xref: /openbmc/linux/net/core/sock.c (revision aac5987a)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120 
121 #include <linux/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135 
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
138 
139 #include <trace/events/sock.h>
140 
141 #ifdef CONFIG_INET
142 #include <net/tcp.h>
143 #endif
144 
145 #include <net/busy_poll.h>
146 
147 static DEFINE_MUTEX(proto_list_mutex);
148 static LIST_HEAD(proto_list);
149 
150 /**
151  * sk_ns_capable - General socket capability test
152  * @sk: Socket to use a capability on or through
153  * @user_ns: The user namespace of the capability to use
154  * @cap: The capability to use
155  *
156  * Test to see if the opener of the socket had when the socket was
157  * created and the current process has the capability @cap in the user
158  * namespace @user_ns.
159  */
160 bool sk_ns_capable(const struct sock *sk,
161 		   struct user_namespace *user_ns, int cap)
162 {
163 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 		ns_capable(user_ns, cap);
165 }
166 EXPORT_SYMBOL(sk_ns_capable);
167 
168 /**
169  * sk_capable - Socket global capability test
170  * @sk: Socket to use a capability on or through
171  * @cap: The global capability to use
172  *
173  * Test to see if the opener of the socket had when the socket was
174  * created and the current process has the capability @cap in all user
175  * namespaces.
176  */
177 bool sk_capable(const struct sock *sk, int cap)
178 {
179 	return sk_ns_capable(sk, &init_user_ns, cap);
180 }
181 EXPORT_SYMBOL(sk_capable);
182 
183 /**
184  * sk_net_capable - Network namespace socket capability test
185  * @sk: Socket to use a capability on or through
186  * @cap: The capability to use
187  *
188  * Test to see if the opener of the socket had when the socket was created
189  * and the current process has the capability @cap over the network namespace
190  * the socket is a member of.
191  */
192 bool sk_net_capable(const struct sock *sk, int cap)
193 {
194 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 }
196 EXPORT_SYMBOL(sk_net_capable);
197 
198 /*
199  * Each address family might have different locking rules, so we have
200  * one slock key per address family:
201  */
202 static struct lock_class_key af_family_keys[AF_MAX];
203 static struct lock_class_key af_family_slock_keys[AF_MAX];
204 
205 /*
206  * Make lock validator output more readable. (we pre-construct these
207  * strings build-time, so that runtime initialization of socket
208  * locks is fast):
209  */
210 static const char *const af_family_key_strings[AF_MAX+1] = {
211   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
212   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
213   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
214   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
215   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
216   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
217   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
218   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
219   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
220   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
221   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
222   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
223   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
224   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_KCM"      ,
225   "sk_lock-AF_QIPCRTR", "sk_lock-AF_SMC"     , "sk_lock-AF_MAX"
226 };
227 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
228   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
229   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
230   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
231   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
232   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
233   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
234   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
235   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
236   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
237   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
238   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
239   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
240   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
241   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_KCM"       ,
242   "slock-AF_QIPCRTR", "slock-AF_SMC"     , "slock-AF_MAX"
243 };
244 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
245   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
246   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
247   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
248   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
249   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
250   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
251   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
252   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
253   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
254   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
255   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
256   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
257   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
258   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_KCM"      ,
259   "clock-AF_QIPCRTR", "clock-AF_SMC"     , "clock-AF_MAX"
260 };
261 
262 /*
263  * sk_callback_lock locking rules are per-address-family,
264  * so split the lock classes by using a per-AF key:
265  */
266 static struct lock_class_key af_callback_keys[AF_MAX];
267 
268 /* Take into consideration the size of the struct sk_buff overhead in the
269  * determination of these values, since that is non-constant across
270  * platforms.  This makes socket queueing behavior and performance
271  * not depend upon such differences.
272  */
273 #define _SK_MEM_PACKETS		256
274 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
275 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
276 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
277 
278 /* Run time adjustable parameters. */
279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
280 EXPORT_SYMBOL(sysctl_wmem_max);
281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
282 EXPORT_SYMBOL(sysctl_rmem_max);
283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
285 
286 /* Maximal space eaten by iovec or ancillary data plus some space */
287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
288 EXPORT_SYMBOL(sysctl_optmem_max);
289 
290 int sysctl_tstamp_allow_data __read_mostly = 1;
291 
292 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
293 EXPORT_SYMBOL_GPL(memalloc_socks);
294 
295 /**
296  * sk_set_memalloc - sets %SOCK_MEMALLOC
297  * @sk: socket to set it on
298  *
299  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
300  * It's the responsibility of the admin to adjust min_free_kbytes
301  * to meet the requirements
302  */
303 void sk_set_memalloc(struct sock *sk)
304 {
305 	sock_set_flag(sk, SOCK_MEMALLOC);
306 	sk->sk_allocation |= __GFP_MEMALLOC;
307 	static_key_slow_inc(&memalloc_socks);
308 }
309 EXPORT_SYMBOL_GPL(sk_set_memalloc);
310 
311 void sk_clear_memalloc(struct sock *sk)
312 {
313 	sock_reset_flag(sk, SOCK_MEMALLOC);
314 	sk->sk_allocation &= ~__GFP_MEMALLOC;
315 	static_key_slow_dec(&memalloc_socks);
316 
317 	/*
318 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
319 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
320 	 * it has rmem allocations due to the last swapfile being deactivated
321 	 * but there is a risk that the socket is unusable due to exceeding
322 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
323 	 */
324 	sk_mem_reclaim(sk);
325 }
326 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
327 
328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
329 {
330 	int ret;
331 	unsigned long pflags = current->flags;
332 
333 	/* these should have been dropped before queueing */
334 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
335 
336 	current->flags |= PF_MEMALLOC;
337 	ret = sk->sk_backlog_rcv(sk, skb);
338 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
339 
340 	return ret;
341 }
342 EXPORT_SYMBOL(__sk_backlog_rcv);
343 
344 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
345 {
346 	struct timeval tv;
347 
348 	if (optlen < sizeof(tv))
349 		return -EINVAL;
350 	if (copy_from_user(&tv, optval, sizeof(tv)))
351 		return -EFAULT;
352 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
353 		return -EDOM;
354 
355 	if (tv.tv_sec < 0) {
356 		static int warned __read_mostly;
357 
358 		*timeo_p = 0;
359 		if (warned < 10 && net_ratelimit()) {
360 			warned++;
361 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
362 				__func__, current->comm, task_pid_nr(current));
363 		}
364 		return 0;
365 	}
366 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
367 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
368 		return 0;
369 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
370 		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
371 	return 0;
372 }
373 
374 static void sock_warn_obsolete_bsdism(const char *name)
375 {
376 	static int warned;
377 	static char warncomm[TASK_COMM_LEN];
378 	if (strcmp(warncomm, current->comm) && warned < 5) {
379 		strcpy(warncomm,  current->comm);
380 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
381 			warncomm, name);
382 		warned++;
383 	}
384 }
385 
386 static bool sock_needs_netstamp(const struct sock *sk)
387 {
388 	switch (sk->sk_family) {
389 	case AF_UNSPEC:
390 	case AF_UNIX:
391 		return false;
392 	default:
393 		return true;
394 	}
395 }
396 
397 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
398 {
399 	if (sk->sk_flags & flags) {
400 		sk->sk_flags &= ~flags;
401 		if (sock_needs_netstamp(sk) &&
402 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
403 			net_disable_timestamp();
404 	}
405 }
406 
407 
408 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
409 {
410 	unsigned long flags;
411 	struct sk_buff_head *list = &sk->sk_receive_queue;
412 
413 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
414 		atomic_inc(&sk->sk_drops);
415 		trace_sock_rcvqueue_full(sk, skb);
416 		return -ENOMEM;
417 	}
418 
419 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
420 		atomic_inc(&sk->sk_drops);
421 		return -ENOBUFS;
422 	}
423 
424 	skb->dev = NULL;
425 	skb_set_owner_r(skb, sk);
426 
427 	/* we escape from rcu protected region, make sure we dont leak
428 	 * a norefcounted dst
429 	 */
430 	skb_dst_force(skb);
431 
432 	spin_lock_irqsave(&list->lock, flags);
433 	sock_skb_set_dropcount(sk, skb);
434 	__skb_queue_tail(list, skb);
435 	spin_unlock_irqrestore(&list->lock, flags);
436 
437 	if (!sock_flag(sk, SOCK_DEAD))
438 		sk->sk_data_ready(sk);
439 	return 0;
440 }
441 EXPORT_SYMBOL(__sock_queue_rcv_skb);
442 
443 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
444 {
445 	int err;
446 
447 	err = sk_filter(sk, skb);
448 	if (err)
449 		return err;
450 
451 	return __sock_queue_rcv_skb(sk, skb);
452 }
453 EXPORT_SYMBOL(sock_queue_rcv_skb);
454 
455 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
456 		     const int nested, unsigned int trim_cap, bool refcounted)
457 {
458 	int rc = NET_RX_SUCCESS;
459 
460 	if (sk_filter_trim_cap(sk, skb, trim_cap))
461 		goto discard_and_relse;
462 
463 	skb->dev = NULL;
464 
465 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
466 		atomic_inc(&sk->sk_drops);
467 		goto discard_and_relse;
468 	}
469 	if (nested)
470 		bh_lock_sock_nested(sk);
471 	else
472 		bh_lock_sock(sk);
473 	if (!sock_owned_by_user(sk)) {
474 		/*
475 		 * trylock + unlock semantics:
476 		 */
477 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
478 
479 		rc = sk_backlog_rcv(sk, skb);
480 
481 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
482 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
483 		bh_unlock_sock(sk);
484 		atomic_inc(&sk->sk_drops);
485 		goto discard_and_relse;
486 	}
487 
488 	bh_unlock_sock(sk);
489 out:
490 	if (refcounted)
491 		sock_put(sk);
492 	return rc;
493 discard_and_relse:
494 	kfree_skb(skb);
495 	goto out;
496 }
497 EXPORT_SYMBOL(__sk_receive_skb);
498 
499 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
500 {
501 	struct dst_entry *dst = __sk_dst_get(sk);
502 
503 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
504 		sk_tx_queue_clear(sk);
505 		sk->sk_dst_pending_confirm = 0;
506 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
507 		dst_release(dst);
508 		return NULL;
509 	}
510 
511 	return dst;
512 }
513 EXPORT_SYMBOL(__sk_dst_check);
514 
515 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
516 {
517 	struct dst_entry *dst = sk_dst_get(sk);
518 
519 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
520 		sk_dst_reset(sk);
521 		dst_release(dst);
522 		return NULL;
523 	}
524 
525 	return dst;
526 }
527 EXPORT_SYMBOL(sk_dst_check);
528 
529 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
530 				int optlen)
531 {
532 	int ret = -ENOPROTOOPT;
533 #ifdef CONFIG_NETDEVICES
534 	struct net *net = sock_net(sk);
535 	char devname[IFNAMSIZ];
536 	int index;
537 
538 	/* Sorry... */
539 	ret = -EPERM;
540 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
541 		goto out;
542 
543 	ret = -EINVAL;
544 	if (optlen < 0)
545 		goto out;
546 
547 	/* Bind this socket to a particular device like "eth0",
548 	 * as specified in the passed interface name. If the
549 	 * name is "" or the option length is zero the socket
550 	 * is not bound.
