1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Generic socket support routines. Memory allocators, socket lock/release 7 * handler for protocols to use and generic option handler. 8 * 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 * 85 * 86 * This program is free software; you can redistribute it and/or 87 * modify it under the terms of the GNU General Public License 88 * as published by the Free Software Foundation; either version 89 * 2 of the License, or (at your option) any later version. 90 */ 91 92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 93 94 #include <linux/capability.h> 95 #include <linux/errno.h> 96 #include <linux/errqueue.h> 97 #include <linux/types.h> 98 #include <linux/socket.h> 99 #include <linux/in.h> 100 #include <linux/kernel.h> 101 #include <linux/module.h> 102 #include <linux/proc_fs.h> 103 #include <linux/seq_file.h> 104 #include <linux/sched.h> 105 #include <linux/timer.h> 106 #include <linux/string.h> 107 #include <linux/sockios.h> 108 #include <linux/net.h> 109 #include <linux/mm.h> 110 #include <linux/slab.h> 111 #include <linux/interrupt.h> 112 #include <linux/poll.h> 113 #include <linux/tcp.h> 114 #include <linux/init.h> 115 #include <linux/highmem.h> 116 #include <linux/user_namespace.h> 117 #include <linux/static_key.h> 118 #include <linux/memcontrol.h> 119 #include <linux/prefetch.h> 120 121 #include <asm/uaccess.h> 122 123 #include <linux/netdevice.h> 124 #include <net/protocol.h> 125 #include <linux/skbuff.h> 126 #include <net/net_namespace.h> 127 #include <net/request_sock.h> 128 #include <net/sock.h> 129 #include <linux/net_tstamp.h> 130 #include <net/xfrm.h> 131 #include <linux/ipsec.h> 132 #include <net/cls_cgroup.h> 133 #include <net/netprio_cgroup.h> 134 #include <linux/sock_diag.h> 135 136 #include <linux/filter.h> 137 138 #include <trace/events/sock.h> 139 140 #ifdef CONFIG_INET 141 #include <net/tcp.h> 142 #endif 143 144 #include <net/busy_poll.h> 145 146 static DEFINE_MUTEX(proto_list_mutex); 147 static LIST_HEAD(proto_list); 148 149 /** 150 * sk_ns_capable - General socket capability test 151 * @sk: Socket to use a capability on or through 152 * @user_ns: The user namespace of the capability to use 153 * @cap: The capability to use 154 * 155 * Test to see if the opener of the socket had when the socket was 156 * created and the current process has the capability @cap in the user 157 * namespace @user_ns. 158 */ 159 bool sk_ns_capable(const struct sock *sk, 160 struct user_namespace *user_ns, int cap) 161 { 162 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 163 ns_capable(user_ns, cap); 164 } 165 EXPORT_SYMBOL(sk_ns_capable); 166 167 /** 168 * sk_capable - Socket global capability test 169 * @sk: Socket to use a capability on or through 170 * @cap: The global capability to use 171 * 172 * Test to see if the opener of the socket had when the socket was 173 * created and the current process has the capability @cap in all user 174 * namespaces. 175 */ 176 bool sk_capable(const struct sock *sk, int cap) 177 { 178 return sk_ns_capable(sk, &init_user_ns, cap); 179 } 180 EXPORT_SYMBOL(sk_capable); 181 182 /** 183 * sk_net_capable - Network namespace socket capability test 184 * @sk: Socket to use a capability on or through 185 * @cap: The capability to use 186 * 187 * Test to see if the opener of the socket had when the socket was created 188 * and the current process has the capability @cap over the network namespace 189 * the socket is a member of. 190 */ 191 bool sk_net_capable(const struct sock *sk, int cap) 192 { 193 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 194 } 195 EXPORT_SYMBOL(sk_net_capable); 196 197 198 #ifdef CONFIG_MEMCG_KMEM 199 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 200 { 201 struct proto *proto; 202 int ret = 0; 203 204 mutex_lock(&proto_list_mutex); 205 list_for_each_entry(proto, &proto_list, node) { 206 if (proto->init_cgroup) { 207 ret = proto->init_cgroup(memcg, ss); 208 if (ret) 209 goto out; 210 } 211 } 212 213 mutex_unlock(&proto_list_mutex); 214 return ret; 215 out: 216 list_for_each_entry_continue_reverse(proto, &proto_list, node) 217 if (proto->destroy_cgroup) 218 proto->destroy_cgroup(memcg); 219 mutex_unlock(&proto_list_mutex); 220 return ret; 221 } 222 223 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg) 224 { 225 struct proto *proto; 226 227 mutex_lock(&proto_list_mutex); 228 list_for_each_entry_reverse(proto, &proto_list, node) 229 if (proto->destroy_cgroup) 230 proto->destroy_cgroup(memcg); 231 mutex_unlock(&proto_list_mutex); 232 } 233 #endif 234 235 /* 236 * Each address family might have different locking rules, so we have 237 * one slock key per address family: 238 */ 239 static struct lock_class_key af_family_keys[AF_MAX]; 240 static struct lock_class_key af_family_slock_keys[AF_MAX]; 241 242 #if defined(CONFIG_MEMCG_KMEM) 243 struct static_key memcg_socket_limit_enabled; 244 EXPORT_SYMBOL(memcg_socket_limit_enabled); 245 #endif 246 247 /* 248 * Make lock validator output more readable. (we pre-construct these 249 * strings build-time, so that runtime initialization of socket 250 * locks is fast): 251 */ 252 static const char *const af_family_key_strings[AF_MAX+1] = { 253 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" , 254 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK", 255 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" , 256 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" , 257 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" , 258 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" , 259 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" , 260 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" , 261 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" , 262 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" , 263 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" , 264 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" , 265 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" , 266 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX" 267 }; 268 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 269 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" , 270 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK", 271 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" , 272 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" , 273 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" , 274 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" , 275 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" , 276 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" , 277 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" , 278 "slock-27" , "slock-28" , "slock-AF_CAN" , 279 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" , 280 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" , 281 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" , 282 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX" 283 }; 284 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 285 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" , 286 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK", 287 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" , 288 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" , 289 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" , 290 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" , 291 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" , 292 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" , 293 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" , 294 "clock-27" , "clock-28" , "clock-AF_CAN" , 295 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" , 296 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" , 297 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" , 298 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX" 299 }; 300 301 /* 302 * sk_callback_lock locking rules are per-address-family, 303 * so split the lock classes by using a per-AF key: 304 */ 305 static struct lock_class_key af_callback_keys[AF_MAX]; 306 307 /* Take into consideration the size of the struct sk_buff overhead in the 308 * determination of these values, since that is non-constant across 309 * platforms. This makes socket queueing behavior and performance 310 * not depend upon such differences. 311 */ 312 #define _SK_MEM_PACKETS 256 313 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 314 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 315 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 316 317 /* Run time adjustable parameters. */ 318 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 319 EXPORT_SYMBOL(sysctl_wmem_max); 320 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 321 EXPORT_SYMBOL(sysctl_rmem_max); 322 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 323 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 324 325 /* Maximal space eaten by iovec or ancillary data plus some space */ 326 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 327 EXPORT_SYMBOL(sysctl_optmem_max); 328 329 int sysctl_tstamp_allow_data __read_mostly = 1; 330 331 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE; 332 EXPORT_SYMBOL_GPL(memalloc_socks); 333 334 /** 335 * sk_set_memalloc - sets %SOCK_MEMALLOC 336 * @sk: socket to set it on 337 * 338 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 339 * It's the responsibility of the admin to adjust min_free_kbytes 340 * to meet the requirements 341 */ 342 void sk_set_memalloc(struct sock *sk) 343 { 344 sock_set_flag(sk, SOCK_MEMALLOC); 345 sk->sk_allocation |= __GFP_MEMALLOC; 346 static_key_slow_inc(&memalloc_socks); 347 } 348 EXPORT_SYMBOL_GPL(sk_set_memalloc); 349 350 void sk_clear_memalloc(struct sock *sk) 351 { 352 sock_reset_flag(sk, SOCK_MEMALLOC); 353 sk->sk_allocation &= ~__GFP_MEMALLOC; 354 static_key_slow_dec(&memalloc_socks); 355 356 /* 357 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 358 * progress of swapping. SOCK_MEMALLOC may be cleared while 359 * it has rmem allocations due to the last swapfile being deactivated 360 * but there is a risk that the socket is unusable due to exceeding 361 * the rmem limits. Reclaim the reserves and obey rmem limits again. 