xref: /openbmc/linux/net/core/sock.c (revision a8da474e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120 
121 #include <asm/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135 
136 #include <linux/filter.h>
137 
138 #include <trace/events/sock.h>
139 
140 #ifdef CONFIG_INET
141 #include <net/tcp.h>
142 #endif
143 
144 #include <net/busy_poll.h>
145 
146 static DEFINE_MUTEX(proto_list_mutex);
147 static LIST_HEAD(proto_list);
148 
149 /**
150  * sk_ns_capable - General socket capability test
151  * @sk: Socket to use a capability on or through
152  * @user_ns: The user namespace of the capability to use
153  * @cap: The capability to use
154  *
155  * Test to see if the opener of the socket had when the socket was
156  * created and the current process has the capability @cap in the user
157  * namespace @user_ns.
158  */
159 bool sk_ns_capable(const struct sock *sk,
160 		   struct user_namespace *user_ns, int cap)
161 {
162 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
163 		ns_capable(user_ns, cap);
164 }
165 EXPORT_SYMBOL(sk_ns_capable);
166 
167 /**
168  * sk_capable - Socket global capability test
169  * @sk: Socket to use a capability on or through
170  * @cap: The global capability to use
171  *
172  * Test to see if the opener of the socket had when the socket was
173  * created and the current process has the capability @cap in all user
174  * namespaces.
175  */
176 bool sk_capable(const struct sock *sk, int cap)
177 {
178 	return sk_ns_capable(sk, &init_user_ns, cap);
179 }
180 EXPORT_SYMBOL(sk_capable);
181 
182 /**
183  * sk_net_capable - Network namespace socket capability test
184  * @sk: Socket to use a capability on or through
185  * @cap: The capability to use
186  *
187  * Test to see if the opener of the socket had when the socket was created
188  * and the current process has the capability @cap over the network namespace
189  * the socket is a member of.
190  */
191 bool sk_net_capable(const struct sock *sk, int cap)
192 {
193 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
194 }
195 EXPORT_SYMBOL(sk_net_capable);
196 
197 
198 #ifdef CONFIG_MEMCG_KMEM
199 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
200 {
201 	struct proto *proto;
202 	int ret = 0;
203 
204 	mutex_lock(&proto_list_mutex);
205 	list_for_each_entry(proto, &proto_list, node) {
206 		if (proto->init_cgroup) {
207 			ret = proto->init_cgroup(memcg, ss);
208 			if (ret)
209 				goto out;
210 		}
211 	}
212 
213 	mutex_unlock(&proto_list_mutex);
214 	return ret;
215 out:
216 	list_for_each_entry_continue_reverse(proto, &proto_list, node)
217 		if (proto->destroy_cgroup)
218 			proto->destroy_cgroup(memcg);
219 	mutex_unlock(&proto_list_mutex);
220 	return ret;
221 }
222 
223 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
224 {
225 	struct proto *proto;
226 
227 	mutex_lock(&proto_list_mutex);
228 	list_for_each_entry_reverse(proto, &proto_list, node)
229 		if (proto->destroy_cgroup)
230 			proto->destroy_cgroup(memcg);
231 	mutex_unlock(&proto_list_mutex);
232 }
233 #endif
234 
235 /*
236  * Each address family might have different locking rules, so we have
237  * one slock key per address family:
238  */
239 static struct lock_class_key af_family_keys[AF_MAX];
240 static struct lock_class_key af_family_slock_keys[AF_MAX];
241 
242 #if defined(CONFIG_MEMCG_KMEM)
243 struct static_key memcg_socket_limit_enabled;
244 EXPORT_SYMBOL(memcg_socket_limit_enabled);
245 #endif
246 
247 /*
248  * Make lock validator output more readable. (we pre-construct these
249  * strings build-time, so that runtime initialization of socket
250  * locks is fast):
251  */
252 static const char *const af_family_key_strings[AF_MAX+1] = {
253   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
254   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
255   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
256   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
257   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
258   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
259   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
260   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
261   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
262   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
263   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
264   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
265   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
266   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_MAX"
267 };
268 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
269   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
270   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
271   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
272   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
273   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
274   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
275   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
276   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
277   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
278   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
279   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
280   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
281   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
282   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_MAX"
283 };
284 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
285   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
286   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
287   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
288   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
289   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
290   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
291   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
292   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
293   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
294   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
295   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
296   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
297   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
298   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_MAX"
299 };
300 
301 /*
302  * sk_callback_lock locking rules are per-address-family,
303  * so split the lock classes by using a per-AF key:
304  */
305 static struct lock_class_key af_callback_keys[AF_MAX];
306 
307 /* Take into consideration the size of the struct sk_buff overhead in the
308  * determination of these values, since that is non-constant across
309  * platforms.  This makes socket queueing behavior and performance
310  * not depend upon such differences.
