xref: /openbmc/linux/net/core/sock.c (revision acc6a093)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
116 
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
126 
127 #include <linux/filter.h>
128 
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
132 
133 /*
134  * Each address family might have different locking rules, so we have
135  * one slock key per address family:
136  */
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
139 
140 /*
141  * Make lock validator output more readable. (we pre-construct these
142  * strings build-time, so that runtime initialization of socket
143  * locks is fast):
144  */
145 static const char *const af_family_key_strings[AF_MAX+1] = {
146   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
147   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
148   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
149   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
150   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
151   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
152   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
153   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
154   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
155   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
156   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
157   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
158   "sk_lock-AF_IEEE802154",
159   "sk_lock-AF_MAX"
160 };
161 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
162   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
172   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
174   "slock-AF_IEEE802154",
175   "slock-AF_MAX"
176 };
177 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
178   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
179   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
180   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
181   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
182   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
183   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
184   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
185   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
186   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
187   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
188   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
189   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
190   "clock-AF_IEEE802154",
191   "clock-AF_MAX"
192 };
193 
194 /*
195  * sk_callback_lock locking rules are per-address-family,
196  * so split the lock classes by using a per-AF key:
197  */
198 static struct lock_class_key af_callback_keys[AF_MAX];
199 
200 /* Take into consideration the size of the struct sk_buff overhead in the
201  * determination of these values, since that is non-constant across
202  * platforms.  This makes socket queueing behavior and performance
203  * not depend upon such differences.
204  */
205 #define _SK_MEM_PACKETS		256
206 #define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
209 
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
215 
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
219 
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
221 {
222 	struct timeval tv;
223 
224 	if (optlen < sizeof(tv))
225 		return -EINVAL;
226 	if (copy_from_user(&tv, optval, sizeof(tv)))
227 		return -EFAULT;
228 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
229 		return -EDOM;
230 
231 	if (tv.tv_sec < 0) {
232 		static int warned __read_mostly;
233 
234 		*timeo_p = 0;
235 		if (warned < 10 && net_ratelimit()) {
236 			warned++;
237 			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238 			       "tries to set negative timeout\n",
239 				current->comm, task_pid_nr(current));
240 		}
241 		return 0;
242 	}
243 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
244 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
245 		return 0;
246 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
248 	return 0;
249 }
250 
251 static void sock_warn_obsolete_bsdism(const char *name)
252 {
253 	static int warned;
254 	static char warncomm[TASK_COMM_LEN];
255 	if (strcmp(warncomm, current->comm) && warned < 5) {
256 		strcpy(warncomm,  current->comm);
257 		printk(KERN_WARNING "process `%s' is using obsolete "
258 		       "%s SO_BSDCOMPAT\n", warncomm, name);
259 		warned++;
260 	}
261 }
262 
263 static void sock_disable_timestamp(struct sock *sk, int flag)
264 {
265 	if (sock_flag(sk, flag)) {
266 		sock_reset_flag(sk, flag);
267 		if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268 		    !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269 			net_disable_timestamp();
270 		}
271 	}
272 }
273 
274 
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
276 {
277 	int err;
278 	int skb_len;
279 	unsigned long flags;
280 	struct sk_buff_head *list = &sk->sk_receive_queue;
281 
282 	/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
283 	   number of warnings when compiling with -W --ANK
284 	 */
285 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
286 	    (unsigned)sk->sk_rcvbuf) {
287 		atomic_inc(&sk->sk_drops);
288 		return -ENOMEM;
289 	}
290 
291 	err = sk_filter(sk, skb);
292 	if (err)
293 		return err;
294 
295 	if (!sk_rmem_schedule(sk, skb->truesize)) {
296 		atomic_inc(&sk->sk_drops);
297 		return -ENOBUFS;
298 	}
299 
300 	skb->dev = NULL;
301 	skb_set_owner_r(skb, sk);
302 
303 	/* Cache the SKB length before we tack it onto the receive
304 	 * queue.  Once it is added it no longer belongs to us and
305 	 * may be freed by other threads of control pulling packets
306 	 * from the queue.
307 	 */
308 	skb_len = skb->len;
309 
310 	spin_lock_irqsave(&list->lock, flags);
311 	skb->dropcount = atomic_read(&sk->sk_drops);
312 	__skb_queue_tail(list, skb);
313 	spin_unlock_irqrestore(&list->lock, flags);
314 
315 	if (!sock_flag(sk, SOCK_DEAD))
316 		sk->sk_data_ready(sk, skb_len);
317 	return 0;
318 }
319 EXPORT_SYMBOL(sock_queue_rcv_skb);
320 
321 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
322 {
323 	int rc = NET_RX_SUCCESS;
324 
325 	if (sk_filter(sk, skb))
326 		goto discard_and_relse;
327 
328 	skb->dev = NULL;
329 
330 	if (nested)
331 		bh_lock_sock_nested(sk);
332 	else
333 		bh_lock_sock(sk);
334 	if (!sock_owned_by_user(sk)) {
335 		/*
336 		 * trylock + unlock semantics:
337 		 */
338 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
339 
340 		rc = sk_backlog_rcv(sk, skb);
341 
342 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
343 	} else
344 		sk_add_backlog(sk, skb);
345 	bh_unlock_sock(sk);
346 out:
347 	sock_put(sk);
348 	return rc;
349 discard_and_relse:
350 	kfree_skb(skb);
351 	goto out;
352 }
353 EXPORT_SYMBOL(sk_receive_skb);
354 
355 void sk_reset_txq(struct sock *sk)
356 {
357 	sk_tx_queue_clear(sk);
358 }
359 EXPORT_SYMBOL(sk_reset_txq);
360 
361 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
362 {
363 	struct dst_entry *dst = sk->sk_dst_cache;
364 
365 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
366 		sk_tx_queue_clear(sk);
367 		sk->sk_dst_cache = NULL;
368 		dst_release(dst);
369 		return NULL;
370 	}
371 
372 	return dst;
373 }
374 EXPORT_SYMBOL(__sk_dst_check);
375 
376 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
377 {
378 	struct dst_entry *dst = sk_dst_get(sk);
379 
380 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
381 		sk_dst_reset(sk);
382 		dst_release(dst);
383 		return NULL;
384 	}
385 
386 	return dst;
387 }
388 EXPORT_SYMBOL(sk_dst_check);
389 
390 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
391 {
392 	int ret = -ENOPROTOOPT;
393 #ifdef CONFIG_NETDEVICES
394 	struct net *net = sock_net(sk);
395 	char devname[IFNAMSIZ];
396 	int index;
397 
398 	/* Sorry... */
399 	ret = -EPERM;
400 	if (!capable(CAP_NET_RAW))
401 		goto out;
402 
403 	ret = -EINVAL;
404 	if (optlen < 0)
405 		goto out;
406 
407 	/* Bind this socket to a particular device like "eth0",
408 	 * as specified in the passed interface name. If the
409 	 * name is "" or the option length is zero the socket
410 	 * is not bound.
411 	 */
412 	if (optlen > IFNAMSIZ - 1)
413 		optlen = IFNAMSIZ - 1;
414 	memset(devname, 0, sizeof(devname));
415 
416 	ret = -EFAULT;
417 	if (copy_from_user(devname, optval, optlen))
418 		goto out;
419 
420 	index = 0;
421 	if (devname[0] != '\0') {
422 		struct net_device *dev;
423 
424 		rcu_read_lock();
425 		dev = dev_get_by_name_rcu(net, devname);
426 		if (dev)
427 			index = dev->ifindex;
428 		rcu_read_unlock();
429 		ret = -ENODEV;
430 		if (!dev)
431 			goto out;
432 	}
433 
434 	lock_sock(sk);
435 	sk->sk_bound_dev_if = index;
436 	sk_dst_reset(sk);
437 	release_sock(sk);
438 
439 	ret = 0;
440 
441 out:
442 #endif
443 
444 	return ret;
445 }
446 
447 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
448 {
449 	if (valbool)
450 		sock_set_flag(sk, bit);
451 	else
452 		sock_reset_flag(sk, bit);
453 }
454 
455 /*
456  *	This is meant for all protocols to use and covers goings on
457  *	at the socket level. Everything here is generic.