362 */ 363 sk_mem_reclaim(sk); 364 } 365 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 366 367 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 368 { 369 int ret; 370 unsigned long pflags = current->flags; 371 372 /* these should have been dropped before queueing */ 373 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 374 375 current->flags |= PF_MEMALLOC; 376 ret = sk->sk_backlog_rcv(sk, skb); 377 tsk_restore_flags(current, pflags, PF_MEMALLOC); 378 379 return ret; 380 } 381 EXPORT_SYMBOL(__sk_backlog_rcv); 382 383 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) 384 { 385 struct timeval tv; 386 387 if (optlen < sizeof(tv)) 388 return -EINVAL; 389 if (copy_from_user(&tv, optval, sizeof(tv))) 390 return -EFAULT; 391 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 392 return -EDOM; 393 394 if (tv.tv_sec < 0) { 395 static int warned __read_mostly; 396 397 *timeo_p = 0; 398 if (warned < 10 && net_ratelimit()) { 399 warned++; 400 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 401 __func__, current->comm, task_pid_nr(current)); 402 } 403 return 0; 404 } 405 *timeo_p = MAX_SCHEDULE_TIMEOUT; 406 if (tv.tv_sec == 0 && tv.tv_usec == 0) 407 return 0; 408 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) 409 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ); 410 return 0; 411 } 412 413 static void sock_warn_obsolete_bsdism(const char *name) 414 { 415 static int warned; 416 static char warncomm[TASK_COMM_LEN]; 417 if (strcmp(warncomm, current->comm) && warned < 5) { 418 strcpy(warncomm, current->comm); 419 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 420 warncomm, name); 421 warned++; 422 } 423 } 424 425 static bool sock_needs_netstamp(const struct sock *sk) 426 { 427 switch (sk->sk_family) { 428 case AF_UNSPEC: 429 case AF_UNIX: 430 return false; 431 default: 432 return true; 433 } 434 } 435 436 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 437 438 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 439 { 440 if (sk->sk_flags & flags) { 441 sk->sk_flags &= ~flags; 442 if (sock_needs_netstamp(sk) && 443 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 444 net_disable_timestamp(); 445 } 446 } 447 448 449 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 450 { 451 int err; 452 unsigned long flags; 453 struct sk_buff_head *list = &sk->sk_receive_queue; 454 455 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 456 atomic_inc(&sk->sk_drops); 457 trace_sock_rcvqueue_full(sk, skb); 458 return -ENOMEM; 459 } 460 461 err = sk_filter(sk, skb); 462 if (err) 463 return err; 464 465 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 466 atomic_inc(&sk->sk_drops); 467 return -ENOBUFS; 468 } 469 470 skb->dev = NULL; 471 skb_set_owner_r(skb, sk); 472 473 /* we escape from rcu protected region, make sure we dont leak 474 * a norefcounted dst 475 */ 476 skb_dst_force(skb); 477 478 spin_lock_irqsave(&list->lock, flags); 479 sock_skb_set_dropcount(sk, skb); 480 __skb_queue_tail(list, skb); 481 spin_unlock_irqrestore(&list->lock, flags); 482 483 if (!sock_flag(sk, SOCK_DEAD)) 484 sk->sk_data_ready(sk); 485 return 0; 486 } 487 EXPORT_SYMBOL(sock_queue_rcv_skb); 488 489 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested) 490 { 491 int rc = NET_RX_SUCCESS; 492 493 if (sk_filter(sk, skb)) 494 goto discard_and_relse; 495 496 skb->dev = NULL; 497 498 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 499 atomic_inc(&sk->sk_drops); 500 goto discard_and_relse; 501 } 502 if (nested) 503 bh_lock_sock_nested(sk); 504 else 505 bh_lock_sock(sk); 506 if (!sock_owned_by_user(sk)) { 507 /* 508 * trylock + unlock semantics: 509 */ 510 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 511 512 rc = sk_backlog_rcv(sk, skb); 513 514 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 515 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 516 bh_unlock_sock(sk); 517 atomic_inc(&sk->sk_drops); 518 goto discard_and_relse; 519 } 520 521 bh_unlock_sock(sk); 522 out: 523 sock_put(sk); 524 return rc; 525 discard_and_relse: 526 kfree_skb(skb); 527 goto out; 528 } 529 EXPORT_SYMBOL(sk_receive_skb); 530 531 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 532 { 533 struct dst_entry *dst = __sk_dst_get(sk); 534 535 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 536 sk_tx_queue_clear(sk); 537 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 538 dst_release(dst); 539 return NULL; 540 } 541 542 return dst; 543 } 544 EXPORT_SYMBOL(__sk_dst_check); 545 546 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 547 { 548 struct dst_entry *dst = sk_dst_get(sk); 549 550 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 551 sk_dst_reset(sk); 552 dst_release(dst); 553 return NULL; 554 } 555 556 return dst; 557 } 558 EXPORT_SYMBOL(sk_dst_check); 559 560 static int sock_setbindtodevice(struct sock *sk, char __user *optval, 561 int optlen) 562 { 563 int ret = -ENOPROTOOPT; 564 #ifdef CONFIG_NETDEVICES 565 struct net *net = sock_net(sk); 566 char devname[IFNAMSIZ]; 567 int index; 568 569 /* Sorry... */ 570 ret = -EPERM; 571 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 572 goto out; 573 574 ret = -EINVAL; 575 if (optlen < 0) 576 goto out; 577 578 /* Bind this socket to a particular device like "eth0", 579 * as specified in the passed interface name. If the 580 * name is "" or the option length is zero the socket 581 * is not bound. 582 */ 583 if (optlen > IFNAMSIZ - 1) 584 optlen = IFNAMSIZ - 1; 585 memset(devname, 0, sizeof(devname)); 586 587 ret = -EFAULT; 588 if (copy_from_user(devname, optval, optlen)) 589 goto out; 590 591 index = 0; 592 if (devname[0] != '\0') { 593 struct net_device *dev; 594 595 rcu_read_lock(); 596 dev = dev_get_by_name_rcu(net, devname); 597 if (dev) 598 index = dev->ifindex; 599 rcu_read_unlock(); 600 ret = -ENODEV; 601 if (!dev) 602 goto out; 603 } 604 605 lock_sock(sk); 606 sk->sk_bound_dev_if = index; 607 sk_dst_reset(sk); 608 release_sock(sk); 609 610 ret = 0; 611 612 out: 613 #endif 614 615 return ret; 616 } 617 618 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 619 int __user *optlen, int len) 620 { 621 int ret = -ENOPROTOOPT; 622 #ifdef CONFIG_NETDEVICES 623 struct net *net = sock_net(sk); 624 char devname[IFNAMSIZ]; 625 626 if (sk->sk_bound_dev_if == 0) { 627 len = 0; 628 goto zero; 629 } 630 631 ret = -EINVAL; 632 if (len < IFNAMSIZ) 633 goto out; 634 635 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 636 if (ret) 637 goto out; 638 639 len = strlen(devname) + 1; 640 641 ret = -EFAULT; 642 if (copy_to_user(optval, devname, len)) 643 goto out; 644 645 zero: 646 ret = -EFAULT; 647 if (put_user(len, optlen)) 648 goto out; 649 650 ret = 0; 651 652 out: 653 #endif 654 655 return ret; 656 } 657 658 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 659 { 660 if (valbool) 661 sock_set_flag(sk, bit); 662 else 663 sock_reset_flag(sk, bit); 664 } 665 666 bool sk_mc_loop(struct sock *sk) 667 { 668 if (dev_recursion_level()) 669 return false; 670 if (!sk) 671 return true; 672 switch (sk->sk_family) { 673 case AF_INET: 674 return inet_sk(sk)->mc_loop; 675 #if IS_ENABLED(CONFIG_IPV6) 676 case AF_INET6: 677 return inet6_sk(sk)->mc_loop; 678 #endif 679 } 680 WARN_ON(1); 681 return true; 682 } 683 EXPORT_SYMBOL(sk_mc_loop); 684 685 /* 686 * This is meant for all protocols to use and covers goings on 687 * at the socket level. Everything here is generic. 688 */ 689 690 int sock_setsockopt(struct socket *sock, int level, int optname, 691 char __user *optval, unsigned int optlen) 692 { 693 struct sock *sk = sock->sk; 694 int val; 695 int valbool; 696 struct linger ling; 697 int ret = 0; 698 699 /* 700 * Options without arguments 701 */ 702 703 if (optname == SO_BINDTODEVICE) 704 return sock_setbindtodevice(sk, optval, optlen); 705 706 if (optlen < sizeof(int)) 707 return -EINVAL; 708 709 if (get_user(val, (int __user *)optval)) 710 return -EFAULT; 711 712 valbool = val ? 1 : 0; 713 714 lock_sock(sk); 715 716 switch (optname) { 717 case SO_DEBUG: 718 if (val && !capable(CAP_NET_ADMIN)) 719 ret = -EACCES; 720 else 721 sock_valbool_flag(sk, SOCK_DBG, valbool); 722 break; 723 case SO_REUSEADDR: 724 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 725 break; 726 case SO_REUSEPORT: 727 sk->sk_reuseport = valbool; 728 break; 729 case SO_TYPE: 730 case SO_PROTOCOL: 731 case SO_DOMAIN: 732 case SO_ERROR: 733 ret = -ENOPROTOOPT; 734 break; 735 case SO_DONTROUTE: 736 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 737 break; 738 case SO_BROADCAST: 739 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 740 break; 741 case SO_SNDBUF: 742 /* Don't error on this BSD doesn't and if you think 743 * about it this is right. Otherwise apps have to 744 * play 'guess the biggest size' games. RCVBUF/SNDBUF 745 * are treated in BSD as hints 746 */ 747 val = min_t(u32, val, sysctl_wmem_max); 748 set_sndbuf: 749 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 750 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF); 751 /* Wake up sending tasks if we upped the value. */ 752 sk->sk_write_space(sk); 753 break; 754 755 case SO_SNDBUFFORCE: 756 if (!capable(CAP_NET_ADMIN)) { 757 ret = -EPERM; 758 break; 759 } 760 goto set_sndbuf; 761 762 case SO_RCVBUF: 763 /* Don't error on this BSD doesn't and if you think 764 * about it this is right. Otherwise apps have to 765 * play 'guess the biggest size' games. RCVBUF/SNDBUF 766 * are treated in BSD as hints 767 */ 768 val = min_t(u32, val, sysctl_rmem_max); 769 set_rcvbuf: 770 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 771 /* 772 * We double it on the way in to account for 773 * "struct sk_buff" etc. overhead. Applications 774 * assume that the SO_RCVBUF setting they make will 775 * allow that much actual data to be received on that 776 * socket. 777 * 778 * Applications are unaware that "struct sk_buff" and 779 * other overheads allocate from the receive buffer 780 * during socket buffer allocation. 