311  */
312 #define _SK_MEM_PACKETS		256
313 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
314 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
316 
317 /* Run time adjustable parameters. */
318 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
319 EXPORT_SYMBOL(sysctl_wmem_max);
320 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
321 EXPORT_SYMBOL(sysctl_rmem_max);
322 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
323 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
324 
325 /* Maximal space eaten by iovec or ancillary data plus some space */
326 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
327 EXPORT_SYMBOL(sysctl_optmem_max);
328 
329 int sysctl_tstamp_allow_data __read_mostly = 1;
330 
331 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
332 EXPORT_SYMBOL_GPL(memalloc_socks);
333 
334 /**
335  * sk_set_memalloc - sets %SOCK_MEMALLOC
336  * @sk: socket to set it on
337  *
338  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
339  * It's the responsibility of the admin to adjust min_free_kbytes
340  * to meet the requirements
341  */
342 void sk_set_memalloc(struct sock *sk)
343 {
344 	sock_set_flag(sk, SOCK_MEMALLOC);
345 	sk->sk_allocation |= __GFP_MEMALLOC;
346 	static_key_slow_inc(&memalloc_socks);
347 }
348 EXPORT_SYMBOL_GPL(sk_set_memalloc);
349 
350 void sk_clear_memalloc(struct sock *sk)
351 {
352 	sock_reset_flag(sk, SOCK_MEMALLOC);
353 	sk->sk_allocation &= ~__GFP_MEMALLOC;
354 	static_key_slow_dec(&memalloc_socks);
355 
356 	/*
357 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
358 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
359 	 * it has rmem allocations due to the last swapfile being deactivated
360 	 * but there is a risk that the socket is unusable due to exceeding
361 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
362 	 */
363 	sk_mem_reclaim(sk);
364 }
365 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
366 
367 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
368 {
369 	int ret;
370 	unsigned long pflags = current->flags;
371 
372 	/* these should have been dropped before queueing */
373 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
374 
375 	current->flags |= PF_MEMALLOC;
376 	ret = sk->sk_backlog_rcv(sk, skb);
377 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
378 
379 	return ret;
380 }
381 EXPORT_SYMBOL(__sk_backlog_rcv);
382 
383 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
384 {
385 	struct timeval tv;
386 
387 	if (optlen < sizeof(tv))
388 		return -EINVAL;
389 	if (copy_from_user(&tv, optval, sizeof(tv)))
390 		return -EFAULT;
391 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
392 		return -EDOM;
393 
394 	if (tv.tv_sec < 0) {
395 		static int warned __read_mostly;
396 
397 		*timeo_p = 0;
398 		if (warned < 10 && net_ratelimit()) {
399 			warned++;
400 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
401 				__func__, current->comm, task_pid_nr(current));
402 		}
403 		return 0;
404 	}
405 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
406 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
407 		return 0;
408 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
409 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
410 	return 0;
411 }
412 
413 static void sock_warn_obsolete_bsdism(const char *name)
414 {
415 	static int warned;
416 	static char warncomm[TASK_COMM_LEN];
417 	if (strcmp(warncomm, current->comm) && warned < 5) {
418 		strcpy(warncomm,  current->comm);
419 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
420 			warncomm, name);
421 		warned++;
422 	}
423 }
424 
425 static bool sock_needs_netstamp(const struct sock *sk)
426 {
427 	switch (sk->sk_family) {
428 	case AF_UNSPEC:
429 	case AF_UNIX:
430 		return false;
431 	default:
432 		return true;
433 	}
434 }
435 
436 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
437 
438 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
439 {
440 	if (sk->sk_flags & flags) {
441 		sk->sk_flags &= ~flags;
442 		if (sock_needs_netstamp(sk) &&
443 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
444 			net_disable_timestamp();
445 	}
446 }
447 
448 
449 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
450 {
451 	int err;
452 	unsigned long flags;
453 	struct sk_buff_head *list = &sk->sk_receive_queue;
454 
455 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
456 		atomic_inc(&sk->sk_drops);
457 		trace_sock_rcvqueue_full(sk, skb);
458 		return -ENOMEM;
459 	}
460 
461 	err = sk_filter(sk, skb);
462 	if (err)
463 		return err;
464 
465 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
466 		atomic_inc(&sk->sk_drops);
467 		return -ENOBUFS;
468 	}
469 
470 	skb->dev = NULL;
471 	skb_set_owner_r(skb, sk);
472 
473 	/* we escape from rcu protected region, make sure we dont leak
474 	 * a norefcounted dst
475 	 */
476 	skb_dst_force(skb);
477 
478 	spin_lock_irqsave(&list->lock, flags);
479 	sock_skb_set_dropcount(sk, skb);
480 	__skb_queue_tail(list, skb);
481 	spin_unlock_irqrestore(&list->lock, flags);
482 
483 	if (!sock_flag(sk, SOCK_DEAD))
484 		sk->sk_data_ready(sk);
485 	return 0;
486 }
487 EXPORT_SYMBOL(sock_queue_rcv_skb);
488 
489 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
490 {
491 	int rc = NET_RX_SUCCESS;
492 
493 	if (sk_filter(sk, skb))
494 		goto discard_and_relse;
495 
496 	skb->dev = NULL;
497 
498 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
499 		atomic_inc(&sk->sk_drops);
500 		goto discard_and_relse;
501 	}
502 	if (nested)
503 		bh_lock_sock_nested(sk);
504 	else
505 		bh_lock_sock(sk);
506 	if (!sock_owned_by_user(sk)) {
507 		/*
508 		 * trylock + unlock semantics:
509 		 */
510 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
511 
512 		rc = sk_backlog_rcv(sk, skb);
513 
514 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
515 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
516 		bh_unlock_sock(sk);
517 		atomic_inc(&sk->sk_drops);
518 		goto discard_and_relse;
519 	}
520 
521 	bh_unlock_sock(sk);
522 out:
523 	sock_put(sk);
524 	return rc;
525 discard_and_relse:
526 	kfree_skb(skb);
527 	goto out;
528 }
529 EXPORT_SYMBOL(sk_receive_skb);
530 
531 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
532 {
533 	struct dst_entry *dst = __sk_dst_get(sk);
534 
535 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
536 		sk_tx_queue_clear(sk);
537 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
538 		dst_release(dst);
539 		return NULL;
540 	}
541 
542 	return dst;
543 }
544 EXPORT_SYMBOL(__sk_dst_check);
545 
546 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
547 {
548 	struct dst_entry *dst = sk_dst_get(sk);
549 
550 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
551 		sk_dst_reset(sk);
552 		dst_release(dst);
553 		return NULL;
554 	}
555 
556 	return dst;
557 }
558 EXPORT_SYMBOL(sk_dst_check);
559 
560 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
561 				int optlen)
562 {
563 	int ret = -ENOPROTOOPT;
564 #ifdef CONFIG_NETDEVICES
565 	struct net *net = sock_net(sk);
566 	char devname[IFNAMSIZ];
567 	int index;
568 
569 	/* Sorry... */
570 	ret = -EPERM;
571 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
572 		goto out;
573 
574 	ret = -EINVAL;
575 	if (optlen < 0)
576 		goto out;
577 
578 	/* Bind this socket to a particular device like "eth0",
579 	 * as specified in the passed interface name. If the
580 	 * name is "" or the option length is zero the socket
581 	 * is not bound.
