1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Generic socket support routines. Memory allocators, socket lock/release 7 * handler for protocols to use and generic option handler. 8 * 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 * 85 * 86 * This program is free software; you can redistribute it and/or 87 * modify it under the terms of the GNU General Public License 88 * as published by the Free Software Foundation; either version 89 * 2 of the License, or (at your option) any later version. 90 */ 91 92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 93 94 #include <asm/unaligned.h> 95 #include <linux/capability.h> 96 #include <linux/errno.h> 97 #include <linux/errqueue.h> 98 #include <linux/types.h> 99 #include <linux/socket.h> 100 #include <linux/in.h> 101 #include <linux/kernel.h> 102 #include <linux/module.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <linux/sched.h> 106 #include <linux/sched/mm.h> 107 #include <linux/timer.h> 108 #include <linux/string.h> 109 #include <linux/sockios.h> 110 #include <linux/net.h> 111 #include <linux/mm.h> 112 #include <linux/slab.h> 113 #include <linux/interrupt.h> 114 #include <linux/poll.h> 115 #include <linux/tcp.h> 116 #include <linux/init.h> 117 #include <linux/highmem.h> 118 #include <linux/user_namespace.h> 119 #include <linux/static_key.h> 120 #include <linux/memcontrol.h> 121 #include <linux/prefetch.h> 122 123 #include <linux/uaccess.h> 124 125 #include <linux/netdevice.h> 126 #include <net/protocol.h> 127 #include <linux/skbuff.h> 128 #include <net/net_namespace.h> 129 #include <net/request_sock.h> 130 #include <net/sock.h> 131 #include <linux/net_tstamp.h> 132 #include <net/xfrm.h> 133 #include <linux/ipsec.h> 134 #include <net/cls_cgroup.h> 135 #include <net/netprio_cgroup.h> 136 #include <linux/sock_diag.h> 137 138 #include <linux/filter.h> 139 #include <net/sock_reuseport.h> 140 #include <net/bpf_sk_storage.h> 141 142 #include <trace/events/sock.h> 143 144 #include <net/tcp.h> 145 #include <net/busy_poll.h> 146 147 static DEFINE_MUTEX(proto_list_mutex); 148 static LIST_HEAD(proto_list); 149 150 static void sock_inuse_add(struct net *net, int val); 151 152 /** 153 * sk_ns_capable - General socket capability test 154 * @sk: Socket to use a capability on or through 155 * @user_ns: The user namespace of the capability to use 156 * @cap: The capability to use 157 * 158 * Test to see if the opener of the socket had when the socket was 159 * created and the current process has the capability @cap in the user 160 * namespace @user_ns. 161 */ 162 bool sk_ns_capable(const struct sock *sk, 163 struct user_namespace *user_ns, int cap) 164 { 165 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 166 ns_capable(user_ns, cap); 167 } 168 EXPORT_SYMBOL(sk_ns_capable); 169 170 /** 171 * sk_capable - Socket global capability test 172 * @sk: Socket to use a capability on or through 173 * @cap: The global capability to use 174 * 175 * Test to see if the opener of the socket had when the socket was 176 * created and the current process has the capability @cap in all user 177 * namespaces. 178 */ 179 bool sk_capable(const struct sock *sk, int cap) 180 { 181 return sk_ns_capable(sk, &init_user_ns, cap); 182 } 183 EXPORT_SYMBOL(sk_capable); 184 185 /** 186 * sk_net_capable - Network namespace socket capability test 187 * @sk: Socket to use a capability on or through 188 * @cap: The capability to use 189 * 190 * Test to see if the opener of the socket had when the socket was created 191 * and the current process has the capability @cap over the network namespace 192 * the socket is a member of. 193 */ 194 bool sk_net_capable(const struct sock *sk, int cap) 195 { 196 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 197 } 198 EXPORT_SYMBOL(sk_net_capable); 199 200 /* 201 * Each address family might have different locking rules, so we have 202 * one slock key per address family and separate keys for internal and 203 * userspace sockets. 204 */ 205 static struct lock_class_key af_family_keys[AF_MAX]; 206 static struct lock_class_key af_family_kern_keys[AF_MAX]; 207 static struct lock_class_key af_family_slock_keys[AF_MAX]; 208 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 209 210 /* 211 * Make lock validator output more readable. (we pre-construct these 212 * strings build-time, so that runtime initialization of socket 213 * locks is fast): 214 */ 215 216 #define _sock_locks(x) \ 217 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 218 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 219 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 220 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 221 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 222 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 223 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 224 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 225 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 226 x "27" , x "28" , x "AF_CAN" , \ 227 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 228 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 229 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 230 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 231 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 232 x "AF_MAX" 233 234 static const char *const af_family_key_strings[AF_MAX+1] = { 235 _sock_locks("sk_lock-") 236 }; 237 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 238 _sock_locks("slock-") 239 }; 240 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 241 _sock_locks("clock-") 242 }; 243 244 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 245 _sock_locks("k-sk_lock-") 246 }; 247 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 248 _sock_locks("k-slock-") 249 }; 250 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 251 _sock_locks("k-clock-") 252 }; 253 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 254 _sock_locks("rlock-") 255 }; 256 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 257 _sock_locks("wlock-") 258 }; 259 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 260 _sock_locks("elock-") 261 }; 262 263 /* 264 * sk_callback_lock and sk queues locking rules are per-address-family, 265 * so split the lock classes by using a per-AF key: 266 */ 267 static struct lock_class_key af_callback_keys[AF_MAX]; 268 static struct lock_class_key af_rlock_keys[AF_MAX]; 269 static struct lock_class_key af_wlock_keys[AF_MAX]; 270 static struct lock_class_key af_elock_keys[AF_MAX]; 271 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 272 273 /* Run time adjustable parameters. */ 274 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 275 EXPORT_SYMBOL(sysctl_wmem_max); 276 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 277 EXPORT_SYMBOL(sysctl_rmem_max); 278 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 279 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 280 281 /* Maximal space eaten by iovec or ancillary data plus some space */ 282 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 283 EXPORT_SYMBOL(sysctl_optmem_max); 284 285 int sysctl_tstamp_allow_data __read_mostly = 1; 286 287 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 288 EXPORT_SYMBOL_GPL(memalloc_socks_key); 289 290 /** 291 * sk_set_memalloc - sets %SOCK_MEMALLOC 292 * @sk: socket to set it on 293 * 294 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 295 * It's the responsibility of the admin to adjust min_free_kbytes 296 * to meet the requirements 297 */ 298 void sk_set_memalloc(struct sock *sk) 299 { 300 sock_set_flag(sk, SOCK_MEMALLOC); 301 sk->sk_allocation |= __GFP_MEMALLOC; 302 static_branch_inc(&memalloc_socks_key); 303 } 304 EXPORT_SYMBOL_GPL(sk_set_memalloc); 305 306 void sk_clear_memalloc(struct sock *sk) 307 { 308 sock_reset_flag(sk, SOCK_MEMALLOC); 309 sk->sk_allocation &= ~__GFP_MEMALLOC; 310 static_branch_dec(&memalloc_socks_key); 311 312 /* 313 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 314 * progress of swapping. SOCK_MEMALLOC may be cleared while 315 * it has rmem allocations due to the last swapfile being deactivated 316 * but there is a risk that the socket is unusable due to exceeding 317 * the rmem limits. Reclaim the reserves and obey rmem limits again. 318 */ 319 sk_mem_reclaim(sk); 320 } 321 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 322 323 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 324 { 325 int ret; 326 unsigned int noreclaim_flag; 327 328 /* these should have been dropped before queueing */ 329 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 330 331 noreclaim_flag = memalloc_noreclaim_save(); 332 ret = sk->sk_backlog_rcv(sk, skb); 333 memalloc_noreclaim_restore(noreclaim_flag); 334 335 return ret; 336 } 337 EXPORT_SYMBOL(__sk_backlog_rcv); 338 339 static int sock_get_timeout(long timeo, void *optval, bool old_timeval) 340 { 341 struct __kernel_sock_timeval tv; 342 int size; 343 344 if (timeo == MAX_SCHEDULE_TIMEOUT) { 345 tv.tv_sec = 0; 346 tv.tv_usec = 0; 347 } else { 348 tv.tv_sec = timeo / HZ; 349 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 350 } 351 352 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 353 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 354 *(struct old_timeval32 *)optval = tv32; 355 return sizeof(tv32); 356 } 357 358 if (old_timeval) { 359 struct __kernel_old_timeval old_tv; 360 old_tv.tv_sec = tv.tv_sec; 361 old_tv.tv_usec = tv.tv_usec; 362 *(struct __kernel_old_timeval *)optval = old_tv; 363 size = sizeof(old_tv); 364 } else { 365 *(struct __kernel_sock_timeval *)optval = tv; 366 size = sizeof(tv); 367 } 368 369 return size; 370 } 371 372 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval) 373 { 374 struct __kernel_sock_timeval tv; 375 376 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 377 struct old_timeval32 tv32; 378 379 if (optlen < sizeof(tv32)) 380 return -EINVAL; 381 382 if (copy_from_user(&tv32, optval, sizeof(tv32))) 383 return -EFAULT; 384 tv.tv_sec = tv32.tv_sec; 385 tv.tv_usec = tv32.tv_usec; 386 } else if (old_timeval) { 387 struct __kernel_old_timeval old_tv; 388 389 if (optlen < sizeof(old_tv)) 390 return -EINVAL; 391 if (copy_from_user(&old_tv, optval, sizeof(old_tv))) 392 return -EFAULT; 393 tv.tv_sec = old_tv.tv_sec; 394 tv.tv_usec = old_tv.tv_usec; 395 } else { 396 if (optlen < sizeof(tv)) 397 return -EINVAL; 398 if (copy_from_user(&tv, optval, sizeof(tv))) 399 return -EFAULT; 400 } 401 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 402 return -EDOM; 403 404 if (tv.tv_sec < 0) { 405 static int warned __read_mostly; 406 407 *timeo_p = 0; 408 if (warned < 10 && net_ratelimit()) { 409 warned++; 410 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 411 __func__, current->comm, task_pid_nr(current)); 412 } 413 return 0; 414 } 415 *timeo_p = MAX_SCHEDULE_TIMEOUT; 416 if (tv.tv_sec == 0 && tv.tv_usec == 0) 417 return 0; 418 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 419 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 420 return 0; 421 } 422 423 static void sock_warn_obsolete_bsdism(const char *name) 424 { 425 static int warned; 426 static char warncomm[TASK_COMM_LEN]; 427 if (strcmp(warncomm, current->comm) && warned < 5) { 428 strcpy(warncomm, current->comm); 429 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 430 warncomm, name); 431 warned++; 432 } 433 } 434 435 static bool sock_needs_netstamp(const struct sock *sk) 436 { 437 switch (sk->sk_family) { 438 case AF_UNSPEC: 439 case AF_UNIX: 440 return false; 441 default: 442 return true; 443 } 444 } 445 446 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 447 { 448 if (sk->sk_flags & flags) { 449 sk->sk_flags &= ~flags; 450 if (sock_needs_netstamp(sk) && 451 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 452 net_disable_timestamp(); 