458  */
459 
460 int sock_setsockopt(struct socket *sock, int level, int optname,
461 		    char __user *optval, unsigned int optlen)
462 {
463 	struct sock *sk = sock->sk;
464 	int val;
465 	int valbool;
466 	struct linger ling;
467 	int ret = 0;
468 
469 	/*
470 	 *	Options without arguments
471 	 */
472 
473 	if (optname == SO_BINDTODEVICE)
474 		return sock_bindtodevice(sk, optval, optlen);
475 
476 	if (optlen < sizeof(int))
477 		return -EINVAL;
478 
479 	if (get_user(val, (int __user *)optval))
480 		return -EFAULT;
481 
482 	valbool = val ? 1 : 0;
483 
484 	lock_sock(sk);
485 
486 	switch (optname) {
487 	case SO_DEBUG:
488 		if (val && !capable(CAP_NET_ADMIN))
489 			ret = -EACCES;
490 		else
491 			sock_valbool_flag(sk, SOCK_DBG, valbool);
492 		break;
493 	case SO_REUSEADDR:
494 		sk->sk_reuse = valbool;
495 		break;
496 	case SO_TYPE:
497 	case SO_PROTOCOL:
498 	case SO_DOMAIN:
499 	case SO_ERROR:
500 		ret = -ENOPROTOOPT;
501 		break;
502 	case SO_DONTROUTE:
503 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
504 		break;
505 	case SO_BROADCAST:
506 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
507 		break;
508 	case SO_SNDBUF:
509 		/* Don't error on this BSD doesn't and if you think
510 		   about it this is right. Otherwise apps have to
511 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
512 		   are treated in BSD as hints */
513 
514 		if (val > sysctl_wmem_max)
515 			val = sysctl_wmem_max;
516 set_sndbuf:
517 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
518 		if ((val * 2) < SOCK_MIN_SNDBUF)
519 			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
520 		else
521 			sk->sk_sndbuf = val * 2;
522 
523 		/*
524 		 *	Wake up sending tasks if we
525 		 *	upped the value.
526 		 */
527 		sk->sk_write_space(sk);
528 		break;
529 
530 	case SO_SNDBUFFORCE:
531 		if (!capable(CAP_NET_ADMIN)) {
532 			ret = -EPERM;
533 			break;
534 		}
535 		goto set_sndbuf;
536 
537 	case SO_RCVBUF:
538 		/* Don't error on this BSD doesn't and if you think
539 		   about it this is right. Otherwise apps have to
540 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
541 		   are treated in BSD as hints */
542 
543 		if (val > sysctl_rmem_max)
544 			val = sysctl_rmem_max;
545 set_rcvbuf:
546 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
547 		/*
548 		 * We double it on the way in to account for
549 		 * "struct sk_buff" etc. overhead.   Applications
550 		 * assume that the SO_RCVBUF setting they make will
551 		 * allow that much actual data to be received on that
552 		 * socket.
553 		 *
554 		 * Applications are unaware that "struct sk_buff" and
555 		 * other overheads allocate from the receive buffer
556 		 * during socket buffer allocation.
557 		 *
558 		 * And after considering the possible alternatives,
559 		 * returning the value we actually used in getsockopt
560 		 * is the most desirable behavior.
561 		 */
562 		if ((val * 2) < SOCK_MIN_RCVBUF)
563 			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
564 		else
565 			sk->sk_rcvbuf = val * 2;
566 		break;
567 
568 	case SO_RCVBUFFORCE:
569 		if (!capable(CAP_NET_ADMIN)) {
570 			ret = -EPERM;
571 			break;
572 		}
573 		goto set_rcvbuf;
574 
575 	case SO_KEEPALIVE:
576 #ifdef CONFIG_INET
577 		if (sk->sk_protocol == IPPROTO_TCP)
578 			tcp_set_keepalive(sk, valbool);
579 #endif
580 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
581 		break;
582 
583 	case SO_OOBINLINE:
584 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
585 		break;
586 
587 	case SO_NO_CHECK:
588 		sk->sk_no_check = valbool;
589 		break;
590 
591 	case SO_PRIORITY:
592 		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
593 			sk->sk_priority = val;
594 		else
595 			ret = -EPERM;
596 		break;
597 
598 	case SO_LINGER:
599 		if (optlen < sizeof(ling)) {
600 			ret = -EINVAL;	/* 1003.1g */
601 			break;
602 		}
603 		if (copy_from_user(&ling, optval, sizeof(ling))) {
604 			ret = -EFAULT;
605 			break;
606 		}
607 		if (!ling.l_onoff)
608 			sock_reset_flag(sk, SOCK_LINGER);
609 		else {
610 #if (BITS_PER_LONG == 32)
611 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
612 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
613 			else
614 #endif
615 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
616 			sock_set_flag(sk, SOCK_LINGER);
617 		}
618 		break;
619 
620 	case SO_BSDCOMPAT:
621 		sock_warn_obsolete_bsdism("setsockopt");
622 		break;
623 
624 	case SO_PASSCRED:
625 		if (valbool)
626 			set_bit(SOCK_PASSCRED, &sock->flags);
627 		else
628 			clear_bit(SOCK_PASSCRED, &sock->flags);
629 		break;
630 
631 	case SO_TIMESTAMP:
632 	case SO_TIMESTAMPNS:
633 		if (valbool)  {
634 			if (optname == SO_TIMESTAMP)
635 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
636 			else
637 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
638 			sock_set_flag(sk, SOCK_RCVTSTAMP);
639 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
640 		} else {
641 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
642 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
643 		}
644 		break;
645 
646 	case SO_TIMESTAMPING:
647 		if (val & ~SOF_TIMESTAMPING_MASK) {
648 			ret = -EINVAL;
649 			break;
650 		}
651 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
652 				  val & SOF_TIMESTAMPING_TX_HARDWARE);
653 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
654 				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
655 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
656 				  val & SOF_TIMESTAMPING_RX_HARDWARE);
657 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
658 			sock_enable_timestamp(sk,
659 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
660 		else
661 			sock_disable_timestamp(sk,
662 					       SOCK_TIMESTAMPING_RX_SOFTWARE);
663 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
664 				  val & SOF_TIMESTAMPING_SOFTWARE);
665 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
666 				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
667 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
668 				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
669 		break;
670 
671 	case SO_RCVLOWAT:
672 		if (val < 0)
673 			val = INT_MAX;
674 		sk->sk_rcvlowat = val ? : 1;
675 		break;
676 
677 	case SO_RCVTIMEO:
678 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
679 		break;
680 
681 	case SO_SNDTIMEO:
682 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
683 		break;
684 
685 	case SO_ATTACH_FILTER:
686 		ret = -EINVAL;
687 		if (optlen == sizeof(struct sock_fprog)) {
688 			struct sock_fprog fprog;
689 
690 			ret = -EFAULT;
691 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
692 				break;
693 
694 			ret = sk_attach_filter(&fprog, sk);
695 		}
696 		break;
697 
698 	case SO_DETACH_FILTER:
699 		ret = sk_detach_filter(sk);
700 		break;
701 
702 	case SO_PASSSEC:
703 		if (valbool)
704 			set_bit(SOCK_PASSSEC, &sock->flags);
705 		else
706 			clear_bit(SOCK_PASSSEC, &sock->flags);
707 		break;
708 	case SO_MARK:
709 		if (!capable(CAP_NET_ADMIN))
710 			ret = -EPERM;
711 		else
712 			sk->sk_mark = val;
713 		break;
714 
715 		/* We implement the SO_SNDLOWAT etc to
716 		   not be settable (1003.1g 5.3) */
717 	case SO_RXQ_OVFL:
718 		if (valbool)
719 			sock_set_flag(sk, SOCK_RXQ_OVFL);
720 		else
721 			sock_reset_flag(sk, SOCK_RXQ_OVFL);
722 		break;
723 	default:
724 		ret = -ENOPROTOOPT;
725 		break;
726 	}
727 	release_sock(sk);
728 	return ret;
729 }
730 EXPORT_SYMBOL(sock_setsockopt);
731 
732 
733 int sock_getsockopt(struct socket *sock, int level, int optname,
734 		    char __user *optval, int __user *optlen)
735 {
736 	struct sock *sk = sock->sk;
737 
738 	union {
739 		int val;
740 		struct linger ling;
741 		struct timeval tm;
742 	} v;
743 
744 	int lv = sizeof(int);
745 	int len;
746 
747 	if (get_user(len, optlen))
748 		return -EFAULT;
749 	if (len < 0)
750 		return -EINVAL;
751 
752 	memset(&v, 0, sizeof(v));
753 
754 	switch (optname) {
755 	case SO_DEBUG:
756 		v.val = sock_flag(sk, SOCK_DBG);
757 		break;
758 
759 	case SO_DONTROUTE:
760 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
761 		break;
762 
763 	case SO_BROADCAST:
764 		v.val = !!sock_flag(sk, SOCK_BROADCAST);
765 		break;
766 
767 	case SO_SNDBUF:
768 		v.val = sk->sk_sndbuf;
769 		break;
770 
771 	case SO_RCVBUF:
772 		v.val = sk->sk_rcvbuf;
773 		break;
774 
775 	case SO_REUSEADDR:
776 		v.val = sk->sk_reuse;
777 		break;
778 
779 	case SO_KEEPALIVE:
780 		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
781 		break;
782 
783 	case SO_TYPE:
784 		v.val = sk->sk_type;
785 		break;
786 
787 	case SO_PROTOCOL:
788 		v.val = sk->sk_protocol;
789 		break;
790 
791 	case SO_DOMAIN:
792 		v.val = sk->sk_family;
793 		break;
794 
795 	case SO_ERROR:
796 		v.val = -sock_error(sk);
797 		if (v.val == 0)
798 			v.val = xchg(&sk->sk_err_soft, 0);
799 		break;
800 
801 	case SO_OOBINLINE:
802 		v.val = !!sock_flag(sk, SOCK_URGINLINE);
803 		break;
804 
805 	case SO_NO_CHECK:
806 		v.val = sk->sk_no_check;
807 		break;
808 
809 	case SO_PRIORITY:
810 		v.val = sk->sk_priority;
811 		break;
812 
813 	case SO_LINGER:
814 		lv		= sizeof(v.ling);
815 		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
816 		v.ling.l_linger	= sk->sk_lingertime / HZ;
817 		break;
818 
819 	case SO_BSDCOMPAT:
820 		sock_warn_obsolete_bsdism("getsockopt");
821 		break;
822 
823 	case SO_TIMESTAMP:
824 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
825 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
826 		break;
827 
828 	case SO_TIMESTAMPNS:
829 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
830 		break;
831 
832 	case SO_TIMESTAMPING:
833 		v.val = 0;
834 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
835 			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
836 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
837 			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
838 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
839 			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
840 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
841 			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
842 		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
843 			v.val |= SOF_TIMESTAMPING_SOFTWARE;
844 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
845 			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
846 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
847 			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
848 		break;
849 
850 	case SO_RCVTIMEO:
851 		lv = sizeof(struct timeval);
852 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
853 			v.tm.tv_sec = 0;
854 			v.tm.tv_usec = 0;
855 		} else {
856 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
857 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
858 		}
859 		break;
860 
861 	case SO_SNDTIMEO:
862 		lv = sizeof(struct timeval);
863 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
864 			v.tm.tv_sec = 0;
865 			v.tm.tv_usec = 0;
866 		} else {
867 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
868 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
869 		}
870 		break;
871 
872 	case SO_RCVLOWAT:
873 		v.val = sk->sk_rcvlowat;
874 		break;
875 
876 	case SO_SNDLOWAT:
877 		v.val = 1;
878 		break;
879 
880 	case SO_PASSCRED:
881 		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
882 		break;
883 
884 	case SO_PEERCRED:
885 		if (len > sizeof(sk->sk_peercred))
886 			len = sizeof(sk->sk_peercred);
887 		if (copy_to_user(optval, &sk->sk_peercred, len))
888 			return -EFAULT;
889 		goto lenout;
890 
891 	case SO_PEERNAME:
892 	{
893 		char address[128];
894 
895 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
896 			return -ENOTCONN;
897 		if (lv < len)
898 			return -EINVAL;
899 		if (copy_to_user(optval, address, len))
900 			return -EFAULT;
901 		goto lenout;
902 	}
903 
904 	/* Dubious BSD thing... Probably nobody even uses it, but
905 	 * the UNIX standard wants it for whatever reason... -DaveM
906 	 */
907 	case SO_ACCEPTCONN:
908 		v.val = sk->sk_state == TCP_LISTEN;
909 		break;
910 
911 	case SO_PASSSEC:
912 		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
913 		break;
914 
915 	case SO_PEERSEC:
916 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
917 
918 	case SO_MARK:
919 		v.val = sk->sk_mark;
920 		break;
921 
922 	case SO_RXQ_OVFL:
923 		v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
924 		break;
925 
926 	default:
927 		return -ENOPROTOOPT;
928 	}
929 
930 	if (len > lv)
931 		len = lv;
932 	if (copy_to_user(optval, &v, len))
933 		return -EFAULT;
934 lenout:
935 	if (put_user(len, optlen))
936 		return -EFAULT;
937 	return 0;
938 }
939 
940 /*
941  * Initialize an sk_lock.
942  *
943  * (We also register the sk_lock with the lock validator.)
944  */
945 static inline void sock_lock_init(struct sock *sk)
946 {
947 	sock_lock_init_class_and_name(sk,
948 			af_family_slock_key_strings[sk->sk_family],
949 			af_family_slock_keys + sk->sk_family,
950 			af_family_key_strings[sk->sk_family],
951 			af_family_keys + sk->sk_family);
952 }
953 
954 /*
955  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
956  * even temporarly, because of RCU lookups. sk_node should also be left as is.
957  */
958 static void sock_copy(struct sock *nsk, const struct sock *osk)
959 {
960 #ifdef CONFIG_SECURITY_NETWORK
961 	void *sptr = nsk->sk_security;
962 #endif
963 	BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
964 		     sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) +
965 		     sizeof(osk->sk_tx_queue_mapping));
966 	memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
967 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
968 #ifdef CONFIG_SECURITY_NETWORK
969 	nsk->sk_security = sptr;
970 	security_sk_clone(osk, nsk);
971 #endif
972 }
973 
974 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
975 		int family)
976 {
977 	struct sock *sk;
978 	struct kmem_cache *slab;
979 
980 	slab = prot->slab;
981 	if (slab != NULL) {
982 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
983 		if (!sk)
984 			return sk;
985 		if (priority & __GFP_ZERO) {
986 			/*
987 			 * caches using SLAB_DESTROY_BY_RCU should let
988 			 * sk_node.next un-modified. Special care is taken
989 			 * when initializing object to zero.
990 			 */
991 			if (offsetof(struct sock, sk_node.next) != 0)
992 				memset(sk, 0, offsetof(struct sock, sk_node.next));
993 			memset(&sk->sk_node.pprev, 0,
994 			       prot->obj_size - offsetof(struct sock,
995 							 sk_node.pprev));
996 		}
997 	}
998 	else
999 		sk = kmalloc(prot->obj_size, priority);
1000 
1001 	if (sk != NULL) {
1002 		kmemcheck_annotate_bitfield(sk, flags);
1003 
1004 		if (security_sk_alloc(sk, family, priority))
1005 			goto out_free;
1006 
1007 		if (!try_module_get(prot->owner))
1008 			goto out_free_sec;
1009 		sk_tx_queue_clear(sk);
1010 	}
1011 
1012 	return sk;
1013 
1014 out_free_sec:
1015 	security_sk_free(sk);
1016 out_free:
1017 	if (slab != NULL)
1018 		kmem_cache_free(slab, sk);
1019 	else
1020 		kfree(sk);
1021 	return NULL;
1022 }
1023 
1024 static void sk_prot_free(struct proto *prot, struct sock *sk)
1025 {
1026 	struct kmem_cache *slab;
1027 	struct module *owner;
1028 
1029 	owner = prot->owner;
1030 	slab = prot->slab;
1031 
1032 	security_sk_free(sk);
1033 	if (slab != NULL)
1034 		kmem_cache_free(slab, sk);
1035 	else
1036 		kfree(sk);
1037 	module_put(owner);
1038 }
1039 
1040 /**
1041  *	sk_alloc - All socket objects are allocated here
1042  *	@net: the applicable net namespace
1043  *	@family: protocol family
1044  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1045  *	@prot: struct proto associated with this new sock instance
1046  */
1047 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1048 		      struct proto *prot)
1049 {
1050 	struct sock *sk;
1051 
1052 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1053 	if (sk) {
1054 		sk->sk_family = family;
1055 		/*
1056 		 * See comment in struct sock definition to understand
1057 		 * why we need sk_prot_creator -acme
1058 		 */
1059 		sk->sk_prot = sk->sk_prot_creator = prot;
1060 		sock_lock_init(sk);
1061 		sock_net_set(sk, get_net(net));
1062 		atomic_set(&sk->sk_wmem_alloc, 1);
1063 	}
1064 
1065 	return sk;
1066 }
1067 EXPORT_SYMBOL(sk_alloc);
1068 
1069 static void __sk_free(struct sock *sk)
1070 {
1071 	struct sk_filter *filter;
1072 
1073 	if (sk->sk_destruct)
1074 		sk->sk_destruct(sk);
1075 
1076 	filter = rcu_dereference_check(sk->sk_filter,
1077 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1078 	if (filter) {
1079 		sk_filter_uncharge(sk, filter);
1080 		rcu_assign_pointer(sk->sk_filter, NULL);
1081 	}
1082 
1083 	sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1084 	sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1085 
1086 	if (atomic_read(&sk->sk_omem_alloc))
1087 		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1088 		       __func__, atomic_read(&sk->sk_omem_alloc));
1089 
1090 	put_net(sock_net(sk));
1091 	sk_prot_free(sk->sk_prot_creator, sk);
1092 }
1093 
1094 void sk_free(struct sock *sk)
1095 {
1096 	/*
1097 	 * We substract one from sk_wmem_alloc and can know if
1098 	 * some packets are still in some tx queue.