781 * 782 * And after considering the possible alternatives, 783 * returning the value we actually used in getsockopt 784 * is the most desirable behavior. 785 */ 786 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF); 787 break; 788 789 case SO_RCVBUFFORCE: 790 if (!capable(CAP_NET_ADMIN)) { 791 ret = -EPERM; 792 break; 793 } 794 goto set_rcvbuf; 795 796 case SO_KEEPALIVE: 797 #ifdef CONFIG_INET 798 if (sk->sk_protocol == IPPROTO_TCP && 799 sk->sk_type == SOCK_STREAM) 800 tcp_set_keepalive(sk, valbool); 801 #endif 802 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 803 break; 804 805 case SO_OOBINLINE: 806 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 807 break; 808 809 case SO_NO_CHECK: 810 sk->sk_no_check_tx = valbool; 811 break; 812 813 case SO_PRIORITY: 814 if ((val >= 0 && val <= 6) || 815 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 816 sk->sk_priority = val; 817 else 818 ret = -EPERM; 819 break; 820 821 case SO_LINGER: 822 if (optlen < sizeof(ling)) { 823 ret = -EINVAL; /* 1003.1g */ 824 break; 825 } 826 if (copy_from_user(&ling, optval, sizeof(ling))) { 827 ret = -EFAULT; 828 break; 829 } 830 if (!ling.l_onoff) 831 sock_reset_flag(sk, SOCK_LINGER); 832 else { 833 #if (BITS_PER_LONG == 32) 834 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 835 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 836 else 837 #endif 838 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 839 sock_set_flag(sk, SOCK_LINGER); 840 } 841 break; 842 843 case SO_BSDCOMPAT: 844 sock_warn_obsolete_bsdism("setsockopt"); 845 break; 846 847 case SO_PASSCRED: 848 if (valbool) 849 set_bit(SOCK_PASSCRED, &sock->flags); 850 else 851 clear_bit(SOCK_PASSCRED, &sock->flags); 852 break; 853 854 case SO_TIMESTAMP: 855 case SO_TIMESTAMPNS: 856 if (valbool) { 857 if (optname == SO_TIMESTAMP) 858 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 859 else 860 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 861 sock_set_flag(sk, SOCK_RCVTSTAMP); 862 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 863 } else { 864 sock_reset_flag(sk, SOCK_RCVTSTAMP); 865 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 866 } 867 break; 868 869 case SO_TIMESTAMPING: 870 if (val & ~SOF_TIMESTAMPING_MASK) { 871 ret = -EINVAL; 872 break; 873 } 874 875 if (val & SOF_TIMESTAMPING_OPT_ID && 876 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 877 if (sk->sk_protocol == IPPROTO_TCP) { 878 if (sk->sk_state != TCP_ESTABLISHED) { 879 ret = -EINVAL; 880 break; 881 } 882 sk->sk_tskey = tcp_sk(sk)->snd_una; 883 } else { 884 sk->sk_tskey = 0; 885 } 886 } 887 sk->sk_tsflags = val; 888 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 889 sock_enable_timestamp(sk, 890 SOCK_TIMESTAMPING_RX_SOFTWARE); 891 else 892 sock_disable_timestamp(sk, 893 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 894 break; 895 896 case SO_RCVLOWAT: 897 if (val < 0) 898 val = INT_MAX; 899 sk->sk_rcvlowat = val ? : 1; 900 break; 901 902 case SO_RCVTIMEO: 903 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); 904 break; 905 906 case SO_SNDTIMEO: 907 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); 908 break; 909 910 case SO_ATTACH_FILTER: 911 ret = -EINVAL; 912 if (optlen == sizeof(struct sock_fprog)) { 913 struct sock_fprog fprog; 914 915 ret = -EFAULT; 916 if (copy_from_user(&fprog, optval, sizeof(fprog))) 917 break; 918 919 ret = sk_attach_filter(&fprog, sk); 920 } 921 break; 922 923 case SO_ATTACH_BPF: 924 ret = -EINVAL; 925 if (optlen == sizeof(u32)) { 926 u32 ufd; 927 928 ret = -EFAULT; 929 if (copy_from_user(&ufd, optval, sizeof(ufd))) 930 break; 931 932 ret = sk_attach_bpf(ufd, sk); 933 } 934 break; 935 936 case SO_DETACH_FILTER: 937 ret = sk_detach_filter(sk); 938 break; 939 940 case SO_LOCK_FILTER: 941 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 942 ret = -EPERM; 943 else 944 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 945 break; 946 947 case SO_PASSSEC: 948 if (valbool) 949 set_bit(SOCK_PASSSEC, &sock->flags); 950 else 951 clear_bit(SOCK_PASSSEC, &sock->flags); 952 break; 953 case SO_MARK: 954 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 955 ret = -EPERM; 956 else 957 sk->sk_mark = val; 958 break; 959 960 case SO_RXQ_OVFL: 961 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 962 break; 963 964 case SO_WIFI_STATUS: 965 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 966 break; 967 968 case SO_PEEK_OFF: 969 if (sock->ops->set_peek_off) 970 ret = sock->ops->set_peek_off(sk, val); 971 else 972 ret = -EOPNOTSUPP; 973 break; 974 975 case SO_NOFCS: 976 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 977 break; 978 979 case SO_SELECT_ERR_QUEUE: 980 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 981 break; 982 983 #ifdef CONFIG_NET_RX_BUSY_POLL 984 case SO_BUSY_POLL: 985 /* allow unprivileged users to decrease the value */ 986 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 987 ret = -EPERM; 988 else { 989 if (val < 0) 990 ret = -EINVAL; 991 else 992 sk->sk_ll_usec = val; 993 } 994 break; 995 #endif 996 997 case SO_MAX_PACING_RATE: 998 sk->sk_max_pacing_rate = val; 999 sk->sk_pacing_rate = min(sk->sk_pacing_rate, 1000 sk->sk_max_pacing_rate); 1001 break; 1002 1003 case SO_INCOMING_CPU: 1004 sk->sk_incoming_cpu = val; 1005 break; 1006 1007 default: 1008 ret = -ENOPROTOOPT; 1009 break; 1010 } 1011 release_sock(sk); 1012 return ret; 1013 } 1014 EXPORT_SYMBOL(sock_setsockopt); 1015 1016 1017 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1018 struct ucred *ucred) 1019 { 1020 ucred->pid = pid_vnr(pid); 1021 ucred->uid = ucred->gid = -1; 1022 if (cred) { 1023 struct user_namespace *current_ns = current_user_ns(); 1024 1025 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1026 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1027 } 1028 } 1029 1030 int sock_getsockopt(struct socket *sock, int level, int optname, 1031 char __user *optval, int __user *optlen) 1032 { 1033 struct sock *sk = sock->sk; 1034 1035 union { 1036 int val; 1037 struct linger ling; 1038 struct timeval tm; 1039 } v; 1040 1041 int lv = sizeof(int); 1042 int len; 1043 1044 if (get_user(len, optlen)) 1045 return -EFAULT; 1046 if (len < 0) 1047 return -EINVAL; 1048 1049 memset(&v, 0, sizeof(v)); 1050 1051 switch (optname) { 1052 case SO_DEBUG: 1053 v.val = sock_flag(sk, SOCK_DBG); 1054 break; 1055 1056 case SO_DONTROUTE: 1057 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1058 break; 1059 1060 case SO_BROADCAST: 1061 v.val = sock_flag(sk, SOCK_BROADCAST); 1062 break; 1063 1064 case SO_SNDBUF: 1065 v.val = sk->sk_sndbuf; 1066 break; 1067 1068 case SO_RCVBUF: 1069 v.val = sk->sk_rcvbuf; 1070 break; 1071 1072 case SO_REUSEADDR: 1073 v.val = sk->sk_reuse; 1074 break; 1075 1076 case SO_REUSEPORT: 1077 v.val = sk->sk_reuseport; 1078 break; 1079 1080 case SO_KEEPALIVE: 1081 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1082 break; 1083 1084 case SO_TYPE: 1085 v.val = sk->sk_type; 1086 break; 1087 1088 case SO_PROTOCOL: 1089 v.val = sk->sk_protocol; 1090 break; 1091 1092 case SO_DOMAIN: 1093 v.val = sk->sk_family; 1094 break; 1095 1096 case SO_ERROR: 1097 v.val = -sock_error(sk); 1098 if (v.val == 0) 1099 v.val = xchg(&sk->sk_err_soft, 0); 1100 break; 1101 1102 case SO_OOBINLINE: 1103 v.val = sock_flag(sk, SOCK_URGINLINE); 1104 break; 1105 1106 case SO_NO_CHECK: 1107 v.val = sk->sk_no_check_tx; 1108 break; 1109 1110 case SO_PRIORITY: 1111 v.val = sk->sk_priority; 1112 break; 1113 1114 case SO_LINGER: 1115 lv = sizeof(v.ling); 1116 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1117 v.ling.l_linger = sk->sk_lingertime / HZ; 1118 break; 1119 1120 case SO_BSDCOMPAT: 1121 sock_warn_obsolete_bsdism("getsockopt"); 1122 break; 1123 1124 case SO_TIMESTAMP: 1125 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1126 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1127 break; 1128 1129 case SO_TIMESTAMPNS: 1130 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS); 1131 break; 1132 1133 case SO_TIMESTAMPING: 1134 v.val = sk->sk_tsflags; 1135 break; 1136 1137 case SO_RCVTIMEO: 1138 lv = sizeof(struct timeval); 1139 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { 1140 v.tm.tv_sec = 0; 1141 v.tm.tv_usec = 0; 1142 } else { 1143 v.tm.tv_sec = sk->sk_rcvtimeo / HZ; 1144 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ; 1145 } 1146 break; 1147 1148 case SO_SNDTIMEO: 1149 lv = sizeof(struct timeval); 1150 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { 1151 v.tm.tv_sec = 0; 1152 v.tm.tv_usec = 0; 1153 } else { 1154 v.tm.tv_sec = sk->sk_sndtimeo / HZ; 1155 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ; 1156 } 1157 break; 1158 1159 case SO_RCVLOWAT: 1160 v.val = sk->sk_rcvlowat; 1161 break; 1162 1163 case SO_SNDLOWAT: 1164 v.val = 1; 1165 break; 1166 1167 case SO_PASSCRED: 1168 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1169 break; 1170 1171 case SO_PEERCRED: 1172 { 1173 struct ucred peercred; 1174 if (len > sizeof(peercred)) 1175 len = sizeof(peercred); 1176 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1177 if (copy_to_user(optval, &peercred, len)) 1178 return -EFAULT; 1179 goto lenout; 1180 } 1181 1182 case SO_PEERNAME: 1183 { 1184 char address[128]; 1185 1186 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2)) 1187 return -ENOTCONN; 1188 if (lv < len) 1189 return -EINVAL; 1190 if (copy_to_user(optval, address, len)) 1191 return -EFAULT; 1192 goto lenout; 1193 } 1194 1195 /* Dubious BSD thing... Probably nobody even uses it, but 1196 * the UNIX standard wants it for whatever reason... -DaveM 1197 */ 1198 case SO_ACCEPTCONN: 1199 v.val = sk->sk_state == TCP_LISTEN; 1200 break; 1201 1202 case SO_PASSSEC: 1203 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1204 break; 1205 1206 case SO_PEERSEC: 1207 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1208 1209 case SO_MARK: 1210 v.val = sk->sk_mark; 1211 break; 1212 1213 case SO_RXQ_OVFL: 1214 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1215 break; 1216 1217 case SO_WIFI_STATUS: 1218 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1219 break; 1220 1221 case SO_PEEK_OFF: 1222 if (!sock->ops->set_peek_off) 1223 return -EOPNOTSUPP; 1224 1225 v.val = sk->sk_peek_off; 1226 break; 1227 case SO_NOFCS: 1228 v.val = sock_flag(sk, SOCK_NOFCS); 1229 break; 1230 1231 case SO_BINDTODEVICE: 1232 return sock_getbindtodevice(sk, optval, optlen, len); 1233 1234 case SO_GET_FILTER: 1235 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1236 if (len < 0) 1237 return len; 1238 1239 goto lenout; 1240 1241 case SO_LOCK_FILTER: 1242 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1243 break; 1244 1245 case SO_BPF_EXTENSIONS: 1246 v.val = bpf_tell_extensions(); 1247 break; 1248 1249 case SO_SELECT_ERR_QUEUE: 1250 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1251 break; 1252 1253 #ifdef CONFIG_NET_RX_BUSY_POLL 1254 case SO_BUSY_POLL: 1255 v.val = sk->sk_ll_usec; 1256 break; 1257 #endif 1258 1259 case SO_MAX_PACING_RATE: 1260 v.val = sk->sk_max_pacing_rate; 1261 break; 1262 1263 case SO_INCOMING_CPU: 1264 v.val = sk->sk_incoming_cpu; 1265 break; 1266 1267 default: 1268 /* We implement the SO_SNDLOWAT etc to not be settable 1269 * (1003.1g 7). 