453 } 454 } 455 456 457 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 458 { 459 unsigned long flags; 460 struct sk_buff_head *list = &sk->sk_receive_queue; 461 462 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 463 atomic_inc(&sk->sk_drops); 464 trace_sock_rcvqueue_full(sk, skb); 465 return -ENOMEM; 466 } 467 468 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 469 atomic_inc(&sk->sk_drops); 470 return -ENOBUFS; 471 } 472 473 skb->dev = NULL; 474 skb_set_owner_r(skb, sk); 475 476 /* we escape from rcu protected region, make sure we dont leak 477 * a norefcounted dst 478 */ 479 skb_dst_force(skb); 480 481 spin_lock_irqsave(&list->lock, flags); 482 sock_skb_set_dropcount(sk, skb); 483 __skb_queue_tail(list, skb); 484 spin_unlock_irqrestore(&list->lock, flags); 485 486 if (!sock_flag(sk, SOCK_DEAD)) 487 sk->sk_data_ready(sk); 488 return 0; 489 } 490 EXPORT_SYMBOL(__sock_queue_rcv_skb); 491 492 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 493 { 494 int err; 495 496 err = sk_filter(sk, skb); 497 if (err) 498 return err; 499 500 return __sock_queue_rcv_skb(sk, skb); 501 } 502 EXPORT_SYMBOL(sock_queue_rcv_skb); 503 504 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 505 const int nested, unsigned int trim_cap, bool refcounted) 506 { 507 int rc = NET_RX_SUCCESS; 508 509 if (sk_filter_trim_cap(sk, skb, trim_cap)) 510 goto discard_and_relse; 511 512 skb->dev = NULL; 513 514 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 515 atomic_inc(&sk->sk_drops); 516 goto discard_and_relse; 517 } 518 if (nested) 519 bh_lock_sock_nested(sk); 520 else 521 bh_lock_sock(sk); 522 if (!sock_owned_by_user(sk)) { 523 /* 524 * trylock + unlock semantics: 525 */ 526 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 527 528 rc = sk_backlog_rcv(sk, skb); 529 530 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 531 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 532 bh_unlock_sock(sk); 533 atomic_inc(&sk->sk_drops); 534 goto discard_and_relse; 535 } 536 537 bh_unlock_sock(sk); 538 out: 539 if (refcounted) 540 sock_put(sk); 541 return rc; 542 discard_and_relse: 543 kfree_skb(skb); 544 goto out; 545 } 546 EXPORT_SYMBOL(__sk_receive_skb); 547 548 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 549 { 550 struct dst_entry *dst = __sk_dst_get(sk); 551 552 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 553 sk_tx_queue_clear(sk); 554 sk->sk_dst_pending_confirm = 0; 555 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 556 dst_release(dst); 557 return NULL; 558 } 559 560 return dst; 561 } 562 EXPORT_SYMBOL(__sk_dst_check); 563 564 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 565 { 566 struct dst_entry *dst = sk_dst_get(sk); 567 568 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 569 sk_dst_reset(sk); 570 dst_release(dst); 571 return NULL; 572 } 573 574 return dst; 575 } 576 EXPORT_SYMBOL(sk_dst_check); 577 578 static int sock_setbindtodevice_locked(struct sock *sk, int ifindex) 579 { 580 int ret = -ENOPROTOOPT; 581 #ifdef CONFIG_NETDEVICES 582 struct net *net = sock_net(sk); 583 584 /* Sorry... */ 585 ret = -EPERM; 586 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 587 goto out; 588 589 ret = -EINVAL; 590 if (ifindex < 0) 591 goto out; 592 593 sk->sk_bound_dev_if = ifindex; 594 if (sk->sk_prot->rehash) 595 sk->sk_prot->rehash(sk); 596 sk_dst_reset(sk); 597 598 ret = 0; 599 600 out: 601 #endif 602 603 return ret; 604 } 605 606 static int sock_setbindtodevice(struct sock *sk, char __user *optval, 607 int optlen) 608 { 609 int ret = -ENOPROTOOPT; 610 #ifdef CONFIG_NETDEVICES 611 struct net *net = sock_net(sk); 612 char devname[IFNAMSIZ]; 613 int index; 614 615 ret = -EINVAL; 616 if (optlen < 0) 617 goto out; 618 619 /* Bind this socket to a particular device like "eth0", 620 * as specified in the passed interface name. If the 621 * name is "" or the option length is zero the socket 622 * is not bound. 623 */ 624 if (optlen > IFNAMSIZ - 1) 625 optlen = IFNAMSIZ - 1; 626 memset(devname, 0, sizeof(devname)); 627 628 ret = -EFAULT; 629 if (copy_from_user(devname, optval, optlen)) 630 goto out; 631 632 index = 0; 633 if (devname[0] != '\0') { 634 struct net_device *dev; 635 636 rcu_read_lock(); 637 dev = dev_get_by_name_rcu(net, devname); 638 if (dev) 639 index = dev->ifindex; 640 rcu_read_unlock(); 641 ret = -ENODEV; 642 if (!dev) 643 goto out; 644 } 645 646 lock_sock(sk); 647 ret = sock_setbindtodevice_locked(sk, index); 648 release_sock(sk); 649 650 out: 651 #endif 652 653 return ret; 654 } 655 656 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 657 int __user *optlen, int len) 658 { 659 int ret = -ENOPROTOOPT; 660 #ifdef CONFIG_NETDEVICES 661 struct net *net = sock_net(sk); 662 char devname[IFNAMSIZ]; 663 664 if (sk->sk_bound_dev_if == 0) { 665 len = 0; 666 goto zero; 667 } 668 669 ret = -EINVAL; 670 if (len < IFNAMSIZ) 671 goto out; 672 673 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 674 if (ret) 675 goto out; 676 677 len = strlen(devname) + 1; 678 679 ret = -EFAULT; 680 if (copy_to_user(optval, devname, len)) 681 goto out; 682 683 zero: 684 ret = -EFAULT; 685 if (put_user(len, optlen)) 686 goto out; 687 688 ret = 0; 689 690 out: 691 #endif 692 693 return ret; 694 } 695 696 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 697 { 698 if (valbool) 699 sock_set_flag(sk, bit); 700 else 701 sock_reset_flag(sk, bit); 702 } 703 704 bool sk_mc_loop(struct sock *sk) 705 { 706 if (dev_recursion_level()) 707 return false; 708 if (!sk) 709 return true; 710 switch (sk->sk_family) { 711 case AF_INET: 712 return inet_sk(sk)->mc_loop; 713 #if IS_ENABLED(CONFIG_IPV6) 714 case AF_INET6: 715 return inet6_sk(sk)->mc_loop; 716 #endif 717 } 718 WARN_ON(1); 719 return true; 720 } 721 EXPORT_SYMBOL(sk_mc_loop); 722 723 /* 724 * This is meant for all protocols to use and covers goings on 725 * at the socket level. Everything here is generic. 726 */ 727 728 int sock_setsockopt(struct socket *sock, int level, int optname, 729 char __user *optval, unsigned int optlen) 730 { 731 struct sock_txtime sk_txtime; 732 struct sock *sk = sock->sk; 733 int val; 734 int valbool; 735 struct linger ling; 736 int ret = 0; 737 738 /* 739 * Options without arguments 740 */ 741 742 if (optname == SO_BINDTODEVICE) 743 return sock_setbindtodevice(sk, optval, optlen); 744 745 if (optlen < sizeof(int)) 746 return -EINVAL; 747 748 if (get_user(val, (int __user *)optval)) 749 return -EFAULT; 750 751 valbool = val ? 1 : 0; 752 753 lock_sock(sk); 754 755 switch (optname) { 756 case SO_DEBUG: 757 if (val && !capable(CAP_NET_ADMIN)) 758 ret = -EACCES; 759 else 760 sock_valbool_flag(sk, SOCK_DBG, valbool); 761 break; 762 case SO_REUSEADDR: 763 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 764 break; 765 case SO_REUSEPORT: 766 sk->sk_reuseport = valbool; 767 break; 768 case SO_TYPE: 769 case SO_PROTOCOL: 770 case SO_DOMAIN: 771 case SO_ERROR: 772 ret = -ENOPROTOOPT; 773 break; 774 case SO_DONTROUTE: 775 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 776 sk_dst_reset(sk); 777 break; 778 case SO_BROADCAST: 779 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 780 break; 781 case SO_SNDBUF: 782 /* Don't error on this BSD doesn't and if you think 783 * about it this is right. Otherwise apps have to 784 * play 'guess the biggest size' games. RCVBUF/SNDBUF 785 * are treated in BSD as hints 786 */ 787 val = min_t(u32, val, sysctl_wmem_max); 788 set_sndbuf: 789 /* Ensure val * 2 fits into an int, to prevent max_t() 790 * from treating it as a negative value. 791 */ 792 val = min_t(int, val, INT_MAX / 2); 793 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 794 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF); 795 /* Wake up sending tasks if we upped the value. */ 796 sk->sk_write_space(sk); 797 break; 798 799 case SO_SNDBUFFORCE: 800 if (!capable(CAP_NET_ADMIN)) { 801 ret = -EPERM; 802 break; 803 } 804 805 /* No negative values (to prevent underflow, as val will be 806 * multiplied by 2). 807 */ 808 if (val < 0) 809 val = 0; 810 goto set_sndbuf; 811 812 case SO_RCVBUF: 813 /* Don't error on this BSD doesn't and if you think 814 * about it this is right. Otherwise apps have to 815 * play 'guess the biggest size' games. RCVBUF/SNDBUF 816 * are treated in BSD as hints 817 */ 818 val = min_t(u32, val, sysctl_rmem_max); 819 set_rcvbuf: 820 /* Ensure val * 2 fits into an int, to prevent max_t() 821 * from treating it as a negative value. 822 */ 823 val = min_t(int, val, INT_MAX / 2); 824 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 825 /* 826 * We double it on the way in to account for 827 * "struct sk_buff" etc. overhead. Applications 828 * assume that the SO_RCVBUF setting they make will 829 * allow that much actual data to be received on that 830 * socket. 831 * 832 * Applications are unaware that "struct sk_buff" and 833 * other overheads allocate from the receive buffer 834 * during socket buffer allocation. 835 * 836 * And after considering the possible alternatives, 837 * returning the value we actually used in getsockopt 838 * is the most desirable behavior. 839 */ 840 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF); 841 break; 842 843 case SO_RCVBUFFORCE: 844 if (!capable(CAP_NET_ADMIN)) { 845 ret = -EPERM; 846 break; 847 } 848 849 /* No negative values (to prevent underflow, as val will be 850 * multiplied by 2). 851 */ 852 if (val < 0) 853 val = 0; 854 goto set_rcvbuf; 855 856 case SO_KEEPALIVE: 857 if (sk->sk_prot->keepalive) 858 sk->sk_prot->keepalive(sk, valbool); 859 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 860 break; 861 862 case SO_OOBINLINE: 863 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 864 break; 865 866 case SO_NO_CHECK: 867 sk->sk_no_check_tx = valbool; 868 break; 869 870 case SO_PRIORITY: 871 if ((val >= 0 && val <= 6) || 872 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 873 sk->sk_priority = val; 874 else 875 ret = -EPERM; 876 break; 877 878 case SO_LINGER: 879 if (optlen < sizeof(ling)) { 880 ret = -EINVAL; /* 1003.1g */ 881 break; 882 } 883 if (copy_from_user(&ling, optval, sizeof(ling))) { 884 ret = -EFAULT; 885 break; 886 } 887 if (!ling.l_onoff) 888 sock_reset_flag(sk, SOCK_LINGER); 889 else { 890 #if (BITS_PER_LONG == 32) 891 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 892 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 893 else 894 #endif 895 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 896 sock_set_flag(sk, SOCK_LINGER); 897 } 898 break; 899 900 case SO_BSDCOMPAT: 901 sock_warn_obsolete_bsdism("setsockopt"); 902 break; 903 904 case SO_PASSCRED: 905 if (valbool) 906 set_bit(SOCK_PASSCRED, &sock->flags); 907 else 908 clear_bit(SOCK_PASSCRED, &sock->flags); 909 break; 910 911 case SO_TIMESTAMP_OLD: 912 case SO_TIMESTAMP_NEW: 913 case SO_TIMESTAMPNS_OLD: 914 case SO_TIMESTAMPNS_NEW: 915 if (valbool) { 916 if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW) 917 sock_set_flag(sk, SOCK_TSTAMP_NEW); 918 else 919 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 920 921 if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW) 922 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 923 else 924 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 925 sock_set_flag(sk, SOCK_RCVTSTAMP); 926 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 927 } else { 928 sock_reset_flag(sk, SOCK_RCVTSTAMP); 929 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 930 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 931 } 932 break; 933 934 case SO_TIMESTAMPING_NEW: 935 sock_set_flag(sk, SOCK_TSTAMP_NEW); 936 /* fall through */ 937 case SO_TIMESTAMPING_OLD: 938 if (val & ~SOF_TIMESTAMPING_MASK) { 939 ret = -EINVAL; 940 break; 941 } 942 943 if (val & SOF_TIMESTAMPING_OPT_ID && 944 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 