582 	 */
583 	if (optlen > IFNAMSIZ - 1)
584 		optlen = IFNAMSIZ - 1;
585 	memset(devname, 0, sizeof(devname));
586 
587 	ret = -EFAULT;
588 	if (copy_from_user(devname, optval, optlen))
589 		goto out;
590 
591 	index = 0;
592 	if (devname[0] != '\0') {
593 		struct net_device *dev;
594 
595 		rcu_read_lock();
596 		dev = dev_get_by_name_rcu(net, devname);
597 		if (dev)
598 			index = dev->ifindex;
599 		rcu_read_unlock();
600 		ret = -ENODEV;
601 		if (!dev)
602 			goto out;
603 	}
604 
605 	lock_sock(sk);
606 	sk->sk_bound_dev_if = index;
607 	sk_dst_reset(sk);
608 	release_sock(sk);
609 
610 	ret = 0;
611 
612 out:
613 #endif
614 
615 	return ret;
616 }
617 
618 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
619 				int __user *optlen, int len)
620 {
621 	int ret = -ENOPROTOOPT;
622 #ifdef CONFIG_NETDEVICES
623 	struct net *net = sock_net(sk);
624 	char devname[IFNAMSIZ];
625 
626 	if (sk->sk_bound_dev_if == 0) {
627 		len = 0;
628 		goto zero;
629 	}
630 
631 	ret = -EINVAL;
632 	if (len < IFNAMSIZ)
633 		goto out;
634 
635 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
636 	if (ret)
637 		goto out;
638 
639 	len = strlen(devname) + 1;
640 
641 	ret = -EFAULT;
642 	if (copy_to_user(optval, devname, len))
643 		goto out;
644 
645 zero:
646 	ret = -EFAULT;
647 	if (put_user(len, optlen))
648 		goto out;
649 
650 	ret = 0;
651 
652 out:
653 #endif
654 
655 	return ret;
656 }
657 
658 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
659 {
660 	if (valbool)
661 		sock_set_flag(sk, bit);
662 	else
663 		sock_reset_flag(sk, bit);
664 }
665 
666 bool sk_mc_loop(struct sock *sk)
667 {
668 	if (dev_recursion_level())
669 		return false;
670 	if (!sk)
671 		return true;
672 	switch (sk->sk_family) {
673 	case AF_INET:
674 		return inet_sk(sk)->mc_loop;
675 #if IS_ENABLED(CONFIG_IPV6)
676 	case AF_INET6:
677 		return inet6_sk(sk)->mc_loop;
678 #endif
679 	}
680 	WARN_ON(1);
681 	return true;
682 }
683 EXPORT_SYMBOL(sk_mc_loop);
684 
685 /*
686  *	This is meant for all protocols to use and covers goings on
687  *	at the socket level. Everything here is generic.
688  */
689 
690 int sock_setsockopt(struct socket *sock, int level, int optname,
691 		    char __user *optval, unsigned int optlen)
692 {
693 	struct sock *sk = sock->sk;
694 	int val;
695 	int valbool;
696 	struct linger ling;
697 	int ret = 0;
698 
699 	/*
700 	 *	Options without arguments
701 	 */
702 
703 	if (optname == SO_BINDTODEVICE)
704 		return sock_setbindtodevice(sk, optval, optlen);
705 
706 	if (optlen < sizeof(int))
707 		return -EINVAL;
708 
709 	if (get_user(val, (int __user *)optval))
710 		return -EFAULT;
711 
712 	valbool = val ? 1 : 0;
713 
714 	lock_sock(sk);
715 
716 	switch (optname) {
717 	case SO_DEBUG:
718 		if (val && !capable(CAP_NET_ADMIN))
719 			ret = -EACCES;
720 		else
721 			sock_valbool_flag(sk, SOCK_DBG, valbool);
722 		break;
723 	case SO_REUSEADDR:
724 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
725 		break;
726 	case SO_REUSEPORT:
727 		sk->sk_reuseport = valbool;
728 		break;
729 	case SO_TYPE:
730 	case SO_PROTOCOL:
731 	case SO_DOMAIN:
732 	case SO_ERROR:
733 		ret = -ENOPROTOOPT;
734 		break;
735 	case SO_DONTROUTE:
736 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
737 		break;
738 	case SO_BROADCAST:
739 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
740 		break;
741 	case SO_SNDBUF:
742 		/* Don't error on this BSD doesn't and if you think
743 		 * about it this is right. Otherwise apps have to
744 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
745 		 * are treated in BSD as hints
746 		 */
747 		val = min_t(u32, val, sysctl_wmem_max);
748 set_sndbuf:
749 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
750 		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
751 		/* Wake up sending tasks if we upped the value. */
752 		sk->sk_write_space(sk);
753 		break;
754 
755 	case SO_SNDBUFFORCE:
756 		if (!capable(CAP_NET_ADMIN)) {
757 			ret = -EPERM;
758 			break;
759 		}
760 		goto set_sndbuf;
761 
762 	case SO_RCVBUF:
763 		/* Don't error on this BSD doesn't and if you think
764 		 * about it this is right. Otherwise apps have to
765 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
766 		 * are treated in BSD as hints
767 		 */
768 		val = min_t(u32, val, sysctl_rmem_max);
769 set_rcvbuf:
770 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
771 		/*
772 		 * We double it on the way in to account for
773 		 * "struct sk_buff" etc. overhead.   Applications
774 		 * assume that the SO_RCVBUF setting they make will
775 		 * allow that much actual data to be received on that
776 		 * socket.