551 	 */
552 	if (optlen > IFNAMSIZ - 1)
553 		optlen = IFNAMSIZ - 1;
554 	memset(devname, 0, sizeof(devname));
555 
556 	ret = -EFAULT;
557 	if (copy_from_user(devname, optval, optlen))
558 		goto out;
559 
560 	index = 0;
561 	if (devname[0] != '\0') {
562 		struct net_device *dev;
563 
564 		rcu_read_lock();
565 		dev = dev_get_by_name_rcu(net, devname);
566 		if (dev)
567 			index = dev->ifindex;
568 		rcu_read_unlock();
569 		ret = -ENODEV;
570 		if (!dev)
571 			goto out;
572 	}
573 
574 	lock_sock(sk);
575 	sk->sk_bound_dev_if = index;
576 	sk_dst_reset(sk);
577 	release_sock(sk);
578 
579 	ret = 0;
580 
581 out:
582 #endif
583 
584 	return ret;
585 }
586 
587 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
588 				int __user *optlen, int len)
589 {
590 	int ret = -ENOPROTOOPT;
591 #ifdef CONFIG_NETDEVICES
592 	struct net *net = sock_net(sk);
593 	char devname[IFNAMSIZ];
594 
595 	if (sk->sk_bound_dev_if == 0) {
596 		len = 0;
597 		goto zero;
598 	}
599 
600 	ret = -EINVAL;
601 	if (len < IFNAMSIZ)
602 		goto out;
603 
604 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
605 	if (ret)
606 		goto out;
607 
608 	len = strlen(devname) + 1;
609 
610 	ret = -EFAULT;
611 	if (copy_to_user(optval, devname, len))
612 		goto out;
613 
614 zero:
615 	ret = -EFAULT;
616 	if (put_user(len, optlen))
617 		goto out;
618 
619 	ret = 0;
620 
621 out:
622 #endif
623 
624 	return ret;
625 }
626 
627 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
628 {
629 	if (valbool)
630 		sock_set_flag(sk, bit);
631 	else
632 		sock_reset_flag(sk, bit);
633 }
634 
635 bool sk_mc_loop(struct sock *sk)
636 {
637 	if (dev_recursion_level())
638 		return false;
639 	if (!sk)
640 		return true;
641 	switch (sk->sk_family) {
642 	case AF_INET:
643 		return inet_sk(sk)->mc_loop;
644 #if IS_ENABLED(CONFIG_IPV6)
645 	case AF_INET6:
646 		return inet6_sk(sk)->mc_loop;
647 #endif
648 	}
649 	WARN_ON(1);
650 	return true;
651 }
652 EXPORT_SYMBOL(sk_mc_loop);
653 
654 /*
655  *	This is meant for all protocols to use and covers goings on
656  *	at the socket level. Everything here is generic.
657  */
658 
659 int sock_setsockopt(struct socket *sock, int level, int optname,
660 		    char __user *optval, unsigned int optlen)
661 {
662 	struct sock *sk = sock->sk;
663 	int val;
664 	int valbool;
665 	struct linger ling;
666 	int ret = 0;
667 
668 	/*
669 	 *	Options without arguments
670 	 */
671 
672 	if (optname == SO_BINDTODEVICE)
673 		return sock_setbindtodevice(sk, optval, optlen);
674 
675 	if (optlen < sizeof(int))
676 		return -EINVAL;
677 
678 	if (get_user(val, (int __user *)optval))
679 		return -EFAULT;
680 
681 	valbool = val ? 1 : 0;
682 
683 	lock_sock(sk);
684 
685 	switch (optname) {
686 	case SO_DEBUG:
687 		if (val && !capable(CAP_NET_ADMIN))
688 			ret = -EACCES;
689 		else
690 			sock_valbool_flag(sk, SOCK_DBG, valbool);
691 		break;
692 	case SO_REUSEADDR:
693 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
694 		break;
695 	case SO_REUSEPORT:
696 		sk->sk_reuseport = valbool;
697 		break;
698 	case SO_TYPE:
699 	case SO_PROTOCOL:
700 	case SO_DOMAIN:
701 	case SO_ERROR:
702 		ret = -ENOPROTOOPT;
703 		break;
704 	case SO_DONTROUTE:
705 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
706 		break;
707 	case SO_BROADCAST:
708 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
709 		break;
710 	case SO_SNDBUF:
711 		/* Don't error on this BSD doesn't and if you think
712 		 * about it this is right. Otherwise apps have to
713 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
714 		 * are treated in BSD as hints
715 		 */
716 		val = min_t(u32, val, sysctl_wmem_max);
717 set_sndbuf:
718 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
719 		sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
720 		/* Wake up sending tasks if we upped the value. */
721 		sk->sk_write_space(sk);
722 		break;
723 
724 	case SO_SNDBUFFORCE:
725 		if (!capable(CAP_NET_ADMIN)) {
726 			ret = -EPERM;
727 			break;
728 		}
729 		goto set_sndbuf;
730 
731 	case SO_RCVBUF:
732 		/* Don't error on this BSD doesn't and if you think
733 		 * about it this is right. Otherwise apps have to
734 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
735 		 * are treated in BSD as hints
736 		 */
737 		val = min_t(u32, val, sysctl_rmem_max);
738 set_rcvbuf:
739 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
740 		/*
741 		 * We double it on the way in to account for
742 		 * "struct sk_buff" etc. overhead.   Applications
743 		 * assume that the SO_RCVBUF setting they make will
744 		 * allow that much actual data to be received on that
745 		 * socket.
746 		 *
747 		 * Applications are unaware that "struct sk_buff" and
748 		 * other overheads allocate from the receive buffer
749 		 * during socket buffer allocation.
750 		 *
751 		 * And after considering the possible alternatives,
752 		 * returning the value we actually used in getsockopt
753 		 * is the most desirable behavior.
754 		 */
755 		sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
756 		break;
757 
758 	case SO_RCVBUFFORCE:
759 		if (!capable(CAP_NET_ADMIN)) {
760 			ret = -EPERM;
761 			break;
762 		}
763 		goto set_rcvbuf;
764 
765 	case SO_KEEPALIVE:
766 		if (sk->sk_prot->keepalive)
767 			sk->sk_prot->keepalive(sk, valbool);
768 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
769 		break;
770 
771 	case SO_OOBINLINE:
772 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
773 		break;
774 
775 	case SO_NO_CHECK:
776 		sk->sk_no_check_tx = valbool;
777 		break;
778 
779 	case SO_PRIORITY:
780 		if ((val >= 0 && val <= 6) ||
781 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
782 			sk->sk_priority = val;
783 		else
784 			ret = -EPERM;
785 		break;
786 
787 	case SO_LINGER:
788 		if (optlen < sizeof(ling)) {
789 			ret = -EINVAL;	/* 1003.1g */
790 			break;
791 		}
792 		if (copy_from_user(&ling, optval, sizeof(ling))) {
793 			ret = -EFAULT;
794 			break;
795 		}
796 		if (!ling.l_onoff)
797 			sock_reset_flag(sk, SOCK_LINGER);
798 		else {
799 #if (BITS_PER_LONG == 32)
800 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
801 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
802 			else
803 #endif
804 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
805 			sock_set_flag(sk, SOCK_LINGER);
806 		}
807 		break;
808 
809 	case SO_BSDCOMPAT:
810 		sock_warn_obsolete_bsdism("setsockopt");
811 		break;
812 
813 	case SO_PASSCRED:
814 		if (valbool)
815 			set_bit(SOCK_PASSCRED, &sock->flags);
816 		else
817 			clear_bit(SOCK_PASSCRED, &sock->flags);
818 		break;
819 
820 	case SO_TIMESTAMP:
821 	case SO_TIMESTAMPNS:
822 		if (valbool)  {
823 			if (optname == SO_TIMESTAMP)
824 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
825 			else
826 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
827 			sock_set_flag(sk, SOCK_RCVTSTAMP);
828 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
829 		} else {
830 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
831 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
832 		}
833 		break;
834 
835 	case SO_TIMESTAMPING:
836 		if (val & ~SOF_TIMESTAMPING_MASK) {
837 			ret = -EINVAL;
838 			break;
839 		}
840 
841 		if (val & SOF_TIMESTAMPING_OPT_ID &&
842 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
843 			if (sk->sk_protocol == IPPROTO_TCP &&
844 			    sk->sk_type == SOCK_STREAM) {
845 				if ((1 << sk->sk_state) &
846 				    (TCPF_CLOSE | TCPF_LISTEN)) {
847 					ret = -EINVAL;
848 					break;
849 				}
850 				sk->sk_tskey = tcp_sk(sk)->snd_una;
851 			} else {
852 				sk->sk_tskey = 0;
853 			}
854 		}
855 
856 		if (val & SOF_TIMESTAMPING_OPT_STATS &&
857 		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
858 			ret = -EINVAL;
859 			break;
860 		}
861 
862 		sk->sk_tsflags = val;
863 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
864 			sock_enable_timestamp(sk,
865 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
866 		else
867 			sock_disable_timestamp(sk,
868 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
869 		break;
870 
871 	case SO_RCVLOWAT:
872 		if (val < 0)
873 			val = INT_MAX;
874 		sk->sk_rcvlowat = val ? : 1;
875 		break;
876 
877 	case SO_RCVTIMEO:
878 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
879 		break;
880 
881 	case SO_SNDTIMEO:
882 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
883 		break;
884 
885 	case SO_ATTACH_FILTER:
886 		ret = -EINVAL;
887 		if (optlen == sizeof(struct sock_fprog)) {
888 			struct sock_fprog fprog;
889 
890 			ret = -EFAULT;
891 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
892 				break;
893 
894 			ret = sk_attach_filter(&fprog, sk);
895 		}
896 		break;
897 
898 	case SO_ATTACH_BPF:
899 		ret = -EINVAL;
900 		if (optlen == sizeof(u32)) {
901 			u32 ufd;
902 
903 			ret = -EFAULT;
904 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
905 				break;
906 
907 			ret = sk_attach_bpf(ufd, sk);
908 		}
909 		break;
910 
911 	case SO_ATTACH_REUSEPORT_CBPF:
912 		ret = -EINVAL;
913 		if (optlen == sizeof(struct sock_fprog)) {
914 			struct sock_fprog fprog;
915 
916 			ret = -EFAULT;
917 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
918 				break;
919 
920 			ret = sk_reuseport_attach_filter(&fprog, sk);
921 		}
922 		break;
923 
924 	case SO_ATTACH_REUSEPORT_EBPF:
925 		ret = -EINVAL;
926 		if (optlen == sizeof(u32)) {
927 			u32 ufd;
928 
929 			ret = -EFAULT;
930 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
931 				break;
932 
933 			ret = sk_reuseport_attach_bpf(ufd, sk);
934 		}
935 		break;
936 
937 	case SO_DETACH_FILTER:
938 		ret = sk_detach_filter(sk);
939 		break;
940 
941 	case SO_LOCK_FILTER:
942 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
943 			ret = -EPERM;
944 		else
945 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
946 		break;
947 
948 	case SO_PASSSEC:
949 		if (valbool)
950 			set_bit(SOCK_PASSSEC, &sock->flags);
951 		else
952 			clear_bit(SOCK_PASSSEC, &sock->flags);
953 		break;
954 	case SO_MARK:
955 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
956 			ret = -EPERM;
957 		else
958 			sk->sk_mark = val;
959 		break;
960 
961 	case SO_RXQ_OVFL:
962 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
963 		break;
964 
965 	case SO_WIFI_STATUS:
966 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
967 		break;