945 if (sk->sk_protocol == IPPROTO_TCP && 946 sk->sk_type == SOCK_STREAM) { 947 if ((1 << sk->sk_state) & 948 (TCPF_CLOSE | TCPF_LISTEN)) { 949 ret = -EINVAL; 950 break; 951 } 952 sk->sk_tskey = tcp_sk(sk)->snd_una; 953 } else { 954 sk->sk_tskey = 0; 955 } 956 } 957 958 if (val & SOF_TIMESTAMPING_OPT_STATS && 959 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { 960 ret = -EINVAL; 961 break; 962 } 963 964 sk->sk_tsflags = val; 965 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 966 sock_enable_timestamp(sk, 967 SOCK_TIMESTAMPING_RX_SOFTWARE); 968 else { 969 if (optname == SO_TIMESTAMPING_NEW) 970 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 971 972 sock_disable_timestamp(sk, 973 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 974 } 975 break; 976 977 case SO_RCVLOWAT: 978 if (val < 0) 979 val = INT_MAX; 980 if (sock->ops->set_rcvlowat) 981 ret = sock->ops->set_rcvlowat(sk, val); 982 else 983 sk->sk_rcvlowat = val ? : 1; 984 break; 985 986 case SO_RCVTIMEO_OLD: 987 case SO_RCVTIMEO_NEW: 988 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD); 989 break; 990 991 case SO_SNDTIMEO_OLD: 992 case SO_SNDTIMEO_NEW: 993 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD); 994 break; 995 996 case SO_ATTACH_FILTER: 997 ret = -EINVAL; 998 if (optlen == sizeof(struct sock_fprog)) { 999 struct sock_fprog fprog; 1000 1001 ret = -EFAULT; 1002 if (copy_from_user(&fprog, optval, sizeof(fprog))) 1003 break; 1004 1005 ret = sk_attach_filter(&fprog, sk); 1006 } 1007 break; 1008 1009 case SO_ATTACH_BPF: 1010 ret = -EINVAL; 1011 if (optlen == sizeof(u32)) { 1012 u32 ufd; 1013 1014 ret = -EFAULT; 1015 if (copy_from_user(&ufd, optval, sizeof(ufd))) 1016 break; 1017 1018 ret = sk_attach_bpf(ufd, sk); 1019 } 1020 break; 1021 1022 case SO_ATTACH_REUSEPORT_CBPF: 1023 ret = -EINVAL; 1024 if (optlen == sizeof(struct sock_fprog)) { 1025 struct sock_fprog fprog; 1026 1027 ret = -EFAULT; 1028 if (copy_from_user(&fprog, optval, sizeof(fprog))) 1029 break; 1030 1031 ret = sk_reuseport_attach_filter(&fprog, sk); 1032 } 1033 break; 1034 1035 case SO_ATTACH_REUSEPORT_EBPF: 1036 ret = -EINVAL; 1037 if (optlen == sizeof(u32)) { 1038 u32 ufd; 1039 1040 ret = -EFAULT; 1041 if (copy_from_user(&ufd, optval, sizeof(ufd))) 1042 break; 1043 1044 ret = sk_reuseport_attach_bpf(ufd, sk); 1045 } 1046 break; 1047 1048 case SO_DETACH_FILTER: 1049 ret = sk_detach_filter(sk); 1050 break; 1051 1052 case SO_LOCK_FILTER: 1053 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1054 ret = -EPERM; 1055 else 1056 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1057 break; 1058 1059 case SO_PASSSEC: 1060 if (valbool) 1061 set_bit(SOCK_PASSSEC, &sock->flags); 1062 else 1063 clear_bit(SOCK_PASSSEC, &sock->flags); 1064 break; 1065 case SO_MARK: 1066 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1067 ret = -EPERM; 1068 } else if (val != sk->sk_mark) { 1069 sk->sk_mark = val; 1070 sk_dst_reset(sk); 1071 } 1072 break; 1073 1074 case SO_RXQ_OVFL: 1075 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1076 break; 1077 1078 case SO_WIFI_STATUS: 1079 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1080 break; 1081 1082 case SO_PEEK_OFF: 1083 if (sock->ops->set_peek_off) 1084 ret = sock->ops->set_peek_off(sk, val); 1085 else 1086 ret = -EOPNOTSUPP; 1087 break; 1088 1089 case SO_NOFCS: 1090 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1091 break; 1092 1093 case SO_SELECT_ERR_QUEUE: 1094 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1095 break; 1096 1097 #ifdef CONFIG_NET_RX_BUSY_POLL 1098 case SO_BUSY_POLL: 1099 /* allow unprivileged users to decrease the value */ 1100 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1101 ret = -EPERM; 1102 else { 1103 if (val < 0) 1104 ret = -EINVAL; 1105 else 1106 sk->sk_ll_usec = val; 1107 } 1108 break; 1109 #endif 1110 1111 case SO_MAX_PACING_RATE: 1112 { 1113 unsigned long ulval = (val == ~0U) ? ~0UL : val; 1114 1115 if (sizeof(ulval) != sizeof(val) && 1116 optlen >= sizeof(ulval) && 1117 get_user(ulval, (unsigned long __user *)optval)) { 1118 ret = -EFAULT; 1119 break; 1120 } 1121 if (ulval != ~0UL) 1122 cmpxchg(&sk->sk_pacing_status, 1123 SK_PACING_NONE, 1124 SK_PACING_NEEDED); 1125 sk->sk_max_pacing_rate = ulval; 1126 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1127 break; 1128 } 1129 case SO_INCOMING_CPU: 1130 sk->sk_incoming_cpu = val; 1131 break; 1132 1133 case SO_CNX_ADVICE: 1134 if (val == 1) 1135 dst_negative_advice(sk); 1136 break; 1137 1138 case SO_ZEROCOPY: 1139 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1140 if (!((sk->sk_type == SOCK_STREAM && 1141 sk->sk_protocol == IPPROTO_TCP) || 1142 (sk->sk_type == SOCK_DGRAM && 1143 sk->sk_protocol == IPPROTO_UDP))) 1144 ret = -ENOTSUPP; 1145 } else if (sk->sk_family != PF_RDS) { 1146 ret = -ENOTSUPP; 1147 } 1148 if (!ret) { 1149 if (val < 0 || val > 1) 1150 ret = -EINVAL; 1151 else 1152 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1153 } 1154 break; 1155 1156 case SO_TXTIME: 1157 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1158 ret = -EPERM; 1159 } else if (optlen != sizeof(struct sock_txtime)) { 1160 ret = -EINVAL; 1161 } else if (copy_from_user(&sk_txtime, optval, 1162 sizeof(struct sock_txtime))) { 1163 ret = -EFAULT; 1164 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1165 ret = -EINVAL; 1166 } else { 1167 sock_valbool_flag(sk, SOCK_TXTIME, true); 1168 sk->sk_clockid = sk_txtime.clockid; 1169 sk->sk_txtime_deadline_mode = 1170 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1171 sk->sk_txtime_report_errors = 1172 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1173 } 1174 break; 1175 1176 case SO_BINDTOIFINDEX: 1177 ret = sock_setbindtodevice_locked(sk, val); 1178 break; 1179 1180 default: 1181 ret = -ENOPROTOOPT; 1182 break; 1183 } 1184 release_sock(sk); 1185 return ret; 1186 } 1187 EXPORT_SYMBOL(sock_setsockopt); 1188 1189 1190 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1191 struct ucred *ucred) 1192 { 1193 ucred->pid = pid_vnr(pid); 1194 ucred->uid = ucred->gid = -1; 1195 if (cred) { 1196 struct user_namespace *current_ns = current_user_ns(); 1197 1198 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1199 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1200 } 1201 } 1202 1203 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1204 { 1205 struct user_namespace *user_ns = current_user_ns(); 1206 int i; 1207 1208 for (i = 0; i < src->ngroups; i++) 1209 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1210 return -EFAULT; 1211 1212 return 0; 1213 } 1214 1215 int sock_getsockopt(struct socket *sock, int level, int optname, 1216 char __user *optval, int __user *optlen) 1217 { 1218 struct sock *sk = sock->sk; 1219 1220 union { 1221 int val; 1222 u64 val64; 1223 unsigned long ulval; 1224 struct linger ling; 1225 struct old_timeval32 tm32; 1226 struct __kernel_old_timeval tm; 1227 struct __kernel_sock_timeval stm; 1228 struct sock_txtime txtime; 1229 } v; 1230 1231 int lv = sizeof(int); 1232 int len; 1233 1234 if (get_user(len, optlen)) 1235 return -EFAULT; 1236 if (len < 0) 1237 return -EINVAL; 1238 1239 memset(&v, 0, sizeof(v)); 1240 1241 switch (optname) { 1242 case SO_DEBUG: 1243 v.val = sock_flag(sk, SOCK_DBG); 1244 break; 1245 1246 case SO_DONTROUTE: 1247 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1248 break; 1249 1250 case SO_BROADCAST: 1251 v.val = sock_flag(sk, SOCK_BROADCAST); 1252 break; 1253 1254 case SO_SNDBUF: 1255 v.val = sk->sk_sndbuf; 1256 break; 1257 1258 case SO_RCVBUF: 1259 v.val = sk->sk_rcvbuf; 1260 break; 1261 1262 case SO_REUSEADDR: 1263 v.val = sk->sk_reuse; 1264 break; 1265 1266 case SO_REUSEPORT: 1267 v.val = sk->sk_reuseport; 1268 break; 1269 1270 case SO_KEEPALIVE: 1271 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1272 break; 1273 1274 case SO_TYPE: 1275 v.val = sk->sk_type; 1276 break; 1277 1278 case SO_PROTOCOL: 1279 v.val = sk->sk_protocol; 1280 break; 1281 1282 case SO_DOMAIN: 1283 v.val = sk->sk_family; 1284 break; 1285 1286 case SO_ERROR: 1287 v.val = -sock_error(sk); 1288 if (v.val == 0) 1289 v.val = xchg(&sk->sk_err_soft, 0); 1290 break; 1291 1292 case SO_OOBINLINE: 1293 v.val = sock_flag(sk, SOCK_URGINLINE); 1294 break; 1295 1296 case SO_NO_CHECK: 1297 v.val = sk->sk_no_check_tx; 1298 break; 1299 1300 case SO_PRIORITY: 1301 v.val = sk->sk_priority; 1302 break; 1303 1304 case SO_LINGER: 1305 lv = sizeof(v.ling); 1306 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1307 v.ling.l_linger = sk->sk_lingertime / HZ; 1308 break; 1309 1310 case SO_BSDCOMPAT: 1311 sock_warn_obsolete_bsdism("getsockopt"); 1312 break; 1313 1314 case SO_TIMESTAMP_OLD: 1315 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1316 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1317 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1318 break; 1319 1320 case SO_TIMESTAMPNS_OLD: 1321 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1322 break; 1323 1324 case SO_TIMESTAMP_NEW: 1325 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1326 break; 1327 1328 case SO_TIMESTAMPNS_NEW: 1329 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1330 break; 1331 1332 case SO_TIMESTAMPING_OLD: 1333 v.val = sk->sk_tsflags; 1334 break; 1335 1336 case SO_RCVTIMEO_OLD: 1337 case SO_RCVTIMEO_NEW: 1338 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1339 break; 1340 1341 case SO_SNDTIMEO_OLD: 1342 case SO_SNDTIMEO_NEW: 1343 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1344 break; 1345 1346 case SO_RCVLOWAT: 1347 v.val = sk->sk_rcvlowat; 1348 break; 1349 1350 case SO_SNDLOWAT: 1351 v.val = 1; 1352 break; 1353 1354 case SO_PASSCRED: 1355 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1356 break; 1357 1358 case SO_PEERCRED: 1359 { 1360 struct ucred peercred; 1361 if (len > sizeof(peercred)) 1362 len = sizeof(peercred); 1363 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1364 if (copy_to_user(optval, &peercred, len)) 1365 return -EFAULT; 1366 goto lenout; 1367 } 1368 1369 case SO_PEERGROUPS: 1370 { 1371 int ret, n; 1372 1373 if (!sk->sk_peer_cred) 1374 return -ENODATA; 1375 1376 n = sk->sk_peer_cred->group_info->ngroups; 1377 if (len < n * sizeof(gid_t)) { 1378 len = n * sizeof(gid_t); 1379 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1380 } 1381 len = n * sizeof(gid_t); 1382 1383 ret = groups_to_user((gid_t __user *)optval, 1384 sk->sk_peer_cred->group_info); 1385 if (ret) 1386 return ret; 1387 goto lenout; 1388 } 1389 1390 case SO_PEERNAME: 1391 { 1392 char address[128]; 1393 1394 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1395 if (lv < 0) 1396 return -ENOTCONN; 1397 if (lv < len) 1398 return -EINVAL; 1399 if (copy_to_user(optval, address, len)) 1400 return -EFAULT; 1401 goto lenout; 1402 } 1403 1404 /* Dubious BSD thing... Probably nobody even uses it, but 1405 * the UNIX standard wants it for whatever reason... -DaveM 1406 */ 1407 case SO_ACCEPTCONN: 1408 v.val = sk->sk_state == TCP_LISTEN; 1409 break; 1410 1411 case SO_PASSSEC: 1412 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1413 break; 1414 1415 case SO_PEERSEC: 1416 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1417 1418 case SO_MARK: 1419 v.val = sk->sk_mark; 1420 break; 1421 1422 case SO_RXQ_OVFL: 1423 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1424 break; 1425 1426 case SO_WIFI_STATUS: 1427 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1428 break; 1429 1430 case SO_PEEK_OFF: 1431 if (!sock->ops->set_peek_off) 1432 return -EOPNOTSUPP; 1433 1434 v.val = sk->sk_peek_off; 1435 break; 1436 case SO_NOFCS: 1437 v.val = sock_flag(sk, SOCK_NOFCS); 1438 break; 1439 1440 case SO_BINDTODEVICE: 1441 return sock_getbindtodevice(sk, optval, optlen, len); 1442 1443 case SO_GET_FILTER: 1444 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1445 if (len < 0) 1446 return len; 1447 1448 goto lenout; 1449 1450 case SO_LOCK_FILTER: 1451 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1452 break; 1453 1454 case SO_BPF_EXTENSIONS: 1455 v.val = bpf_tell_extensions(); 1456 break; 1457 1458 case SO_SELECT_ERR_QUEUE: 1459 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1460 break; 1461 1462 #ifdef CONFIG_NET_RX_BUSY_POLL 1463 case SO_BUSY_POLL: 1464 v.val = sk->sk_ll_usec; 1465 break; 1466 #endif 1467 1468 case SO_MAX_PACING_RATE: 1469 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1470 lv = sizeof(v.ulval); 1471 v.ulval = sk->sk_max_pacing_rate; 1472 } else { 1473 /* 32bit version */ 1474 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1475 } 1476 break; 1477 1478 case SO_INCOMING_CPU: 1479 v.val = sk->sk_incoming_cpu; 1480 break; 1481 1482 case SO_MEMINFO: 1483 { 1484 u32 meminfo[SK_MEMINFO_VARS]; 1485 1486 if (get_user(len, optlen)) 1487 return -EFAULT; 1488 1489 sk_get_meminfo(sk, meminfo); 1490 1491 len = min_t(unsigned int, len, sizeof(meminfo)); 1492 if (copy_to_user(optval, &meminfo, len)) 1493 return -EFAULT; 1494 1495 goto lenout; 1496 } 1497 1498 #ifdef CONFIG_NET_RX_BUSY_POLL 1499 case SO_INCOMING_NAPI_ID: 1500 v.val = READ_ONCE(sk->sk_napi_id); 1501 1502 /* aggregate non-NAPI IDs down to 0 */ 1503 if (v.val < MIN_NAPI_ID) 1504 v.val = 0; 1505 1506 break; 1507 #endif 1508 1509 case SO_COOKIE: 1510 lv = sizeof(u64); 1511 if (len < lv) 1512 return -EINVAL; 1513 v.val64 = sock_gen_cookie(sk); 1514 break; 1515 1516 case SO_ZEROCOPY: 1517 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1518 break; 1519 1520 case SO_TXTIME: 1521 lv = sizeof(v.txtime); 1522 v.txtime.clockid = sk->sk_clockid; 1523 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1524 SOF_TXTIME_DEADLINE_MODE : 0; 1525 v.txtime.flags |= sk->sk_txtime_report_errors ? 1526 SOF_TXTIME_REPORT_ERRORS : 0; 1527 break; 1528 1529 case SO_BINDTOIFINDEX: 1530 v.val = sk->sk_bound_dev_if; 1531 break; 1532 1533 default: 1534 /* We implement the SO_SNDLOWAT etc to not be settable 1535 * (1003.1g 7). 1536 */ 1537 return -ENOPROTOOPT; 1538 } 1539 1540 if (len > lv) 1541 len = lv; 1542 if (copy_to_user(optval, &v, len)) 1543 return -EFAULT; 1544 lenout: 1545 if (put_user(len, optlen)) 1546 return -EFAULT; 1547 return 0; 1548 } 1549 1550 /* 1551 * Initialize an sk_lock. 1552 * 1553 * (We also register the sk_lock with the lock validator.) 1554 */ 1555 static inline void sock_lock_init(struct sock *sk) 1556 { 1557 if (sk->sk_kern_sock) 1558 sock_lock_init_class_and_name( 1559 sk, 1560 af_family_kern_slock_key_strings[sk->sk_family], 1561 af_family_kern_slock_keys + sk->sk_family, 1562 af_family_kern_key_strings[sk->sk_family], 1563 af_family_kern_keys + sk->sk_family); 1564 else 1565 sock_lock_init_class_and_name( 1566 sk, 1567 af_family_slock_key_strings[sk->sk_family], 1568 af_family_slock_keys + sk->sk_family, 1569 af_family_key_strings[sk->sk_family], 1570 af_family_keys + sk->sk_family); 1571 } 1572 1573 /* 1574 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1575 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1576 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1577 */ 1578 static void sock_copy(struct sock *nsk, const struct sock *osk) 1579 { 1580 #ifdef CONFIG_SECURITY_NETWORK 1581 void *sptr = nsk->sk_security; 1582 #endif 1583 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1584 1585 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1586 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1587 1588 #ifdef CONFIG_SECURITY_NETWORK 1589 nsk->sk_security = sptr; 1590 security_sk_clone(osk, nsk); 1591 #endif 1592 } 1593 1594 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1595 int family) 1596 { 1597 struct sock *sk; 1598 struct kmem_cache *slab; 1599 1600 slab = prot->slab; 1601 if (slab != NULL) { 1602 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1603 if (!sk) 1604 return sk; 1605 if (priority & __GFP_ZERO) 1606 sk_prot_clear_nulls(sk, prot->obj_size); 1607 } else 1608 sk = kmalloc(prot->obj_size, priority); 1609 1610 if (sk != NULL) { 1611 if (security_sk_alloc(sk, family, priority)) 1612 goto out_free; 1613 1614 if (!try_module_get(prot->owner)) 1615 goto out_free_sec; 1616 sk_tx_queue_clear(sk); 1617 } 1618 1619 return sk; 1620 1621 out_free_sec: 1622 security_sk_free(sk); 1623 out_free: 1624 if (slab != NULL) 1625 kmem_cache_free(slab, sk); 1626 else 1627 kfree(sk); 1628 return NULL; 1629 } 1630 1631 static void sk_prot_free(struct proto *prot, struct sock *sk) 1632 { 1633 struct kmem_cache *slab; 1634 struct module *owner; 1635 1636 owner = prot->owner; 1637 slab = prot->slab; 1638 1639 cgroup_sk_free(&sk->sk_cgrp_data); 1640 mem_cgroup_sk_free(sk); 1641 security_sk_free(sk); 1642 if (slab != NULL) 1643 kmem_cache_free(slab, sk); 1644 else 1645 kfree(sk); 1646 module_put(owner); 1647 } 1648 1649 /** 1650 * sk_alloc - All socket objects are allocated here 1651 * @net: the applicable net namespace 1652 * @family: protocol family 1653 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1654 * @prot: struct proto associated with this new sock instance 1655 * @kern: is this to be a kernel socket? 1656 */ 1657 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1658 struct proto *prot, int kern) 1659 { 1660 struct sock *sk; 1661 1662 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1663 if (sk) { 1664 sk->sk_family = family; 1665 /* 1666 * See comment in struct sock definition to understand 1667 * why we need sk_prot_creator -acme 1668 */ 1669 sk->sk_prot = sk->sk_prot_creator = prot; 1670 sk->sk_kern_sock = kern; 1671 sock_lock_init(sk); 1672 sk->sk_net_refcnt = kern ? 0 : 1; 1673 if (likely(sk->sk_net_refcnt)) { 1674 get_net(net); 1675 sock_inuse_add(net, 1); 1676 } 1677 1678 sock_net_set(sk, net); 1679 refcount_set(&sk->sk_wmem_alloc, 1); 1680 1681 mem_cgroup_sk_alloc(sk); 1682 cgroup_sk_alloc(&sk->sk_cgrp_data); 1683 sock_update_classid(&sk->sk_cgrp_data); 1684 sock_update_netprioidx(&sk->sk_cgrp_data); 1685 } 1686 1687 return sk; 1688 } 1689 EXPORT_SYMBOL(sk_alloc); 1690 1691 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1692 * grace period. This is the case for UDP sockets and TCP listeners. 1693 */ 1694 static void __sk_destruct(struct rcu_head *head) 1695 { 1696 struct sock *sk = container_of(head, struct sock, sk_rcu); 1697 struct sk_filter *filter; 1698 1699 if (sk->sk_destruct) 1700 sk->sk_destruct(sk); 1701 1702 filter = rcu_dereference_check(sk->sk_filter, 1703 refcount_read(&sk->sk_wmem_alloc) == 0); 1704 if (filter) { 1705 sk_filter_uncharge(sk, filter); 1706 RCU_INIT_POINTER(sk->sk_filter, NULL); 1707 } 1708 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1709 reuseport_detach_sock(sk); 1710 1711 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1712 1713 #ifdef CONFIG_BPF_SYSCALL 1714 bpf_sk_storage_free(sk); 1715 #endif 1716 1717 if (atomic_read(&sk->sk_omem_alloc)) 1718 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1719 __func__, atomic_read(&sk->sk_omem_alloc)); 1720 1721 if (sk->sk_frag.page) { 1722 put_page(sk->sk_frag.page); 1723 sk->sk_frag.page = NULL; 1724 } 1725 1726 if (sk->sk_peer_cred) 1727 put_cred(sk->sk_peer_cred); 1728 put_pid(sk->sk_peer_pid); 1729 if (likely(sk->sk_net_refcnt)) 1730 put_net(sock_net(sk)); 1731 sk_prot_free(sk->sk_prot_creator, sk); 1732 } 1733 1734 void sk_destruct(struct sock *sk) 1735 { 1736 if (sock_flag(sk, SOCK_RCU_FREE)) 1737 call_rcu(&sk->sk_rcu, __sk_destruct); 1738 else 1739 __sk_destruct(&sk->sk_rcu); 1740 } 1741 1742 static void __sk_free(struct sock *sk) 1743 { 1744 if (likely(sk->sk_net_refcnt)) 1745 sock_inuse_add(sock_net(sk), -1); 1746 1747 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 1748 sock_diag_broadcast_destroy(sk); 1749 else 1750 sk_destruct(sk); 1751 } 1752 1753 void sk_free(struct sock *sk) 1754 { 1755 /* 1756 * We subtract one from sk_wmem_alloc and can know if 1757 * some packets are still in some tx queue. 1758 * If not null, sock_wfree() will call __sk_free(sk) later 1759 */ 1760 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 1761 __sk_free(sk); 1762 } 1763 EXPORT_SYMBOL(sk_free); 1764 1765 static void sk_init_common(struct sock *sk) 1766 { 1767 skb_queue_head_init(&sk->sk_receive_queue); 1768 skb_queue_head_init(&sk->sk_write_queue); 1769 skb_queue_head_init(&sk->sk_error_queue); 1770 1771 rwlock_init(&sk->sk_callback_lock); 1772 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 1773 af_rlock_keys + sk->sk_family, 1774 af_family_rlock_key_strings[sk->sk_family]); 1775 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 1776 af_wlock_keys + sk->sk_family, 1777 af_family_wlock_key_strings[sk->sk_family]); 1778 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 1779 af_elock_keys + sk->sk_family, 1780 af_family_elock_key_strings[sk->sk_family]); 1781 lockdep_set_class_and_name(&sk->sk_callback_lock, 1782 af_callback_keys + sk->sk_family, 1783 af_family_clock_key_strings[sk->sk_family]); 1784 } 1785 1786 /** 1787 * sk_clone_lock - clone a socket, and lock its clone 1788 * @sk: the socket to clone 1789 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1790 * 1791 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1792 */ 1793 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1794 { 1795 struct sock *newsk; 1796 bool is_charged = true; 1797 1798 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1799 if (newsk != NULL) { 1800 struct sk_filter *filter; 1801 1802 sock_copy(newsk, sk); 1803 1804 newsk->sk_prot_creator = sk->sk_prot; 1805 1806 /* SANITY */ 1807 if (likely(newsk->sk_net_refcnt)) 1808 get_net(sock_net(newsk)); 1809 sk_node_init(&newsk->sk_node); 1810 sock_lock_init(newsk); 1811 bh_lock_sock(newsk); 1812 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1813 newsk->sk_backlog.len = 0; 1814 1815 atomic_set(&newsk->sk_rmem_alloc, 0); 1816 /* 1817 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1818 */ 1819 refcount_set(&newsk->sk_wmem_alloc, 1); 1820 atomic_set(&newsk->sk_omem_alloc, 0); 1821 sk_init_common(newsk); 1822 1823 newsk->sk_dst_cache = NULL; 1824 newsk->sk_dst_pending_confirm = 0; 1825 newsk->sk_wmem_queued = 0; 1826 newsk->sk_forward_alloc = 0; 1827 atomic_set(&newsk->sk_drops, 0); 1828 newsk->sk_send_head = NULL; 1829 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1830 atomic_set(&newsk->sk_zckey, 0); 1831 1832 sock_reset_flag(newsk, SOCK_DONE); 1833 mem_cgroup_sk_alloc(newsk); 1834 cgroup_sk_alloc(&newsk->sk_cgrp_data); 1835 1836 rcu_read_lock(); 1837 filter = rcu_dereference(sk->sk_filter); 1838 if (filter != NULL) 1839 /* though it's an empty new sock, the charging may fail 1840 * if sysctl_optmem_max was changed between creation of 1841 * original socket and cloning 1842 */ 1843 is_charged = sk_filter_charge(newsk, filter); 1844 RCU_INIT_POINTER(newsk->sk_filter, filter); 1845 rcu_read_unlock(); 1846 1847 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1848 /* We need to make sure that we don't uncharge the new 1849 * socket if we couldn't charge it in the first place 1850 * as otherwise we uncharge the parent's filter. 1851 */ 1852 if (!is_charged) 1853 RCU_INIT_POINTER(newsk->sk_filter, NULL); 1854 sk_free_unlock_clone(newsk); 1855 newsk = NULL; 1856 goto out; 1857 } 1858 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1859 1860 newsk->sk_err = 0; 1861 newsk->sk_err_soft = 0; 1862 newsk->sk_priority = 0; 1863 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1864 if (likely(newsk->sk_net_refcnt)) 1865 sock_inuse_add(sock_net(newsk), 1); 1866 1867 /* 1868 * Before updating sk_refcnt, we must commit prior changes to memory 1869 * (Documentation/RCU/rculist_nulls.txt for details) 1870 */ 1871 smp_wmb(); 1872 refcount_set(&newsk->sk_refcnt, 2); 1873 1874 /* 1875 * Increment the counter in the same struct proto as the master 1876 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1877 * is the same as sk->sk_prot->socks, as this field was copied 1878 * with memcpy). 