777 		 *
778 		 * Applications are unaware that "struct sk_buff" and
779 		 * other overheads allocate from the receive buffer
780 		 * during socket buffer allocation.
781 		 *
782 		 * And after considering the possible alternatives,
783 		 * returning the value we actually used in getsockopt
784 		 * is the most desirable behavior.
785 		 */
786 		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
787 		break;
788 
789 	case SO_RCVBUFFORCE:
790 		if (!capable(CAP_NET_ADMIN)) {
791 			ret = -EPERM;
792 			break;
793 		}
794 		goto set_rcvbuf;
795 
796 	case SO_KEEPALIVE:
797 #ifdef CONFIG_INET
798 		if (sk->sk_protocol == IPPROTO_TCP &&
799 		    sk->sk_type == SOCK_STREAM)
800 			tcp_set_keepalive(sk, valbool);
801 #endif
802 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
803 		break;
804 
805 	case SO_OOBINLINE:
806 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
807 		break;
808 
809 	case SO_NO_CHECK:
810 		sk->sk_no_check_tx = valbool;
811 		break;
812 
813 	case SO_PRIORITY:
814 		if ((val >= 0 && val <= 6) ||
815 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
816 			sk->sk_priority = val;
817 		else
818 			ret = -EPERM;
819 		break;
820 
821 	case SO_LINGER:
822 		if (optlen < sizeof(ling)) {
823 			ret = -EINVAL;	/* 1003.1g */
824 			break;
825 		}
826 		if (copy_from_user(&ling, optval, sizeof(ling))) {
827 			ret = -EFAULT;
828 			break;
829 		}
830 		if (!ling.l_onoff)
831 			sock_reset_flag(sk, SOCK_LINGER);
832 		else {
833 #if (BITS_PER_LONG == 32)
834 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
835 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
836 			else
837 #endif
838 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
839 			sock_set_flag(sk, SOCK_LINGER);
840 		}
841 		break;
842 
843 	case SO_BSDCOMPAT:
844 		sock_warn_obsolete_bsdism("setsockopt");
845 		break;
846 
847 	case SO_PASSCRED:
848 		if (valbool)
849 			set_bit(SOCK_PASSCRED, &sock->flags);
850 		else
851 			clear_bit(SOCK_PASSCRED, &sock->flags);
852 		break;
853 
854 	case SO_TIMESTAMP:
855 	case SO_TIMESTAMPNS:
856 		if (valbool)  {
857 			if (optname == SO_TIMESTAMP)
858 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
859 			else
860 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
861 			sock_set_flag(sk, SOCK_RCVTSTAMP);
862 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
863 		} else {
864 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
865 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
866 		}
867 		break;
868 
869 	case SO_TIMESTAMPING:
870 		if (val & ~SOF_TIMESTAMPING_MASK) {
871 			ret = -EINVAL;
872 			break;
873 		}
874 
875 		if (val & SOF_TIMESTAMPING_OPT_ID &&
876 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
877 			if (sk->sk_protocol == IPPROTO_TCP) {
878 				if (sk->sk_state != TCP_ESTABLISHED) {
879 					ret = -EINVAL;
880 					break;
881 				}
882 				sk->sk_tskey = tcp_sk(sk)->snd_una;
883 			} else {
884 				sk->sk_tskey = 0;
885 			}
886 		}
887 		sk->sk_tsflags = val;
888 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
889 			sock_enable_timestamp(sk,
890 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
891 		else
892 			sock_disable_timestamp(sk,
893 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
894 		break;
895 
896 	case SO_RCVLOWAT:
897 		if (val < 0)
898 			val = INT_MAX;
899 		sk->sk_rcvlowat = val ? : 1;
900 		break;
901 
902 	case SO_RCVTIMEO:
903 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
904 		break;
905 
906 	case SO_SNDTIMEO:
907 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
908 		break;
909 
910 	case SO_ATTACH_FILTER:
911 		ret = -EINVAL;
912 		if (optlen == sizeof(struct sock_fprog)) {
913 			struct sock_fprog fprog;
914 
915 			ret = -EFAULT;
916 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
917 				break;
918 
919 			ret = sk_attach_filter(&fprog, sk);
920 		}
921 		break;
922 
923 	case SO_ATTACH_BPF:
924 		ret = -EINVAL;
925 		if (optlen == sizeof(u32)) {
926 			u32 ufd;
927 
928 			ret = -EFAULT;
929 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
930 				break;
931 
932 			ret = sk_attach_bpf(ufd, sk);
933 		}
934 		break;
935 
936 	case SO_DETACH_FILTER:
937 		ret = sk_detach_filter(sk);
938 		break;
939 
940 	case SO_LOCK_FILTER:
941 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
942 			ret = -EPERM;
943 		else
944 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
945 		break;
946 
947 	case SO_PASSSEC:
948 		if (valbool)
949 			set_bit(SOCK_PASSSEC, &sock->flags);
950 		else
951 			clear_bit(SOCK_PASSSEC, &sock->flags);
952 		break;
953 	case SO_MARK:
954 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
955 			ret = -EPERM;
956 		else
957 			sk->sk_mark = val;
958 		break;
959 
960 	case SO_RXQ_OVFL:
961 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
962 		break;
963 
964 	case SO_WIFI_STATUS:
965 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
966 		break;
967 
968 	case SO_PEEK_OFF:
969 		if (sock->ops->set_peek_off)
970 			ret = sock->ops->set_peek_off(sk, val);
971 		else
972 			ret = -EOPNOTSUPP;
973 		break;
974 
975 	case SO_NOFCS:
976 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
977 		break;
978 
979 	case SO_SELECT_ERR_QUEUE:
980 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
981 		break;
982 
983 #ifdef CONFIG_NET_RX_BUSY_POLL
984 	case SO_BUSY_POLL:
985 		/* allow unprivileged users to decrease the value */
986 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
987 			ret = -EPERM;
988 		else {
989 			if (val < 0)
990 				ret = -EINVAL;
991 			else
992 				sk->sk_ll_usec = val;
993 		}
994 		break;
995 #endif
996 
997 	case SO_MAX_PACING_RATE:
998 		sk->sk_max_pacing_rate = val;
999 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1000 					 sk->sk_max_pacing_rate);
1001 		break;
1002 
1003 	case SO_INCOMING_CPU:
1004 		sk->sk_incoming_cpu = val;
1005 		break;
1006 
1007 	default:
1008 		ret = -ENOPROTOOPT;
1009 		break;
1010 	}
1011 	release_sock(sk);
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(sock_setsockopt);
1015 
1016 
1017 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1018 			  struct ucred *ucred)
1019 {
1020 	ucred->pid = pid_vnr(pid);
1021 	ucred->uid = ucred->gid = -1;
1022 	if (cred) {
1023 		struct user_namespace *current_ns = current_user_ns();
1024 
1025 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1026 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1027 	}
1028 }
1029 
1030 int sock_getsockopt(struct socket *sock, int level, int optname,
1031 		    char __user *optval, int __user *optlen)
1032 {
1033 	struct sock *sk = sock->sk;
1034 
1035 	union {
1036 		int val;
1037 		struct linger ling;
1038 		struct timeval tm;
1039 	} v;
1040 
1041 	int lv = sizeof(int);
1042 	int len;
1043 
1044 	if (get_user(len, optlen))
1045 		return -EFAULT;
1046 	if (len < 0)
1047 		return -EINVAL;
1048 
1049 	memset(&v, 0, sizeof(v));
1050 
1051 	switch (optname) {
1052 	case SO_DEBUG:
1053 		v.val = sock_flag(sk, SOCK_DBG);
1054 		break;
1055 
1056 	case SO_DONTROUTE:
1057 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1058 		break;
1059 
1060 	case SO_BROADCAST:
1061 		v.val = sock_flag(sk, SOCK_BROADCAST);
1062 		break;
1063 
1064 	case SO_SNDBUF:
1065 		v.val = sk->sk_sndbuf;
1066 		break;
1067 
1068 	case SO_RCVBUF:
1069 		v.val = sk->sk_rcvbuf;
1070 		break;
1071 
1072 	case SO_REUSEADDR:
1073 		v.val = sk->sk_reuse;
1074 		break;
1075 
1076 	case SO_REUSEPORT:
1077 		v.val = sk->sk_reuseport;
1078 		break;
1079 
1080 	case SO_KEEPALIVE:
1081 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1082 		break;
1083 
1084 	case SO_TYPE:
1085 		v.val = sk->sk_type;
1086 		break;
1087 
1088 	case SO_PROTOCOL:
1089 		v.val = sk->sk_protocol;
1090 		break;
1091 
1092 	case SO_DOMAIN:
1093 		v.val = sk->sk_family;
1094 		break;
1095 
1096 	case SO_ERROR:
1097 		v.val = -sock_error(sk);
1098 		if (v.val == 0)
1099 			v.val = xchg(&sk->sk_err_soft, 0);
1100 		break;
1101 
1102 	case SO_OOBINLINE:
1103 		v.val = sock_flag(sk, SOCK_URGINLINE);
1104 		break;
1105 
1106 	case SO_NO_CHECK:
1107 		v.val = sk->sk_no_check_tx;
1108 		break;
1109 
1110 	case SO_PRIORITY:
1111 		v.val = sk->sk_priority;
1112 		break;
1113 
1114 	case SO_LINGER:
1115 		lv		= sizeof(v.ling);
1116 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1117 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1118 		break;