968 
969 	case SO_PEEK_OFF:
970 		if (sock->ops->set_peek_off)
971 			ret = sock->ops->set_peek_off(sk, val);
972 		else
973 			ret = -EOPNOTSUPP;
974 		break;
975 
976 	case SO_NOFCS:
977 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
978 		break;
979 
980 	case SO_SELECT_ERR_QUEUE:
981 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
982 		break;
983 
984 #ifdef CONFIG_NET_RX_BUSY_POLL
985 	case SO_BUSY_POLL:
986 		/* allow unprivileged users to decrease the value */
987 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
988 			ret = -EPERM;
989 		else {
990 			if (val < 0)
991 				ret = -EINVAL;
992 			else
993 				sk->sk_ll_usec = val;
994 		}
995 		break;
996 #endif
997 
998 	case SO_MAX_PACING_RATE:
999 		sk->sk_max_pacing_rate = val;
1000 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1001 					 sk->sk_max_pacing_rate);
1002 		break;
1003 
1004 	case SO_INCOMING_CPU:
1005 		sk->sk_incoming_cpu = val;
1006 		break;
1007 
1008 	case SO_CNX_ADVICE:
1009 		if (val == 1)
1010 			dst_negative_advice(sk);
1011 		break;
1012 	default:
1013 		ret = -ENOPROTOOPT;
1014 		break;
1015 	}
1016 	release_sock(sk);
1017 	return ret;
1018 }
1019 EXPORT_SYMBOL(sock_setsockopt);
1020 
1021 
1022 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1023 			  struct ucred *ucred)
1024 {
1025 	ucred->pid = pid_vnr(pid);
1026 	ucred->uid = ucred->gid = -1;
1027 	if (cred) {
1028 		struct user_namespace *current_ns = current_user_ns();
1029 
1030 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1031 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1032 	}
1033 }
1034 
1035 int sock_getsockopt(struct socket *sock, int level, int optname,
1036 		    char __user *optval, int __user *optlen)
1037 {
1038 	struct sock *sk = sock->sk;
1039 
1040 	union {
1041 		int val;
1042 		struct linger ling;
1043 		struct timeval tm;
1044 	} v;
1045 
1046 	int lv = sizeof(int);
1047 	int len;
1048 
1049 	if (get_user(len, optlen))
1050 		return -EFAULT;
1051 	if (len < 0)
1052 		return -EINVAL;
1053 
1054 	memset(&v, 0, sizeof(v));
1055 
1056 	switch (optname) {
1057 	case SO_DEBUG:
1058 		v.val = sock_flag(sk, SOCK_DBG);
1059 		break;
1060 
1061 	case SO_DONTROUTE:
1062 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1063 		break;
1064 
1065 	case SO_BROADCAST:
1066 		v.val = sock_flag(sk, SOCK_BROADCAST);
1067 		break;
1068 
1069 	case SO_SNDBUF:
1070 		v.val = sk->sk_sndbuf;
1071 		break;
1072 
1073 	case SO_RCVBUF:
1074 		v.val = sk->sk_rcvbuf;
1075 		break;
1076 
1077 	case SO_REUSEADDR:
1078 		v.val = sk->sk_reuse;
1079 		break;
1080 
1081 	case SO_REUSEPORT:
1082 		v.val = sk->sk_reuseport;
1083 		break;
1084 
1085 	case SO_KEEPALIVE:
1086 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1087 		break;
1088 
1089 	case SO_TYPE:
1090 		v.val = sk->sk_type;
1091 		break;
1092 
1093 	case SO_PROTOCOL:
1094 		v.val = sk->sk_protocol;
1095 		break;
1096 
1097 	case SO_DOMAIN:
1098 		v.val = sk->sk_family;
1099 		break;
1100 
1101 	case SO_ERROR:
1102 		v.val = -sock_error(sk);
1103 		if (v.val == 0)
1104 			v.val = xchg(&sk->sk_err_soft, 0);
1105 		break;
1106 
1107 	case SO_OOBINLINE:
1108 		v.val = sock_flag(sk, SOCK_URGINLINE);
1109 		break;
1110 
1111 	case SO_NO_CHECK:
1112 		v.val = sk->sk_no_check_tx;
1113 		break;
1114 
1115 	case SO_PRIORITY:
1116 		v.val = sk->sk_priority;
1117 		break;
1118 
1119 	case SO_LINGER:
1120 		lv		= sizeof(v.ling);
1121 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1122 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1123 		break;
1124 
1125 	case SO_BSDCOMPAT:
1126 		sock_warn_obsolete_bsdism("getsockopt");
1127 		break;
1128 
1129 	case SO_TIMESTAMP:
1130 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1131 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1132 		break;
1133 
1134 	case SO_TIMESTAMPNS:
1135 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1136 		break;
1137 
1138 	case SO_TIMESTAMPING:
1139 		v.val = sk->sk_tsflags;
1140 		break;
1141 
1142 	case SO_RCVTIMEO:
1143 		lv = sizeof(struct timeval);
1144 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1145 			v.tm.tv_sec = 0;
1146 			v.tm.tv_usec = 0;
1147 		} else {
1148 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1149 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1150 		}
1151 		break;
1152 
1153 	case SO_SNDTIMEO:
1154 		lv = sizeof(struct timeval);
1155 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1156 			v.tm.tv_sec = 0;
1157 			v.tm.tv_usec = 0;
1158 		} else {
1159 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1160 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1161 		}
1162 		break;
1163 
1164 	case SO_RCVLOWAT:
1165 		v.val = sk->sk_rcvlowat;
1166 		break;
1167 
1168 	case SO_SNDLOWAT:
1169 		v.val = 1;
1170 		break;
1171 
1172 	case SO_PASSCRED:
1173 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1174 		break;
1175 
1176 	case SO_PEERCRED:
1177 	{
1178 		struct ucred peercred;
1179 		if (len > sizeof(peercred))
1180 			len = sizeof(peercred);
1181 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1182 		if (copy_to_user(optval, &peercred, len))
1183 			return -EFAULT;
1184 		goto lenout;
1185 	}
1186 
1187 	case SO_PEERNAME:
1188 	{
1189 		char address[128];
1190 
1191 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1192 			return -ENOTCONN;
1193 		if (lv < len)
1194 			return -EINVAL;
1195 		if (copy_to_user(optval, address, len))
1196 			return -EFAULT;
1197 		goto lenout;
1198 	}
1199 
1200 	/* Dubious BSD thing... Probably nobody even uses it, but
1201 	 * the UNIX standard wants it for whatever reason... -DaveM
1202 	 */
1203 	case SO_ACCEPTCONN:
1204 		v.val = sk->sk_state == TCP_LISTEN;
1205 		break;
1206 
1207 	case SO_PASSSEC:
1208 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1209 		break;
1210 
1211 	case SO_PEERSEC:
1212 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1213 
1214 	case SO_MARK:
1215 		v.val = sk->sk_mark;
1216 		break;
1217 
1218 	case SO_RXQ_OVFL:
1219 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1220 		break;
1221 
1222 	case SO_WIFI_STATUS:
1223 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1224 		break;
1225 
1226 	case SO_PEEK_OFF:
1227 		if (!sock->ops->set_peek_off)
1228 			return -EOPNOTSUPP;
1229 
1230 		v.val = sk->sk_peek_off;
1231 		break;
1232 	case SO_NOFCS:
1233 		v.val = sock_flag(sk, SOCK_NOFCS);
1234 		break;
1235 
1236 	case SO_BINDTODEVICE:
1237 		return sock_getbindtodevice(sk, optval, optlen, len);
1238 
1239 	case SO_GET_FILTER:
1240 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1241 		if (len < 0)
1242 			return len;
1243 
1244 		goto lenout;
1245 
1246 	case SO_LOCK_FILTER:
1247 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1248 		break;
1249 
1250 	case SO_BPF_EXTENSIONS:
1251 		v.val = bpf_tell_extensions();
1252 		break;
1253 
1254 	case SO_SELECT_ERR_QUEUE:
1255 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1256 		break;
1257 
1258 #ifdef CONFIG_NET_RX_BUSY_POLL
1259 	case SO_BUSY_POLL:
1260 		v.val = sk->sk_ll_usec;
1261 		break;
1262 #endif
1263 
1264 	case SO_MAX_PACING_RATE:
1265 		v.val = sk->sk_max_pacing_rate;
1266 		break;
1267 
1268 	case SO_INCOMING_CPU:
1269 		v.val = sk->sk_incoming_cpu;
1270 		break;
1271 
1272 	default:
1273 		/* We implement the SO_SNDLOWAT etc to not be settable
1274 		 * (1003.1g 7).
1275 		 */
1276 		return -ENOPROTOOPT;
1277 	}
1278 
1279 	if (len > lv)
1280 		len = lv;
1281 	if (copy_to_user(optval, &v, len))
1282 		return -EFAULT;
1283 lenout:
1284 	if (put_user(len, optlen))
1285 		return -EFAULT;
1286 	return 0;
1287 }
1288 
1289 /*
1290  * Initialize an sk_lock.
1291  *
1292  * (We also register the sk_lock with the lock validator.)
1293  */
1294 static inline void sock_lock_init(struct sock *sk)
1295 {
1296 	sock_lock_init_class_and_name(sk,
1297 			af_family_slock_key_strings[sk->sk_family],
1298 			af_family_slock_keys + sk->sk_family,
1299 			af_family_key_strings[sk->sk_family],
1300 			af_family_keys + sk->sk_family);
1301 }
1302 
1303 /*
1304  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1305  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1306  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1307  */
1308 static void sock_copy(struct sock *nsk, const struct sock *osk)
1309 {
1310 #ifdef CONFIG_SECURITY_NETWORK
1311 	void *sptr = nsk->sk_security;
1312 #endif
1313 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1314 
1315 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1316 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1317 
1318 #ifdef CONFIG_SECURITY_NETWORK
1319 	nsk->sk_security = sptr;
1320 	security_sk_clone(osk, nsk);
1321 #endif
1322 }
1323 
1324 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1325 		int family)
1326 {
1327 	struct sock *sk;
1328 	struct kmem_cache *slab;
1329 
1330 	slab = prot->slab;
1331 	if (slab != NULL) {
1332 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1333 		if (!sk)
1334 			return sk;
1335 		if (priority & __GFP_ZERO)
1336 			sk_prot_clear_nulls(sk, prot->obj_size);
1337 	} else
1338 		sk = kmalloc(prot->obj_size, priority);
1339 
1340 	if (sk != NULL) {
1341 		kmemcheck_annotate_bitfield(sk, flags);
1342 
1343 		if (security_sk_alloc(sk, family, priority))
1344 			goto out_free;
1345 
1346 		if (!try_module_get(prot->owner))
1347 			goto out_free_sec;
1348 		sk_tx_queue_clear(sk);
1349 	}
1350 
1351 	return sk;
1352 
1353 out_free_sec:
1354 	security_sk_free(sk);
1355 out_free:
1356 	if (slab != NULL)
1357 		kmem_cache_free(slab, sk);
1358 	else
1359 		kfree(sk);
1360 	return NULL;
1361 }
1362 
1363 static void sk_prot_free(struct proto *prot, struct sock *sk)
1364 {
1365 	struct kmem_cache *slab;
1366 	struct module *owner;
1367 
1368 	owner = prot->owner;
1369 	slab = prot->slab;
1370 
1371 	cgroup_sk_free(&sk->sk_cgrp_data);
1372 	mem_cgroup_sk_free(sk);
1373 	security_sk_free(sk);
1374 	if (slab != NULL)
1375 		kmem_cache_free(slab, sk);
1376 	else
1377 		kfree(sk);
1378 	module_put(owner);
1379 }
1380 
1381 /**
1382  *	sk_alloc - All socket objects are allocated here
1383  *	@net: the applicable net namespace
1384  *	@family: protocol family
1385  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1386  *	@prot: struct proto associated with this new sock instance
1387  *	@kern: is this to be a kernel socket?