1879 * 1880 * This _changes_ the previous behaviour, where 1881 * tcp_create_openreq_child always was incrementing the 1882 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1883 * to be taken into account in all callers. -acme 1884 */ 1885 sk_refcnt_debug_inc(newsk); 1886 sk_set_socket(newsk, NULL); 1887 RCU_INIT_POINTER(newsk->sk_wq, NULL); 1888 1889 if (newsk->sk_prot->sockets_allocated) 1890 sk_sockets_allocated_inc(newsk); 1891 1892 if (sock_needs_netstamp(sk) && 1893 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1894 net_enable_timestamp(); 1895 } 1896 out: 1897 return newsk; 1898 } 1899 EXPORT_SYMBOL_GPL(sk_clone_lock); 1900 1901 void sk_free_unlock_clone(struct sock *sk) 1902 { 1903 /* It is still raw copy of parent, so invalidate 1904 * destructor and make plain sk_free() */ 1905 sk->sk_destruct = NULL; 1906 bh_unlock_sock(sk); 1907 sk_free(sk); 1908 } 1909 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 1910 1911 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1912 { 1913 u32 max_segs = 1; 1914 1915 sk_dst_set(sk, dst); 1916 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps; 1917 if (sk->sk_route_caps & NETIF_F_GSO) 1918 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1919 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1920 if (sk_can_gso(sk)) { 1921 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 1922 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1923 } else { 1924 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1925 sk->sk_gso_max_size = dst->dev->gso_max_size; 1926 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 1927 } 1928 } 1929 sk->sk_gso_max_segs = max_segs; 1930 } 1931 EXPORT_SYMBOL_GPL(sk_setup_caps); 1932 1933 /* 1934 * Simple resource managers for sockets. 1935 */ 1936 1937 1938 /* 1939 * Write buffer destructor automatically called from kfree_skb. 1940 */ 1941 void sock_wfree(struct sk_buff *skb) 1942 { 1943 struct sock *sk = skb->sk; 1944 unsigned int len = skb->truesize; 1945 1946 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1947 /* 1948 * Keep a reference on sk_wmem_alloc, this will be released 1949 * after sk_write_space() call 1950 */ 1951 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 1952 sk->sk_write_space(sk); 1953 len = 1; 1954 } 1955 /* 1956 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1957 * could not do because of in-flight packets 1958 */ 1959 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 1960 __sk_free(sk); 1961 } 1962 EXPORT_SYMBOL(sock_wfree); 1963 1964 /* This variant of sock_wfree() is used by TCP, 1965 * since it sets SOCK_USE_WRITE_QUEUE. 1966 */ 1967 void __sock_wfree(struct sk_buff *skb) 1968 { 1969 struct sock *sk = skb->sk; 1970 1971 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 1972 __sk_free(sk); 1973 } 1974 1975 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1976 { 1977 skb_orphan(skb); 1978 skb->sk = sk; 1979 #ifdef CONFIG_INET 1980 if (unlikely(!sk_fullsock(sk))) { 1981 skb->destructor = sock_edemux; 1982 sock_hold(sk); 1983 return; 1984 } 1985 #endif 1986 skb->destructor = sock_wfree; 1987 skb_set_hash_from_sk(skb, sk); 1988 /* 1989 * We used to take a refcount on sk, but following operation 1990 * is enough to guarantee sk_free() wont free this sock until 1991 * all in-flight packets are completed 1992 */ 1993 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1994 } 1995 EXPORT_SYMBOL(skb_set_owner_w); 1996 1997 /* This helper is used by netem, as it can hold packets in its 1998 * delay queue. We want to allow the owner socket to send more 1999 * packets, as if they were already TX completed by a typical driver. 2000 * But we also want to keep skb->sk set because some packet schedulers 2001 * rely on it (sch_fq for example). 2002 */ 2003 void skb_orphan_partial(struct sk_buff *skb) 2004 { 2005 if (skb_is_tcp_pure_ack(skb)) 2006 return; 2007 2008 if (skb->destructor == sock_wfree 2009 #ifdef CONFIG_INET 2010 || skb->destructor == tcp_wfree 2011 #endif 2012 ) { 2013 struct sock *sk = skb->sk; 2014 2015 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 2016 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)); 2017 skb->destructor = sock_efree; 2018 } 2019 } else { 2020 skb_orphan(skb); 2021 } 2022 } 2023 EXPORT_SYMBOL(skb_orphan_partial); 2024 2025 /* 2026 * Read buffer destructor automatically called from kfree_skb. 2027 */ 2028 void sock_rfree(struct sk_buff *skb) 2029 { 2030 struct sock *sk = skb->sk; 2031 unsigned int len = skb->truesize; 2032 2033 atomic_sub(len, &sk->sk_rmem_alloc); 2034 sk_mem_uncharge(sk, len); 2035 } 2036 EXPORT_SYMBOL(sock_rfree); 2037 2038 /* 2039 * Buffer destructor for skbs that are not used directly in read or write 2040 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2041 */ 2042 void sock_efree(struct sk_buff *skb) 2043 { 2044 sock_put(skb->sk); 2045 } 2046 EXPORT_SYMBOL(sock_efree); 2047 2048 kuid_t sock_i_uid(struct sock *sk) 2049 { 2050 kuid_t uid; 2051 2052 read_lock_bh(&sk->sk_callback_lock); 2053 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2054 read_unlock_bh(&sk->sk_callback_lock); 2055 return uid; 2056 } 2057 EXPORT_SYMBOL(sock_i_uid); 2058 2059 unsigned long sock_i_ino(struct sock *sk) 2060 { 2061 unsigned long ino; 2062 2063 read_lock_bh(&sk->sk_callback_lock); 2064 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2065 read_unlock_bh(&sk->sk_callback_lock); 2066 return ino; 2067 } 2068 EXPORT_SYMBOL(sock_i_ino); 2069 2070 /* 2071 * Allocate a skb from the socket's send buffer. 2072 */ 2073 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2074 gfp_t priority) 2075 { 2076 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 2077 struct sk_buff *skb = alloc_skb(size, priority); 2078 if (skb) { 2079 skb_set_owner_w(skb, sk); 2080 return skb; 2081 } 2082 } 2083 return NULL; 2084 } 2085 EXPORT_SYMBOL(sock_wmalloc); 2086 2087 static void sock_ofree(struct sk_buff *skb) 2088 { 2089 struct sock *sk = skb->sk; 2090 2091 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2092 } 2093 2094 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2095 gfp_t priority) 2096 { 2097 struct sk_buff *skb; 2098 2099 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2100 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2101 sysctl_optmem_max) 2102 return NULL; 2103 2104 skb = alloc_skb(size, priority); 2105 if (!skb) 2106 return NULL; 2107 2108 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2109 skb->sk = sk; 2110 skb->destructor = sock_ofree; 2111 return skb; 2112 } 2113 2114 /* 2115 * Allocate a memory block from the socket's option memory buffer. 2116 */ 2117 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2118 { 2119 if ((unsigned int)size <= sysctl_optmem_max && 2120 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 2121 void *mem; 2122 /* First do the add, to avoid the race if kmalloc 2123 * might sleep. 2124 */ 2125 atomic_add(size, &sk->sk_omem_alloc); 2126 mem = kmalloc(size, priority); 2127 if (mem) 2128 return mem; 2129 atomic_sub(size, &sk->sk_omem_alloc); 2130 } 2131 return NULL; 2132 } 2133 EXPORT_SYMBOL(sock_kmalloc); 2134 2135 /* Free an option memory block. Note, we actually want the inline 2136 * here as this allows gcc to detect the nullify and fold away the 2137 * condition entirely. 2138 */ 2139 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2140 const bool nullify) 2141 { 2142 if (WARN_ON_ONCE(!mem)) 2143 return; 2144 if (nullify) 2145 kzfree(mem); 2146 else 2147 kfree(mem); 2148 atomic_sub(size, &sk->sk_omem_alloc); 2149 } 2150 2151 void sock_kfree_s(struct sock *sk, void *mem, int size) 2152 { 2153 __sock_kfree_s(sk, mem, size, false); 2154 } 2155 EXPORT_SYMBOL(sock_kfree_s); 2156 2157 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2158 { 2159 __sock_kfree_s(sk, mem, size, true); 2160 } 2161 EXPORT_SYMBOL(sock_kzfree_s); 2162 2163 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2164 I think, these locks should be removed for datagram sockets. 2165 */ 2166 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2167 { 2168 DEFINE_WAIT(wait); 2169 2170 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2171 for (;;) { 2172 if (!timeo) 2173 break; 2174 if (signal_pending(current)) 2175 break; 2176 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2177 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2178 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 2179 break; 2180 if (sk->sk_shutdown & SEND_SHUTDOWN) 2181 break; 2182 if (sk->sk_err) 2183 break; 2184 timeo = schedule_timeout(timeo); 2185 } 2186 finish_wait(sk_sleep(sk), &wait); 2187 return timeo; 2188 } 2189 2190 2191 /* 2192 * Generic send/receive buffer handlers 2193 */ 2194 2195 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2196 unsigned long data_len, int noblock, 2197 int *errcode, int max_page_order) 2198 { 2199 struct sk_buff *skb; 2200 long timeo; 2201 int err; 2202 2203 timeo = sock_sndtimeo(sk, noblock); 2204 for (;;) { 2205 err = sock_error(sk); 2206 if (err != 0) 2207 goto failure; 2208 2209 err = -EPIPE; 2210 if (sk->sk_shutdown & SEND_SHUTDOWN) 2211 goto failure; 2212 2213 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf) 2214 break; 2215 2216 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2217 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2218 err = -EAGAIN; 2219 if (!timeo) 2220 goto failure; 2221 if (signal_pending(current)) 2222 goto interrupted; 2223 timeo = sock_wait_for_wmem(sk, timeo); 2224 } 2225 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2226 errcode, sk->sk_allocation); 2227 if (skb) 2228 skb_set_owner_w(skb, sk); 2229 return skb; 2230 2231 interrupted: 2232 err = sock_intr_errno(timeo); 2233 failure: 2234 *errcode = err; 2235 return NULL; 2236 } 2237 EXPORT_SYMBOL(sock_alloc_send_pskb); 2238 2239 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2240 int noblock, int *errcode) 2241 { 2242 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2243 } 2244 EXPORT_SYMBOL(sock_alloc_send_skb); 2245 2246 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2247 struct sockcm_cookie *sockc) 2248 { 2249 u32 tsflags; 2250 2251 switch (cmsg->cmsg_type) { 2252 case SO_MARK: 2253 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2254 return -EPERM; 2255 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2256 return -EINVAL; 2257 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2258 break; 2259 case SO_TIMESTAMPING_OLD: 2260 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2261 return -EINVAL; 2262 2263 tsflags = *(u32 *)CMSG_DATA(cmsg); 2264 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2265 return -EINVAL; 2266 2267 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2268 sockc->tsflags |= tsflags; 2269 break; 2270 case SCM_TXTIME: 2271 if (!sock_flag(sk, SOCK_TXTIME)) 2272 return -EINVAL; 2273 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2274 return -EINVAL; 2275 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2276 break; 2277 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2278 case SCM_RIGHTS: 2279 case SCM_CREDENTIALS: 2280 break; 2281 default: 2282 return -EINVAL; 2283 } 2284 return 0; 2285 } 2286 EXPORT_SYMBOL(__sock_cmsg_send); 2287 2288 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2289 struct sockcm_cookie *sockc) 2290 { 2291 struct cmsghdr *cmsg; 2292 int ret; 2293 2294 for_each_cmsghdr(cmsg, msg) { 2295 if (!CMSG_OK(msg, cmsg)) 2296 return -EINVAL; 2297 if (cmsg->cmsg_level != SOL_SOCKET) 2298 continue; 2299 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2300 if (ret) 2301 return ret; 2302 } 2303 return 0; 2304 } 2305 EXPORT_SYMBOL(sock_cmsg_send); 2306 