
2629 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2630 	rcu_read_unlock();
2631 }
2632 
2633 static void sock_def_write_space(struct sock *sk)
2634 {
2635 	struct socket_wq *wq;
2636 
2637 	rcu_read_lock();
2638 
2639 	/* Do not wake up a writer until he can make "significant"
2640 	 * progress.  --DaveM
2641 	 */
2642 	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2643 		wq = rcu_dereference(sk->sk_wq);
2644 		if (skwq_has_sleeper(wq))
2645 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2646 						POLLWRNORM | POLLWRBAND);
2647 
2648 		/* Should agree with poll, otherwise some programs break */
2649 		if (sock_writeable(sk))
2650 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2651 	}
2652 
2653 	rcu_read_unlock();
2654 }
2655 
2656 static void sock_def_destruct(struct sock *sk)
2657 {
2658 }
2659 
2660 void sk_send_sigurg(struct sock *sk)
2661 {
2662 	if (sk->sk_socket && sk->sk_socket->file)
2663 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2664 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2665 }
2666 EXPORT_SYMBOL(sk_send_sigurg);
2667 
2668 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2669 		    unsigned long expires)
2670 {
2671 	if (!mod_timer(timer, expires))
2672 		sock_hold(sk);
2673 }
2674 EXPORT_SYMBOL(sk_reset_timer);
2675 
2676 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2677 {
2678 	if (del_timer(timer))
2679 		__sock_put(sk);
2680 }
2681 EXPORT_SYMBOL(sk_stop_timer);
2682 
2683 void sock_init_data(struct socket *sock, struct sock *sk)
2684 {
2685 	sk_init_common(sk);
2686 	sk->sk_send_head	=	NULL;
2687 
2688 	init_timer(&sk->sk_timer);
2689 
2690 	sk->sk_allocation	=	GFP_KERNEL;
2691 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2692 	sk->sk_sndbuf		=	sysctl_wmem_default;
2693 	sk->sk_state		=	TCP_CLOSE;
2694 	sk_set_socket(sk, sock);
2695 
2696 	sock_set_flag(sk, SOCK_ZAPPED);
2697 
2698 	if (sock) {
2699 		sk->sk_type	=	sock->type;
2700 		sk->sk_wq	=	sock->wq;
2701 		sock->sk	=	sk;
2702 		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2703 	} else {
2704 		sk->sk_wq	=	NULL;
2705 		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2706 	}
2707 
2708 	rwlock_init(&sk->sk_callback_lock);
2709 	if (sk->sk_kern_sock)
2710 		lockdep_set_class_and_name(
2711 			&sk->sk_callback_lock,
2712 			af_kern_callback_keys + sk->sk_family,
2713 			af_family_kern_clock_key_strings[sk->sk_family]);
2714 	else
2715 		lockdep_set_class_and_name(
2716 			&sk->sk_callback_lock,
2717 			af_callback_keys + sk->sk_family,
2718 			af_family_clock_key_strings[sk->sk_family]);
2719 
2720 	sk->sk_state_change	=	sock_def_wakeup;
2721 	sk->sk_data_ready	=	sock_def_readable;
2722 	sk->sk_write_space	=	sock_def_write_space;
2723 	sk->sk_error_report	=	sock_def_error_report;
2724 	sk->sk_destruct		=	sock_def_destruct;
2725 
2726 	sk->sk_frag.page	=	NULL;
2727 	sk->sk_frag.offset	=	0;
2728 	sk->sk_peek_off		=	-1;
2729 
2730 	sk->sk_peer_pid 	=	NULL;
2731 	sk->sk_peer_cred	=	NULL;
2732 	sk->sk_write_pending	=	0;
2733 	sk->sk_rcvlowat		=	1;
2734 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2735 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2736 
2737 	sk->sk_stamp = SK_DEFAULT_STAMP;
2738 	atomic_set(&sk->sk_zckey, 0);
2739 
2740 #ifdef CONFIG_NET_RX_BUSY_POLL
2741 	sk->sk_napi_id		=	0;
2742 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2743 #endif
2744 
2745 	sk->sk_max_pacing_rate = ~0U;
2746 	sk->sk_pacing_rate = ~0U;
2747 	sk->sk_incoming_cpu = -1;
2748 	/*
2749 	 * Before updating sk_refcnt, we must commit prior changes to memory