1099 	 * If not null, sock_wfree() will call __sk_free(sk) later
1100 	 */
1101 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1102 		__sk_free(sk);
1103 }
1104 EXPORT_SYMBOL(sk_free);
1105 
1106 /*
1107  * Last sock_put should drop referrence to sk->sk_net. It has already
1108  * been dropped in sk_change_net. Taking referrence to stopping namespace
1109  * is not an option.
1110  * Take referrence to a socket to remove it from hash _alive_ and after that
1111  * destroy it in the context of init_net.
1112  */
1113 void sk_release_kernel(struct sock *sk)
1114 {
1115 	if (sk == NULL || sk->sk_socket == NULL)
1116 		return;
1117 
1118 	sock_hold(sk);
1119 	sock_release(sk->sk_socket);
1120 	release_net(sock_net(sk));
1121 	sock_net_set(sk, get_net(&init_net));
1122 	sock_put(sk);
1123 }
1124 EXPORT_SYMBOL(sk_release_kernel);
1125 
1126 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1127 {
1128 	struct sock *newsk;
1129 
1130 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1131 	if (newsk != NULL) {
1132 		struct sk_filter *filter;
1133 
1134 		sock_copy(newsk, sk);
1135 
1136 		/* SANITY */
1137 		get_net(sock_net(newsk));
1138 		sk_node_init(&newsk->sk_node);
1139 		sock_lock_init(newsk);
1140 		bh_lock_sock(newsk);
1141 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1142 
1143 		atomic_set(&newsk->sk_rmem_alloc, 0);
1144 		/*
1145 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1146 		 */
1147 		atomic_set(&newsk->sk_wmem_alloc, 1);
1148 		atomic_set(&newsk->sk_omem_alloc, 0);
1149 		skb_queue_head_init(&newsk->sk_receive_queue);
1150 		skb_queue_head_init(&newsk->sk_write_queue);
1151 #ifdef CONFIG_NET_DMA
1152 		skb_queue_head_init(&newsk->sk_async_wait_queue);
1153 #endif
1154 
1155 		rwlock_init(&newsk->sk_dst_lock);
1156 		rwlock_init(&newsk->sk_callback_lock);
1157 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1158 				af_callback_keys + newsk->sk_family,
1159 				af_family_clock_key_strings[newsk->sk_family]);
1160 
1161 		newsk->sk_dst_cache	= NULL;
1162 		newsk->sk_wmem_queued	= 0;
1163 		newsk->sk_forward_alloc = 0;
1164 		newsk->sk_send_head	= NULL;
1165 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1166 
1167 		sock_reset_flag(newsk, SOCK_DONE);
1168 		skb_queue_head_init(&newsk->sk_error_queue);
1169 
1170 		filter = newsk->sk_filter;
1171 		if (filter != NULL)
1172 			sk_filter_charge(newsk, filter);
1173 
1174 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1175 			/* It is still raw copy of parent, so invalidate
1176 			 * destructor and make plain sk_free() */
1177 			newsk->sk_destruct = NULL;
1178 			sk_free(newsk);
1179 			newsk = NULL;
1180 			goto out;
1181 		}
1182 
1183 		newsk->sk_err	   = 0;
1184 		newsk->sk_priority = 0;
1185 		/*
1186 		 * Before updating sk_refcnt, we must commit prior changes to memory
1187 		 * (Documentation/RCU/rculist_nulls.txt for details)
1188 		 */
1189 		smp_wmb();
1190 		atomic_set(&newsk->sk_refcnt, 2);
1191 
1192 		/*
1193 		 * Increment the counter in the same struct proto as the master
1194 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1195 		 * is the same as sk->sk_prot->socks, as this field was copied
1196 		 * with memcpy).
1197 		 *
1198 		 * This _changes_ the previous behaviour, where
1199 		 * tcp_create_openreq_child always was incrementing the
1200 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1201 		 * to be taken into account in all callers. -acme
1202 		 */
1203 		sk_refcnt_debug_inc(newsk);
1204 		sk_set_socket(newsk, NULL);
1205 		newsk->sk_sleep	 = NULL;
1206 
1207 		if (newsk->sk_prot->sockets_allocated)
1208 			percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1209 
1210 		if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1211 		    sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1212 			net_enable_timestamp();
1213 	}
1214 out:
1215 	return newsk;
1216 }
1217 EXPORT_SYMBOL_GPL(sk_clone);
1218 
1219 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1220 {
1221 	__sk_dst_set(sk, dst);
1222 	sk->sk_route_caps = dst->dev->features;
1223 	if (sk->sk_route_caps & NETIF_F_GSO)
1224 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1225 	if (sk_can_gso(sk)) {
1226 		if (dst->header_len) {
1227 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1228 		} else {
1229 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1230 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1231 		}
1232 	}
1233 }
1234 EXPORT_SYMBOL_GPL(sk_setup_caps);
1235 
1236 void __init sk_init(void)
1237 {
1238 	if (totalram_pages <= 4096) {
1239 		sysctl_wmem_max = 32767;
1240 		sysctl_rmem_max = 32767;
1241 		sysctl_wmem_default = 32767;
1242 		sysctl_rmem_default = 32767;
1243 	} else if (totalram_pages >= 131072) {
1244 		sysctl_wmem_max = 131071;
1245 		sysctl_rmem_max = 131071;
1246 	}
1247 }
1248 
1249 /*
1250  *	Simple resource managers for sockets.
1251  */
1252 
1253 
1254 /*
1255  * Write buffer destructor automatically called from kfree_skb.
1256  */
1257 void sock_wfree(struct sk_buff *skb)
1258 {
1259 	struct sock *sk = skb->sk;
1260 	unsigned int len = skb->truesize;
1261 
1262 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1263 		/*
1264 		 * Keep a reference on sk_wmem_alloc, this will be released
1265 		 * after sk_write_space() call
1266 		 */
1267 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1268 		sk->sk_write_space(sk);
1269 		len = 1;
1270 	}
1271 	/*
1272 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1273 	 * could not do because of in-flight packets
1274 	 */
1275 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1276 		__sk_free(sk);
1277 }
1278 EXPORT_SYMBOL(sock_wfree);
1279 
1280 /*
1281  * Read buffer destructor automatically called from kfree_skb.
1282  */
1283 void sock_rfree(struct sk_buff *skb)
1284 {
1285 	struct sock *sk = skb->sk;
1286 
1287 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1288 	sk_mem_uncharge(skb->sk, skb->truesize);
1289 }
1290 EXPORT_SYMBOL(sock_rfree);
1291 
1292 
1293 int sock_i_uid(struct sock *sk)
1294 {
1295 	int uid;
1296 
1297 	read_lock(&sk->sk_callback_lock);
1298 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1299 	read_unlock(&sk->sk_callback_lock);
1300 	return uid;
1301 }
1302 EXPORT_SYMBOL(sock_i_uid);
1303 
1304 unsigned long sock_i_ino(struct sock *sk)
1305 {
1306 	unsigned long ino;
1307 
1308 	read_lock(&sk->sk_callback_lock);
1309 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1310 	read_unlock(&sk->sk_callback_lock);
1311 	return ino;
1312 }
1313 EXPORT_SYMBOL(sock_i_ino);
1314 
1315 /*
1316  * Allocate a skb from the socket's send buffer.
1317  */
1318 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1319 			     gfp_t priority)
1320 {
1321 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1322 		struct sk_buff *skb = alloc_skb(size, priority);
1323 		if (skb) {
1324 			skb_set_owner_w(skb, sk);
1325 			return skb;
1326 		}
1327 	}
1328 	return NULL;
1329 }
1330 EXPORT_SYMBOL(sock_wmalloc);
1331 
1332 /*
1333  * Allocate a skb from the socket's receive buffer.
1334  */
1335 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1336 			     gfp_t priority)
1337 {
1338 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1339 		struct sk_buff *skb = alloc_skb(size, priority);
1340 		if (skb) {
1341 			skb_set_owner_r(skb, sk);
1342 			return skb;
1343 		}
1344 	}
1345 	return NULL;
1346 }
1347 
1348 /*
1349  * Allocate a memory block from the socket's option memory buffer.