1119 
1120 	case SO_BSDCOMPAT:
1121 		sock_warn_obsolete_bsdism("getsockopt");
1122 		break;
1123 
1124 	case SO_TIMESTAMP:
1125 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1126 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1127 		break;
1128 
1129 	case SO_TIMESTAMPNS:
1130 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1131 		break;
1132 
1133 	case SO_TIMESTAMPING:
1134 		v.val = sk->sk_tsflags;
1135 		break;
1136 
1137 	case SO_RCVTIMEO:
1138 		lv = sizeof(struct timeval);
1139 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1140 			v.tm.tv_sec = 0;
1141 			v.tm.tv_usec = 0;
1142 		} else {
1143 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1144 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1145 		}
1146 		break;
1147 
1148 	case SO_SNDTIMEO:
1149 		lv = sizeof(struct timeval);
1150 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1151 			v.tm.tv_sec = 0;
1152 			v.tm.tv_usec = 0;
1153 		} else {
1154 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1155 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1156 		}
1157 		break;
1158 
1159 	case SO_RCVLOWAT:
1160 		v.val = sk->sk_rcvlowat;
1161 		break;
1162 
1163 	case SO_SNDLOWAT:
1164 		v.val = 1;
1165 		break;
1166 
1167 	case SO_PASSCRED:
1168 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1169 		break;
1170 
1171 	case SO_PEERCRED:
1172 	{
1173 		struct ucred peercred;
1174 		if (len > sizeof(peercred))
1175 			len = sizeof(peercred);
1176 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1177 		if (copy_to_user(optval, &peercred, len))
1178 			return -EFAULT;
1179 		goto lenout;
1180 	}
1181 
1182 	case SO_PEERNAME:
1183 	{
1184 		char address[128];
1185 
1186 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1187 			return -ENOTCONN;
1188 		if (lv < len)
1189 			return -EINVAL;
1190 		if (copy_to_user(optval, address, len))
1191 			return -EFAULT;
1192 		goto lenout;
1193 	}
1194 
1195 	/* Dubious BSD thing... Probably nobody even uses it, but
1196 	 * the UNIX standard wants it for whatever reason... -DaveM
1197 	 */
1198 	case SO_ACCEPTCONN:
1199 		v.val = sk->sk_state == TCP_LISTEN;
1200 		break;
1201 
1202 	case SO_PASSSEC:
1203 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1204 		break;
1205 
1206 	case SO_PEERSEC:
1207 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1208 
1209 	case SO_MARK:
1210 		v.val = sk->sk_mark;
1211 		break;
1212 
1213 	case SO_RXQ_OVFL:
1214 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1215 		break;
1216 
1217 	case SO_WIFI_STATUS:
1218 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1219 		break;
1220 
1221 	case SO_PEEK_OFF:
1222 		if (!sock->ops->set_peek_off)
1223 			return -EOPNOTSUPP;
1224 
1225 		v.val = sk->sk_peek_off;
1226 		break;
1227 	case SO_NOFCS:
1228 		v.val = sock_flag(sk, SOCK_NOFCS);
1229 		break;
1230 
1231 	case SO_BINDTODEVICE:
1232 		return sock_getbindtodevice(sk, optval, optlen, len);
1233 
1234 	case SO_GET_FILTER:
1235 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1236 		if (len < 0)
1237 			return len;
1238 
1239 		goto lenout;
1240 
1241 	case SO_LOCK_FILTER:
1242 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1243 		break;
1244 
1245 	case SO_BPF_EXTENSIONS:
1246 		v.val = bpf_tell_extensions();
1247 		break;
1248 
1249 	case SO_SELECT_ERR_QUEUE:
1250 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1251 		break;
1252 
1253 #ifdef CONFIG_NET_RX_BUSY_POLL
1254 	case SO_BUSY_POLL:
1255 		v.val = sk->sk_ll_usec;
1256 		break;
1257 #endif
1258 
1259 	case SO_MAX_PACING_RATE:
1260 		v.val = sk->sk_max_pacing_rate;
1261 		break;
1262 
1263 	case SO_INCOMING_CPU:
1264 		v.val = sk->sk_incoming_cpu;
1265 		break;
1266 
1267 	default:
1268 		/* We implement the SO_SNDLOWAT etc to not be settable
1269 		 * (1003.1g 7).
1270 		 */
1271 		return -ENOPROTOOPT;
1272 	}
1273 
1274 	if (len > lv)
1275 		len = lv;
1276 	if (copy_to_user(optval, &v, len))
1277 		return -EFAULT;
1278 lenout:
1279 	if (put_user(len, optlen))
1280 		return -EFAULT;
1281 	return 0;
1282 }
1283 
1284 /*
1285  * Initialize an sk_lock.
1286  *
1287  * (We also register the sk_lock with the lock validator.)