2750 	 * (Documentation/RCU/rculist_nulls.txt for details)
2751 	 */
2752 	smp_wmb();
2753 	refcount_set(&sk->sk_refcnt, 1);
2754 	atomic_set(&sk->sk_drops, 0);
2755 }
2756 EXPORT_SYMBOL(sock_init_data);
2757 
2758 void lock_sock_nested(struct sock *sk, int subclass)
2759 {
2760 	might_sleep();
2761 	spin_lock_bh(&sk->sk_lock.slock);
2762 	if (sk->sk_lock.owned)
2763 		__lock_sock(sk);
2764 	sk->sk_lock.owned = 1;
2765 	spin_unlock(&sk->sk_lock.slock);
2766 	/*
2767 	 * The sk_lock has mutex_lock() semantics here:
2768 	 */
2769 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2770 	local_bh_enable();
2771 }
2772 EXPORT_SYMBOL(lock_sock_nested);
2773 
2774 void release_sock(struct sock *sk)
2775 {
2776 	spin_lock_bh(&sk->sk_lock.slock);
2777 	if (sk->sk_backlog.tail)
2778 		__release_sock(sk);
2779 
2780 	/* Warning : release_cb() might need to release sk ownership,
2781 	 * ie call sock_release_ownership(sk) before us.
2782 	 */
2783 	if (sk->sk_prot->release_cb)
2784 		sk->sk_prot->release_cb(sk);
2785 
2786 	sock_release_ownership(sk);
2787 	if (waitqueue_active(&sk->sk_lock.wq))
2788 		wake_up(&sk->sk_lock.wq);
2789 	spin_unlock_bh(&sk->sk_lock.slock);
2790 }
2791 EXPORT_SYMBOL(release_sock);
2792 
2793 /**
2794  * lock_sock_fast - fast version of lock_sock
2795  * @sk: socket
2796  *
2797  * This version should be used for very small section, where process wont block
2798  * return false if fast path is taken:
2799  *
2800  *   sk_lock.slock locked, owned = 0, BH disabled
2801  *
2802  * return true if slow path is taken:
2803  *
2804  *   sk_lock.slock unlocked, owned = 1, BH enabled
2805  */
2806 bool lock_sock_fast(struct sock *sk)
2807 {
2808 	might_sleep();
2809 	spin_lock_bh(&sk->sk_lock.slock);
2810 
2811 	if (!sk->sk_lock.owned)
2812 		/*
2813 		 * Note : We must disable BH
2814 		 */
2815 		return false;
2816 
2817 	__lock_sock(sk);
2818 	sk->sk_lock.owned = 1;
2819 	spin_unlock(&sk->sk_lock.slock);
2820 	/*
2821 	 * The sk_lock has mutex_lock() semantics here:
2822 	 */
2823 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2824 	local_bh_enable();
2825 	return true;
2826 }
2827 EXPORT_SYMBOL(lock_sock_fast);
2828 
2829 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2830 {
2831 	struct timeval tv;
2832 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2833 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2834 	tv = ktime_to_timeval(sk->sk_stamp);
2835 	if (tv.tv_sec == -1)
2836 		return -ENOENT;
2837 	if (tv.tv_sec == 0) {
2838 		sk->sk_stamp = ktime_get_real();
2839 		tv = ktime_to_timeval(sk->sk_stamp);
2840 	}
2841 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2842 }
2843 EXPORT_SYMBOL(sock_get_timestamp);
2844 
2845 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2846 {
2847 	struct timespec ts;
2848 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2849 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2850 	ts = ktime_to_timespec(sk->sk_stamp);
2851 	if (ts.tv_sec == -1)
2852 		return -ENOENT;
2853 	if (ts.tv_sec == 0) {
2854 		sk->sk_stamp = ktime_get_real();
2855 		ts = ktime_to_timespec(sk->sk_stamp);
2856 	}
2857 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2858 }
2859 EXPORT_SYMBOL(sock_get_timestampns);
2860 
2861 void sock_enable_timestamp(struct sock *sk, int flag)
2862 {
2863 	if (!sock_flag(sk, flag)) {
2864 		unsigned long previous_flags = sk->sk_flags;
2865 
2866 		sock_set_flag(sk, flag);
2867 		/*
2868 		 * we just set one of the two flags which require net