1388  */
1389 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1390 		      struct proto *prot, int kern)
1391 {
1392 	struct sock *sk;
1393 
1394 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1395 	if (sk) {
1396 		sk->sk_family = family;
1397 		/*
1398 		 * See comment in struct sock definition to understand
1399 		 * why we need sk_prot_creator -acme
1400 		 */
1401 		sk->sk_prot = sk->sk_prot_creator = prot;
1402 		sock_lock_init(sk);
1403 		sk->sk_net_refcnt = kern ? 0 : 1;
1404 		if (likely(sk->sk_net_refcnt))
1405 			get_net(net);
1406 		sock_net_set(sk, net);
1407 		atomic_set(&sk->sk_wmem_alloc, 1);
1408 
1409 		mem_cgroup_sk_alloc(sk);
1410 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1411 		sock_update_classid(&sk->sk_cgrp_data);
1412 		sock_update_netprioidx(&sk->sk_cgrp_data);
1413 	}
1414 
1415 	return sk;
1416 }
1417 EXPORT_SYMBOL(sk_alloc);
1418 
1419 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1420  * grace period. This is the case for UDP sockets and TCP listeners.
1421  */
1422 static void __sk_destruct(struct rcu_head *head)
1423 {
1424 	struct sock *sk = container_of(head, struct sock, sk_rcu);
1425 	struct sk_filter *filter;
1426 
1427 	if (sk->sk_destruct)
1428 		sk->sk_destruct(sk);
1429 
1430 	filter = rcu_dereference_check(sk->sk_filter,
1431 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1432 	if (filter) {
1433 		sk_filter_uncharge(sk, filter);
1434 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1435 	}
1436 	if (rcu_access_pointer(sk->sk_reuseport_cb))
1437 		reuseport_detach_sock(sk);
1438 
1439 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1440 
1441 	if (atomic_read(&sk->sk_omem_alloc))
1442 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1443 			 __func__, atomic_read(&sk->sk_omem_alloc));
1444 
1445 	if (sk->sk_peer_cred)
1446 		put_cred(sk->sk_peer_cred);
1447 	put_pid(sk->sk_peer_pid);
1448 	if (likely(sk->sk_net_refcnt))
1449 		put_net(sock_net(sk));
1450 	sk_prot_free(sk->sk_prot_creator, sk);
1451 }
1452 
1453 void sk_destruct(struct sock *sk)
1454 {
1455 	if (sock_flag(sk, SOCK_RCU_FREE))
1456 		call_rcu(&sk->sk_rcu, __sk_destruct);
1457 	else
1458 		__sk_destruct(&sk->sk_rcu);
1459 }
1460 
1461 static void __sk_free(struct sock *sk)
1462 {
1463 	if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1464 		sock_diag_broadcast_destroy(sk);
1465 	else
1466 		sk_destruct(sk);
1467 }
1468 
1469 void sk_free(struct sock *sk)
1470 {
1471 	/*
1472 	 * We subtract one from sk_wmem_alloc and can know if
1473 	 * some packets are still in some tx queue.
1474 	 * If not null, sock_wfree() will call __sk_free(sk) later
1475 	 */
1476 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1477 		__sk_free(sk);
1478 }
1479 EXPORT_SYMBOL(sk_free);
1480 
1481 /**
1482  *	sk_clone_lock - clone a socket, and lock its clone
1483  *	@sk: the socket to clone
1484  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1485  *
1486  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1487  */
1488 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1489 {
1490 	struct sock *newsk;
1491 	bool is_charged = true;
1492 
1493 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1494 	if (newsk != NULL) {
1495 		struct sk_filter *filter;
1496 
1497 		sock_copy(newsk, sk);
1498 
1499 		/* SANITY */
1500 		if (likely(newsk->sk_net_refcnt))
1501 			get_net(sock_net(newsk));
1502 		sk_node_init(&newsk->sk_node);
1503 		sock_lock_init(newsk);
1504 		bh_lock_sock(newsk);
1505 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1506 		newsk->sk_backlog.len = 0;
1507 
1508 		atomic_set(&newsk->sk_rmem_alloc, 0);
1509 		/*
1510 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1511 		 */
1512 		atomic_set(&newsk->sk_wmem_alloc, 1);
1513 		atomic_set(&newsk->sk_omem_alloc, 0);
1514 		skb_queue_head_init(&newsk->sk_receive_queue);
1515 		skb_queue_head_init(&newsk->sk_write_queue);
1516 
1517 		rwlock_init(&newsk->sk_callback_lock);
1518 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1519 				af_callback_keys + newsk->sk_family,
1520 				af_family_clock_key_strings[newsk->sk_family]);
1521 
1522 		newsk->sk_dst_cache	= NULL;
1523 		newsk->sk_dst_pending_confirm = 0;
1524 		newsk->sk_wmem_queued	= 0;
1525 		newsk->sk_forward_alloc = 0;
1526 		atomic_set(&newsk->sk_drops, 0);
1527 		newsk->sk_send_head	= NULL;
1528 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1529 
1530 		sock_reset_flag(newsk, SOCK_DONE);
1531 		skb_queue_head_init(&newsk->sk_error_queue);
1532 
1533 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1534 		if (filter != NULL)
1535 			/* though it's an empty new sock, the charging may fail
1536 			 * if sysctl_optmem_max was changed between creation of
1537 			 * original socket and cloning
1538 			 */
1539 			is_charged = sk_filter_charge(newsk, filter);
1540 
1541 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1542 			sk_free_unlock_clone(newsk);
1543 			newsk = NULL;
1544 			goto out;
1545 		}
1546 		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1547 
1548 		newsk->sk_err	   = 0;
1549 		newsk->sk_err_soft = 0;
1550 		newsk->sk_priority = 0;
1551 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1552 		atomic64_set(&newsk->sk_cookie, 0);
1553 
1554 		mem_cgroup_sk_alloc(newsk);
1555 		cgroup_sk_alloc(&newsk->sk_cgrp_data);
1556 
1557 		/*
1558 		 * Before updating sk_refcnt, we must commit prior changes to memory
1559 		 * (Documentation/RCU/rculist_nulls.txt for details)
1560 		 */
1561 		smp_wmb();
1562 		atomic_set(&newsk->sk_refcnt, 2);
1563 
1564 		/*
1565 		 * Increment the counter in the same struct proto as the master
1566 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1567 		 * is the same as sk->sk_prot->socks, as this field was copied
1568 		 * with memcpy).
1569 		 *
1570 		 * This _changes_ the previous behaviour, where
1571 		 * tcp_create_openreq_child always was incrementing the
1572 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1573 		 * to be taken into account in all callers. -acme
1574 		 */
1575 		sk_refcnt_debug_inc(newsk);
1576 		sk_set_socket(newsk, NULL);
1577 		newsk->sk_wq = NULL;
1578 
1579 		if (newsk->sk_prot->sockets_allocated)
1580 			sk_sockets_allocated_inc(newsk);
1581 
1582 		if (sock_needs_netstamp(sk) &&
1583 		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1584 			net_enable_timestamp();
1585 	}
1586 out:
1587 	return newsk;
1588 }
1589 EXPORT_SYMBOL_GPL(sk_clone_lock);
1590 
1591 void sk_free_unlock_clone(struct sock *sk)
1592 {
1593 	/* It is still raw copy of parent, so invalidate
1594 	 * destructor and make plain sk_free() */
1595 	sk->sk_destruct = NULL;
1596 	bh_unlock_sock(sk);
1597 	sk_free(sk);
1598 }
1599 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1600 
1601 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1602 {
1603 	u32 max_segs = 1;
1604 
1605 	sk_dst_set(sk, dst);
1606 	sk->sk_route_caps = dst->dev->features;
1607 	if (sk->sk_route_caps & NETIF_F_GSO)
1608 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1609 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1610 	if (sk_can_gso(sk)) {
1611 		if (dst->header_len) {
1612 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1613 		} else {
1614 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1615 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1616 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1617 		}
1618 	}
1619 	sk->sk_gso_max_segs = max_segs;
1620 }
1621 EXPORT_SYMBOL_GPL(sk_setup_caps);
1622 
1623 /*
1624  *	Simple resource managers for sockets.
1625  */
1626 
1627 
1628 /*
1629  * Write buffer destructor automatically called from kfree_skb.
1630  */
1631 void sock_wfree(struct sk_buff *skb)
1632 {
1633 	struct sock *sk = skb->sk;
1634 	unsigned int len = skb->truesize;
1635 
1636 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1637 		/*
1638 		 * Keep a reference on sk_wmem_alloc, this will be released
1639 		 * after sk_write_space() call
1640 		 */
1641 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1642 		sk->sk_write_space(sk);
1643 		len = 1;
1644 	}
1645 	/*
1646 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1647 	 * could not do because of in-flight packets
1648 	 */
1649 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1650 		__sk_free(sk);
1651 }
1652 EXPORT_SYMBOL(sock_wfree);
1653 
1654 /* This variant of sock_wfree() is used by TCP,
1655  * since it sets SOCK_USE_WRITE_QUEUE.
1656  */
1657 void __sock_wfree(struct sk_buff *skb)
1658 {
1659 	struct sock *sk = skb->sk;
1660 
1661 	if (atomic_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1662 		__sk_free(sk);
1663 }
1664 
1665 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1666 {
1667 	skb_orphan(skb);
1668 	skb->sk = sk;
1669 #ifdef CONFIG_INET
1670 	if (unlikely(!sk_fullsock(sk))) {
1671 		skb->destructor = sock_edemux;
1672 		sock_hold(sk);
1673 		return;
1674 	}
1675 #endif
1676 	skb->destructor = sock_wfree;
1677 	skb_set_hash_from_sk(skb, sk);
1678 	/*
1679 	 * We used to take a refcount on sk, but following operation
1680 	 * is enough to guarantee sk_free() wont free this sock until
1681 	 * all in-flight packets are completed
1682 	 */
1683 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1684 }
1685 EXPORT_SYMBOL(skb_set_owner_w);
1686 
1687 /* This helper is used by netem, as it can hold packets in its
1688  * delay queue. We want to allow the owner socket to send more
1689  * packets, as if they were already TX completed by a typical driver.