1288  */
1289 static inline void sock_lock_init(struct sock *sk)
1290 {
1291 	sock_lock_init_class_and_name(sk,
1292 			af_family_slock_key_strings[sk->sk_family],
1293 			af_family_slock_keys + sk->sk_family,
1294 			af_family_key_strings[sk->sk_family],
1295 			af_family_keys + sk->sk_family);
1296 }
1297 
1298 /*
1299  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1300  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1301  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1302  */
1303 static void sock_copy(struct sock *nsk, const struct sock *osk)
1304 {
1305 #ifdef CONFIG_SECURITY_NETWORK
1306 	void *sptr = nsk->sk_security;
1307 #endif
1308 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1309 
1310 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1311 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1312 
1313 #ifdef CONFIG_SECURITY_NETWORK
1314 	nsk->sk_security = sptr;
1315 	security_sk_clone(osk, nsk);
1316 #endif
1317 }
1318 
1319 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1320 {
1321 	unsigned long nulls1, nulls2;
1322 
1323 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1324 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1325 	if (nulls1 > nulls2)
1326 		swap(nulls1, nulls2);
1327 
1328 	if (nulls1 != 0)
1329 		memset((char *)sk, 0, nulls1);
1330 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1331 	       nulls2 - nulls1 - sizeof(void *));
1332 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1333 	       size - nulls2 - sizeof(void *));
1334 }
1335 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1336 
1337 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1338 		int family)
1339 {
1340 	struct sock *sk;
1341 	struct kmem_cache *slab;
1342 
1343 	slab = prot->slab;
1344 	if (slab != NULL) {
1345 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1346 		if (!sk)
1347 			return sk;
1348 		if (priority & __GFP_ZERO) {
1349 			if (prot->clear_sk)
1350 				prot->clear_sk(sk, prot->obj_size);
1351 			else
1352 				sk_prot_clear_nulls(sk, prot->obj_size);
1353 		}
1354 	} else
1355 		sk = kmalloc(prot->obj_size, priority);
1356 
1357 	if (sk != NULL) {
1358 		kmemcheck_annotate_bitfield(sk, flags);
1359 
1360 		if (security_sk_alloc(sk, family, priority))
1361 			goto out_free;
1362 
1363 		if (!try_module_get(prot->owner))
1364 			goto out_free_sec;
1365 		sk_tx_queue_clear(sk);
1366 	}
1367 
1368 	return sk;
1369 
1370 out_free_sec:
1371 	security_sk_free(sk);
1372 out_free:
1373 	if (slab != NULL)
1374 		kmem_cache_free(slab, sk);
1375 	else
1376 		kfree(sk);
1377 	return NULL;
1378 }
1379 
1380 static void sk_prot_free(struct proto *prot, struct sock *sk)
1381 {
1382 	struct kmem_cache *slab;
1383 	struct module *owner;
1384 
1385 	owner = prot->owner;
1386 	slab = prot->slab;
1387 
1388 	security_sk_free(sk);
1389 	if (slab != NULL)
1390 		kmem_cache_free(slab, sk);
1391 	else
1392 		kfree(sk);
1393 	module_put(owner);
1394 }
1395 
1396 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1397 void sock_update_netprioidx(struct sock *sk)
1398 {
1399 	if (in_interrupt())
1400 		return;
1401 
1402 	sk->sk_cgrp_prioidx = task_netprioidx(current);
1403 }
1404 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1405 #endif
1406 
1407 /**
1408  *	sk_alloc - All socket objects are allocated here
1409  *	@net: the applicable net namespace
1410  *	@family: protocol family
1411  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1412  *	@prot: struct proto associated with this new sock instance
1413  *	@kern: is this to be a kernel socket?
1414  */
1415 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1416 		      struct proto *prot, int kern)
1417 {
1418 	struct sock *sk;
1419 
1420 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1421 	if (sk) {
1422 		sk->sk_family = family;
1423 		/*
1424 		 * See comment in struct sock definition to understand
1425 		 * why we need sk_prot_creator -acme
1426 		 */
1427 		sk->sk_prot = sk->sk_prot_creator = prot;
1428 		sock_lock_init(sk);
1429 		sk->sk_net_refcnt = kern ? 0 : 1;
1430 		if (likely(sk->sk_net_refcnt))
1431 			get_net(net);
1432 		sock_net_set(sk, net);
1433 		atomic_set(&sk->sk_wmem_alloc, 1);
1434 
1435 		sock_update_classid(sk);
1436 		sock_update_netprioidx(sk);
1437 	}
1438 
1439 	return sk;
1440 }
1441 EXPORT_SYMBOL(sk_alloc);
1442 
1443 void sk_destruct(struct sock *sk)
1444 {
1445 	struct sk_filter *filter;
1446 
1447 	if (sk->sk_destruct)
1448 		sk->sk_destruct(sk);
1449 
1450 	filter = rcu_dereference_check(sk->sk_filter,
1451 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1452 	if (filter) {
1453 		sk_filter_uncharge(sk, filter);
1454 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1455 	}
1456 
1457 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1458 
1459 	if (atomic_read(&sk->sk_omem_alloc))
1460 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1461 			 __func__, atomic_read(&sk->sk_omem_alloc));
1462 
1463 	if (sk->sk_peer_cred)
1464 		put_cred(sk->sk_peer_cred);
1465 	put_pid(sk->sk_peer_pid);
1466 	if (likely(sk->sk_net_refcnt))
1467 		put_net(sock_net(sk));
1468 	sk_prot_free(sk->sk_prot_creator, sk);
1469 }
1470 
1471 static void __sk_free(struct sock *sk)
1472 {
1473 	if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1474 		sock_diag_broadcast_destroy(sk);
1475 	else
1476 		sk_destruct(sk);
1477 }
1478 
1479 void sk_free(struct sock *sk)
1480 {
1481 	/*
1482 	 * We subtract one from sk_wmem_alloc and can know if
1483 	 * some packets are still in some tx queue.