2307 static void sk_enter_memory_pressure(struct sock *sk) 2308 { 2309 if (!sk->sk_prot->enter_memory_pressure) 2310 return; 2311 2312 sk->sk_prot->enter_memory_pressure(sk); 2313 } 2314 2315 static void sk_leave_memory_pressure(struct sock *sk) 2316 { 2317 if (sk->sk_prot->leave_memory_pressure) { 2318 sk->sk_prot->leave_memory_pressure(sk); 2319 } else { 2320 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2321 2322 if (memory_pressure && *memory_pressure) 2323 *memory_pressure = 0; 2324 } 2325 } 2326 2327 /* On 32bit arches, an skb frag is limited to 2^15 */ 2328 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2329 2330 /** 2331 * skb_page_frag_refill - check that a page_frag contains enough room 2332 * @sz: minimum size of the fragment we want to get 2333 * @pfrag: pointer to page_frag 2334 * @gfp: priority for memory allocation 2335 * 2336 * Note: While this allocator tries to use high order pages, there is 2337 * no guarantee that allocations succeed. Therefore, @sz MUST be 2338 * less or equal than PAGE_SIZE. 2339 */ 2340 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2341 { 2342 if (pfrag->page) { 2343 if (page_ref_count(pfrag->page) == 1) { 2344 pfrag->offset = 0; 2345 return true; 2346 } 2347 if (pfrag->offset + sz <= pfrag->size) 2348 return true; 2349 put_page(pfrag->page); 2350 } 2351 2352 pfrag->offset = 0; 2353 if (SKB_FRAG_PAGE_ORDER) { 2354 /* Avoid direct reclaim but allow kswapd to wake */ 2355 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2356 __GFP_COMP | __GFP_NOWARN | 2357 __GFP_NORETRY, 2358 SKB_FRAG_PAGE_ORDER); 2359 if (likely(pfrag->page)) { 2360 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2361 return true; 2362 } 2363 } 2364 pfrag->page = alloc_page(gfp); 2365 if (likely(pfrag->page)) { 2366 pfrag->size = PAGE_SIZE; 2367 return true; 2368 } 2369 return false; 2370 } 2371 EXPORT_SYMBOL(skb_page_frag_refill); 2372 2373 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2374 { 2375 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2376 return true; 2377 2378 sk_enter_memory_pressure(sk); 2379 sk_stream_moderate_sndbuf(sk); 2380 return false; 2381 } 2382 EXPORT_SYMBOL(sk_page_frag_refill); 2383 2384 static void __lock_sock(struct sock *sk) 2385 __releases(&sk->sk_lock.slock) 2386 __acquires(&sk->sk_lock.slock) 2387 { 2388 DEFINE_WAIT(wait); 2389 2390 for (;;) { 2391 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2392 TASK_UNINTERRUPTIBLE); 2393 spin_unlock_bh(&sk->sk_lock.slock); 2394 schedule(); 2395 spin_lock_bh(&sk->sk_lock.slock); 2396 if (!sock_owned_by_user(sk)) 2397 break; 2398 } 2399 finish_wait(&sk->sk_lock.wq, &wait); 2400 } 2401 2402 void __release_sock(struct sock *sk) 2403 __releases(&sk->sk_lock.slock) 2404 __acquires(&sk->sk_lock.slock) 2405 { 2406 struct sk_buff *skb, *next; 2407 2408 while ((skb = sk->sk_backlog.head) != NULL) { 2409 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2410 2411 spin_unlock_bh(&sk->sk_lock.slock); 2412 2413 do { 2414 next = skb->next; 2415 prefetch(next); 2416 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2417 skb_mark_not_on_list(skb); 2418 sk_backlog_rcv(sk, skb); 2419 2420 cond_resched(); 2421 2422 skb = next; 2423 } while (skb != NULL); 2424 2425 spin_lock_bh(&sk->sk_lock.slock); 2426 } 2427 2428 /* 2429 * Doing the zeroing here guarantee we can not loop forever 2430 * while a wild producer attempts to flood us. 2431 */ 2432 sk->sk_backlog.len = 0; 2433 } 2434 2435 void __sk_flush_backlog(struct sock *sk) 2436 { 2437 spin_lock_bh(&sk->sk_lock.slock); 2438 __release_sock(sk); 2439 spin_unlock_bh(&sk->sk_lock.slock); 2440 } 2441 2442 /** 2443 * sk_wait_data - wait for data to arrive at sk_receive_queue 2444 * @sk: sock to wait on 2445 * @timeo: for how long 2446 * @skb: last skb seen on sk_receive_queue 2447 * 2448 * Now socket state including sk->sk_err is changed only under lock, 2449 * hence we may omit checks after joining wait queue. 2450 * We check receive queue before schedule() only as optimization; 2451 * it is very likely that release_sock() added new data. 2452 */ 2453 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2454 { 2455 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2456 int rc; 2457 2458 add_wait_queue(sk_sleep(sk), &wait); 2459 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2460 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2461 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2462 remove_wait_queue(sk_sleep(sk), &wait); 2463 return rc; 2464 } 2465 EXPORT_SYMBOL(sk_wait_data); 2466 2467 /** 2468 * __sk_mem_raise_allocated - increase memory_allocated 2469 * @sk: socket 2470 * @size: memory size to allocate 2471 * @amt: pages to allocate 2472 * @kind: allocation type 2473 * 2474 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2475 */ 2476 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2477 { 2478 struct proto *prot = sk->sk_prot; 2479 long allocated = sk_memory_allocated_add(sk, amt); 2480 bool charged = true; 2481 2482 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2483 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt))) 2484 goto suppress_allocation; 2485 2486 /* Under limit. */ 2487 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2488 sk_leave_memory_pressure(sk); 2489 return 1; 2490 } 2491 2492 /* Under pressure. */ 2493 if (allocated > sk_prot_mem_limits(sk, 1)) 2494 sk_enter_memory_pressure(sk); 2495 2496 /* Over hard limit. */ 2497 if (allocated > sk_prot_mem_limits(sk, 2)) 2498 goto suppress_allocation; 2499 2500 /* guarantee minimum buffer size under pressure */ 2501 if (kind == SK_MEM_RECV) { 2502 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2503 return 1; 2504 2505 } else { /* SK_MEM_SEND */ 2506 int wmem0 = sk_get_wmem0(sk, prot); 2507 2508 if (sk->sk_type == SOCK_STREAM) { 2509 if (sk->sk_wmem_queued < wmem0) 2510 return 1; 2511 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2512 return 1; 2513 } 2514 } 2515 2516 if (sk_has_memory_pressure(sk)) { 2517 u64 alloc; 2518 2519 if (!sk_under_memory_pressure(sk)) 2520 return 1; 2521 alloc = sk_sockets_allocated_read_positive(sk); 2522 if (sk_prot_mem_limits(sk, 2) > alloc * 2523 sk_mem_pages(sk->sk_wmem_queued + 2524 atomic_read(&sk->sk_rmem_alloc) + 2525 sk->sk_forward_alloc)) 2526 return 1; 2527 } 2528 2529 suppress_allocation: 2530 2531 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2532 sk_stream_moderate_sndbuf(sk); 2533 2534 /* Fail only if socket is _under_ its sndbuf. 2535 * In this case we cannot block, so that we have to fail. 2536 */ 2537 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2538 return 1; 2539 } 2540 2541 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 2542 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 2543 2544 sk_memory_allocated_sub(sk, amt); 2545 2546 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2547 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2548 2549 return 0; 2550 } 2551 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2552 2553 /** 2554 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2555 * @sk: socket 2556 * @size: memory size to allocate 2557 * @kind: allocation type 2558 * 2559 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2560 * rmem allocation. This function assumes that protocols which have 2561 * memory_pressure use sk_wmem_queued as write buffer accounting. 2562 */ 2563 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2564 { 2565 int ret, amt = sk_mem_pages(size); 2566 2567 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2568 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2569 if (!ret) 2570 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2571 return ret; 2572 } 2573 EXPORT_SYMBOL(__sk_mem_schedule); 2574 2575 /** 2576 * __sk_mem_reduce_allocated - reclaim memory_allocated 2577 * @sk: socket 2578 * @amount: number of quanta 2579 * 2580 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2581 */ 2582 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2583 { 2584 sk_memory_allocated_sub(sk, amount); 2585 2586 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2587 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2588 2589 if (sk_under_memory_pressure(sk) && 2590 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2591 sk_leave_memory_pressure(sk); 2592 } 2593 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2594 2595 /** 2596 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2597 * @sk: socket 2598 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2599 */ 2600 void __sk_mem_reclaim(struct sock *sk, int amount) 2601 { 2602 amount >>= SK_MEM_QUANTUM_SHIFT; 2603 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2604 __sk_mem_reduce_allocated(sk, amount); 2605 } 2606 EXPORT_SYMBOL(__sk_mem_reclaim); 2607 2608 int sk_set_peek_off(struct sock *sk, int val) 2609 { 2610 sk->sk_peek_off = val; 2611 return 0; 2612 } 2613 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2614 2615 /* 2616 * Set of default routines for initialising struct proto_ops when 2617 * the protocol does not support a particular function. In certain 2618 * cases where it makes no sense for a protocol to have a "do nothing" 2619 * function, some default processing is provided. 2620 */ 2621 2622 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2623 { 2624 return -EOPNOTSUPP; 2625 } 2626 EXPORT_SYMBOL(sock_no_bind); 2627 2628 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2629 int len, int flags) 2630 { 2631 return -EOPNOTSUPP; 2632 } 2633 EXPORT_SYMBOL(sock_no_connect); 2634 2635 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2636 { 2637 return -EOPNOTSUPP; 2638 } 2639 EXPORT_SYMBOL(sock_no_socketpair); 2640 2641 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 2642 bool kern) 2643 { 2644 return -EOPNOTSUPP; 2645 } 2646 EXPORT_SYMBOL(sock_no_accept); 2647 2648 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2649 int peer) 2650 { 2651 return -EOPNOTSUPP; 2652 } 2653 EXPORT_SYMBOL(sock_no_getname); 2654 2655 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2656 { 2657 return -EOPNOTSUPP; 2658 } 2659 EXPORT_SYMBOL(sock_no_ioctl); 2660 2661 int sock_no_listen(struct socket *sock, int backlog) 2662 { 2663 return -EOPNOTSUPP; 2664 } 2665 EXPORT_SYMBOL(sock_no_listen); 2666 2667 int sock_no_shutdown(struct socket *sock, int how) 2668 { 2669 return -EOPNOTSUPP; 2670 } 2671 EXPORT_SYMBOL(sock_no_shutdown); 2672 2673 int sock_no_setsockopt(struct socket *sock, int level, int optname, 2674 char __user *optval, unsigned int optlen) 2675 { 2676 return -EOPNOTSUPP; 2677 } 2678 EXPORT_SYMBOL(sock_no_setsockopt); 2679 2680 int sock_no_getsockopt(struct socket *sock, int level, int optname, 2681 char __user *optval, int __user *optlen) 2682 { 2683 return -EOPNOTSUPP; 2684 } 2685 EXPORT_SYMBOL(sock_no_getsockopt); 2686 2687 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2688 { 2689 return -EOPNOTSUPP; 2690 } 2691 EXPORT_SYMBOL(sock_no_sendmsg); 2692 2693 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 2694 { 2695 return -EOPNOTSUPP; 2696 } 2697 EXPORT_SYMBOL(sock_no_sendmsg_locked); 2698 2699 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2700 int flags) 2701 { 2702 return -EOPNOTSUPP; 2703 } 2704 EXPORT_SYMBOL(sock_no_recvmsg); 2705 2706 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2707 { 2708 /* Mirror missing mmap method error code */ 2709 return -ENODEV; 2710 } 2711 EXPORT_SYMBOL(sock_no_mmap); 2712 2713 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2714 { 2715 ssize_t res; 2716 struct msghdr msg = {.msg_flags = flags}; 2717 struct kvec iov; 2718 char *kaddr = kmap(page); 2719 iov.iov_base = kaddr + offset; 2720 iov.iov_len = size; 2721 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2722 kunmap(page); 2723 return res; 2724 } 2725 