1690  * But we also want to keep skb->sk set because some packet schedulers
1691  * rely on it (sch_fq for example). So we set skb->truesize to a small
1692  * amount (1) and decrease sk_wmem_alloc accordingly.
1693  */
1694 void skb_orphan_partial(struct sk_buff *skb)
1695 {
1696 	/* If this skb is a TCP pure ACK or already went here,
1697 	 * we have nothing to do. 2 is already a very small truesize.
1698 	 */
1699 	if (skb->truesize <= 2)
1700 		return;
1701 
1702 	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1703 	 * so we do not completely orphan skb, but transfert all
1704 	 * accounted bytes but one, to avoid unexpected reorders.
1705 	 */
1706 	if (skb->destructor == sock_wfree
1707 #ifdef CONFIG_INET
1708 	    || skb->destructor == tcp_wfree
1709 #endif
1710 		) {
1711 		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1712 		skb->truesize = 1;
1713 	} else {
1714 		skb_orphan(skb);
1715 	}
1716 }
1717 EXPORT_SYMBOL(skb_orphan_partial);
1718 
1719 /*
1720  * Read buffer destructor automatically called from kfree_skb.
1721  */
1722 void sock_rfree(struct sk_buff *skb)
1723 {
1724 	struct sock *sk = skb->sk;
1725 	unsigned int len = skb->truesize;
1726 
1727 	atomic_sub(len, &sk->sk_rmem_alloc);
1728 	sk_mem_uncharge(sk, len);
1729 }
1730 EXPORT_SYMBOL(sock_rfree);
1731 
1732 /*
1733  * Buffer destructor for skbs that are not used directly in read or write
1734  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1735  */
1736 void sock_efree(struct sk_buff *skb)
1737 {
1738 	sock_put(skb->sk);
1739 }
1740 EXPORT_SYMBOL(sock_efree);
1741 
1742 kuid_t sock_i_uid(struct sock *sk)
1743 {
1744 	kuid_t uid;
1745 
1746 	read_lock_bh(&sk->sk_callback_lock);
1747 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1748 	read_unlock_bh(&sk->sk_callback_lock);
1749 	return uid;
1750 }
1751 EXPORT_SYMBOL(sock_i_uid);
1752 
1753 unsigned long sock_i_ino(struct sock *sk)
1754 {
1755 	unsigned long ino;
1756 
1757 	read_lock_bh(&sk->sk_callback_lock);
1758 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1759 	read_unlock_bh(&sk->sk_callback_lock);
1760 	return ino;
1761 }
1762 EXPORT_SYMBOL(sock_i_ino);
1763 
1764 /*
1765  * Allocate a skb from the socket's send buffer.
1766  */
1767 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1768 			     gfp_t priority)
1769 {
1770 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1771 		struct sk_buff *skb = alloc_skb(size, priority);
1772 		if (skb) {
1773 			skb_set_owner_w(skb, sk);
1774 			return skb;
1775 		}
1776 	}
1777 	return NULL;
1778 }
1779 EXPORT_SYMBOL(sock_wmalloc);
1780 
1781 /*
1782  * Allocate a memory block from the socket's option memory buffer.
1783  */
1784 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1785 {
1786 	if ((unsigned int)size <= sysctl_optmem_max &&
1787 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1788 		void *mem;
1789 		/* First do the add, to avoid the race if kmalloc
1790 		 * might sleep.
1791 		 */
1792 		atomic_add(size, &sk->sk_omem_alloc);
1793 		mem = kmalloc(size, priority);
1794 		if (mem)
1795 			return mem;
1796 		atomic_sub(size, &sk->sk_omem_alloc);
1797 	}
1798 	return NULL;
1799 }
1800 EXPORT_SYMBOL(sock_kmalloc);
1801 
1802 /* Free an option memory block. Note, we actually want the inline
1803  * here as this allows gcc to detect the nullify and fold away the
1804  * condition entirely.
1805  */
1806 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1807 				  const bool nullify)
1808 {
1809 	if (WARN_ON_ONCE(!mem))
1810 		return;
1811 	if (nullify)
1812 		kzfree(mem);
1813 	else
1814 		kfree(mem);
1815 	atomic_sub(size, &sk->sk_omem_alloc);
1816 }
1817 
1818 void sock_kfree_s(struct sock *sk, void *mem, int size)
1819 {
1820 	__sock_kfree_s(sk, mem, size, false);
1821 }
1822 EXPORT_SYMBOL(sock_kfree_s);
1823 
1824 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1825 {
1826 	__sock_kfree_s(sk, mem, size, true);
1827 }
1828 EXPORT_SYMBOL(sock_kzfree_s);
1829 
1830 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1831    I think, these locks should be removed for datagram sockets.
1832  */
1833 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1834 {
1835 	DEFINE_WAIT(wait);
1836 
1837 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1838 	for (;;) {
1839 		if (!timeo)
1840 			break;
1841 		if (signal_pending(current))
1842 			break;
1843 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1844 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1845 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1846 			break;
1847 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1848 			break;
1849 		if (sk->sk_err)
1850 			break;
1851 		timeo = schedule_timeout(timeo);
1852 	}
1853 	finish_wait(sk_sleep(sk), &wait);
1854 	return timeo;
1855 }
1856 
1857 
1858 /*
1859  *	Generic send/receive buffer handlers
1860  */
1861 
1862 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1863 				     unsigned long data_len, int noblock,
1864 				     int *errcode, int max_page_order)
1865 {
1866 	struct sk_buff *skb;
1867 	long timeo;
1868 	int err;
1869 
1870 	timeo = sock_sndtimeo(sk, noblock);
1871 	for (;;) {
1872 		err = sock_error(sk);
1873 		if (err != 0)
1874 			goto failure;
1875 
1876 		err = -EPIPE;
1877 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1878 			goto failure;
1879 
1880 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1881 			break;
1882 
1883 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1884 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1885 		err = -EAGAIN;
1886 		if (!timeo)
1887 			goto failure;
1888 		if (signal_pending(current))
1889 			goto interrupted;
1890 		timeo = sock_wait_for_wmem(sk, timeo);
1891 	}
1892 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1893 				   errcode, sk->sk_allocation);
1894 	if (skb)
1895 		skb_set_owner_w(skb, sk);
1896 	return skb;
1897 
1898 interrupted:
1899 	err = sock_intr_errno(timeo);
1900 failure:
1901 	*errcode = err;
1902 	return NULL;
1903 }
1904 EXPORT_SYMBOL(sock_alloc_send_pskb);
1905 
1906 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1907 				    int noblock, int *errcode)
1908 {
1909 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1910 }
1911 EXPORT_SYMBOL(sock_alloc_send_skb);
1912 
1913 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1914 		     struct sockcm_cookie *sockc)
1915 {
1916 	u32 tsflags;
1917 
1918 	switch (cmsg->cmsg_type) {
1919 	case SO_MARK:
1920 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1921 			return -EPERM;
1922 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1923 			return -EINVAL;
1924 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
1925 		break;
1926 	case SO_TIMESTAMPING:
1927 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1928 			return -EINVAL;
1929 
1930 		tsflags = *(u32 *)CMSG_DATA(cmsg);
1931 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
1932 			return -EINVAL;
1933 
1934 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
1935 		sockc->tsflags |= tsflags;
1936 		break;
1937 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
1938 	case SCM_RIGHTS:
1939 	case SCM_CREDENTIALS:
1940 		break;
1941 	default:
1942 		return -EINVAL;
1943 	}
1944 	return 0;
1945 }
1946 EXPORT_SYMBOL(__sock_cmsg_send);
1947 
1948 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1949 		   struct sockcm_cookie *sockc)
1950 {
1951 	struct cmsghdr *cmsg;
1952 	int ret;
1953 
1954 	for_each_cmsghdr(cmsg, msg) {
1955 		if (!CMSG_OK(msg, cmsg))
1956 			return -EINVAL;
1957 		if (cmsg->cmsg_level != SOL_SOCKET)
1958 			continue;
1959 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
1960 		if (ret)
1961 			return ret;
1962 	}
1963 	return 0;
1964 }
1965 EXPORT_SYMBOL(sock_cmsg_send);
1966 
1967 /* On 32bit arches, an skb frag is limited to 2^15 */
1968 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1969 
1970 /**
1971  * skb_page_frag_refill - check that a page_frag contains enough room
1972  * @sz: minimum size of the fragment we want to get
1973  * @pfrag: pointer to page_frag
1974  * @gfp: priority for memory allocation
1975  *
1976  * Note: While this allocator tries to use high order pages, there is
1977  * no guarantee that allocations succeed. Therefore, @sz MUST be
1978  * less or equal than PAGE_SIZE.
1979  */
1980 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1981 {
1982 	if (pfrag->page) {
1983 		if (page_ref_count(pfrag->page) == 1) {
1984 			pfrag->offset = 0;
1985 			return true;
1986 		}
1987 		if (pfrag->offset + sz <= pfrag->size)
1988 			return true;
1989 		put_page(pfrag->page);
1990 	}
1991 
1992 	pfrag->offset = 0;
1993 	if (SKB_FRAG_PAGE_ORDER) {
1994 		/* Avoid direct reclaim but allow kswapd to wake */
1995 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
1996 					  __GFP_COMP | __GFP_NOWARN |
1997 					  __GFP_NORETRY,
1998 					  SKB_FRAG_PAGE_ORDER);
1999 		if (likely(pfrag->page)) {
2000 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2001 			return true;
2002 		}
2003 	}
2004 	pfrag->page = alloc_page(gfp);
2005 	if (likely(pfrag->page)) {
2006 		pfrag->size = PAGE_SIZE;
2007 		return true;
2008 	}
2009 	return false;
2010 }
2011 EXPORT_SYMBOL(skb_page_frag_refill);
2012 
2013 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2014 {
2015 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2016 		return true;
2017 
2018 	sk_enter_memory_pressure(sk);
2019 	sk_stream_moderate_sndbuf(sk);
2020 	return false;
2021 }
2022 EXPORT_SYMBOL(sk_page_frag_refill);
2023 
2024 static void __lock_sock(struct sock *sk)
2025 	__releases(&sk->sk_lock.slock)
2026 	__acquires(&sk->sk_lock.slock)
2027 {
2028 	DEFINE_WAIT(wait);
2029 
2030 	for (;;) {
2031 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2032 					TASK_UNINTERRUPTIBLE);
2033 		spin_unlock_bh(&sk->sk_lock.slock);
2034 		schedule();
2035 		spin_lock_bh(&sk->sk_lock.slock);
2036 		if (!sock_owned_by_user(sk))
2037 			break;
2038 	}
2039 	finish_wait(&sk->sk_lock.wq, &wait);
2040 }
2041 
2042 static void __release_sock(struct sock *sk)
2043 	__releases(&sk->sk_lock.slock)
2044 	__acquires(&sk->sk_lock.slock)
2045 {
2046 	struct sk_buff *skb, *next;
2047 
2048 	while ((skb = sk->sk_backlog.head) != NULL) {
2049 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2050 
2051 		spin_unlock_bh(&sk->sk_lock.slock);
2052 
2053 		do {
2054 			next = skb->next;
2055 			prefetch(next);
2056 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2057 			skb->next = NULL;
2058 			sk_backlog_rcv(sk, skb);
2059 
2060 			cond_resched();
2061 
2062 			skb = next;
2063 		} while (skb != NULL);
2064 
2065 		spin_lock_bh(&sk->sk_lock.slock);
2066 	}
2067 
2068 	/*
2069 	 * Doing the zeroing here guarantee we can not loop forever
2070 	 * while a wild producer attempts to flood us.