1270 */ 1271 return -ENOPROTOOPT; 1272 } 1273 1274 if (len > lv) 1275 len = lv; 1276 if (copy_to_user(optval, &v, len)) 1277 return -EFAULT; 1278 lenout: 1279 if (put_user(len, optlen)) 1280 return -EFAULT; 1281 return 0; 1282 } 1283 1284 /* 1285 * Initialize an sk_lock. 1286 * 1287 * (We also register the sk_lock with the lock validator.) 1288 */ 1289 static inline void sock_lock_init(struct sock *sk) 1290 { 1291 sock_lock_init_class_and_name(sk, 1292 af_family_slock_key_strings[sk->sk_family], 1293 af_family_slock_keys + sk->sk_family, 1294 af_family_key_strings[sk->sk_family], 1295 af_family_keys + sk->sk_family); 1296 } 1297 1298 /* 1299 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1300 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1301 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1302 */ 1303 static void sock_copy(struct sock *nsk, const struct sock *osk) 1304 { 1305 #ifdef CONFIG_SECURITY_NETWORK 1306 void *sptr = nsk->sk_security; 1307 #endif 1308 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1309 1310 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1311 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1312 1313 #ifdef CONFIG_SECURITY_NETWORK 1314 nsk->sk_security = sptr; 1315 security_sk_clone(osk, nsk); 1316 #endif 1317 } 1318 1319 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size) 1320 { 1321 unsigned long nulls1, nulls2; 1322 1323 nulls1 = offsetof(struct sock, __sk_common.skc_node.next); 1324 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next); 1325 if (nulls1 > nulls2) 1326 swap(nulls1, nulls2); 1327 1328 if (nulls1 != 0) 1329 memset((char *)sk, 0, nulls1); 1330 memset((char *)sk + nulls1 + sizeof(void *), 0, 1331 nulls2 - nulls1 - sizeof(void *)); 1332 memset((char *)sk + nulls2 + sizeof(void *), 0, 1333 size - nulls2 - sizeof(void *)); 1334 } 1335 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls); 1336 1337 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1338 int family) 1339 { 1340 struct sock *sk; 1341 struct kmem_cache *slab; 1342 1343 slab = prot->slab; 1344 if (slab != NULL) { 1345 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1346 if (!sk) 1347 return sk; 1348 if (priority & __GFP_ZERO) { 1349 if (prot->clear_sk) 1350 prot->clear_sk(sk, prot->obj_size); 1351 else 1352 sk_prot_clear_nulls(sk, prot->obj_size); 1353 } 1354 } else 1355 sk = kmalloc(prot->obj_size, priority); 1356 1357 if (sk != NULL) { 1358 kmemcheck_annotate_bitfield(sk, flags); 1359 1360 if (security_sk_alloc(sk, family, priority)) 1361 goto out_free; 1362 1363 if (!try_module_get(prot->owner)) 1364 goto out_free_sec; 1365 sk_tx_queue_clear(sk); 1366 } 1367 1368 return sk; 1369 1370 out_free_sec: 1371 security_sk_free(sk); 1372 out_free: 1373 if (slab != NULL) 1374 kmem_cache_free(slab, sk); 1375 else 1376 kfree(sk); 1377 return NULL; 1378 } 1379 1380 static void sk_prot_free(struct proto *prot, struct sock *sk) 1381 { 1382 struct kmem_cache *slab; 1383 struct module *owner; 1384 1385 owner = prot->owner; 1386 slab = prot->slab; 1387 1388 security_sk_free(sk); 1389 if (slab != NULL) 1390 kmem_cache_free(slab, sk); 1391 else 1392 kfree(sk); 1393 module_put(owner); 1394 } 1395 1396 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1397 void sock_update_netprioidx(struct sock *sk) 1398 { 1399 if (in_interrupt()) 1400 return; 1401 1402 sk->sk_cgrp_prioidx = task_netprioidx(current); 1403 } 1404 EXPORT_SYMBOL_GPL(sock_update_netprioidx); 1405 #endif 1406 1407 /** 1408 * sk_alloc - All socket objects are allocated here 1409 * @net: the applicable net namespace 1410 * @family: protocol family 1411 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1412 * @prot: struct proto associated with this new sock instance 1413 * @kern: is this to be a kernel socket? 1414 */ 1415 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1416 struct proto *prot, int kern) 1417 { 1418 struct sock *sk; 1419 1420 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1421 if (sk) { 1422 sk->sk_family = family; 1423 /* 1424 * See comment in struct sock definition to understand 1425 * why we need sk_prot_creator -acme 1426 */ 1427 sk->sk_prot = sk->sk_prot_creator = prot; 1428 sock_lock_init(sk); 1429 sk->sk_net_refcnt = kern ? 0 : 1; 1430 if (likely(sk->sk_net_refcnt)) 1431 get_net(net); 1432 sock_net_set(sk, net); 1433 atomic_set(&sk->sk_wmem_alloc, 1); 1434 1435 sock_update_classid(sk); 1436 sock_update_netprioidx(sk); 1437 } 1438 1439 return sk; 1440 } 1441 EXPORT_SYMBOL(sk_alloc); 1442 1443 void sk_destruct(struct sock *sk) 1444 { 1445 struct sk_filter *filter; 1446 1447 if (sk->sk_destruct) 1448 sk->sk_destruct(sk); 1449 1450 filter = rcu_dereference_check(sk->sk_filter, 1451 atomic_read(&sk->sk_wmem_alloc) == 0); 1452 if (filter) { 1453 sk_filter_uncharge(sk, filter); 1454 RCU_INIT_POINTER(sk->sk_filter, NULL); 1455 } 1456 1457 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1458 1459 if (atomic_read(&sk->sk_omem_alloc)) 1460 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1461 __func__, atomic_read(&sk->sk_omem_alloc)); 1462 1463 if (sk->sk_peer_cred) 1464 put_cred(sk->sk_peer_cred); 1465 put_pid(sk->sk_peer_pid); 1466 if (likely(sk->sk_net_refcnt)) 1467 put_net(sock_net(sk)); 1468 sk_prot_free(sk->sk_prot_creator, sk); 1469 } 1470 1471 static void __sk_free(struct sock *sk) 1472 { 1473 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt)) 1474 sock_diag_broadcast_destroy(sk); 1475 else 1476 sk_destruct(sk); 1477 } 1478 1479 void sk_free(struct sock *sk) 1480 { 1481 /* 1482 * We subtract one from sk_wmem_alloc and can know if 1483 * some packets are still in some tx queue. 1484 * If not null, sock_wfree() will call __sk_free(sk) later 1485 */ 1486 if (atomic_dec_and_test(&sk->sk_wmem_alloc)) 1487 __sk_free(sk); 1488 } 1489 EXPORT_SYMBOL(sk_free); 1490 1491 static void sk_update_clone(const struct sock *sk, struct sock *newsk) 1492 { 1493 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1494 sock_update_memcg(newsk); 1495 } 1496 1497 /** 1498 * sk_clone_lock - clone a socket, and lock its clone 1499 * @sk: the socket to clone 1500 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1501 * 1502 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1503 */ 1504 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1505 { 1506 struct sock *newsk; 1507 bool is_charged = true; 1508 1509 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1510 if (newsk != NULL) { 1511 struct sk_filter *filter; 1512 1513 sock_copy(newsk, sk); 1514 1515 /* SANITY */ 1516 if (likely(newsk->sk_net_refcnt)) 1517 get_net(sock_net(newsk)); 1518 sk_node_init(&newsk->sk_node); 1519 sock_lock_init(newsk); 1520 bh_lock_sock(newsk); 1521 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1522 newsk->sk_backlog.len = 0; 1523 1524 atomic_set(&newsk->sk_rmem_alloc, 0); 1525 /* 1526 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1527 */ 1528 atomic_set(&newsk->sk_wmem_alloc, 1); 1529 atomic_set(&newsk->sk_omem_alloc, 0); 1530 skb_queue_head_init(&newsk->sk_receive_queue); 1531 skb_queue_head_init(&newsk->sk_write_queue); 1532 1533 spin_lock_init(&newsk->sk_dst_lock); 1534 rwlock_init(&newsk->sk_callback_lock); 1535 lockdep_set_class_and_name(&newsk->sk_callback_lock, 1536 af_callback_keys + newsk->sk_family, 1537 af_family_clock_key_strings[newsk->sk_family]); 1538 1539 newsk->sk_dst_cache = NULL; 1540 newsk->sk_wmem_queued = 0; 1541 newsk->sk_forward_alloc = 0; 1542 newsk->sk_send_head = NULL; 1543 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1544 1545 sock_reset_flag(newsk, SOCK_DONE); 1546 skb_queue_head_init(&newsk->sk_error_queue); 1547 1548 filter = rcu_dereference_protected(newsk->sk_filter, 1); 1549 if (filter != NULL) 1550 /* though it's an empty new sock, the charging may fail 1551 * if sysctl_optmem_max was changed between creation of 1552 * original socket and cloning 1553 */ 1554 is_charged = sk_filter_charge(newsk, filter); 1555 1556 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) { 1557 /* It is still raw copy of parent, so invalidate 1558 * destructor and make plain sk_free() */ 1559 newsk->sk_destruct = NULL; 1560 bh_unlock_sock(newsk); 1561 sk_free(newsk); 1562 newsk = NULL; 1563 goto out; 1564 } 1565 1566 newsk->sk_err = 0; 1567 newsk->sk_priority = 0; 1568 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1569 atomic64_set(&newsk->sk_cookie, 0); 1570 /* 1571 * Before updating sk_refcnt, we must commit prior changes to memory 1572 * (Documentation/RCU/rculist_nulls.txt for details) 1573 */ 1574 smp_wmb(); 1575 atomic_set(&newsk->sk_refcnt, 2); 1576 1577 /* 1578 * Increment the counter in the same struct proto as the master 1579 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1580 * is the same as sk->sk_prot->socks, as this field was copied 1581 * with memcpy). 