1350  */
1351 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1352 {
1353 	if ((unsigned)size <= sysctl_optmem_max &&
1354 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1355 		void *mem;
1356 		/* First do the add, to avoid the race if kmalloc
1357 		 * might sleep.
1358 		 */
1359 		atomic_add(size, &sk->sk_omem_alloc);
1360 		mem = kmalloc(size, priority);
1361 		if (mem)
1362 			return mem;
1363 		atomic_sub(size, &sk->sk_omem_alloc);
1364 	}
1365 	return NULL;
1366 }
1367 EXPORT_SYMBOL(sock_kmalloc);
1368 
1369 /*
1370  * Free an option memory block.
1371  */
1372 void sock_kfree_s(struct sock *sk, void *mem, int size)
1373 {
1374 	kfree(mem);
1375 	atomic_sub(size, &sk->sk_omem_alloc);
1376 }
1377 EXPORT_SYMBOL(sock_kfree_s);
1378 
1379 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1380    I think, these locks should be removed for datagram sockets.
1381  */
1382 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1383 {
1384 	DEFINE_WAIT(wait);
1385 
1386 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1387 	for (;;) {
1388 		if (!timeo)
1389 			break;
1390 		if (signal_pending(current))
1391 			break;
1392 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1393 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1394 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1395 			break;
1396 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1397 			break;
1398 		if (sk->sk_err)
1399 			break;
1400 		timeo = schedule_timeout(timeo);
1401 	}
1402 	finish_wait(sk->sk_sleep, &wait);
1403 	return timeo;
1404 }
1405 
1406 
1407 /*
1408  *	Generic send/receive buffer handlers
1409  */
1410 
1411 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1412 				     unsigned long data_len, int noblock,
1413 				     int *errcode)
1414 {
1415 	struct sk_buff *skb;
1416 	gfp_t gfp_mask;
1417 	long timeo;
1418 	int err;
1419 
1420 	gfp_mask = sk->sk_allocation;
1421 	if (gfp_mask & __GFP_WAIT)
1422 		gfp_mask |= __GFP_REPEAT;
1423 
1424 	timeo = sock_sndtimeo(sk, noblock);
1425 	while (1) {
1426 		err = sock_error(sk);
1427 		if (err != 0)
1428 			goto failure;
1429 
1430 		err = -EPIPE;
1431 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1432 			goto failure;
1433 
1434 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1435 			skb = alloc_skb(header_len, gfp_mask);
1436 			if (skb) {
1437 				int npages;
1438 				int i;
1439 
1440 				/* No pages, we're done... */
1441 				if (!data_len)
1442 					break;
1443 
1444 				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1445 				skb->truesize += data_len;
1446 				skb_shinfo(skb)->nr_frags = npages;
1447 				for (i = 0; i < npages; i++) {
1448 					struct page *page;
1449 					skb_frag_t *frag;
1450 
1451 					page = alloc_pages(sk->sk_allocation, 0);
1452 					if (!page) {
1453 						err = -ENOBUFS;
1454 						skb_shinfo(skb)->nr_frags = i;
1455 						kfree_skb(skb);
1456 						goto failure;
1457 					}
1458 
1459 					frag = &skb_shinfo(skb)->frags[i];
1460 					frag->page = page;
1461 					frag->page_offset = 0;
1462 					frag->size = (data_len >= PAGE_SIZE ?
1463 						      PAGE_SIZE :
1464 						      data_len);
1465 					data_len -= PAGE_SIZE;
1466 				}
1467 
1468 				/* Full success... */
1469 				break;
1470 			}
1471 			err = -ENOBUFS;
1472 			goto failure;
1473 		}
1474 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1475 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1476 		err = -EAGAIN;
1477 		if (!timeo)
1478 			goto failure;
1479 		if (signal_pending(current))
1480 			goto interrupted;
1481 		timeo = sock_wait_for_wmem(sk, timeo);
1482 	}
1483 
1484 	skb_set_owner_w(skb, sk);
1485 	return skb;
1486 
1487 interrupted:
1488 	err = sock_intr_errno(timeo);
1489 failure:
1490 	*errcode = err;
1491 	return NULL;
1492 }
1493 EXPORT_SYMBOL(sock_alloc_send_pskb);
1494 
1495 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1496 				    int noblock, int *errcode)
1497 {
1498 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1499 }
1500 EXPORT_SYMBOL(sock_alloc_send_skb);
1501 
1502 static void __lock_sock(struct sock *sk)
1503 {
1504 	DEFINE_WAIT(wait);
1505 
1506 	for (;;) {
1507 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1508 					TASK_UNINTERRUPTIBLE);
1509 		spin_unlock_bh(&sk->sk_lock.slock);
1510 		schedule();
1511 		spin_lock_bh(&sk->sk_lock.slock);
1512 		if (!sock_owned_by_user(sk))
1513 			break;
1514 	}
1515 	finish_wait(&sk->sk_lock.wq, &wait);
1516 }
1517 
1518 static void __release_sock(struct sock *sk)
1519 {
1520 	struct sk_buff *skb = sk->sk_backlog.head;
1521 
1522 	do {
1523 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1524 		bh_unlock_sock(sk);
1525 
1526 		do {
1527 			struct sk_buff *next = skb->next;
1528 
1529 			skb->next = NULL;
1530 			sk_backlog_rcv(sk, skb);
1531 
1532 			/*
1533 			 * We are in process context here with softirqs
1534 			 * disabled, use cond_resched_softirq() to preempt.
1535 			 * This is safe to do because we've taken the backlog
1536 			 * queue private:
1537 			 */
1538 			cond_resched_softirq();
1539 
1540 			skb = next;
1541 		} while (skb != NULL);
1542 
1543 		bh_lock_sock(sk);
1544 	} while ((skb = sk->sk_backlog.head) != NULL);
1545 }
1546 
1547 /**
1548  * sk_wait_data - wait for data to arrive at sk_receive_queue
1549  * @sk:    sock to wait on
1550  * @timeo: for how long
1551  *
1552  * Now socket state including sk->sk_err is changed only under lock,
1553  * hence we may omit checks after joining wait queue.
1554  * We check receive queue before schedule() only as optimization;
1555  * it is very likely that release_sock() added new data.
1556  */
1557 int sk_wait_data(struct sock *sk, long *timeo)
1558 {
1559 	int rc;
1560 	DEFINE_WAIT(wait);
1561 
1562 	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1563 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1564 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1565 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1566 	finish_wait(sk->sk_sleep, &wait);
1567 	return rc;
1568 }
1569 EXPORT_SYMBOL(sk_wait_data);
1570 
1571 /**
1572  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1573  *	@sk: socket
1574  *	@size: memory size to allocate
1575  *	@kind: allocation type
1576  *
1577  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1578  *	rmem allocation. This function assumes that protocols which have
1579  *	memory_pressure use sk_wmem_queued as write buffer accounting.
1580  */
1581 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1582 {
1583 	struct proto *prot = sk->sk_prot;
1584 	int amt = sk_mem_pages(size);
1585 	int allocated;
1586 
1587 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1588 	allocated = atomic_add_return(amt, prot->memory_allocated);
1589 
1590 	/* Under limit. */
1591 	if (allocated <= prot->sysctl_mem[0]) {
1592 		if (prot->memory_pressure && *prot->memory_pressure)
1593 			*prot->memory_pressure = 0;
1594 		return 1;
1595 	}
1596 
1597 	/* Under pressure. */
1598 	if (allocated > prot->sysctl_mem[1])
1599 		if (prot->enter_memory_pressure)
1600 			prot->enter_memory_pressure(sk);
1601 
1602 	/* Over hard limit. */
1603 	if (allocated > prot->sysctl_mem[2])
1604 		goto suppress_allocation;
1605 
1606 	/* guarantee minimum buffer size under pressure */
1607 	if (kind == SK_MEM_RECV) {
1608 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1609 			return 1;
1610 	} else { /* SK_MEM_SEND */
1611 		if (sk->sk_type == SOCK_STREAM) {
1612 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1613 				return 1;
1614 		} else if (atomic_read(&sk->sk_wmem_alloc) <
1615 			   prot->sysctl_wmem[0])
1616 				return 1;
1617 	}
1618 
1619 	if (prot->memory_pressure) {
1620 		int alloc;
1621 
1622 		if (!*prot->memory_pressure)
1623 			return 1;
1624 		alloc = percpu_counter_read_positive(prot->sockets_allocated);
1625 		if (prot->sysctl_mem[2] > alloc *
1626 		    sk_mem_pages(sk->sk_wmem_queued +
1627 				 atomic_read(&sk->sk_rmem_alloc) +
1628 				 sk->sk_forward_alloc))
1629 			return 1;
1630 	}
1631 
1632 suppress_allocation:
1633 
1634 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1635 		sk_stream_moderate_sndbuf(sk);
1636 
1637 		/* Fail only if socket is _under_ its sndbuf.