2071 	 */
2072 	sk->sk_backlog.len = 0;
2073 }
2074 
2075 void __sk_flush_backlog(struct sock *sk)
2076 {
2077 	spin_lock_bh(&sk->sk_lock.slock);
2078 	__release_sock(sk);
2079 	spin_unlock_bh(&sk->sk_lock.slock);
2080 }
2081 
2082 /**
2083  * sk_wait_data - wait for data to arrive at sk_receive_queue
2084  * @sk:    sock to wait on
2085  * @timeo: for how long
2086  * @skb:   last skb seen on sk_receive_queue
2087  *
2088  * Now socket state including sk->sk_err is changed only under lock,
2089  * hence we may omit checks after joining wait queue.
2090  * We check receive queue before schedule() only as optimization;
2091  * it is very likely that release_sock() added new data.
2092  */
2093 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2094 {
2095 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2096 	int rc;
2097 
2098 	add_wait_queue(sk_sleep(sk), &wait);
2099 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2100 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2101 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2102 	remove_wait_queue(sk_sleep(sk), &wait);
2103 	return rc;
2104 }
2105 EXPORT_SYMBOL(sk_wait_data);
2106 
2107 /**
2108  *	__sk_mem_raise_allocated - increase memory_allocated
2109  *	@sk: socket
2110  *	@size: memory size to allocate
2111  *	@amt: pages to allocate
2112  *	@kind: allocation type
2113  *
2114  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2115  */
2116 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2117 {
2118 	struct proto *prot = sk->sk_prot;
2119 	long allocated = sk_memory_allocated_add(sk, amt);
2120 
2121 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2122 	    !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2123 		goto suppress_allocation;
2124 
2125 	/* Under limit. */
2126 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2127 		sk_leave_memory_pressure(sk);
2128 		return 1;
2129 	}
2130 
2131 	/* Under pressure. */
2132 	if (allocated > sk_prot_mem_limits(sk, 1))
2133 		sk_enter_memory_pressure(sk);
2134 
2135 	/* Over hard limit. */
2136 	if (allocated > sk_prot_mem_limits(sk, 2))
2137 		goto suppress_allocation;
2138 
2139 	/* guarantee minimum buffer size under pressure */
2140 	if (kind == SK_MEM_RECV) {
2141 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2142 			return 1;
2143 
2144 	} else { /* SK_MEM_SEND */
2145 		if (sk->sk_type == SOCK_STREAM) {
2146 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2147 				return 1;
2148 		} else if (atomic_read(&sk->sk_wmem_alloc) <
2149 			   prot->sysctl_wmem[0])
2150 				return 1;
2151 	}
2152 
2153 	if (sk_has_memory_pressure(sk)) {
2154 		int alloc;
2155 
2156 		if (!sk_under_memory_pressure(sk))
2157 			return 1;
2158 		alloc = sk_sockets_allocated_read_positive(sk);
2159 		if (sk_prot_mem_limits(sk, 2) > alloc *
2160 		    sk_mem_pages(sk->sk_wmem_queued +
2161 				 atomic_read(&sk->sk_rmem_alloc) +
2162 				 sk->sk_forward_alloc))
2163 			return 1;
2164 	}
2165 
2166 suppress_allocation:
2167 
2168 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2169 		sk_stream_moderate_sndbuf(sk);
2170 
2171 		/* Fail only if socket is _under_ its sndbuf.
2172 		 * In this case we cannot block, so that we have to fail.
2173 		 */
2174 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2175 			return 1;
2176 	}
2177 
2178 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2179 
2180 	sk_memory_allocated_sub(sk, amt);
2181 
2182 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2183 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2184 
2185 	return 0;
2186 }
2187 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2188 
2189 /**
2190  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2191  *	@sk: socket
2192  *	@size: memory size to allocate
2193  *	@kind: allocation type
2194  *
2195  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2196  *	rmem allocation. This function assumes that protocols which have
2197  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2198  */
2199 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2200 {
2201 	int ret, amt = sk_mem_pages(size);
2202 
2203 	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2204 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2205 	if (!ret)
2206 		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2207 	return ret;
2208 }
2209 EXPORT_SYMBOL(__sk_mem_schedule);
2210 
2211 /**
2212  *	__sk_mem_reduce_allocated - reclaim memory_allocated
2213  *	@sk: socket
2214  *	@amount: number of quanta
2215  *
2216  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2217  */
2218 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2219 {
2220 	sk_memory_allocated_sub(sk, amount);
2221 
2222 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2223 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2224 
2225 	if (sk_under_memory_pressure(sk) &&
2226 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2227 		sk_leave_memory_pressure(sk);
2228 }
2229 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2230 
2231 /**
2232  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2233  *	@sk: socket
2234  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2235  */
2236 void __sk_mem_reclaim(struct sock *sk, int amount)
2237 {
2238 	amount >>= SK_MEM_QUANTUM_SHIFT;
2239 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2240 	__sk_mem_reduce_allocated(sk, amount);
2241 }
2242 EXPORT_SYMBOL(__sk_mem_reclaim);
2243 
2244 int sk_set_peek_off(struct sock *sk, int val)
2245 {
2246 	if (val < 0)
2247 		return -EINVAL;
2248 
2249 	sk->sk_peek_off = val;
2250 	return 0;
2251 }
2252 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2253 
2254 /*
2255  * Set of default routines for initialising struct proto_ops when
2256  * the protocol does not support a particular function. In certain
2257  * cases where it makes no sense for a protocol to have a "do nothing"
2258  * function, some default processing is provided.
2259  */
2260 
2261 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2262 {
2263 	return -EOPNOTSUPP;
2264 }
2265 EXPORT_SYMBOL(sock_no_bind);
2266 
2267 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2268 		    int len, int flags)
2269 {
2270 	return -EOPNOTSUPP;
2271 }
2272 EXPORT_SYMBOL(sock_no_connect);
2273 
2274 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2275 {
2276 	return -EOPNOTSUPP;
2277 }
2278 EXPORT_SYMBOL(sock_no_socketpair);
2279 
2280 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2281 {
2282 	return -EOPNOTSUPP;
2283 }
2284 EXPORT_SYMBOL(sock_no_accept);
2285 
2286 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2287 		    int *len, int peer)
2288 {
2289 	return -EOPNOTSUPP;
2290 }
2291 EXPORT_SYMBOL(sock_no_getname);
2292 
2293 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2294 {
2295 	return 0;
2296 }
2297 EXPORT_SYMBOL(sock_no_poll);
2298 
2299 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2300 {
2301 	return -EOPNOTSUPP;
2302 }
2303 EXPORT_SYMBOL(sock_no_ioctl);
2304 
2305 int sock_no_listen(struct socket *sock, int backlog)
2306 {
2307 	return -EOPNOTSUPP;
2308 }
2309 EXPORT_SYMBOL(sock_no_listen);
2310 
2311 int sock_no_shutdown(struct socket *sock, int how)
2312 {
2313 	return -EOPNOTSUPP;
2314 }
2315 EXPORT_SYMBOL(sock_no_shutdown);
2316 
2317 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2318 		    char __user *optval, unsigned int optlen)
2319 {
2320 	return -EOPNOTSUPP;
2321 }
2322 EXPORT_SYMBOL(sock_no_setsockopt);
2323 
2324 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2325 		    char __user *optval, int __user *optlen)
2326 {
2327 	return -EOPNOTSUPP;
2328 }
2329 EXPORT_SYMBOL(sock_no_getsockopt);
2330 
2331 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2332 {
2333 	return -EOPNOTSUPP;
2334 }
2335 EXPORT_SYMBOL(sock_no_sendmsg);
2336 
2337 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2338 		    int flags)
2339 {
2340 	return -EOPNOTSUPP;
2341 }
2342 EXPORT_SYMBOL(sock_no_recvmsg);
2343 
2344 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2345 {
2346 	/* Mirror missing mmap method error code */
2347 	return -ENODEV;
2348 }
2349 EXPORT_SYMBOL(sock_no_mmap);
2350 
2351 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2352 {
2353 	ssize_t res;
2354 	struct msghdr msg = {.msg_flags = flags};
2355 	struct kvec iov;
2356 	char *kaddr = kmap(page);
2357 	iov.iov_base = kaddr + offset;
2358 	iov.iov_len = size;
2359 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2360 	kunmap(page);
2361 	return res;
2362 }
2363 EXPORT_SYMBOL(sock_no_sendpage);
2364 
2365 /*
2366  *	Default Socket Callbacks
2367  */
2368 
2369 static void sock_def_wakeup(struct sock *sk)
2370 {
2371 	struct socket_wq *wq;
2372 
2373 	rcu_read_lock();
2374 	wq = rcu_dereference(sk->sk_wq);
2375 	if (skwq_has_sleeper(wq))
2376 		wake_up_interruptible_all(&wq->wait);
2377 	rcu_read_unlock();
2378 }
2379 
2380 static void sock_def_error_report(struct sock *sk)
2381 {
2382 	struct socket_wq *wq;
2383 
2384 	rcu_read_lock();
2385 	wq = rcu_dereference(sk->sk_wq);
2386 	if (skwq_has_sleeper(wq))
2387 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2388 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2389 	rcu_read_unlock();
2390 }
2391 
2392 static void sock_def_readable(struct sock *sk)
2393 {
2394 	struct socket_wq *wq;
2395 
2396 	rcu_read_lock();
2397 	wq = rcu_dereference(sk->sk_wq);
2398 	if (skwq_has_sleeper(wq))
2399 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2400 						POLLRDNORM | POLLRDBAND);
2401 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2402 	rcu_read_unlock();
2403 }
2404 
2405 static void sock_def_write_space(struct sock *sk)
2406 {
2407 	struct socket_wq *wq;
2408 
2409 	rcu_read_lock();
2410 
2411 	/* Do not wake up a writer until he can make "significant"
2412 	 * progress.  --DaveM
2413 	 */
2414 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2415 		wq = rcu_dereference(sk->sk_wq);
2416 		if (skwq_has_sleeper(wq))
2417 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2418 						POLLWRNORM | POLLWRBAND);
2419 
2420 		/* Should agree with poll, otherwise some programs break */
2421 		if (sock_writeable(sk))
2422 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2423 	}