2869 		 * time stamping, but time stamping might have been on
2870 		 * already because of the other one
2871 		 */
2872 		if (sock_needs_netstamp(sk) &&
2873 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
2874 			net_enable_timestamp();
2875 	}
2876 }
2877 
2878 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2879 		       int level, int type)
2880 {
2881 	struct sock_exterr_skb *serr;
2882 	struct sk_buff *skb;
2883 	int copied, err;
2884 
2885 	err = -EAGAIN;
2886 	skb = sock_dequeue_err_skb(sk);
2887 	if (skb == NULL)
2888 		goto out;
2889 
2890 	copied = skb->len;
2891 	if (copied > len) {
2892 		msg->msg_flags |= MSG_TRUNC;
2893 		copied = len;
2894 	}
2895 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2896 	if (err)
2897 		goto out_free_skb;
2898 
2899 	sock_recv_timestamp(msg, sk, skb);
2900 
2901 	serr = SKB_EXT_ERR(skb);
2902 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2903 
2904 	msg->msg_flags |= MSG_ERRQUEUE;
2905 	err = copied;
2906 
2907 out_free_skb:
2908 	kfree_skb(skb);
2909 out:
2910 	return err;
2911 }
2912 EXPORT_SYMBOL(sock_recv_errqueue);
2913 
2914 /*
2915  *	Get a socket option on an socket.
2916  *
2917  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2918  *	asynchronous errors should be reported by getsockopt. We assume
2919  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2920  */
2921 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2922 			   char __user *optval, int __user *optlen)
2923 {
2924 	struct sock *sk = sock->sk;
2925 
2926 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2927 }
2928 EXPORT_SYMBOL(sock_common_getsockopt);
2929 
2930 #ifdef CONFIG_COMPAT
2931 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2932 				  char __user *optval, int __user *optlen)
2933 {
2934 	struct sock *sk = sock->sk;
2935 
2936 	if (sk->sk_prot->compat_getsockopt != NULL)
2937 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2938 						      optval, optlen);
2939 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2940 }
2941 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2942 #endif
2943 
2944 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2945 			int flags)
2946 {
2947 	struct sock *sk = sock->sk;
2948 	int addr_len = 0;
2949 	int err;
2950 
2951 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2952 				   flags & ~MSG_DONTWAIT, &addr_len);
2953 	if (err >= 0)
2954 		msg->msg_namelen = addr_len;
2955 	return err;
2956 }
2957 EXPORT_SYMBOL(sock_common_recvmsg);
2958 
2959 /*
2960  *	Set socket options on an inet socket.
2961  */
2962 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2963 			   char __user *optval, unsigned int optlen)
2964 {
2965 	struct sock *sk = sock->sk;
2966 
2967 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2968 }
2969 EXPORT_SYMBOL(sock_common_setsockopt);
2970 
2971 #ifdef CONFIG_COMPAT
2972 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2973 				  char __user *optval, unsigned int optlen)
2974 {
2975 	struct sock *sk = sock->sk;
2976 
2977 	if (sk->sk_prot->compat_setsockopt != NULL)
2978 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2979 						      optval, optlen);
2980 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2981 }
2982 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2983 #endif
2984 
2985 void sk_common_release(struct sock *sk)
2986 {
2987 	if (sk->sk_prot->destroy)
2988 		sk->sk_prot->destroy(sk);
2989 
2990 	/*
2991 	 * Observation: when sock_common_release is called, processes have
2992 	 * no access to socket. But net still has.