1638 		 * In this case we cannot block, so that we have to fail.
1639 		 */
1640 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1641 			return 1;
1642 	}
1643 
1644 	/* Alas. Undo changes. */
1645 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1646 	atomic_sub(amt, prot->memory_allocated);
1647 	return 0;
1648 }
1649 EXPORT_SYMBOL(__sk_mem_schedule);
1650 
1651 /**
1652  *	__sk_reclaim - reclaim memory_allocated
1653  *	@sk: socket
1654  */
1655 void __sk_mem_reclaim(struct sock *sk)
1656 {
1657 	struct proto *prot = sk->sk_prot;
1658 
1659 	atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1660 		   prot->memory_allocated);
1661 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1662 
1663 	if (prot->memory_pressure && *prot->memory_pressure &&
1664 	    (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1665 		*prot->memory_pressure = 0;
1666 }
1667 EXPORT_SYMBOL(__sk_mem_reclaim);
1668 
1669 
1670 /*
1671  * Set of default routines for initialising struct proto_ops when
1672  * the protocol does not support a particular function. In certain
1673  * cases where it makes no sense for a protocol to have a "do nothing"
1674  * function, some default processing is provided.
1675  */
1676 
1677 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1678 {
1679 	return -EOPNOTSUPP;
1680 }
1681 EXPORT_SYMBOL(sock_no_bind);
1682 
1683 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1684 		    int len, int flags)
1685 {
1686 	return -EOPNOTSUPP;
1687 }
1688 EXPORT_SYMBOL(sock_no_connect);
1689 
1690 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1691 {
1692 	return -EOPNOTSUPP;
1693 }
1694 EXPORT_SYMBOL(sock_no_socketpair);
1695 
1696 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1697 {
1698 	return -EOPNOTSUPP;
1699 }
1700 EXPORT_SYMBOL(sock_no_accept);
1701 
1702 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1703 		    int *len, int peer)
1704 {
1705 	return -EOPNOTSUPP;
1706 }
1707 EXPORT_SYMBOL(sock_no_getname);
1708 
1709 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1710 {
1711 	return 0;
1712 }
1713 EXPORT_SYMBOL(sock_no_poll);
1714 
1715 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1716 {
1717 	return -EOPNOTSUPP;
1718 }
1719 EXPORT_SYMBOL(sock_no_ioctl);
1720 
1721 int sock_no_listen(struct socket *sock, int backlog)
1722 {
1723 	return -EOPNOTSUPP;
1724 }
1725 EXPORT_SYMBOL(sock_no_listen);
1726 
1727 int sock_no_shutdown(struct socket *sock, int how)
1728 {
1729 	return -EOPNOTSUPP;
1730 }
1731 EXPORT_SYMBOL(sock_no_shutdown);
1732 
1733 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1734 		    char __user *optval, unsigned int optlen)
1735 {
1736 	return -EOPNOTSUPP;
1737 }
1738 EXPORT_SYMBOL(sock_no_setsockopt);
1739 
1740 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1741 		    char __user *optval, int __user *optlen)
1742 {
1743 	return -EOPNOTSUPP;
1744 }
1745 EXPORT_SYMBOL(sock_no_getsockopt);
1746 
1747 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1748 		    size_t len)
1749 {
1750 	return -EOPNOTSUPP;
1751 }
1752 EXPORT_SYMBOL(sock_no_sendmsg);
1753 
1754 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1755 		    size_t len, int flags)
1756 {
1757 	return -EOPNOTSUPP;
1758 }
1759 EXPORT_SYMBOL(sock_no_recvmsg);
1760 
1761 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1762 {
1763 	/* Mirror missing mmap method error code */
1764 	return -ENODEV;
1765 }
1766 EXPORT_SYMBOL(sock_no_mmap);
1767 
1768 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1769 {
1770 	ssize_t res;
1771 	struct msghdr msg = {.msg_flags = flags};
1772 	struct kvec iov;
1773 	char *kaddr = kmap(page);
1774 	iov.iov_base = kaddr + offset;
1775 	iov.iov_len = size;
1776 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1777 	kunmap(page);
1778 	return res;
1779 }
1780 EXPORT_SYMBOL(sock_no_sendpage);
1781 
1782 /*
1783  *	Default Socket Callbacks
1784  */
1785 
1786 static void sock_def_wakeup(struct sock *sk)
1787 {
1788 	read_lock(&sk->sk_callback_lock);
1789 	if (sk_has_sleeper(sk))
1790 		wake_up_interruptible_all(sk->sk_sleep);
1791 	read_unlock(&sk->sk_callback_lock);
1792 }
1793 
1794 static void sock_def_error_report(struct sock *sk)
1795 {
1796 	read_lock(&sk->sk_callback_lock);
1797 	if (sk_has_sleeper(sk))
1798 		wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1799 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1800 	read_unlock(&sk->sk_callback_lock);
1801 }
1802 
1803 static void sock_def_readable(struct sock *sk, int len)
1804 {
1805 	read_lock(&sk->sk_callback_lock);
1806 	if (sk_has_sleeper(sk))
1807 		wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1808 						POLLRDNORM | POLLRDBAND);
1809 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1810 	read_unlock(&sk->sk_callback_lock);
1811 }
1812 
1813 static void sock_def_write_space(struct sock *sk)
1814 {
1815 	read_lock(&sk->sk_callback_lock);
1816 
1817 	/* Do not wake up a writer until he can make "significant"
1818 	 * progress.  --DaveM
1819 	 */
1820 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1821 		if (sk_has_sleeper(sk))
1822 			wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1823 						POLLWRNORM | POLLWRBAND);
1824 
1825 		/* Should agree with poll, otherwise some programs break */
1826 		if (sock_writeable(sk))
1827 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1828 	}
1829 
1830 	read_unlock(&sk->sk_callback_lock);
1831 }
1832 
1833 static void sock_def_destruct(struct sock *sk)
1834 {
1835 	kfree(sk->sk_protinfo);
1836 }
1837 
1838 void sk_send_sigurg(struct sock *sk)
1839 {
1840 	if (sk->sk_socket && sk->sk_socket->file)
1841 		if (send_sigurg(&sk->sk_socket->file->f_owner))
1842 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1843 }
1844 EXPORT_SYMBOL(sk_send_sigurg);
1845 
1846 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1847 		    unsigned long expires)
1848 {
1849 	if (!mod_timer(timer, expires))
1850 		sock_hold(sk);
1851 }
1852 EXPORT_SYMBOL(sk_reset_timer);
1853 
1854 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1855 {
1856 	if (timer_pending(timer) && del_timer(timer))
1857 		__sock_put(sk);
1858 }
1859 EXPORT_SYMBOL(sk_stop_timer);
1860 
1861 void sock_init_data(struct socket *sock, struct sock *sk)
1862 {
1863 	skb_queue_head_init(&sk->sk_receive_queue);
1864 	skb_queue_head_init(&sk->sk_write_queue);
1865 	skb_queue_head_init(&sk->sk_error_queue);
1866 #ifdef CONFIG_NET_DMA
1867 	skb_queue_head_init(&sk->sk_async_wait_queue);
1868 #endif
1869 
1870 	sk->sk_send_head	=	NULL;
1871 
1872 	init_timer(&sk->sk_timer);
1873 
1874 	sk->sk_allocation	=	GFP_KERNEL;
1875 	sk->sk_rcvbuf		=	sysctl_rmem_default;
1876 	sk->sk_sndbuf		=	sysctl_wmem_default;
1877 	sk->sk_state		=	TCP_CLOSE;
1878 	sk_set_socket(sk, sock);
1879 
1880 	sock_set_flag(sk, SOCK_ZAPPED);
1881 
1882 	if (sock) {
1883 		sk->sk_type	=	sock->type;
1884 		sk->sk_sleep	=	&sock->wait;
1885 		sock->sk	=	sk;