2424 
2425 	rcu_read_unlock();
2426 }
2427 
2428 static void sock_def_destruct(struct sock *sk)
2429 {
2430 }
2431 
2432 void sk_send_sigurg(struct sock *sk)
2433 {
2434 	if (sk->sk_socket && sk->sk_socket->file)
2435 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2436 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2437 }
2438 EXPORT_SYMBOL(sk_send_sigurg);
2439 
2440 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2441 		    unsigned long expires)
2442 {
2443 	if (!mod_timer(timer, expires))
2444 		sock_hold(sk);
2445 }
2446 EXPORT_SYMBOL(sk_reset_timer);
2447 
2448 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2449 {
2450 	if (del_timer(timer))
2451 		__sock_put(sk);
2452 }
2453 EXPORT_SYMBOL(sk_stop_timer);
2454 
2455 void sock_init_data(struct socket *sock, struct sock *sk)
2456 {
2457 	skb_queue_head_init(&sk->sk_receive_queue);
2458 	skb_queue_head_init(&sk->sk_write_queue);
2459 	skb_queue_head_init(&sk->sk_error_queue);
2460 
2461 	sk->sk_send_head	=	NULL;
2462 
2463 	init_timer(&sk->sk_timer);
2464 
2465 	sk->sk_allocation	=	GFP_KERNEL;
2466 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2467 	sk->sk_sndbuf		=	sysctl_wmem_default;
2468 	sk->sk_state		=	TCP_CLOSE;
2469 	sk_set_socket(sk, sock);
2470 
2471 	sock_set_flag(sk, SOCK_ZAPPED);
2472 
2473 	if (sock) {
2474 		sk->sk_type	=	sock->type;
2475 		sk->sk_wq	=	sock->wq;
2476 		sock->sk	=	sk;
2477 		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2478 	} else {
2479 		sk->sk_wq	=	NULL;
2480 		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2481 	}
2482 
2483 	rwlock_init(&sk->sk_callback_lock);
2484 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2485 			af_callback_keys + sk->sk_family,
2486 			af_family_clock_key_strings[sk->sk_family]);
2487 
2488 	sk->sk_state_change	=	sock_def_wakeup;
2489 	sk->sk_data_ready	=	sock_def_readable;
2490 	sk->sk_write_space	=	sock_def_write_space;
2491 	sk->sk_error_report	=	sock_def_error_report;
2492 	sk->sk_destruct		=	sock_def_destruct;
2493 
2494 	sk->sk_frag.page	=	NULL;
2495 	sk->sk_frag.offset	=	0;
2496 	sk->sk_peek_off		=	-1;
2497 
2498 	sk->sk_peer_pid 	=	NULL;
2499 	sk->sk_peer_cred	=	NULL;
2500 	sk->sk_write_pending	=	0;
2501 	sk->sk_rcvlowat		=	1;
2502 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2503 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2504 
2505 	sk->sk_stamp = ktime_set(-1L, 0);
2506 
2507 #ifdef CONFIG_NET_RX_BUSY_POLL
2508 	sk->sk_napi_id		=	0;
2509 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2510 #endif
2511 
2512 	sk->sk_max_pacing_rate = ~0U;
2513 	sk->sk_pacing_rate = ~0U;
2514 	sk->sk_incoming_cpu = -1;
2515 	/*
2516 	 * Before updating sk_refcnt, we must commit prior changes to memory
2517 	 * (Documentation/RCU/rculist_nulls.txt for details)
2518 	 */
2519 	smp_wmb();
2520 	atomic_set(&sk->sk_refcnt, 1);
2521 	atomic_set(&sk->sk_drops, 0);
2522 }
2523 EXPORT_SYMBOL(sock_init_data);
2524 
2525 void lock_sock_nested(struct sock *sk, int subclass)
2526 {
2527 	might_sleep();
2528 	spin_lock_bh(&sk->sk_lock.slock);
2529 	if (sk->sk_lock.owned)
2530 		__lock_sock(sk);
2531 	sk->sk_lock.owned = 1;
2532 	spin_unlock(&sk->sk_lock.slock);
2533 	/*
2534 	 * The sk_lock has mutex_lock() semantics here:
2535 	 */
2536 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2537 	local_bh_enable();
2538 }
2539 EXPORT_SYMBOL(lock_sock_nested);
2540 
2541 void release_sock(struct sock *sk)
2542 {
2543 	spin_lock_bh(&sk->sk_lock.slock);
2544 	if (sk->sk_backlog.tail)
2545 		__release_sock(sk);
2546 
2547 	/* Warning : release_cb() might need to release sk ownership,
2548 	 * ie call sock_release_ownership(sk) before us.
2549 	 */
2550 	if (sk->sk_prot->release_cb)
2551 		sk->sk_prot->release_cb(sk);
2552 
2553 	sock_release_ownership(sk);
2554 	if (waitqueue_active(&sk->sk_lock.wq))
2555 		wake_up(&sk->sk_lock.wq);
2556 	spin_unlock_bh(&sk->sk_lock.slock);
2557 }
2558 EXPORT_SYMBOL(release_sock);
2559 
2560 /**
2561  * lock_sock_fast - fast version of lock_sock
2562  * @sk: socket
2563  *
2564  * This version should be used for very small section, where process wont block
2565  * return false if fast path is taken
2566  *   sk_lock.slock locked, owned = 0, BH disabled
2567  * return true if slow path is taken
2568  *   sk_lock.slock unlocked, owned = 1, BH enabled
2569  */
2570 bool lock_sock_fast(struct sock *sk)
2571 {
2572 	might_sleep();
2573 	spin_lock_bh(&sk->sk_lock.slock);
2574 
2575 	if (!sk->sk_lock.owned)
2576 		/*
2577 		 * Note : We must disable BH
2578 		 */
2579 		return false;
2580 
2581 	__lock_sock(sk);
2582 	sk->sk_lock.owned = 1;
2583 	spin_unlock(&sk->sk_lock.slock);
2584 	/*
2585 	 * The sk_lock has mutex_lock() semantics here:
2586 	 */
2587 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2588 	local_bh_enable();
2589 	return true;
2590 }
2591 EXPORT_SYMBOL(lock_sock_fast);
2592 
2593 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2594 {
2595 	struct timeval tv;
2596 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2597 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2598 	tv = ktime_to_timeval(sk->sk_stamp);
2599 	if (tv.tv_sec == -1)
2600 		return -ENOENT;
2601 	if (tv.tv_sec == 0) {
2602 		sk->sk_stamp = ktime_get_real();
2603 		tv = ktime_to_timeval(sk->sk_stamp);
2604 	}
2605 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2606 }
2607 EXPORT_SYMBOL(sock_get_timestamp);
2608 
2609 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2610 {
2611 	struct timespec ts;
2612 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2613 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2614 	ts = ktime_to_timespec(sk->sk_stamp);
2615 	if (ts.tv_sec == -1)
2616 		return -ENOENT;
2617 	if (ts.tv_sec == 0) {
2618 		sk->sk_stamp = ktime_get_real();
2619 		ts = ktime_to_timespec(sk->sk_stamp);
2620 	}
2621 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2622 }
2623 EXPORT_SYMBOL(sock_get_timestampns);
2624 
2625 void sock_enable_timestamp(struct sock *sk, int flag)
2626 {
2627 	if (!sock_flag(sk, flag)) {
2628 		unsigned long previous_flags = sk->sk_flags;
2629 
2630 		sock_set_flag(sk, flag);
2631 		/*
2632 		 * we just set one of the two flags which require net
2633 		 * time stamping, but time stamping might have been on
2634 		 * already because of the other one
2635 		 */
2636 		if (sock_needs_netstamp(sk) &&
2637 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
2638 			net_enable_timestamp();
2639 	}
2640 }
2641 
2642 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2643 		       int level, int type)
2644 {
2645 	struct sock_exterr_skb *serr;
2646 	struct sk_buff *skb;
2647 	int copied, err;
2648 
2649 	err = -EAGAIN;
2650 	skb = sock_dequeue_err_skb(sk);
2651 	if (skb == NULL)
2652 		goto out;
2653 
2654 	copied = skb->len;
2655 	if (copied > len) {
2656 		msg->msg_flags |= MSG_TRUNC;
2657 		copied = len;
2658 	}
2659 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2660 	if (err)
2661 		goto out_free_skb;
2662 
2663 	sock_recv_timestamp(msg, sk, skb);
2664 
2665 	serr = SKB_EXT_ERR(skb);
2666 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2667 
2668 	msg->msg_flags |= MSG_ERRQUEUE;
2669 	err = copied;
2670 
2671 out_free_skb:
2672 	kfree_skb(skb);
2673 out:
2674 	return err;
2675 }
2676 EXPORT_SYMBOL(sock_recv_errqueue);
2677 
2678 /*
2679  *	Get a socket option on an socket.
2680  *
2681  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2682  *	asynchronous errors should be reported by getsockopt. We assume
2683  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2684  */
2685 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2686 			   char __user *optval, int __user *optlen)
2687 {
2688 	struct sock *sk = sock->sk;
2689 
2690 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2691 }
2692 EXPORT_SYMBOL(sock_common_getsockopt);
2693 
2694 #ifdef CONFIG_COMPAT
2695 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2696 				  char __user *optval, int __user *optlen)
2697 {
2698 	struct sock *sk = sock->sk;
2699 
2700 	if (sk->sk_prot->compat_getsockopt != NULL)
2701 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2702 						      optval, optlen);
2703 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2704 }
2705 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2706 #endif
2707 
2708 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2709 			int flags)
2710 {
2711 	struct sock *sk = sock->sk;
2712 	int addr_len = 0;
2713 	int err;
2714 
2715 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2716 				   flags & ~MSG_DONTWAIT, &addr_len);
2717 	if (err >= 0)
2718 		msg->msg_namelen = addr_len;
2719 	return err;
2720 }
2721 EXPORT_SYMBOL(sock_common_recvmsg);
2722 
2723 /*
2724  *	Set socket options on an inet socket.
2725  */
2726 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2727 			   char __user *optval, unsigned int optlen)
2728 {
2729 	struct sock *sk = sock->sk;
2730 
2731 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2732 }
2733 EXPORT_SYMBOL(sock_common_setsockopt);
2734 
2735 #ifdef CONFIG_COMPAT
2736 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2737 				  char __user *optval, unsigned int optlen)
2738 {
2739 	struct sock *sk = sock->sk;
2740 
2741 	if (sk->sk_prot->compat_setsockopt != NULL)
2742 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2743 						      optval, optlen);
2744 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2745 }
2746 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2747 #endif
2748 
2749 void sk_common_release(struct sock *sk)
2750 {
2751 	if (sk->sk_prot->destroy)
2752 		sk->sk_prot->destroy(sk);
2753 
2754 	/*
2755 	 * Observation: when sock_common_release is called, processes have
2756 	 * no access to socket. But net still has.
2757 	 * Step one, detach it from networking:
2758 	 *
2759 	 * A. Remove from hash tables.
2760 	 */
2761 
2762 	sk->sk_prot->unhash(sk);
2763 
2764 	/*
2765 	 * In this point socket cannot receive new packets, but it is possible
2766 	 * that some packets are in flight because some CPU runs receiver and
2767 	 * did hash table lookup before we unhashed socket. They will achieve
2768 	 * receive queue and will be purged by socket destructor.