EXPORT_SYMBOL(sock_no_sendpage); 2726 2727 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 2728 int offset, size_t size, int flags) 2729 { 2730 ssize_t res; 2731 struct msghdr msg = {.msg_flags = flags}; 2732 struct kvec iov; 2733 char *kaddr = kmap(page); 2734 2735 iov.iov_base = kaddr + offset; 2736 iov.iov_len = size; 2737 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 2738 kunmap(page); 2739 return res; 2740 } 2741 EXPORT_SYMBOL(sock_no_sendpage_locked); 2742 2743 /* 2744 * Default Socket Callbacks 2745 */ 2746 2747 static void sock_def_wakeup(struct sock *sk) 2748 { 2749 struct socket_wq *wq; 2750 2751 rcu_read_lock(); 2752 wq = rcu_dereference(sk->sk_wq); 2753 if (skwq_has_sleeper(wq)) 2754 wake_up_interruptible_all(&wq->wait); 2755 rcu_read_unlock(); 2756 } 2757 2758 static void sock_def_error_report(struct sock *sk) 2759 { 2760 struct socket_wq *wq; 2761 2762 rcu_read_lock(); 2763 wq = rcu_dereference(sk->sk_wq); 2764 if (skwq_has_sleeper(wq)) 2765 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 2766 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2767 rcu_read_unlock(); 2768 } 2769 2770 static void sock_def_readable(struct sock *sk) 2771 { 2772 struct socket_wq *wq; 2773 2774 rcu_read_lock(); 2775 wq = rcu_dereference(sk->sk_wq); 2776 if (skwq_has_sleeper(wq)) 2777 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 2778 EPOLLRDNORM | EPOLLRDBAND); 2779 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2780 rcu_read_unlock(); 2781 } 2782 2783 static void sock_def_write_space(struct sock *sk) 2784 { 2785 struct socket_wq *wq; 2786 2787 rcu_read_lock(); 2788 2789 /* Do not wake up a writer until he can make "significant" 2790 * progress. --DaveM 2791 */ 2792 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 2793 wq = rcu_dereference(sk->sk_wq); 2794 if (skwq_has_sleeper(wq)) 2795 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 2796 EPOLLWRNORM | EPOLLWRBAND); 2797 2798 /* Should agree with poll, otherwise some programs break */ 2799 if (sock_writeable(sk)) 2800 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2801 } 2802 2803 rcu_read_unlock(); 2804 } 2805 2806 static void sock_def_destruct(struct sock *sk) 2807 { 2808 } 2809 2810 void sk_send_sigurg(struct sock *sk) 2811 { 2812 if (sk->sk_socket && sk->sk_socket->file) 2813 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2814 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2815 } 2816 EXPORT_SYMBOL(sk_send_sigurg); 2817 2818 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2819 unsigned long expires) 2820 { 2821 if (!mod_timer(timer, expires)) 2822 sock_hold(sk); 2823 } 2824 EXPORT_SYMBOL(sk_reset_timer); 2825 2826 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2827 { 2828 if (del_timer(timer)) 2829 __sock_put(sk); 2830 } 2831 EXPORT_SYMBOL(sk_stop_timer); 2832 2833 void sock_init_data(struct socket *sock, struct sock *sk) 2834 { 2835 sk_init_common(sk); 2836 sk->sk_send_head = NULL; 2837 2838 timer_setup(&sk->sk_timer, NULL, 0); 2839 2840 sk->sk_allocation = GFP_KERNEL; 2841 sk->sk_rcvbuf = sysctl_rmem_default; 2842 sk->sk_sndbuf = sysctl_wmem_default; 2843 sk->sk_state = TCP_CLOSE; 2844 sk_set_socket(sk, sock); 2845 2846 sock_set_flag(sk, SOCK_ZAPPED); 2847 2848 if (sock) { 2849 sk->sk_type = sock->type; 2850 RCU_INIT_POINTER(sk->sk_wq, sock->wq); 2851 sock->sk = sk; 2852 sk->sk_uid = SOCK_INODE(sock)->i_uid; 2853 } else { 2854 RCU_INIT_POINTER(sk->sk_wq, NULL); 2855 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 2856 } 2857 2858 rwlock_init(&sk->sk_callback_lock); 2859 if (sk->sk_kern_sock) 2860 lockdep_set_class_and_name( 2861 &sk->sk_callback_lock, 2862 af_kern_callback_keys + sk->sk_family, 2863 af_family_kern_clock_key_strings[sk->sk_family]); 2864 else 2865 lockdep_set_class_and_name( 2866 &sk->sk_callback_lock, 2867 af_callback_keys + sk->sk_family, 2868 af_family_clock_key_strings[sk->sk_family]); 2869 2870 sk->sk_state_change = sock_def_wakeup; 2871 sk->sk_data_ready = sock_def_readable; 2872 sk->sk_write_space = sock_def_write_space; 2873 sk->sk_error_report = sock_def_error_report; 2874 sk->sk_destruct = sock_def_destruct; 2875 2876 sk->sk_frag.page = NULL; 2877 sk->sk_frag.offset = 0; 2878 sk->sk_peek_off = -1; 2879 2880 sk->sk_peer_pid = NULL; 2881 sk->sk_peer_cred = NULL; 2882 sk->sk_write_pending = 0; 2883 sk->sk_rcvlowat = 1; 2884 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2885 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2886 2887 sk->sk_stamp = SK_DEFAULT_STAMP; 2888 #if BITS_PER_LONG==32 2889 seqlock_init(&sk->sk_stamp_seq); 2890 #endif 2891 atomic_set(&sk->sk_zckey, 0); 2892 2893 #ifdef CONFIG_NET_RX_BUSY_POLL 2894 sk->sk_napi_id = 0; 2895 sk->sk_ll_usec = sysctl_net_busy_read; 2896 #endif 2897 2898 sk->sk_max_pacing_rate = ~0UL; 2899 sk->sk_pacing_rate = ~0UL; 2900 sk->sk_pacing_shift = 10; 2901 sk->sk_incoming_cpu = -1; 2902 2903 sk_rx_queue_clear(sk); 2904 /* 2905 * Before updating sk_refcnt, we must commit prior changes to memory 2906 * (Documentation/RCU/rculist_nulls.txt for details) 2907 */ 2908 smp_wmb(); 2909 refcount_set(&sk->sk_refcnt, 1); 2910 atomic_set(&sk->sk_drops, 0); 2911 } 2912 EXPORT_SYMBOL(sock_init_data); 2913 2914 void lock_sock_nested(struct sock *sk, int subclass) 2915 { 2916 might_sleep(); 2917 spin_lock_bh(&sk->sk_lock.slock); 2918 if (sk->sk_lock.owned) 2919 __lock_sock(sk); 2920 sk->sk_lock.owned = 1; 2921 spin_unlock(&sk->sk_lock.slock); 2922 /* 2923 * The sk_lock has mutex_lock() semantics here: 2924 */ 2925 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2926 local_bh_enable(); 2927 } 2928 EXPORT_SYMBOL(lock_sock_nested); 2929 2930 void release_sock(struct sock *sk) 2931 { 2932 spin_lock_bh(&sk->sk_lock.slock); 2933 if (sk->sk_backlog.tail) 2934 __release_sock(sk); 2935 2936 /* Warning : release_cb() might need to release sk ownership, 2937 * ie call sock_release_ownership(sk) before us. 2938 */ 2939 if (sk->sk_prot->release_cb) 2940 sk->sk_prot->release_cb(sk); 2941 2942 sock_release_ownership(sk); 2943 if (waitqueue_active(&sk->sk_lock.wq)) 2944 wake_up(&sk->sk_lock.wq); 2945 spin_unlock_bh(&sk->sk_lock.slock); 2946 } 2947 EXPORT_SYMBOL(release_sock); 2948 2949 /** 2950 * lock_sock_fast - fast version of lock_sock 2951 * @sk: socket 2952 * 2953 * This version should be used for very small section, where process wont block 2954 * return false if fast path is taken: 2955 * 2956 * sk_lock.slock locked, owned = 0, BH disabled 2957 * 2958 * return true if slow path is taken: 2959 * 2960 * sk_lock.slock unlocked, owned = 1, BH enabled 2961 */ 2962 bool lock_sock_fast(struct sock *sk) 2963 { 2964 might_sleep(); 2965 spin_lock_bh(&sk->sk_lock.slock); 2966 2967 if (!sk->sk_lock.owned) 2968 /* 2969 * Note : We must disable BH 2970 */ 2971 return false; 2972 2973 __lock_sock(sk); 2974 sk->sk_lock.owned = 1; 2975 spin_unlock(&sk->sk_lock.slock); 2976 /* 2977 * The sk_lock has mutex_lock() semantics here: 2978 */ 2979 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 2980 local_bh_enable(); 2981 return true; 2982 } 2983 EXPORT_SYMBOL(lock_sock_fast); 2984 2985 int sock_gettstamp(struct socket *sock, void __user *userstamp, 2986 bool timeval, bool time32) 2987 { 2988 struct sock *sk = sock->sk; 2989 struct timespec64 ts; 2990 2991 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2992 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 2993 if (ts.tv_sec == -1) 2994 return -ENOENT; 2995 if (ts.tv_sec == 0) { 2996 ktime_t kt = ktime_get_real(); 2997 sock_write_timestamp(sk, kt);; 2998 ts = ktime_to_timespec64(kt); 2999 } 3000 3001 if (timeval) 3002 ts.tv_nsec /= 1000; 3003 3004 #ifdef CONFIG_COMPAT_32BIT_TIME 3005 if (time32) 3006 return put_old_timespec32(&ts, userstamp); 3007 #endif 3008 #ifdef CONFIG_SPARC64 3009 /* beware of padding in sparc64 timeval */ 3010 if (timeval && !in_compat_syscall()) { 3011 struct __kernel_old_timeval __user tv = { 3012 .tv_sec = ts.tv_sec, 3013 .tv_usec = ts.tv_nsec, 3014 }; 3015 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3016 return -EFAULT; 3017 return 0; 3018 } 3019 #endif 3020 return put_timespec64(&ts, userstamp); 3021 } 3022 EXPORT_SYMBOL(sock_gettstamp); 3023 3024 void sock_enable_timestamp(struct sock *sk, int flag) 3025 { 3026 if (!sock_flag(sk, flag)) { 3027 unsigned long previous_flags = sk->sk_flags; 3028 3029 sock_set_flag(sk, flag); 3030 /* 3031 * we just set one of the two flags which require net 3032 * time stamping, but time stamping might have been on 3033 * already because of the other one 3034 */ 3035 if (sock_needs_netstamp(sk) && 3036 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3037 net_enable_timestamp(); 3038 } 3039 } 3040 3041 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3042 int level, int type) 3043 { 3044 struct sock_exterr_skb *serr; 3045 struct sk_buff *skb; 3046 int copied, err; 3047 3048 err = -EAGAIN; 3049 skb = sock_dequeue_err_skb(sk); 3050 if (skb == NULL) 3051 goto out; 3052 3053 copied = skb->len; 3054 if (copied > len) { 3055 msg->msg_flags |= MSG_TRUNC; 3056 copied = len; 3057 } 3058 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3059 if (err) 3060 goto out_free_skb; 3061 3062 sock_recv_timestamp(msg, sk, skb); 3063 3064 serr = SKB_EXT_ERR(skb); 3065 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3066 3067 msg->msg_flags |= MSG_ERRQUEUE; 3068 err = copied; 3069 3070 out_free_skb: 3071 kfree_skb(skb); 3072 out: 3073 return err; 3074 } 3075 EXPORT_SYMBOL(sock_recv_errqueue); 3076 3077 /* 3078 * Get a socket option on an socket. 3079 * 3080 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3081 * asynchronous errors should be reported by getsockopt. We assume 3082 * this means if you specify SO_ERROR (otherwise whats the point of it). 3083 */ 3084 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3085 char __user *optval, int __user *optlen) 3086 { 3087 struct sock *sk = sock->sk; 3088 3089 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3090 } 3091 EXPORT_SYMBOL(sock_common_getsockopt); 3092 3093 #ifdef CONFIG_COMPAT 3094 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 3095 char __user *optval, int __user *optlen) 3096 { 3097 struct sock *sk = sock->sk; 3098 3099 if (sk->sk_prot->compat_getsockopt != NULL) 3100 return sk->sk_prot->compat_getsockopt(sk, level, optname, 3101 optval, optlen); 3102 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3103 } 3104 EXPORT_SYMBOL(compat_sock_common_getsockopt); 3105 #endif 3106 3107 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3108 int flags) 3109 { 3110 struct sock *sk = sock->sk; 3111 int addr_len = 0; 3112 int err; 3113 3114 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 3115 flags & ~MSG_DONTWAIT, &addr_len); 3116 if (err >= 0) 3117 msg->msg_namelen = addr_len; 3118 return err; 3119 } 3120 EXPORT_SYMBOL(sock_common_recvmsg); 3121 3122 /* 3123 * Set socket options on an inet socket. 3124 */ 3125 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3126 char __user *optval, unsigned int optlen) 3127 { 3128 struct sock *sk = sock->sk; 3129 3130 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3131 } 3132 EXPORT_SYMBOL(sock_common_setsockopt); 3133 3134 #ifdef CONFIG_COMPAT 3135 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 3136 char __user *optval, unsigned int optlen) 3137 { 3138 struct sock *sk = sock->sk; 3139 3140 if (sk->sk_prot->compat_setsockopt != NULL) 3141 return sk->sk_prot->compat_setsockopt(sk, level, optname, 3142 optval, optlen); 3143 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3144 } 3145 EXPORT_SYMBOL(compat_sock_common_setsockopt); 3146 #endif 3147 3148 void sk_common_release(struct sock *sk) 3149 { 3150 if (sk->sk_prot->destroy) 3151 sk->sk_prot->destroy(sk); 3152 3153 /* 3154 * Observation: when sock_common_release is called, processes have 3155 * no access to socket. But net still has. 3156 * Step one, detach it from networking: 3157 * 3158 * A. Remove from hash tables. 