1886 	} else
1887 		sk->sk_sleep	=	NULL;
1888 
1889 	rwlock_init(&sk->sk_dst_lock);
1890 	rwlock_init(&sk->sk_callback_lock);
1891 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1892 			af_callback_keys + sk->sk_family,
1893 			af_family_clock_key_strings[sk->sk_family]);
1894 
1895 	sk->sk_state_change	=	sock_def_wakeup;
1896 	sk->sk_data_ready	=	sock_def_readable;
1897 	sk->sk_write_space	=	sock_def_write_space;
1898 	sk->sk_error_report	=	sock_def_error_report;
1899 	sk->sk_destruct		=	sock_def_destruct;
1900 
1901 	sk->sk_sndmsg_page	=	NULL;
1902 	sk->sk_sndmsg_off	=	0;
1903 
1904 	sk->sk_peercred.pid 	=	0;
1905 	sk->sk_peercred.uid	=	-1;
1906 	sk->sk_peercred.gid	=	-1;
1907 	sk->sk_write_pending	=	0;
1908 	sk->sk_rcvlowat		=	1;
1909 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1910 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1911 
1912 	sk->sk_stamp = ktime_set(-1L, 0);
1913 
1914 	/*
1915 	 * Before updating sk_refcnt, we must commit prior changes to memory
1916 	 * (Documentation/RCU/rculist_nulls.txt for details)
1917 	 */
1918 	smp_wmb();
1919 	atomic_set(&sk->sk_refcnt, 1);
1920 	atomic_set(&sk->sk_drops, 0);
1921 }
1922 EXPORT_SYMBOL(sock_init_data);
1923 
1924 void lock_sock_nested(struct sock *sk, int subclass)
1925 {
1926 	might_sleep();
1927 	spin_lock_bh(&sk->sk_lock.slock);
1928 	if (sk->sk_lock.owned)
1929 		__lock_sock(sk);
1930 	sk->sk_lock.owned = 1;
1931 	spin_unlock(&sk->sk_lock.slock);
1932 	/*
1933 	 * The sk_lock has mutex_lock() semantics here:
1934 	 */
1935 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1936 	local_bh_enable();
1937 }
1938 EXPORT_SYMBOL(lock_sock_nested);
1939 
1940 void release_sock(struct sock *sk)
1941 {
1942 	/*
1943 	 * The sk_lock has mutex_unlock() semantics:
1944 	 */
1945 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1946 
1947 	spin_lock_bh(&sk->sk_lock.slock);
1948 	if (sk->sk_backlog.tail)
1949 		__release_sock(sk);
1950 	sk->sk_lock.owned = 0;
1951 	if (waitqueue_active(&sk->sk_lock.wq))
1952 		wake_up(&sk->sk_lock.wq);
1953 	spin_unlock_bh(&sk->sk_lock.slock);
1954 }
1955 EXPORT_SYMBOL(release_sock);
1956 
1957 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1958 {
1959 	struct timeval tv;
1960 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1961 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1962 	tv = ktime_to_timeval(sk->sk_stamp);
1963 	if (tv.tv_sec == -1)
1964 		return -ENOENT;
1965 	if (tv.tv_sec == 0) {
1966 		sk->sk_stamp = ktime_get_real();
1967 		tv = ktime_to_timeval(sk->sk_stamp);
1968 	}
1969 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1970 }
1971 EXPORT_SYMBOL(sock_get_timestamp);
1972 
1973 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1974 {
1975 	struct timespec ts;
1976 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1977 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1978 	ts = ktime_to_timespec(sk->sk_stamp);
1979 	if (ts.tv_sec == -1)
1980 		return -ENOENT;
1981 	if (ts.tv_sec == 0) {
1982 		sk->sk_stamp = ktime_get_real();
1983 		ts = ktime_to_timespec(sk->sk_stamp);
1984 	}
1985 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1986 }
1987 EXPORT_SYMBOL(sock_get_timestampns);
1988 
1989 void sock_enable_timestamp(struct sock *sk, int flag)
1990 {
1991 	if (!sock_flag(sk, flag)) {
1992 		sock_set_flag(sk, flag);
1993 		/*
1994 		 * we just set one of the two flags which require net
1995 		 * time stamping, but time stamping might have been on
1996 		 * already because of the other one
1997 		 */
1998 		if (!sock_flag(sk,
1999 				flag == SOCK_TIMESTAMP ?
2000 				SOCK_TIMESTAMPING_RX_SOFTWARE :
2001 				SOCK_TIMESTAMP))
2002 			net_enable_timestamp();
2003 	}
2004 }
2005 
2006 /*
2007  *	Get a socket option on an socket.
2008  *
2009  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2010  *	asynchronous errors should be reported by getsockopt. We assume
2011  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2012  */
2013 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2014 			   char __user *optval, int __user *optlen)
2015 {
2016 	struct sock *sk = sock->sk;
2017 
2018 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2019 }
2020 EXPORT_SYMBOL(sock_common_getsockopt);
2021 
2022 #ifdef CONFIG_COMPAT
2023 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2024 				  char __user *optval, int __user *optlen)
2025 {
2026 	struct sock *sk = sock->sk;
2027 
2028 	if (sk->sk_prot->compat_getsockopt != NULL)
2029 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2030 						      optval, optlen);
2031 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2032 }
2033 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2034 #endif
2035 
2036 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2037 			struct msghdr *msg, size_t size, int flags)
2038 {
2039 	struct sock *sk = sock->sk;
2040 	int addr_len = 0;
2041 	int err;
2042 
2043 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2044 				   flags & ~MSG_DONTWAIT, &addr_len);
2045 	if (err >= 0)
2046 		msg->msg_namelen = addr_len;
2047 	return err;
2048 }
2049 EXPORT_SYMBOL(sock_common_recvmsg);
2050 
2051 /*
2052  *	Set socket options on an inet socket.
2053  */
2054 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2055 			   char __user *optval, unsigned int optlen)
2056 {
2057 	struct sock *sk = sock->sk;
2058 
2059 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2060 }
2061 EXPORT_SYMBOL(sock_common_setsockopt);
2062 
2063 #ifdef CONFIG_COMPAT
2064 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2065 				  char __user *optval, unsigned int optlen)
2066 {
2067 	struct sock *sk = sock->sk;
2068 
2069 	if (sk->sk_prot->compat_setsockopt != NULL)
2070 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2071 						      optval, optlen);
2072 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2073 }
2074 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2075 #endif
2076 
2077 void sk_common_release(struct sock *sk)
2078 {
2079 	if (sk->sk_prot->destroy)
2080 		sk->sk_prot->destroy(sk);
2081 
2082 	/*
2083 	 * Observation: when sock_common_release is called, processes have
2084 	 * no access to socket. But net still has.
2085 	 * Step one, detach it from networking:
2086 	 *
2087 	 * A. Remove from hash tables.
2088 	 */
2089 
2090 	sk->sk_prot->unhash(sk);
2091 
2092 	/*
2093 	 * In this point socket cannot receive new packets, but it is possible
2094 	 * that some packets are in flight because some CPU runs receiver and
2095 	 * did hash table lookup before we unhashed socket. They will achieve
2096 	 * receive queue and will be purged by socket destructor.
2097 	 *
2098 	 * Also we still have packets pending on receive queue and probably,
2099 	 * our own packets waiting in device queues. sock_destroy will drain
2100 	 * receive queue, but transmitted packets will delay socket destruction
2101 	 * until the last reference will be released.