1582 * 1583 * This _changes_ the previous behaviour, where 1584 * tcp_create_openreq_child always was incrementing the 1585 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1586 * to be taken into account in all callers. -acme 1587 */ 1588 sk_refcnt_debug_inc(newsk); 1589 sk_set_socket(newsk, NULL); 1590 newsk->sk_wq = NULL; 1591 1592 sk_update_clone(sk, newsk); 1593 1594 if (newsk->sk_prot->sockets_allocated) 1595 sk_sockets_allocated_inc(newsk); 1596 1597 if (sock_needs_netstamp(sk) && 1598 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1599 net_enable_timestamp(); 1600 } 1601 out: 1602 return newsk; 1603 } 1604 EXPORT_SYMBOL_GPL(sk_clone_lock); 1605 1606 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1607 { 1608 u32 max_segs = 1; 1609 1610 __sk_dst_set(sk, dst); 1611 sk->sk_route_caps = dst->dev->features; 1612 if (sk->sk_route_caps & NETIF_F_GSO) 1613 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1614 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1615 if (sk_can_gso(sk)) { 1616 if (dst->header_len) { 1617 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1618 } else { 1619 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1620 sk->sk_gso_max_size = dst->dev->gso_max_size; 1621 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 1622 } 1623 } 1624 sk->sk_gso_max_segs = max_segs; 1625 } 1626 EXPORT_SYMBOL_GPL(sk_setup_caps); 1627 1628 /* 1629 * Simple resource managers for sockets. 1630 */ 1631 1632 1633 /* 1634 * Write buffer destructor automatically called from kfree_skb. 1635 */ 1636 void sock_wfree(struct sk_buff *skb) 1637 { 1638 struct sock *sk = skb->sk; 1639 unsigned int len = skb->truesize; 1640 1641 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1642 /* 1643 * Keep a reference on sk_wmem_alloc, this will be released 1644 * after sk_write_space() call 1645 */ 1646 atomic_sub(len - 1, &sk->sk_wmem_alloc); 1647 sk->sk_write_space(sk); 1648 len = 1; 1649 } 1650 /* 1651 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1652 * could not do because of in-flight packets 1653 */ 1654 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc)) 1655 __sk_free(sk); 1656 } 1657 EXPORT_SYMBOL(sock_wfree); 1658 1659 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1660 { 1661 skb_orphan(skb); 1662 skb->sk = sk; 1663 #ifdef CONFIG_INET 1664 if (unlikely(!sk_fullsock(sk))) { 1665 skb->destructor = sock_edemux; 1666 sock_hold(sk); 1667 return; 1668 } 1669 #endif 1670 skb->destructor = sock_wfree; 1671 skb_set_hash_from_sk(skb, sk); 1672 /* 1673 * We used to take a refcount on sk, but following operation 1674 * is enough to guarantee sk_free() wont free this sock until 1675 * all in-flight packets are completed 1676 */ 1677 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1678 } 1679 EXPORT_SYMBOL(skb_set_owner_w); 1680 1681 void skb_orphan_partial(struct sk_buff *skb) 1682 { 1683 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc, 1684 * so we do not completely orphan skb, but transfert all 1685 * accounted bytes but one, to avoid unexpected reorders. 1686 */ 1687 if (skb->destructor == sock_wfree 1688 #ifdef CONFIG_INET 1689 || skb->destructor == tcp_wfree 1690 #endif 1691 ) { 1692 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc); 1693 skb->truesize = 1; 1694 } else { 1695 skb_orphan(skb); 1696 } 1697 } 1698 EXPORT_SYMBOL(skb_orphan_partial); 1699 1700 /* 1701 * Read buffer destructor automatically called from kfree_skb. 1702 */ 1703 void sock_rfree(struct sk_buff *skb) 1704 { 1705 struct sock *sk = skb->sk; 1706 unsigned int len = skb->truesize; 1707 1708 atomic_sub(len, &sk->sk_rmem_alloc); 1709 sk_mem_uncharge(sk, len); 1710 } 1711 EXPORT_SYMBOL(sock_rfree); 1712 1713 /* 1714 * Buffer destructor for skbs that are not used directly in read or write 1715 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 1716 */ 1717 void sock_efree(struct sk_buff *skb) 1718 { 1719 sock_put(skb->sk); 1720 } 1721 EXPORT_SYMBOL(sock_efree); 1722 1723 kuid_t sock_i_uid(struct sock *sk) 1724 { 1725 kuid_t uid; 1726 1727 read_lock_bh(&sk->sk_callback_lock); 1728 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 1729 read_unlock_bh(&sk->sk_callback_lock); 1730 return uid; 1731 } 1732 EXPORT_SYMBOL(sock_i_uid); 1733 1734 unsigned long sock_i_ino(struct sock *sk) 1735 { 1736 unsigned long ino; 1737 1738 read_lock_bh(&sk->sk_callback_lock); 1739 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 1740 read_unlock_bh(&sk->sk_callback_lock); 1741 return ino; 1742 } 1743 EXPORT_SYMBOL(sock_i_ino); 1744 1745 /* 1746 * Allocate a skb from the socket's send buffer. 1747 */ 1748 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1749 gfp_t priority) 1750 { 1751 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1752 struct sk_buff *skb = alloc_skb(size, priority); 1753 if (skb) { 1754 skb_set_owner_w(skb, sk); 1755 return skb; 1756 } 1757 } 1758 return NULL; 1759 } 1760 EXPORT_SYMBOL(sock_wmalloc); 1761 1762 /* 1763 * Allocate a memory block from the socket's option memory buffer. 1764 */ 1765 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 1766 { 1767 if ((unsigned int)size <= sysctl_optmem_max && 1768 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 1769 void *mem; 1770 /* First do the add, to avoid the race if kmalloc 1771 * might sleep. 1772 */ 1773 atomic_add(size, &sk->sk_omem_alloc); 1774 mem = kmalloc(size, priority); 1775 if (mem) 1776 return mem; 1777 atomic_sub(size, &sk->sk_omem_alloc); 1778 } 1779 return NULL; 1780 } 1781 EXPORT_SYMBOL(sock_kmalloc); 1782 1783 /* Free an option memory block. Note, we actually want the inline 1784 * here as this allows gcc to detect the nullify and fold away the 1785 * condition entirely. 1786 */ 1787 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 1788 const bool nullify) 1789 { 1790 if (WARN_ON_ONCE(!mem)) 1791 return; 1792 if (nullify) 1793 kzfree(mem); 1794 else 1795 kfree(mem); 1796 atomic_sub(size, &sk->sk_omem_alloc); 1797 } 1798 1799 void sock_kfree_s(struct sock *sk, void *mem, int size) 1800 { 1801 __sock_kfree_s(sk, mem, size, false); 1802 } 1803 EXPORT_SYMBOL(sock_kfree_s); 1804 1805 void sock_kzfree_s(struct sock *sk, void *mem, int size) 1806 { 1807 __sock_kfree_s(sk, mem, size, true); 1808 } 1809 EXPORT_SYMBOL(sock_kzfree_s); 1810 1811 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 1812 I think, these locks should be removed for datagram sockets. 1813 */ 1814 static long sock_wait_for_wmem(struct sock *sk, long timeo) 1815 { 1816 DEFINE_WAIT(wait); 1817 1818 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1819 for (;;) { 1820 if (!timeo) 1821 break; 1822 if (signal_pending(current)) 1823 break; 1824 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1825 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1826 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 1827 break; 1828 if (sk->sk_shutdown & SEND_SHUTDOWN) 1829 break; 1830 if (sk->sk_err) 1831 break; 1832 timeo = schedule_timeout(timeo); 1833 } 1834 finish_wait(sk_sleep(sk), &wait); 1835 return timeo; 1836 } 1837 1838 1839 /* 1840 * Generic send/receive buffer handlers 1841 */ 1842 1843 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1844 unsigned long data_len, int noblock, 1845 int *errcode, int max_page_order) 1846 { 1847 struct sk_buff *skb; 1848 long timeo; 1849 int err; 1850 1851 timeo = sock_sndtimeo(sk, noblock); 1852 for (;;) { 1853 err = sock_error(sk); 1854 if (err != 0) 1855 goto failure; 1856 1857 err = -EPIPE; 1858 if (sk->sk_shutdown & SEND_SHUTDOWN) 1859 goto failure; 1860 1861 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf) 1862 break; 1863 1864 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1865 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1866 err = -EAGAIN; 1867 if (!timeo) 1868 goto failure; 1869 if (signal_pending(current)) 1870 goto interrupted; 1871 timeo = sock_wait_for_wmem(sk, timeo); 1872 } 1873 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 1874 errcode, sk->sk_allocation); 1875 if (skb) 1876 skb_set_owner_w(skb, sk); 1877 return skb; 1878 1879 interrupted: 1880 err = sock_intr_errno(timeo); 1881 failure: 1882 *errcode = err; 1883 return NULL; 1884 } 1885 EXPORT_SYMBOL(sock_alloc_send_pskb); 1886 1887 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1888 int noblock, int *errcode) 1889 { 1890 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 1891 } 1892 EXPORT_SYMBOL(sock_alloc_send_skb); 1893 1894 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1895 struct sockcm_cookie *sockc) 1896 { 1897 struct cmsghdr *cmsg; 1898 1899 for_each_cmsghdr(cmsg, msg) { 1900 if (!CMSG_OK(msg, cmsg)) 1901 return -EINVAL; 1902 if (cmsg->cmsg_level != SOL_SOCKET) 1903 continue; 1904 switch (cmsg->cmsg_type) { 1905 case SO_MARK: 1906 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 1907 return -EPERM; 1908 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 1909 return -EINVAL; 1910 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 1911 break; 1912 default: 1913 return -EINVAL; 1914 } 1915 } 1916 return 0; 1917 } 1918 EXPORT_SYMBOL(sock_cmsg_send); 1919 1920 /* On 32bit arches, an skb frag is limited to 2^15 */ 1921 #define SKB_FRAG_PAGE_ORDER get_order(32768) 1922 1923 /** 1924 * skb_page_frag_refill - check that a page_frag contains enough room 1925 * @sz: minimum size of the fragment we want to get 1926 * @pfrag: pointer to page_frag 1927 * @gfp: priority for memory allocation 1928 * 1929 * Note: While this allocator tries to use high order pages, there is 1930 * no guarantee that allocations succeed. Therefore, @sz MUST be 1931 * less or equal than PAGE_SIZE. 1932 */ 1933 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 1934 { 1935 if (pfrag->page) { 1936 if (atomic_read(&pfrag->page->_count) == 1) { 1937 pfrag->offset = 0; 1938 return true; 1939 } 1940 if (pfrag->offset + sz <= pfrag->size) 1941 return true; 1942 put_page(pfrag->page); 1943 } 1944 1945 pfrag->offset = 0; 1946 if (SKB_FRAG_PAGE_ORDER) { 1947 pfrag->page = alloc_pages((gfp & ~__GFP_WAIT) | __GFP_COMP | 1948 __GFP_NOWARN | __GFP_NORETRY, 1949 SKB_FRAG_PAGE_ORDER); 1950 if (likely(pfrag->page)) { 1951 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 1952 return true; 1953 } 1954 } 1955 pfrag->page = alloc_page(gfp); 1956 if (likely(pfrag->page)) { 1957 pfrag->size = PAGE_SIZE; 1958 return true; 1959 } 1960 return false; 1961 } 1962 EXPORT_SYMBOL(skb_page_frag_refill); 1963 1964 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1965 { 1966 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 1967 return true; 1968 1969 sk_enter_memory_pressure(sk); 1970 sk_stream_moderate_sndbuf(sk); 1971 return false; 1972 } 1973 EXPORT_SYMBOL(sk_page_frag_refill); 1974 1975 static void __lock_sock(struct sock *sk) 1976 __releases(&sk->sk_lock.slock) 1977 __acquires(&sk->sk_lock.slock) 1978 { 1979 DEFINE_WAIT(wait); 1980 1981 for (;;) { 1982 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 1983 TASK_UNINTERRUPTIBLE); 1984 spin_unlock_bh(&sk->sk_lock.slock); 1985 schedule(); 1986 spin_lock_bh(&sk->sk_lock.slock); 1987 if (!sock_owned_by_user(sk)) 1988 break; 1989 } 1990 finish_wait(&sk->sk_lock.wq, &wait); 1991 } 1992 1993 static void __release_sock(struct sock *sk) 1994 __releases(&sk->sk_lock.slock) 1995 __acquires(&sk->sk_lock.slock) 1996 { 1997 struct sk_buff *skb = sk->sk_backlog.head; 1998 1999 do { 2000 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2001 bh_unlock_sock(sk); 2002 2003 do { 2004 struct sk_buff *next = skb->next; 2005 2006 prefetch(next); 2007 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2008 skb->next = NULL; 2009 sk_backlog_rcv(sk, skb); 2010 2011 /* 2012 * We are in process context here with softirqs 2013 * disabled, use cond_resched_softirq() to preempt. 