2993 	 * Step one, detach it from networking:
2994 	 *
2995 	 * A. Remove from hash tables.
2996 	 */
2997 
2998 	sk->sk_prot->unhash(sk);
2999 
3000 	/*
3001 	 * In this point socket cannot receive new packets, but it is possible
3002 	 * that some packets are in flight because some CPU runs receiver and
3003 	 * did hash table lookup before we unhashed socket. They will achieve
3004 	 * receive queue and will be purged by socket destructor.
3005 	 *
3006 	 * Also we still have packets pending on receive queue and probably,
3007 	 * our own packets waiting in device queues. sock_destroy will drain
3008 	 * receive queue, but transmitted packets will delay socket destruction
3009 	 * until the last reference will be released.
3010 	 */
3011 
3012 	sock_orphan(sk);
3013 
3014 	xfrm_sk_free_policy(sk);
3015 
3016 	sk_refcnt_debug_release(sk);
3017 
3018 	sock_put(sk);
3019 }
3020 EXPORT_SYMBOL(sk_common_release);
3021 
3022 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3023 {
3024 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3025 
3026 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3027 	mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3028 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3029 	mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3030 	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3031 	mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3032 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3033 	mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3034 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3035 }
3036 
3037 #ifdef CONFIG_PROC_FS
3038 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
3039 struct prot_inuse {
3040 	int val[PROTO_INUSE_NR];
3041 };
3042 
3043 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3044 
3045 #ifdef CONFIG_NET_NS
3046 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3047 {
3048 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
3049 }
3050 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3051 
3052 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3053 {
3054 	int cpu, idx = prot->inuse_idx;
3055 	int res = 0;
3056 
3057 	for_each_possible_cpu(cpu)
3058 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
3059 
3060 	return res >= 0 ? res : 0;
3061 }
3062 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3063 
3064 static int __net_init sock_inuse_init_net(struct net *net)
3065 {
3066 	net->core.inuse = alloc_percpu(struct prot_inuse);
3067 	return net->core.inuse ? 0 : -ENOMEM;
3068 }
3069 
3070 static void __net_exit sock_inuse_exit_net(struct net *net)
3071 {
3072 	free_percpu(net->core.inuse);
3073 }
3074 
3075 static struct pernet_operations net_inuse_ops = {
3076 	.init = sock_inuse_init_net,
3077 	.exit = sock_inuse_exit_net,
3078 };
3079 
3080 static __init int net_inuse_init(void)
3081 {
3082 	if (register_pernet_subsys(&net_inuse_ops))
3083 		panic("Cannot initialize net inuse counters");
3084 
3085 	return 0;
3086 }
3087 
3088 core_initcall(net_inuse_init);
3089 #else
3090 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
3091 
3092 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3093 {
3094 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
3095 }
3096 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3097 
3098 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3099 {
3100 	int cpu, idx = prot->inuse_idx;
3101 	int res = 0;
3102 
3103 	for_each_possible_cpu(cpu)
3104 		res += per_cpu(prot_inuse, cpu).val[idx];
3105 
3106 	return res >= 0 ? res : 0;
3107 }
3108 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3109 #endif
3110 
3111 static void assign_proto_idx(struct proto *prot)
3112 {
3113 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3114 
3115 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3116 		pr_err("PROTO_INUSE_NR exhausted\n");
3117 		return;
3118 	}
3119 
3120 	set_bit(prot->inuse_idx, proto_inuse_idx);
3121 }
3122 
3123 static void release_proto_idx(struct proto *prot)
3124 {