3159 */ 3160 3161 sk->sk_prot->unhash(sk); 3162 3163 /* 3164 * In this point socket cannot receive new packets, but it is possible 3165 * that some packets are in flight because some CPU runs receiver and 3166 * did hash table lookup before we unhashed socket. They will achieve 3167 * receive queue and will be purged by socket destructor. 3168 * 3169 * Also we still have packets pending on receive queue and probably, 3170 * our own packets waiting in device queues. sock_destroy will drain 3171 * receive queue, but transmitted packets will delay socket destruction 3172 * until the last reference will be released. 3173 */ 3174 3175 sock_orphan(sk); 3176 3177 xfrm_sk_free_policy(sk); 3178 3179 sk_refcnt_debug_release(sk); 3180 3181 sock_put(sk); 3182 } 3183 EXPORT_SYMBOL(sk_common_release); 3184 3185 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3186 { 3187 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3188 3189 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3190 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf; 3191 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3192 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf; 3193 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3194 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued; 3195 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3196 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len; 3197 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3198 } 3199 3200 #ifdef CONFIG_PROC_FS 3201 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 3202 struct prot_inuse { 3203 int val[PROTO_INUSE_NR]; 3204 }; 3205 3206 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3207 3208 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 3209 { 3210 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 3211 } 3212 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 3213 3214 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3215 { 3216 int cpu, idx = prot->inuse_idx; 3217 int res = 0; 3218 3219 for_each_possible_cpu(cpu) 3220 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3221 3222 return res >= 0 ? res : 0; 3223 } 3224 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3225 3226 static void sock_inuse_add(struct net *net, int val) 3227 { 3228 this_cpu_add(*net->core.sock_inuse, val); 3229 } 3230 3231 int sock_inuse_get(struct net *net) 3232 { 3233 int cpu, res = 0; 3234 3235 for_each_possible_cpu(cpu) 3236 res += *per_cpu_ptr(net->core.sock_inuse, cpu); 3237 3238 return res; 3239 } 3240 3241 EXPORT_SYMBOL_GPL(sock_inuse_get); 3242 3243 static int __net_init sock_inuse_init_net(struct net *net) 3244 { 3245 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3246 if (net->core.prot_inuse == NULL) 3247 return -ENOMEM; 3248 3249 net->core.sock_inuse = alloc_percpu(int); 3250 if (net->core.sock_inuse == NULL) 3251 goto out; 3252 3253 return 0; 3254 3255 out: 3256 free_percpu(net->core.prot_inuse); 3257 return -ENOMEM; 3258 } 3259 3260 static void __net_exit sock_inuse_exit_net(struct net *net) 3261 { 3262 free_percpu(net->core.prot_inuse); 3263 free_percpu(net->core.sock_inuse); 3264 } 3265 3266 static struct pernet_operations net_inuse_ops = { 3267 .init = sock_inuse_init_net, 3268 .exit = sock_inuse_exit_net, 3269 }; 3270 3271 static __init int net_inuse_init(void) 3272 { 3273 if (register_pernet_subsys(&net_inuse_ops)) 3274 panic("Cannot initialize net inuse counters"); 3275 3276 return 0; 3277 } 3278 3279 core_initcall(net_inuse_init); 3280 3281 static void assign_proto_idx(struct proto *prot) 3282 { 3283 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3284 3285 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3286 pr_err("PROTO_INUSE_NR exhausted\n"); 3287 return; 3288 } 3289 3290 set_bit(prot->inuse_idx, proto_inuse_idx); 3291 } 3292 3293 static void release_proto_idx(struct proto *prot) 3294 { 3295 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3296 clear_bit(prot->inuse_idx, proto_inuse_idx); 3297 } 3298 #else 3299 static inline void assign_proto_idx(struct proto *prot) 3300 { 3301 } 3302 3303 static inline void release_proto_idx(struct proto *prot) 3304 { 3305 } 3306 3307 static void sock_inuse_add(struct net *net, int val) 3308 { 3309 } 3310 #endif 3311 3312 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3313 { 3314 if (!rsk_prot) 3315 return; 3316 kfree(rsk_prot->slab_name); 3317 rsk_prot->slab_name = NULL; 3318 kmem_cache_destroy(rsk_prot->slab); 3319 rsk_prot->slab = NULL; 3320 } 3321 3322 static int req_prot_init(const struct proto *prot) 3323 { 3324 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3325 3326 if (!rsk_prot) 3327 return 0; 3328 3329 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3330 prot->name); 3331 if (!rsk_prot->slab_name) 3332 return -ENOMEM; 3333 3334 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3335 rsk_prot->obj_size, 0, 3336 SLAB_ACCOUNT | prot->slab_flags, 3337 NULL); 3338 3339 if (!rsk_prot->slab) { 3340 pr_crit("%s: Can't create request sock SLAB cache!\n", 3341 prot->name); 3342 return -ENOMEM; 3343 } 3344 return 0; 3345 } 3346 3347 int proto_register(struct proto *prot, int alloc_slab) 3348 { 3349 if (alloc_slab) { 3350 prot->slab = kmem_cache_create_usercopy(prot->name, 3351 prot->obj_size, 0, 3352 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3353 prot->slab_flags, 3354 prot->useroffset, prot->usersize, 3355 NULL); 3356 3357 if (prot->slab == NULL) { 3358 pr_crit("%s: Can't create sock SLAB cache!\n", 3359 prot->name); 3360 goto out; 3361 } 3362 3363 if (req_prot_init(prot)) 3364 goto out_free_request_sock_slab; 3365 3366 if (prot->twsk_prot != NULL) { 3367 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 3368 3369 if (prot->twsk_prot->twsk_slab_name == NULL) 3370 goto out_free_request_sock_slab; 3371 3372 prot->twsk_prot->twsk_slab = 3373 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 3374 prot->twsk_prot->twsk_obj_size, 3375 0, 3376 SLAB_ACCOUNT | 3377 prot->slab_flags, 3378 NULL); 3379 if (prot->twsk_prot->twsk_slab == NULL) 3380 goto out_free_timewait_sock_slab_name; 3381 } 3382 } 3383 3384 mutex_lock(&proto_list_mutex); 3385 list_add(&prot->node, &proto_list); 3386 assign_proto_idx(prot); 3387 mutex_unlock(&proto_list_mutex); 3388 return 0; 3389 3390 out_free_timewait_sock_slab_name: 3391 kfree(prot->twsk_prot->twsk_slab_name); 3392 out_free_request_sock_slab: 3393 req_prot_cleanup(prot->rsk_prot); 3394 3395 kmem_cache_destroy(prot->slab); 3396 prot->slab = NULL; 3397 out: 3398 return -ENOBUFS; 3399 } 3400 EXPORT_SYMBOL(proto_register); 3401 3402 void proto_unregister(struct proto *prot) 3403 { 3404 mutex_lock(&proto_list_mutex); 3405 release_proto_idx(prot); 3406 list_del(&prot->node); 3407 mutex_unlock(&proto_list_mutex); 3408 3409 kmem_cache_destroy(prot->slab); 3410 prot->slab = NULL; 3411 3412 req_prot_cleanup(prot->rsk_prot); 3413 3414 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 3415 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 3416 kfree(prot->twsk_prot->twsk_slab_name); 3417 prot->twsk_prot->twsk_slab = NULL; 3418 } 3419 } 3420 EXPORT_SYMBOL(proto_unregister); 3421 3422 int sock_load_diag_module(int family, int protocol) 3423 { 3424 if (!protocol) { 3425 if (!sock_is_registered(family)) 3426 return -ENOENT; 3427 3428 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3429 NETLINK_SOCK_DIAG, family); 3430 } 3431 3432 #ifdef CONFIG_INET 3433 if (family == AF_INET && 3434 protocol != IPPROTO_RAW && 3435 !rcu_access_pointer(inet_protos[protocol])) 3436 return -ENOENT; 3437 #endif 3438 3439 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3440 NETLINK_SOCK_DIAG, family, protocol); 3441 } 3442 EXPORT_SYMBOL(sock_load_diag_module); 3443 3444 #ifdef CONFIG_PROC_FS 3445 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3446 __acquires(proto_list_mutex) 3447 { 3448 mutex_lock(&proto_list_mutex); 3449 return seq_list_start_head(&proto_list, *pos); 3450 } 3451 3452 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3453 { 3454 return seq_list_next(v, &proto_list, pos); 3455 } 3456 3457 static void proto_seq_stop(struct seq_file *seq, void *v) 3458 __releases(proto_list_mutex) 3459 { 3460 mutex_unlock(&proto_list_mutex); 3461 } 3462 3463 static char proto_method_implemented(const void *method) 3464 { 3465 return method == NULL ? 'n' : 'y'; 3466 } 3467 static long sock_prot_memory_allocated(struct proto *proto) 3468 { 3469 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3470 } 3471 3472 static char *sock_prot_memory_pressure(struct proto *proto) 3473 { 3474 return proto->memory_pressure != NULL ? 3475 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3476 } 3477 3478 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3479 { 3480 3481 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3482 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3483 proto->name, 3484 proto->obj_size, 3485 sock_prot_inuse_get(seq_file_net(seq), proto), 3486 sock_prot_memory_allocated(proto), 3487 sock_prot_memory_pressure(proto), 3488 proto->max_header, 3489 proto->slab == NULL ? "no" : "yes", 3490 module_name(proto->owner), 3491 proto_method_implemented(proto->close), 3492 proto_method_implemented(proto->connect), 3493 proto_method_implemented(proto->disconnect), 3494 proto_method_implemented(proto->accept), 3495 proto_method_implemented(proto->ioctl), 3496 proto_method_implemented(proto->init), 3497 proto_method_implemented(proto->destroy), 3498 proto_method_implemented(proto->shutdown), 3499 proto_method_implemented(proto->setsockopt), 3500 proto_method_implemented(proto->getsockopt), 3501 proto_method_implemented(proto->sendmsg), 3502 proto_method_implemented(proto->recvmsg), 3503 proto_method_implemented(proto->sendpage), 3504 proto_method_implemented(proto->bind), 3505 proto_method_implemented(proto->backlog_rcv), 3506 proto_method_implemented(proto->hash), 3507 proto_method_implemented(proto->unhash), 3508 proto_method_implemented(proto->get_port), 3509 proto_method_implemented(proto->enter_memory_pressure)); 3510 } 3511 3512 static int proto_seq_show(struct seq_file *seq, void *v) 3513 { 3514 if (v == &proto_list) 3515 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3516 "protocol", 3517 "size", 3518 "sockets", 3519 "memory", 3520 "press", 3521 "maxhdr", 3522 "slab", 3523 "module", 3524 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3525 else 3526 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3527 return 0; 3528 } 3529 3530 static const struct seq_operations proto_seq_ops = { 3531 .start = proto_seq_start, 3532 .next = proto_seq_next, 3533 .stop = proto_seq_stop, 3534 .show = proto_seq_show, 3535 }; 3536 3537 static __net_init int proto_init_net(struct net *net) 3538 { 3539 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 3540 sizeof(struct seq_net_private))) 3541 return -ENOMEM; 3542 3543 return 0; 3544 } 3545 3546 static __net_exit void proto_exit_net(struct net *net) 3547 { 3548 remove_proc_entry("protocols", net->proc_net); 3549 } 3550 3551 3552 static __net_initdata struct pernet_operations proto_net_ops = { 3553 .init = proto_init_net, 3554 .exit = proto_exit_net, 3555 }; 3556 3557 static int __init proto_init(void) 3558 { 3559 return register_pernet_subsys(&proto_net_ops); 3560 } 3561 3562 subsys_initcall(proto_init); 3563 3564 #endif /* PROC_FS */ 3565 3566 #ifdef CONFIG_NET_RX_BUSY_POLL 3567 bool sk_busy_loop_end(void *p, unsigned long start_time) 3568 { 3569 struct sock *sk = p; 3570 3571 return !skb_queue_empty(&sk->sk_receive_queue) || 3572 sk_busy_loop_timeout(sk, start_time); 3573 } 3574 EXPORT_SYMBOL(sk_busy_loop_end); 3575 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3576