2014 * This is safe to do because we've taken the backlog 2015 * queue private: 2016 */ 2017 cond_resched_softirq(); 2018 2019 skb = next; 2020 } while (skb != NULL); 2021 2022 bh_lock_sock(sk); 2023 } while ((skb = sk->sk_backlog.head) != NULL); 2024 2025 /* 2026 * Doing the zeroing here guarantee we can not loop forever 2027 * while a wild producer attempts to flood us. 2028 */ 2029 sk->sk_backlog.len = 0; 2030 } 2031 2032 /** 2033 * sk_wait_data - wait for data to arrive at sk_receive_queue 2034 * @sk: sock to wait on 2035 * @timeo: for how long 2036 * @skb: last skb seen on sk_receive_queue 2037 * 2038 * Now socket state including sk->sk_err is changed only under lock, 2039 * hence we may omit checks after joining wait queue. 2040 * We check receive queue before schedule() only as optimization; 2041 * it is very likely that release_sock() added new data. 2042 */ 2043 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2044 { 2045 int rc; 2046 DEFINE_WAIT(wait); 2047 2048 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2049 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); 2050 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb); 2051 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); 2052 finish_wait(sk_sleep(sk), &wait); 2053 return rc; 2054 } 2055 EXPORT_SYMBOL(sk_wait_data); 2056 2057 /** 2058 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2059 * @sk: socket 2060 * @size: memory size to allocate 2061 * @kind: allocation type 2062 * 2063 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2064 * rmem allocation. This function assumes that protocols which have 2065 * memory_pressure use sk_wmem_queued as write buffer accounting. 2066 */ 2067 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2068 { 2069 struct proto *prot = sk->sk_prot; 2070 int amt = sk_mem_pages(size); 2071 long allocated; 2072 int parent_status = UNDER_LIMIT; 2073 2074 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 2075 2076 allocated = sk_memory_allocated_add(sk, amt, &parent_status); 2077 2078 /* Under limit. */ 2079 if (parent_status == UNDER_LIMIT && 2080 allocated <= sk_prot_mem_limits(sk, 0)) { 2081 sk_leave_memory_pressure(sk); 2082 return 1; 2083 } 2084 2085 /* Under pressure. (we or our parents) */ 2086 if ((parent_status > SOFT_LIMIT) || 2087 allocated > sk_prot_mem_limits(sk, 1)) 2088 sk_enter_memory_pressure(sk); 2089 2090 /* Over hard limit (we or our parents) */ 2091 if ((parent_status == OVER_LIMIT) || 2092 (allocated > sk_prot_mem_limits(sk, 2))) 2093 goto suppress_allocation; 2094 2095 /* guarantee minimum buffer size under pressure */ 2096 if (kind == SK_MEM_RECV) { 2097 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0]) 2098 return 1; 2099 2100 } else { /* SK_MEM_SEND */ 2101 if (sk->sk_type == SOCK_STREAM) { 2102 if (sk->sk_wmem_queued < prot->sysctl_wmem[0]) 2103 return 1; 2104 } else if (atomic_read(&sk->sk_wmem_alloc) < 2105 prot->sysctl_wmem[0]) 2106 return 1; 2107 } 2108 2109 if (sk_has_memory_pressure(sk)) { 2110 int alloc; 2111 2112 if (!sk_under_memory_pressure(sk)) 2113 return 1; 2114 alloc = sk_sockets_allocated_read_positive(sk); 2115 if (sk_prot_mem_limits(sk, 2) > alloc * 2116 sk_mem_pages(sk->sk_wmem_queued + 2117 atomic_read(&sk->sk_rmem_alloc) + 2118 sk->sk_forward_alloc)) 2119 return 1; 2120 } 2121 2122 suppress_allocation: 2123 2124 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2125 sk_stream_moderate_sndbuf(sk); 2126 2127 /* Fail only if socket is _under_ its sndbuf. 2128 * In this case we cannot block, so that we have to fail. 2129 */ 2130 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2131 return 1; 2132 } 2133 2134 trace_sock_exceed_buf_limit(sk, prot, allocated); 2135 2136 /* Alas. Undo changes. */ 2137 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM; 2138 2139 sk_memory_allocated_sub(sk, amt); 2140 2141 return 0; 2142 } 2143 EXPORT_SYMBOL(__sk_mem_schedule); 2144 2145 /** 2146 * __sk_mem_reclaim - reclaim memory_allocated 2147 * @sk: socket 2148 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2149 */ 2150 void __sk_mem_reclaim(struct sock *sk, int amount) 2151 { 2152 amount >>= SK_MEM_QUANTUM_SHIFT; 2153 sk_memory_allocated_sub(sk, amount); 2154 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2155 2156 if (sk_under_memory_pressure(sk) && 2157 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2158 sk_leave_memory_pressure(sk); 2159 } 2160 EXPORT_SYMBOL(__sk_mem_reclaim); 2161 2162 2163 /* 2164 * Set of default routines for initialising struct proto_ops when 2165 * the protocol does not support a particular function. In certain 2166 * cases where it makes no sense for a protocol to have a "do nothing" 2167 * function, some default processing is provided. 2168 */ 2169 2170 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2171 { 2172 return -EOPNOTSUPP; 2173 } 2174 EXPORT_SYMBOL(sock_no_bind); 2175 2176 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2177 int len, int flags) 2178 { 2179 return -EOPNOTSUPP; 2180 } 2181 EXPORT_SYMBOL(sock_no_connect); 2182 2183 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2184 { 2185 return -EOPNOTSUPP; 2186 } 2187 EXPORT_SYMBOL(sock_no_socketpair); 2188 2189 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags) 2190 { 2191 return -EOPNOTSUPP; 2192 } 2193 EXPORT_SYMBOL(sock_no_accept); 2194 2195 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2196 int *len, int peer) 2197 { 2198 return -EOPNOTSUPP; 2199 } 2200 EXPORT_SYMBOL(sock_no_getname); 2201 2202 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt) 2203 { 2204 return 0; 2205 } 2206 EXPORT_SYMBOL(sock_no_poll); 2207 2208 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2209 { 2210 return -EOPNOTSUPP; 2211 } 2212 EXPORT_SYMBOL(sock_no_ioctl); 2213 2214 int sock_no_listen(struct socket *sock, int backlog) 2215 { 2216 return -EOPNOTSUPP; 2217 } 2218 EXPORT_SYMBOL(sock_no_listen); 2219 2220 int sock_no_shutdown(struct socket *sock, int how) 2221 { 2222 return -EOPNOTSUPP; 2223 } 2224 EXPORT_SYMBOL(sock_no_shutdown); 2225 2226 int sock_no_setsockopt(struct socket *sock, int level, int optname, 2227 char __user *optval, unsigned int optlen) 2228 { 2229 return -EOPNOTSUPP; 2230 } 2231 EXPORT_SYMBOL(sock_no_setsockopt); 2232 2233 int sock_no_getsockopt(struct socket *sock, int level, int optname, 2234 char __user *optval, int __user *optlen) 2235 { 2236 return -EOPNOTSUPP; 2237 } 2238 EXPORT_SYMBOL(sock_no_getsockopt); 2239 2240 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2241 { 2242 return -EOPNOTSUPP; 2243 } 2244 EXPORT_SYMBOL(sock_no_sendmsg); 2245 2246 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2247 int flags) 2248 { 2249 return -EOPNOTSUPP; 2250 } 2251 EXPORT_SYMBOL(sock_no_recvmsg); 2252 2253 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2254 { 2255 /* Mirror missing mmap method error code */ 2256 return -ENODEV; 2257 } 2258 EXPORT_SYMBOL(sock_no_mmap); 2259 2260 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2261 { 2262 ssize_t res; 2263 struct msghdr msg = {.msg_flags = flags}; 2264 struct kvec iov; 2265 char *kaddr = kmap(page); 2266 iov.iov_base = kaddr + offset; 2267 iov.iov_len = size; 2268 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2269 kunmap(page); 2270 return res; 2271 } 2272 EXPORT_SYMBOL(sock_no_sendpage); 2273 2274 /* 2275 * Default Socket Callbacks 2276 */ 2277 2278 static void sock_def_wakeup(struct sock *sk) 2279 { 2280 struct socket_wq *wq; 2281 2282 rcu_read_lock(); 2283 wq = rcu_dereference(sk->sk_wq); 2284 if (wq_has_sleeper(wq)) 2285 wake_up_interruptible_all(&wq->wait); 2286 rcu_read_unlock(); 2287 } 2288 2289 static void sock_def_error_report(struct sock *sk) 2290 { 2291 struct socket_wq *wq; 2292 2293 rcu_read_lock(); 2294 wq = rcu_dereference(sk->sk_wq); 2295 if (wq_has_sleeper(wq)) 2296 wake_up_interruptible_poll(&wq->wait, POLLERR); 2297 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2298 rcu_read_unlock(); 2299 } 2300 2301 static void sock_def_readable(struct sock *sk) 2302 { 2303 struct socket_wq *wq; 2304 2305 rcu_read_lock(); 2306 wq = rcu_dereference(sk->sk_wq); 2307 if (wq_has_sleeper(wq)) 2308 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI | 2309 POLLRDNORM | POLLRDBAND); 2310 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2311 rcu_read_unlock(); 2312 } 2313 2314 static void sock_def_write_space(struct sock *sk) 2315 { 2316 struct socket_wq *wq; 2317 2318 rcu_read_lock(); 2319 2320 /* Do not wake up a writer until he can make "significant" 2321 * progress. --DaveM 2322 */ 2323 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 2324 wq = rcu_dereference(sk->sk_wq); 2325 if (wq_has_sleeper(wq)) 