3125 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3126 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3127 }
3128 #else
3129 static inline void assign_proto_idx(struct proto *prot)
3130 {
3131 }
3132 
3133 static inline void release_proto_idx(struct proto *prot)
3134 {
3135 }
3136 #endif
3137 
3138 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3139 {
3140 	if (!rsk_prot)
3141 		return;
3142 	kfree(rsk_prot->slab_name);
3143 	rsk_prot->slab_name = NULL;
3144 	kmem_cache_destroy(rsk_prot->slab);
3145 	rsk_prot->slab = NULL;
3146 }
3147 
3148 static int req_prot_init(const struct proto *prot)
3149 {
3150 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3151 
3152 	if (!rsk_prot)
3153 		return 0;
3154 
3155 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3156 					prot->name);
3157 	if (!rsk_prot->slab_name)
3158 		return -ENOMEM;
3159 
3160 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3161 					   rsk_prot->obj_size, 0,
3162 					   prot->slab_flags, NULL);
3163 
3164 	if (!rsk_prot->slab) {
3165 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3166 			prot->name);
3167 		return -ENOMEM;
3168 	}
3169 	return 0;
3170 }
3171 
3172 int proto_register(struct proto *prot, int alloc_slab)
3173 {
3174 	if (alloc_slab) {
3175 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
3176 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
3177 					NULL);
3178 
3179 		if (prot->slab == NULL) {
3180 			pr_crit("%s: Can't create sock SLAB cache!\n",
3181 				prot->name);
3182 			goto out;
3183 		}
3184 
3185 		if (req_prot_init(prot))
3186 			goto out_free_request_sock_slab;
3187 
3188 		if (prot->twsk_prot != NULL) {
3189 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3190 
3191 			if (prot->twsk_prot->twsk_slab_name == NULL)
3192 				goto out_free_request_sock_slab;
3193 
3194 			prot->twsk_prot->twsk_slab =
3195 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3196 						  prot->twsk_prot->twsk_obj_size,
3197 						  0,
3198 						  prot->slab_flags,
3199 						  NULL);
3200 			if (prot->twsk_prot->twsk_slab == NULL)
3201 				goto out_free_timewait_sock_slab_name;
3202 		}
3203 	}
3204 
3205 	mutex_lock(&proto_list_mutex);
3206 	list_add(&prot->node, &proto_list);
3207 	assign_proto_idx(prot);
3208 	mutex_unlock(&proto_list_mutex);
3209 	return 0;
3210 
3211 out_free_timewait_sock_slab_name:
3212 	kfree(prot->twsk_prot->twsk_slab_name);
3213 out_free_request_sock_slab:
3214 	req_prot_cleanup(prot->rsk_prot);
3215 
3216 	kmem_cache_destroy(prot->slab);
3217 	prot->slab = NULL;
3218 out:
3219 	return -ENOBUFS;
3220 }
3221 EXPORT_SYMBOL(proto_register);
3222 
3223 void proto_unregister(struct proto *prot)
3224 {
3225 	mutex_lock(&proto_list_mutex);
3226 	release_proto_idx(prot);
3227 	list_del(&prot->node);
3228 	mutex_unlock(&proto_list_mutex);
3229 
3230 	kmem_cache_destroy(prot->slab);
3231 	prot->slab = NULL;
3232 
3233 	req_prot_cleanup(prot->rsk_prot);
3234 
3235 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3236 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3237 		kfree(prot->twsk_prot->twsk_slab_name);
3238 		prot->twsk_prot->twsk_slab = NULL;
3239 	}
3240 }
3241 EXPORT_SYMBOL(proto_unregister);
3242 
3243 #ifdef CONFIG_PROC_FS
3244 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3245 	__acquires(proto_list_mutex)
3246 {
3247 	mutex_lock(&proto_list_mutex);
3248 	return seq_list_start_head(&proto_list, *pos);
3249 }
3250 
3251 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3252 {
3253 	return seq_list_next(v, &proto_list, pos);
3254 }
3255 
3256 static void proto_seq_stop(struct seq_file *seq, void *v)
3257 	__releases(proto_list_mutex)
3258 {
3259 	mutex_unlock(&proto_list_mutex);
3260 }
3261 
3262 static char proto_method_implemented(const void *method)
3263 {
3264 	return method == NULL ? 'n' : 'y';
3265 }
3266 static long sock_prot_memory_allocated(struct proto *proto)
3267 {
3268 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3269 }
3270 
3271 static char *sock_prot_memory_pressure(struct proto *proto)
3272 {
3273 	return proto->memory_pressure != NULL ?