2102 	 */
2103 
2104 	sock_orphan(sk);
2105 
2106 	xfrm_sk_free_policy(sk);
2107 
2108 	sk_refcnt_debug_release(sk);
2109 	sock_put(sk);
2110 }
2111 EXPORT_SYMBOL(sk_common_release);
2112 
2113 static DEFINE_RWLOCK(proto_list_lock);
2114 static LIST_HEAD(proto_list);
2115 
2116 #ifdef CONFIG_PROC_FS
2117 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2118 struct prot_inuse {
2119 	int val[PROTO_INUSE_NR];
2120 };
2121 
2122 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2123 
2124 #ifdef CONFIG_NET_NS
2125 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2126 {
2127 	int cpu = smp_processor_id();
2128 	per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2129 }
2130 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2131 
2132 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2133 {
2134 	int cpu, idx = prot->inuse_idx;
2135 	int res = 0;
2136 
2137 	for_each_possible_cpu(cpu)
2138 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2139 
2140 	return res >= 0 ? res : 0;
2141 }
2142 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2143 
2144 static int __net_init sock_inuse_init_net(struct net *net)
2145 {
2146 	net->core.inuse = alloc_percpu(struct prot_inuse);
2147 	return net->core.inuse ? 0 : -ENOMEM;
2148 }
2149 
2150 static void __net_exit sock_inuse_exit_net(struct net *net)
2151 {
2152 	free_percpu(net->core.inuse);
2153 }
2154 
2155 static struct pernet_operations net_inuse_ops = {
2156 	.init = sock_inuse_init_net,
2157 	.exit = sock_inuse_exit_net,
2158 };
2159 
2160 static __init int net_inuse_init(void)
2161 {
2162 	if (register_pernet_subsys(&net_inuse_ops))
2163 		panic("Cannot initialize net inuse counters");
2164 
2165 	return 0;
2166 }
2167 
2168 core_initcall(net_inuse_init);
2169 #else
2170 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2171 
2172 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2173 {
2174 	__get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2175 }
2176 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2177 
2178 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2179 {
2180 	int cpu, idx = prot->inuse_idx;
2181 	int res = 0;
2182 
2183 	for_each_possible_cpu(cpu)
2184 		res += per_cpu(prot_inuse, cpu).val[idx];
2185 
2186 	return res >= 0 ? res : 0;
2187 }
2188 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2189 #endif
2190 
2191 static void assign_proto_idx(struct proto *prot)
2192 {
2193 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2194 
2195 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2196 		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2197 		return;
2198 	}
2199 
2200 	set_bit(prot->inuse_idx, proto_inuse_idx);
2201 }
2202 
2203 static void release_proto_idx(struct proto *prot)
2204 {
2205 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2206 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2207 }
2208 #else
2209 static inline void assign_proto_idx(struct proto *prot)
2210 {
2211 }
2212 
2213 static inline void release_proto_idx(struct proto *prot)
2214 {
2215 }
2216 #endif
2217 
2218 int proto_register(struct proto *prot, int alloc_slab)
2219 {
2220 	if (alloc_slab) {
2221 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2222 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2223 					NULL);
2224 
2225 		if (prot->slab == NULL) {
2226 			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2227 			       prot->name);
2228 			goto out;
2229 		}
2230 
2231 		if (prot->rsk_prot != NULL) {
2232 			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2233 			if (prot->rsk_prot->slab_name == NULL)
2234 				goto out_free_sock_slab;
2235 
2236 			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2237 								 prot->rsk_prot->obj_size, 0,
2238 								 SLAB_HWCACHE_ALIGN, NULL);
2239 
2240 			if (prot->rsk_prot->slab == NULL) {
2241 				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2242 				       prot->name);
2243 				goto out_free_request_sock_slab_name;
2244 			}
2245 		}
2246 
2247 		if (prot->twsk_prot != NULL) {
2248 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2249 
2250 			if (prot->twsk_prot->twsk_slab_name == NULL)
2251 				goto out_free_request_sock_slab;
2252 
2253 			prot->twsk_prot->twsk_slab =
2254 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2255 						  prot->twsk_prot->twsk_obj_size,
2256 						  0,
2257 						  SLAB_HWCACHE_ALIGN |
2258 							prot->slab_flags,
2259 						  NULL);
2260 			if (prot->twsk_prot->twsk_slab == NULL)
2261 				goto out_free_timewait_sock_slab_name;
2262 		}
2263 	}
2264 
2265 	write_lock(&proto_list_lock);
2266 	list_add(&prot->node, &proto_list);
2267 	assign_proto_idx(prot);
2268 	write_unlock(&proto_list_lock);
2269 	return 0;
2270 
2271 out_free_timewait_sock_slab_name:
2272 	kfree(prot->twsk_prot->twsk_slab_name);
2273 out_free_request_sock_slab:
2274 	if (prot->rsk_prot && prot->rsk_prot->slab) {
2275 		kmem_cache_destroy(prot->rsk_prot->slab);
2276 		prot->rsk_prot->slab = NULL;
2277 	}
2278 out_free_request_sock_slab_name:
2279 	kfree(prot->rsk_prot->slab_name);
2280 out_free_sock_slab:
2281 	kmem_cache_destroy(prot->slab);
2282 	prot->slab = NULL;
2283 out:
2284 	return -ENOBUFS;
2285 }
2286 EXPORT_SYMBOL(proto_register);
2287 
2288 void proto_unregister(struct proto *prot)
2289 {
2290 	write_lock(&proto_list_lock);
2291 	release_proto_idx(prot);
2292 	list_del(&prot->node);
2293 	write_unlock(&proto_list_lock);
2294 
2295 	if (prot->slab != NULL) {
2296 		kmem_cache_destroy(prot->slab);
2297 		prot->slab = NULL;
2298 	}
2299 
2300 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2301 		kmem_cache_destroy(prot->rsk_prot->slab);
2302 		kfree(prot->rsk_prot->slab_name);
2303 		prot->rsk_prot->slab = NULL;
2304 	}
2305 
2306 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2307 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2308 		kfree(prot->twsk_prot->twsk_slab_name);
2309 		prot->twsk_prot->twsk_slab = NULL;
2310 	}
2311 }
2312 EXPORT_SYMBOL(proto_unregister);
2313 
2314 #ifdef CONFIG_PROC_FS
2315 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2316 	__acquires(proto_list_lock)
2317 {
2318 	read_lock(&proto_list_lock);
2319 	return seq_list_start_head(&proto_list, *pos);
2320 }
2321 
2322 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2323 {
2324 	return seq_list_next(v, &proto_list, pos);
2325 }
2326 
2327 static void proto_seq_stop(struct seq_file *seq, void *v)
2328 	__releases(proto_list_lock)
2329 {
2330 	read_unlock(&proto_list_lock);
2331 }
2332 
2333 static char proto_method_implemented(const void *method)
2334 {
2335 	return method == NULL ? 'n' : 'y';
2336 }
2337 
2338 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2339 {
2340 	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2341 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2342 		   proto->name,
2343 		   proto->obj_size,
2344 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2345 		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2346 		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2347 		   proto->max_header,
2348 		   proto->slab == NULL ? "no" : "yes",
2349 		   module_name(proto->owner),
2350 		   proto_method_implemented(proto->close),
2351 		   proto_method_implemented(proto->connect),
2352 		   proto_method_implemented(proto->disconnect),
2353 		   proto_method_implemented(proto->accept),
2354 		   proto_method_implemented(proto->ioctl),
2355 		   proto_method_implemented(proto->init),
2356 		   proto_method_implemented(proto->destroy),
2357 		   proto_method_implemented(proto->shutdown),
2358 		   proto_method_implemented(proto->setsockopt),
2359 		   proto_method_implemented(proto->getsockopt),
2360 		   proto_method_implemented(proto->sendmsg),
2361 		   proto_method_implemented(proto->recvmsg),
2362 		   proto_method_implemented(proto->sendpage),
2363 		   proto_method_implemented(proto->bind),
2364 		   proto_method_implemented(proto->backlog_rcv),
2365 		   proto_method_implemented(proto->hash),
2366 		   proto_method_implemented(proto->unhash),
2367 		   proto_method_implemented(proto->get_port),
2368 		   proto_method_implemented(proto->enter_memory_pressure));
2369 }
2370 
2371 static int proto_seq_show(struct seq_file *seq, void *v)
2372 {
2373 	if (v == &proto_list)
2374 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2375 			   "protocol",
2376 			   "size",
2377 			   "sockets",
2378 			   "memory",
2379 			   "press",
2380 			   "maxhdr",
2381 			   "slab",
2382 			   "module",
2383 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2384 	else
2385 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2386 	return 0;
2387 }
2388 
2389 static const struct seq_operations proto_seq_ops = {
2390 	.start  = proto_seq_start,
2391 	.next   = proto_seq_next,
2392 	.stop   = proto_seq_stop,
2393 	.show   = proto_seq_show,
2394 };
2395 
2396 static int proto_seq_open(struct inode *inode, struct file *file)
2397 {
2398 	return seq_open_net(inode, file, &proto_seq_ops,
2399 			    sizeof(struct seq_net_private));
2400 }
2401 
2402 static const struct file_operations proto_seq_fops = {
2403 	.owner		= THIS_MODULE,
2404 	.open		= proto_seq_open,
2405 	.read		= seq_read,
2406 	.llseek		= seq_lseek,
2407 	.release	= seq_release_net,
2408 };
2409 
2410 static __net_init int proto_init_net(struct net *net)
2411 {
2412 	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2413 		return -ENOMEM;
2414 
2415 	return 0;
2416 }
2417 
2418 static __net_exit void proto_exit_net(struct net *net)
2419 {
2420 	proc_net_remove(net, "protocols");
2421 }
2422 
2423 
2424 static __net_initdata struct pernet_operations proto_net_ops = {
2425 	.init = proto_init_net,
2426 	.exit = proto_exit_net,
2427 };
2428 
2429 static int __init proto_init(void)
2430 {
2431 	return register_pernet_subsys(&proto_net_ops);
2432 }
2433 
2434 subsys_initcall(proto_init);
2435 
2436 #endif /* PROC_FS */
2437