2326 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT | 2327 POLLWRNORM | POLLWRBAND); 2328 2329 /* Should agree with poll, otherwise some programs break */ 2330 if (sock_writeable(sk)) 2331 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2332 } 2333 2334 rcu_read_unlock(); 2335 } 2336 2337 static void sock_def_destruct(struct sock *sk) 2338 { 2339 } 2340 2341 void sk_send_sigurg(struct sock *sk) 2342 { 2343 if (sk->sk_socket && sk->sk_socket->file) 2344 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2345 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2346 } 2347 EXPORT_SYMBOL(sk_send_sigurg); 2348 2349 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2350 unsigned long expires) 2351 { 2352 if (!mod_timer(timer, expires)) 2353 sock_hold(sk); 2354 } 2355 EXPORT_SYMBOL(sk_reset_timer); 2356 2357 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2358 { 2359 if (del_timer(timer)) 2360 __sock_put(sk); 2361 } 2362 EXPORT_SYMBOL(sk_stop_timer); 2363 2364 void sock_init_data(struct socket *sock, struct sock *sk) 2365 { 2366 skb_queue_head_init(&sk->sk_receive_queue); 2367 skb_queue_head_init(&sk->sk_write_queue); 2368 skb_queue_head_init(&sk->sk_error_queue); 2369 2370 sk->sk_send_head = NULL; 2371 2372 init_timer(&sk->sk_timer); 2373 2374 sk->sk_allocation = GFP_KERNEL; 2375 sk->sk_rcvbuf = sysctl_rmem_default; 2376 sk->sk_sndbuf = sysctl_wmem_default; 2377 sk->sk_state = TCP_CLOSE; 2378 sk_set_socket(sk, sock); 2379 2380 sock_set_flag(sk, SOCK_ZAPPED); 2381 2382 if (sock) { 2383 sk->sk_type = sock->type; 2384 sk->sk_wq = sock->wq; 2385 sock->sk = sk; 2386 } else 2387 sk->sk_wq = NULL; 2388 2389 spin_lock_init(&sk->sk_dst_lock); 2390 rwlock_init(&sk->sk_callback_lock); 2391 lockdep_set_class_and_name(&sk->sk_callback_lock, 2392 af_callback_keys + sk->sk_family, 2393 af_family_clock_key_strings[sk->sk_family]); 2394 2395 sk->sk_state_change = sock_def_wakeup; 2396 sk->sk_data_ready = sock_def_readable; 2397 sk->sk_write_space = sock_def_write_space; 2398 sk->sk_error_report = sock_def_error_report; 2399 sk->sk_destruct = sock_def_destruct; 2400 2401 sk->sk_frag.page = NULL; 2402 sk->sk_frag.offset = 0; 2403 sk->sk_peek_off = -1; 2404 2405 sk->sk_peer_pid = NULL; 2406 sk->sk_peer_cred = NULL; 2407 sk->sk_write_pending = 0; 2408 sk->sk_rcvlowat = 1; 2409 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2410 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2411 2412 sk->sk_stamp = ktime_set(-1L, 0); 2413 2414 #ifdef CONFIG_NET_RX_BUSY_POLL 2415 sk->sk_napi_id = 0; 2416 sk->sk_ll_usec = sysctl_net_busy_read; 2417 #endif 2418 2419 sk->sk_max_pacing_rate = ~0U; 2420 sk->sk_pacing_rate = ~0U; 2421 sk->sk_incoming_cpu = -1; 2422 /* 2423 * Before updating sk_refcnt, we must commit prior changes to memory 2424 * (Documentation/RCU/rculist_nulls.txt for details) 2425 */ 2426 smp_wmb(); 2427 atomic_set(&sk->sk_refcnt, 1); 2428 atomic_set(&sk->sk_drops, 0); 2429 } 2430 EXPORT_SYMBOL(sock_init_data); 2431 2432 void lock_sock_nested(struct sock *sk, int subclass) 2433 { 2434 might_sleep(); 2435 spin_lock_bh(&sk->sk_lock.slock); 2436 if (sk->sk_lock.owned) 2437 __lock_sock(sk); 2438 sk->sk_lock.owned = 1; 2439 spin_unlock(&sk->sk_lock.slock); 2440 /* 2441 * The sk_lock has mutex_lock() semantics here: 2442 */ 2443 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2444 local_bh_enable(); 2445 } 2446 EXPORT_SYMBOL(lock_sock_nested); 2447 2448 void release_sock(struct sock *sk) 2449 { 2450 /* 2451 * The sk_lock has mutex_unlock() semantics: 2452 */ 2453 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 2454 2455 spin_lock_bh(&sk->sk_lock.slock); 2456 if (sk->sk_backlog.tail) 2457 __release_sock(sk); 2458 2459 /* Warning : release_cb() might need to release sk ownership, 2460 * ie call sock_release_ownership(sk) before us. 2461 */ 2462 if (sk->sk_prot->release_cb) 2463 sk->sk_prot->release_cb(sk); 2464 2465 sock_release_ownership(sk); 2466 if (waitqueue_active(&sk->sk_lock.wq)) 2467 wake_up(&sk->sk_lock.wq); 2468 spin_unlock_bh(&sk->sk_lock.slock); 2469 } 2470 EXPORT_SYMBOL(release_sock); 2471 2472 /** 2473 * lock_sock_fast - fast version of lock_sock 2474 * @sk: socket 2475 * 2476 * This version should be used for very small section, where process wont block 2477 * return false if fast path is taken 2478 * sk_lock.slock locked, owned = 0, BH disabled 2479 * return true if slow path is taken 2480 * sk_lock.slock unlocked, owned = 1, BH enabled 2481 */ 2482 bool lock_sock_fast(struct sock *sk) 2483 { 2484 might_sleep(); 2485 spin_lock_bh(&sk->sk_lock.slock); 2486 2487 if (!sk->sk_lock.owned) 2488 /* 2489 * Note : We must disable BH 2490 */ 2491 return false; 2492 2493 __lock_sock(sk); 2494 sk->sk_lock.owned = 1; 2495 spin_unlock(&sk->sk_lock.slock); 2496 /* 2497 * The sk_lock has mutex_lock() semantics here: 2498 */ 2499 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 2500 local_bh_enable(); 2501 return true; 2502 } 2503 EXPORT_SYMBOL(lock_sock_fast); 2504 2505 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) 2506 { 2507 struct timeval tv; 2508 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2509 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2510 tv = ktime_to_timeval(sk->sk_stamp); 2511 if (tv.tv_sec == -1) 2512 return -ENOENT; 2513 if (tv.tv_sec == 0) { 2514 sk->sk_stamp = ktime_get_real(); 2515 tv = ktime_to_timeval(sk->sk_stamp); 2516 } 2517 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0; 2518 } 2519 EXPORT_SYMBOL(sock_get_timestamp); 2520 2521 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp) 2522 { 2523 struct timespec ts; 2524 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2525 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2526 ts = ktime_to_timespec(sk->sk_stamp); 2527 if (ts.tv_sec == -1) 2528 return -ENOENT; 2529 if (ts.tv_sec == 0) { 2530 sk->sk_stamp = ktime_get_real(); 2531 ts = ktime_to_timespec(sk->sk_stamp); 2532 } 2533 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0; 2534 } 2535 EXPORT_SYMBOL(sock_get_timestampns); 2536 2537 void sock_enable_timestamp(struct sock *sk, int flag) 2538 { 2539 if (!sock_flag(sk, flag)) { 2540 unsigned long previous_flags = sk->sk_flags; 2541 2542 sock_set_flag(sk, flag); 2543 /* 2544 * we just set one of the two flags which require net 2545 * time stamping, but time stamping might have been on 2546 * already because of the other one 2547 */ 2548 if (sock_needs_netstamp(sk) && 2549 !(previous_flags & SK_FLAGS_TIMESTAMP)) 2550 net_enable_timestamp(); 2551 } 2552 } 2553 2554 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 2555 int level, int type) 2556 { 2557 struct sock_exterr_skb *serr; 2558 struct sk_buff *skb; 2559 int copied, err; 2560 2561 err = -EAGAIN; 2562 skb = sock_dequeue_err_skb(sk); 2563 if (skb == NULL) 2564 goto out; 2565 2566 copied = skb->len; 2567 if (copied > len) { 2568 msg->msg_flags |= MSG_TRUNC; 2569 copied = len; 2570 } 2571 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2572 if (err) 2573 goto out_free_skb; 2574 2575 sock_recv_timestamp(msg, sk, skb); 2576 2577 serr = SKB_EXT_ERR(skb); 2578 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 2579 2580 msg->msg_flags |= MSG_ERRQUEUE; 2581 err = copied; 2582 2583 out_free_skb: 2584 kfree_skb(skb); 2585 out: 2586 return err; 2587 } 2588 EXPORT_SYMBOL(sock_recv_errqueue); 2589 2590 /* 2591 * Get a socket option on an socket. 2592 * 2593 * FIX: POSIX 1003.1g is very ambiguous here. It states that 2594 * asynchronous errors should be reported by getsockopt. We assume 2595 * this means if you specify SO_ERROR (otherwise whats the point of it). 2596 */ 2597 int sock_common_getsockopt(struct socket *sock, int level, int optname, 2598 char __user *optval, int __user *optlen) 2599 { 2600 struct sock *sk = sock->sk; 2601 2602 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2603 } 2604 EXPORT_SYMBOL(sock_common_getsockopt); 2605 2606 #ifdef CONFIG_COMPAT 2607 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 2608 char __user *optval, int __user *optlen) 2609 { 2610 struct sock *sk = sock->sk; 2611 2612 if (sk->sk_prot->compat_getsockopt != NULL) 2613 return sk->sk_prot->compat_getsockopt(sk, level, optname, 2614 optval, optlen); 2615 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2616 } 2617 EXPORT_SYMBOL(compat_sock_common_getsockopt); 2618 #endif 2619 2620 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2621 int flags) 2622 { 2623 struct sock *sk = sock->sk; 2624 int addr_len = 0; 2625 int err; 2626 2627 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 2628 flags & ~MSG_DONTWAIT, &addr_len); 2629 if (err >= 0) 2630 msg->msg_namelen = addr_len; 2631 return err; 2632 } 2633 EXPORT_SYMBOL(sock_common_recvmsg); 2634 2635 /* 2636 * Set socket options on an inet socket. 2637 */ 2638 int sock_common_setsockopt(struct socket *sock, int level, int optname, 2639 char __user *optval, unsigned int optlen) 2640 { 2641 struct sock *sk = sock->sk; 2642 2643 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2644 } 2645 EXPORT_SYMBOL(sock_common_setsockopt); 2646 2647 #ifdef CONFIG_COMPAT 2648 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 2649 char __user *optval, unsigned int optlen) 2650 { 2651 struct sock *sk = sock->sk; 2652 2653 if (sk->sk_prot->compat_setsockopt != NULL) 2654 return sk->sk_prot->compat_setsockopt(sk, level, optname, 2655 optval, optlen); 2656 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2657 } 2658 EXPORT_SYMBOL(compat_sock_common_setsockopt); 2659 #endif 2660 2661 void sk_common_release(struct sock *sk) 2662 { 2663 if (sk->sk_prot->destroy) 2664 sk->sk_prot->destroy(sk); 2665 2666 /* 2667 * Observation: when sock_common_release is called, processes have 2668 * no access to socket. But net still has. 2669 * Step one, detach it from networking: 2670 * 2671 * A. Remove from hash tables. 2672 */ 2673 2674 sk->sk_prot->unhash(sk); 2675 2676 /* 2677 * In this point socket cannot receive new packets, but it is possible 2678 * that some packets are in flight because some CPU runs receiver and 2679 * did hash table lookup before we unhashed socket. They will achieve 2680 * receive queue and will be purged by socket destructor. 