3274 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3275 }
3276 
3277 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3278 {
3279 
3280 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3281 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3282 		   proto->name,
3283 		   proto->obj_size,
3284 		   sock_prot_inuse_get(seq_file_net(seq), proto),
3285 		   sock_prot_memory_allocated(proto),
3286 		   sock_prot_memory_pressure(proto),
3287 		   proto->max_header,
3288 		   proto->slab == NULL ? "no" : "yes",
3289 		   module_name(proto->owner),
3290 		   proto_method_implemented(proto->close),
3291 		   proto_method_implemented(proto->connect),
3292 		   proto_method_implemented(proto->disconnect),
3293 		   proto_method_implemented(proto->accept),
3294 		   proto_method_implemented(proto->ioctl),
3295 		   proto_method_implemented(proto->init),
3296 		   proto_method_implemented(proto->destroy),
3297 		   proto_method_implemented(proto->shutdown),
3298 		   proto_method_implemented(proto->setsockopt),
3299 		   proto_method_implemented(proto->getsockopt),
3300 		   proto_method_implemented(proto->sendmsg),
3301 		   proto_method_implemented(proto->recvmsg),
3302 		   proto_method_implemented(proto->sendpage),
3303 		   proto_method_implemented(proto->bind),
3304 		   proto_method_implemented(proto->backlog_rcv),
3305 		   proto_method_implemented(proto->hash),
3306 		   proto_method_implemented(proto->unhash),
3307 		   proto_method_implemented(proto->get_port),
3308 		   proto_method_implemented(proto->enter_memory_pressure));
3309 }
3310 
3311 static int proto_seq_show(struct seq_file *seq, void *v)
3312 {
3313 	if (v == &proto_list)
3314 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3315 			   "protocol",
3316 			   "size",
3317 			   "sockets",
3318 			   "memory",
3319 			   "press",
3320 			   "maxhdr",
3321 			   "slab",
3322 			   "module",
3323 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3324 	else
3325 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3326 	return 0;
3327 }
3328 
3329 static const struct seq_operations proto_seq_ops = {
3330 	.start  = proto_seq_start,
3331 	.next   = proto_seq_next,
3332 	.stop   = proto_seq_stop,
3333 	.show   = proto_seq_show,
3334 };
3335 
3336 static int proto_seq_open(struct inode *inode, struct file *file)
3337 {
3338 	return seq_open_net(inode, file, &proto_seq_ops,
3339 			    sizeof(struct seq_net_private));
3340 }
3341 
3342 static const struct file_operations proto_seq_fops = {
3343 	.owner		= THIS_MODULE,
3344 	.open		= proto_seq_open,
3345 	.read		= seq_read,
3346 	.llseek		= seq_lseek,
3347 	.release	= seq_release_net,
3348 };
3349 
3350 static __net_init int proto_init_net(struct net *net)
3351 {
3352 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3353 		return -ENOMEM;
3354 
3355 	return 0;
3356 }
3357 
3358 static __net_exit void proto_exit_net(struct net *net)
3359 {
3360 	remove_proc_entry("protocols", net->proc_net);
3361 }
3362 
3363 
3364 static __net_initdata struct pernet_operations proto_net_ops = {
3365 	.init = proto_init_net,
3366 	.exit = proto_exit_net,
3367 };
3368 
3369 static int __init proto_init(void)
3370 {
3371 	return register_pernet_subsys(&proto_net_ops);
3372 }
3373 
3374 subsys_initcall(proto_init);
3375 
3376 #endif /* PROC_FS */
3377 
3378 #ifdef CONFIG_NET_RX_BUSY_POLL
3379 bool sk_busy_loop_end(void *p, unsigned long start_time)
3380 {
3381 	struct sock *sk = p;
3382 
3383 	return !skb_queue_empty(&sk->sk_receive_queue) ||
3384 	       sk_busy_loop_timeout(sk, start_time);
3385 }
3386 EXPORT_SYMBOL(sk_busy_loop_end);
3387 #endif /* CONFIG_NET_RX_BUSY_POLL */
3388