2769 	 *
2770 	 * Also we still have packets pending on receive queue and probably,
2771 	 * our own packets waiting in device queues. sock_destroy will drain
2772 	 * receive queue, but transmitted packets will delay socket destruction
2773 	 * until the last reference will be released.
2774 	 */
2775 
2776 	sock_orphan(sk);
2777 
2778 	xfrm_sk_free_policy(sk);
2779 
2780 	sk_refcnt_debug_release(sk);
2781 
2782 	if (sk->sk_frag.page) {
2783 		put_page(sk->sk_frag.page);
2784 		sk->sk_frag.page = NULL;
2785 	}
2786 
2787 	sock_put(sk);
2788 }
2789 EXPORT_SYMBOL(sk_common_release);
2790 
2791 #ifdef CONFIG_PROC_FS
2792 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2793 struct prot_inuse {
2794 	int val[PROTO_INUSE_NR];
2795 };
2796 
2797 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2798 
2799 #ifdef CONFIG_NET_NS
2800 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2801 {
2802 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2803 }
2804 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2805 
2806 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2807 {
2808 	int cpu, idx = prot->inuse_idx;
2809 	int res = 0;
2810 
2811 	for_each_possible_cpu(cpu)
2812 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2813 
2814 	return res >= 0 ? res : 0;
2815 }
2816 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2817 
2818 static int __net_init sock_inuse_init_net(struct net *net)
2819 {
2820 	net->core.inuse = alloc_percpu(struct prot_inuse);
2821 	return net->core.inuse ? 0 : -ENOMEM;
2822 }
2823 
2824 static void __net_exit sock_inuse_exit_net(struct net *net)
2825 {
2826 	free_percpu(net->core.inuse);
2827 }
2828 
2829 static struct pernet_operations net_inuse_ops = {
2830 	.init = sock_inuse_init_net,
2831 	.exit = sock_inuse_exit_net,
2832 };
2833 
2834 static __init int net_inuse_init(void)
2835 {
2836 	if (register_pernet_subsys(&net_inuse_ops))
2837 		panic("Cannot initialize net inuse counters");
2838 
2839 	return 0;
2840 }
2841 
2842 core_initcall(net_inuse_init);
2843 #else
2844 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2845 
2846 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2847 {
2848 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2849 }
2850 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2851 
2852 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2853 {
2854 	int cpu, idx = prot->inuse_idx;
2855 	int res = 0;
2856 
2857 	for_each_possible_cpu(cpu)
2858 		res += per_cpu(prot_inuse, cpu).val[idx];
2859 
2860 	return res >= 0 ? res : 0;
2861 }
2862 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2863 #endif
2864 
2865 static void assign_proto_idx(struct proto *prot)
2866 {
2867 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2868 
2869 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2870 		pr_err("PROTO_INUSE_NR exhausted\n");
2871 		return;
2872 	}
2873 
2874 	set_bit(prot->inuse_idx, proto_inuse_idx);
2875 }
2876 
2877 static void release_proto_idx(struct proto *prot)
2878 {
2879 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2880 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2881 }
2882 #else
2883 static inline void assign_proto_idx(struct proto *prot)
2884 {
2885 }
2886 
2887 static inline void release_proto_idx(struct proto *prot)
2888 {
2889 }
2890 #endif
2891 
2892 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2893 {
2894 	if (!rsk_prot)
2895 		return;
2896 	kfree(rsk_prot->slab_name);
2897 	rsk_prot->slab_name = NULL;
2898 	kmem_cache_destroy(rsk_prot->slab);
2899 	rsk_prot->slab = NULL;
2900 }
2901 
2902 static int req_prot_init(const struct proto *prot)
2903 {
2904 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
2905 
2906 	if (!rsk_prot)
2907 		return 0;
2908 
2909 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2910 					prot->name);
2911 	if (!rsk_prot->slab_name)
2912 		return -ENOMEM;
2913 
2914 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2915 					   rsk_prot->obj_size, 0,
2916 					   prot->slab_flags, NULL);
2917 
2918 	if (!rsk_prot->slab) {
2919 		pr_crit("%s: Can't create request sock SLAB cache!\n",
2920 			prot->name);
2921 		return -ENOMEM;
2922 	}
2923 	return 0;
2924 }
2925 
2926 int proto_register(struct proto *prot, int alloc_slab)
2927 {
2928 	if (alloc_slab) {
2929 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2930 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2931 					NULL);
2932 
2933 		if (prot->slab == NULL) {
2934 			pr_crit("%s: Can't create sock SLAB cache!\n",
2935 				prot->name);
2936 			goto out;
2937 		}
2938 
2939 		if (req_prot_init(prot))
2940 			goto out_free_request_sock_slab;
2941 
2942 		if (prot->twsk_prot != NULL) {
2943 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2944 
2945 			if (prot->twsk_prot->twsk_slab_name == NULL)
2946 				goto out_free_request_sock_slab;
2947 
2948 			prot->twsk_prot->twsk_slab =
2949 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2950 						  prot->twsk_prot->twsk_obj_size,
2951 						  0,
2952 						  prot->slab_flags,
2953 						  NULL);
2954 			if (prot->twsk_prot->twsk_slab == NULL)
2955 				goto out_free_timewait_sock_slab_name;
2956 		}
2957 	}
2958 
2959 	mutex_lock(&proto_list_mutex);
2960 	list_add(&prot->node, &proto_list);
2961 	assign_proto_idx(prot);
2962 	mutex_unlock(&proto_list_mutex);
2963 	return 0;
2964 
2965 out_free_timewait_sock_slab_name:
2966 	kfree(prot->twsk_prot->twsk_slab_name);
2967 out_free_request_sock_slab:
2968 	req_prot_cleanup(prot->rsk_prot);
2969 
2970 	kmem_cache_destroy(prot->slab);
2971 	prot->slab = NULL;
2972 out:
2973 	return -ENOBUFS;
2974 }
2975 EXPORT_SYMBOL(proto_register);
2976 
2977 void proto_unregister(struct proto *prot)
2978 {
2979 	mutex_lock(&proto_list_mutex);
2980 	release_proto_idx(prot);
2981 	list_del(&prot->node);
2982 	mutex_unlock(&proto_list_mutex);
2983 
2984 	kmem_cache_destroy(prot->slab);
2985 	prot->slab = NULL;
2986 
2987 	req_prot_cleanup(prot->rsk_prot);
2988 
2989 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2990 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2991 		kfree(prot->twsk_prot->twsk_slab_name);
2992 		prot->twsk_prot->twsk_slab = NULL;
2993 	}
2994 }
2995 EXPORT_SYMBOL(proto_unregister);
2996 
2997 #ifdef CONFIG_PROC_FS
2998 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2999 	__acquires(proto_list_mutex)
3000 {
3001 	mutex_lock(&proto_list_mutex);
3002 	return seq_list_start_head(&proto_list, *pos);
3003 }
3004 
3005 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3006 {
3007 	return seq_list_next(v, &proto_list, pos);
3008 }
3009 
3010 static void proto_seq_stop(struct seq_file *seq, void *v)
3011 	__releases(proto_list_mutex)
3012 {
3013 	mutex_unlock(&proto_list_mutex);
3014 }
3015 
3016 static char proto_method_implemented(const void *method)
3017 {
3018 	return method == NULL ? 'n' : 'y';
3019 }
3020 static long sock_prot_memory_allocated(struct proto *proto)
3021 {
3022 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3023 }
3024 
3025 static char *sock_prot_memory_pressure(struct proto *proto)
3026 {
3027 	return proto->memory_pressure != NULL ?
3028 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3029 }
3030 
3031 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3032 {
3033 
3034 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3035 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3036 		   proto->name,
3037 		   proto->obj_size,
3038 		   sock_prot_inuse_get(seq_file_net(seq), proto),
3039 		   sock_prot_memory_allocated(proto),
3040 		   sock_prot_memory_pressure(proto),
3041 		   proto->max_header,
3042 		   proto->slab == NULL ? "no" : "yes",
3043 		   module_name(proto->owner),
3044 		   proto_method_implemented(proto->close),
3045 		   proto_method_implemented(proto->connect),
3046 		   proto_method_implemented(proto->disconnect),
3047 		   proto_method_implemented(proto->accept),
3048 		   proto_method_implemented(proto->ioctl),
3049 		   proto_method_implemented(proto->init),
3050 		   proto_method_implemented(proto->destroy),
3051 		   proto_method_implemented(proto->shutdown),
3052 		   proto_method_implemented(proto->setsockopt),
3053 		   proto_method_implemented(proto->getsockopt),
3054 		   proto_method_implemented(proto->sendmsg),
3055 		   proto_method_implemented(proto->recvmsg),
3056 		   proto_method_implemented(proto->sendpage),
3057 		   proto_method_implemented(proto->bind),
3058 		   proto_method_implemented(proto->backlog_rcv),
3059 		   proto_method_implemented(proto->hash),
3060 		   proto_method_implemented(proto->unhash),
3061 		   proto_method_implemented(proto->get_port),
3062 		   proto_method_implemented(proto->enter_memory_pressure));
3063 }
3064 
3065 static int proto_seq_show(struct seq_file *seq, void *v)
3066 {
3067 	if (v == &proto_list)
3068 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3069 			   "protocol",
3070 			   "size",
3071 			   "sockets",
3072 			   "memory",
3073 			   "press",
3074 			   "maxhdr",
3075 			   "slab",
3076 			   "module",
3077 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3078 	else
3079 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3080 	return 0;
3081 }
3082 
3083 static const struct seq_operations proto_seq_ops = {
3084 	.start  = proto_seq_start,
3085 	.next   = proto_seq_next,
3086 	.stop   = proto_seq_stop,
3087 	.show   = proto_seq_show,
3088 };
3089 
3090 static int proto_seq_open(struct inode *inode, struct file *file)
3091 {
3092 	return seq_open_net(inode, file, &proto_seq_ops,
3093 			    sizeof(struct seq_net_private));
3094 }
3095 
3096 static const struct file_operations proto_seq_fops = {
3097 	.owner		= THIS_MODULE,
3098 	.open		= proto_seq_open,
3099 	.read		= seq_read,
3100 	.llseek		= seq_lseek,
3101 	.release	= seq_release_net,
3102 };
3103 
3104 static __net_init int proto_init_net(struct net *net)
3105 {
3106 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3107 		return -ENOMEM;
3108 
3109 	return 0;
3110 }
3111 
3112 static __net_exit void proto_exit_net(struct net *net)
3113 {
3114 	remove_proc_entry("protocols", net->proc_net);
3115 }
3116 
3117 
3118 static __net_initdata struct pernet_operations proto_net_ops = {
3119 	.init = proto_init_net,
3120 	.exit = proto_exit_net,
3121 };
3122 
3123 static int __init proto_init(void)
3124 {
3125 	return register_pernet_subsys(&proto_net_ops);
3126 }
3127 
3128 subsys_initcall(proto_init);
3129 
3130 #endif /* PROC_FS */
3131