2681 * 2682 * Also we still have packets pending on receive queue and probably, 2683 * our own packets waiting in device queues. sock_destroy will drain 2684 * receive queue, but transmitted packets will delay socket destruction 2685 * until the last reference will be released. 2686 */ 2687 2688 sock_orphan(sk); 2689 2690 xfrm_sk_free_policy(sk); 2691 2692 sk_refcnt_debug_release(sk); 2693 2694 if (sk->sk_frag.page) { 2695 put_page(sk->sk_frag.page); 2696 sk->sk_frag.page = NULL; 2697 } 2698 2699 sock_put(sk); 2700 } 2701 EXPORT_SYMBOL(sk_common_release); 2702 2703 #ifdef CONFIG_PROC_FS 2704 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 2705 struct prot_inuse { 2706 int val[PROTO_INUSE_NR]; 2707 }; 2708 2709 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 2710 2711 #ifdef CONFIG_NET_NS 2712 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2713 { 2714 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val); 2715 } 2716 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2717 2718 int sock_prot_inuse_get(struct net *net, struct proto *prot) 2719 { 2720 int cpu, idx = prot->inuse_idx; 2721 int res = 0; 2722 2723 for_each_possible_cpu(cpu) 2724 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx]; 2725 2726 return res >= 0 ? res : 0; 2727 } 2728 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2729 2730 static int __net_init sock_inuse_init_net(struct net *net) 2731 { 2732 net->core.inuse = alloc_percpu(struct prot_inuse); 2733 return net->core.inuse ? 0 : -ENOMEM; 2734 } 2735 2736 static void __net_exit sock_inuse_exit_net(struct net *net) 2737 { 2738 free_percpu(net->core.inuse); 2739 } 2740 2741 static struct pernet_operations net_inuse_ops = { 2742 .init = sock_inuse_init_net, 2743 .exit = sock_inuse_exit_net, 2744 }; 2745 2746 static __init int net_inuse_init(void) 2747 { 2748 if (register_pernet_subsys(&net_inuse_ops)) 2749 panic("Cannot initialize net inuse counters"); 2750 2751 return 0; 2752 } 2753 2754 core_initcall(net_inuse_init); 2755 #else 2756 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse); 2757 2758 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2759 { 2760 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val); 2761 } 2762 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2763 2764 int sock_prot_inuse_get(struct net *net, struct proto *prot) 2765 { 2766 int cpu, idx = prot->inuse_idx; 2767 int res = 0; 2768 2769 for_each_possible_cpu(cpu) 2770 res += per_cpu(prot_inuse, cpu).val[idx]; 2771 2772 return res >= 0 ? res : 0; 2773 } 2774 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2775 #endif 2776 2777 static void assign_proto_idx(struct proto *prot) 2778 { 2779 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 2780 2781 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 2782 pr_err("PROTO_INUSE_NR exhausted\n"); 2783 return; 2784 } 2785 2786 set_bit(prot->inuse_idx, proto_inuse_idx); 2787 } 2788 2789 static void release_proto_idx(struct proto *prot) 2790 { 2791 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 2792 clear_bit(prot->inuse_idx, proto_inuse_idx); 2793 } 2794 #else 2795 static inline void assign_proto_idx(struct proto *prot) 2796 { 2797 } 2798 2799 static inline void release_proto_idx(struct proto *prot) 2800 { 2801 } 2802 #endif 2803 2804 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 2805 { 2806 if (!rsk_prot) 2807 return; 2808 kfree(rsk_prot->slab_name); 2809 rsk_prot->slab_name = NULL; 2810 kmem_cache_destroy(rsk_prot->slab); 2811 rsk_prot->slab = NULL; 2812 } 2813 2814 static int req_prot_init(const struct proto *prot) 2815 { 2816 struct request_sock_ops *rsk_prot = prot->rsk_prot; 2817 2818 if (!rsk_prot) 2819 return 0; 2820 2821 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 2822 prot->name); 2823 if (!rsk_prot->slab_name) 2824 return -ENOMEM; 2825 2826 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 2827 rsk_prot->obj_size, 0, 2828 prot->slab_flags, NULL); 2829 2830 if (!rsk_prot->slab) { 2831 pr_crit("%s: Can't create request sock SLAB cache!\n", 2832 prot->name); 2833 return -ENOMEM; 2834 } 2835 return 0; 2836 } 2837 2838 int proto_register(struct proto *prot, int alloc_slab) 2839 { 2840 if (alloc_slab) { 2841 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0, 2842 SLAB_HWCACHE_ALIGN | prot->slab_flags, 2843 NULL); 2844 2845 if (prot->slab == NULL) { 2846 pr_crit("%s: Can't create sock SLAB cache!\n", 2847 prot->name); 2848 goto out; 2849 } 2850 2851 if (req_prot_init(prot)) 2852 goto out_free_request_sock_slab; 2853 2854 if (prot->twsk_prot != NULL) { 2855 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 2856 2857 if (prot->twsk_prot->twsk_slab_name == NULL) 2858 goto out_free_request_sock_slab; 2859 2860 prot->twsk_prot->twsk_slab = 2861 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 2862 prot->twsk_prot->twsk_obj_size, 2863 0, 2864 prot->slab_flags, 2865 NULL); 2866 if (prot->twsk_prot->twsk_slab == NULL) 2867 goto out_free_timewait_sock_slab_name; 2868 } 2869 } 2870 2871 mutex_lock(&proto_list_mutex); 2872 list_add(&prot->node, &proto_list); 2873 assign_proto_idx(prot); 2874 mutex_unlock(&proto_list_mutex); 2875 return 0; 2876 2877 out_free_timewait_sock_slab_name: 2878 kfree(prot->twsk_prot->twsk_slab_name); 2879 out_free_request_sock_slab: 2880 req_prot_cleanup(prot->rsk_prot); 2881 2882 kmem_cache_destroy(prot->slab); 2883 prot->slab = NULL; 2884 out: 2885 return -ENOBUFS; 2886 } 2887 EXPORT_SYMBOL(proto_register); 2888 2889 void proto_unregister(struct proto *prot) 2890 { 2891 mutex_lock(&proto_list_mutex); 2892 release_proto_idx(prot); 2893 list_del(&prot->node); 2894 mutex_unlock(&proto_list_mutex); 2895 2896 kmem_cache_destroy(prot->slab); 2897 prot->slab = NULL; 2898 2899 req_prot_cleanup(prot->rsk_prot); 2900 2901 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 2902 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 2903 kfree(prot->twsk_prot->twsk_slab_name); 2904 prot->twsk_prot->twsk_slab = NULL; 2905 } 2906 } 2907 EXPORT_SYMBOL(proto_unregister); 2908 2909 #ifdef CONFIG_PROC_FS 2910 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 2911 __acquires(proto_list_mutex) 2912 { 2913 mutex_lock(&proto_list_mutex); 2914 return seq_list_start_head(&proto_list, *pos); 2915 } 2916 2917 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2918 { 2919 return seq_list_next(v, &proto_list, pos); 2920 } 2921 2922 static void proto_seq_stop(struct seq_file *seq, void *v) 2923 __releases(proto_list_mutex) 2924 { 2925 mutex_unlock(&proto_list_mutex); 2926 } 2927 2928 static char proto_method_implemented(const void *method) 2929 { 2930 return method == NULL ? 'n' : 'y'; 2931 } 2932 static long sock_prot_memory_allocated(struct proto *proto) 2933 { 2934 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 2935 } 2936 2937 static char *sock_prot_memory_pressure(struct proto *proto) 2938 { 2939 return proto->memory_pressure != NULL ? 2940 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 2941 } 2942 2943 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 2944 { 2945 2946 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 2947 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 2948 proto->name, 2949 proto->obj_size, 2950 sock_prot_inuse_get(seq_file_net(seq), proto), 2951 sock_prot_memory_allocated(proto), 2952 sock_prot_memory_pressure(proto), 2953 proto->max_header, 2954 proto->slab == NULL ? "no" : "yes", 2955 module_name(proto->owner), 2956 proto_method_implemented(proto->close), 2957 proto_method_implemented(proto->connect), 2958 proto_method_implemented(proto->disconnect), 2959 proto_method_implemented(proto->accept), 2960 proto_method_implemented(proto->ioctl), 2961 proto_method_implemented(proto->init), 2962 proto_method_implemented(proto->destroy), 2963 proto_method_implemented(proto->shutdown), 2964 proto_method_implemented(proto->setsockopt), 2965 proto_method_implemented(proto->getsockopt), 2966 proto_method_implemented(proto->sendmsg), 2967 proto_method_implemented(proto->recvmsg), 2968 proto_method_implemented(proto->sendpage), 2969 proto_method_implemented(proto->bind), 2970 proto_method_implemented(proto->backlog_rcv), 2971 proto_method_implemented(proto->hash), 2972 proto_method_implemented(proto->unhash), 2973 proto_method_implemented(proto->get_port), 2974 proto_method_implemented(proto->enter_memory_pressure)); 2975 } 2976 2977 static int proto_seq_show(struct seq_file *seq, void *v) 2978 { 2979 if (v == &proto_list) 2980 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 2981 "protocol", 2982 "size", 2983 "sockets", 2984 "memory", 2985 "press", 2986 "maxhdr", 2987 "slab", 2988 "module", 2989 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 2990 else 2991 proto_seq_printf(seq, list_entry(v, struct proto, node)); 2992 return 0; 2993 } 2994 2995 static const struct seq_operations proto_seq_ops = { 2996 .start = proto_seq_start, 2997 .next = proto_seq_next, 2998 .stop = proto_seq_stop, 2999 .show = proto_seq_show, 3000 }; 3001 3002 static int proto_seq_open(struct inode *inode, struct file *file) 3003 { 3004 return seq_open_net(inode, file, &proto_seq_ops, 3005 sizeof(struct seq_net_private)); 3006 } 3007 3008 static const struct file_operations proto_seq_fops = { 3009 .owner = THIS_MODULE, 3010 .open = proto_seq_open, 3011 .read = seq_read, 3012 .llseek = seq_lseek, 3013 .release = seq_release_net, 3014 }; 3015 3016 static __net_init int proto_init_net(struct net *net) 3017 { 3018 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops)) 3019 return -ENOMEM; 3020 3021 return 0; 3022 } 3023 3024 static __net_exit void proto_exit_net(struct net *net) 3025 { 3026 remove_proc_entry("protocols", net->proc_net); 3027 } 3028 3029 3030 static __net_initdata struct pernet_operations proto_net_ops = { 3031 .init = proto_init_net, 3032 .exit = proto_exit_net, 3033 }; 3034 3035 static int __init proto_init(void) 3036 { 3037 return register_pernet_subsys(&proto_net_ops); 3038 } 3039 3040 subsys_initcall(proto_init); 3041 3042 #endif /* PROC_FS */ 3043