1484 	 * If not null, sock_wfree() will call __sk_free(sk) later
1485 	 */
1486 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1487 		__sk_free(sk);
1488 }
1489 EXPORT_SYMBOL(sk_free);
1490 
1491 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1492 {
1493 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1494 		sock_update_memcg(newsk);
1495 }
1496 
1497 /**
1498  *	sk_clone_lock - clone a socket, and lock its clone
1499  *	@sk: the socket to clone
1500  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1501  *
1502  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1503  */
1504 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1505 {
1506 	struct sock *newsk;
1507 	bool is_charged = true;
1508 
1509 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1510 	if (newsk != NULL) {
1511 		struct sk_filter *filter;
1512 
1513 		sock_copy(newsk, sk);
1514 
1515 		/* SANITY */
1516 		if (likely(newsk->sk_net_refcnt))
1517 			get_net(sock_net(newsk));
1518 		sk_node_init(&newsk->sk_node);
1519 		sock_lock_init(newsk);
1520 		bh_lock_sock(newsk);
1521 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1522 		newsk->sk_backlog.len = 0;
1523 
1524 		atomic_set(&newsk->sk_rmem_alloc, 0);
1525 		/*
1526 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1527 		 */
1528 		atomic_set(&newsk->sk_wmem_alloc, 1);
1529 		atomic_set(&newsk->sk_omem_alloc, 0);
1530 		skb_queue_head_init(&newsk->sk_receive_queue);
1531 		skb_queue_head_init(&newsk->sk_write_queue);
1532 
1533 		spin_lock_init(&newsk->sk_dst_lock);
1534 		rwlock_init(&newsk->sk_callback_lock);
1535 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1536 				af_callback_keys + newsk->sk_family,
1537 				af_family_clock_key_strings[newsk->sk_family]);
1538 
1539 		newsk->sk_dst_cache	= NULL;
1540 		newsk->sk_wmem_queued	= 0;
1541 		newsk->sk_forward_alloc = 0;
1542 		newsk->sk_send_head	= NULL;
1543 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1544 
1545 		sock_reset_flag(newsk, SOCK_DONE);
1546 		skb_queue_head_init(&newsk->sk_error_queue);
1547 
1548 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1549 		if (filter != NULL)
1550 			/* though it's an empty new sock, the charging may fail
1551 			 * if sysctl_optmem_max was changed between creation of
1552 			 * original socket and cloning
1553 			 */
1554 			is_charged = sk_filter_charge(newsk, filter);
1555 
1556 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
1557 			/* It is still raw copy of parent, so invalidate
1558 			 * destructor and make plain sk_free() */
1559 			newsk->sk_destruct = NULL;
1560 			bh_unlock_sock(newsk);
1561 			sk_free(newsk);
1562 			newsk = NULL;
1563 			goto out;
1564 		}
1565 
1566 		newsk->sk_err	   = 0;
1567 		newsk->sk_priority = 0;
1568 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1569 		atomic64_set(&newsk->sk_cookie, 0);
1570 		/*
1571 		 * Before updating sk_refcnt, we must commit prior changes to memory
1572 		 * (Documentation/RCU/rculist_nulls.txt for details)
1573 		 */
1574 		smp_wmb();
1575 		atomic_set(&newsk->sk_refcnt, 2);
1576 
1577 		/*
1578 		 * Increment the counter in the same struct proto as the master
1579 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1580 		 * is the same as sk->sk_prot->socks, as this field was copied
1581 		 * with memcpy).
1582 		 *
1583 		 * This _changes_ the previous behaviour, where
1584 		 * tcp_create_openreq_child always was incrementing the
1585 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1586 		 * to be taken into account in all callers. -acme
1587 		 */
1588 		sk_refcnt_debug_inc(newsk);
1589 		sk_set_socket(newsk, NULL);
1590 		newsk->sk_wq = NULL;
1591 
1592 		sk_update_clone(sk, newsk);
1593 
1594 		if (newsk->sk_prot->sockets_allocated)
1595 			sk_sockets_allocated_inc(newsk);
1596 
1597 		if (sock_needs_netstamp(sk) &&
1598 		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1599 			net_enable_timestamp();
1600 	}
1601 out:
1602 	return newsk;
1603 }
1604 EXPORT_SYMBOL_GPL(sk_clone_lock);
1605 
1606 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1607 {
1608 	u32 max_segs = 1;
1609 
1610 	__sk_dst_set(sk, dst);
1611 	sk->sk_route_caps = dst->dev->features;
1612 	if (sk->sk_route_caps & NETIF_F_GSO)
1613 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1614 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1615 	if (sk_can_gso(sk)) {
1616 		if (dst->header_len) {
1617 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1618 		} else {
1619 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1620 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1621 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1622 		}
1623 	}
1624 	sk->sk_gso_max_segs = max_segs;
1625 }
1626 EXPORT_SYMBOL_GPL(sk_setup_caps);
1627 
1628 /*
1629  *	Simple resource managers for sockets.
1630  */
1631 
1632 
1633 /*
1634  * Write buffer destructor automatically called from kfree_skb.
1635  */
1636 void sock_wfree(struct sk_buff *skb)
1637 {
1638 	struct sock *sk = skb->sk;
1639 	unsigned int len = skb->truesize;
1640 
1641 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1642 		/*
1643 		 * Keep a reference on sk_wmem_alloc, this will be released
1644 		 * after sk_write_space() call
1645 		 */
1646 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1647 		sk->sk_write_space(sk);
1648 		len = 1;
1649 	}
1650 	/*
1651 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1652 	 * could not do because of in-flight packets
1653 	 */
1654 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1655 		__sk_free(sk);
1656 }
1657 EXPORT_SYMBOL(sock_wfree);
1658 
1659 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1660 {
1661 	skb_orphan(skb);
1662 	skb->sk = sk;
1663 #ifdef CONFIG_INET
1664 	if (unlikely(!sk_fullsock(sk))) {
1665 		skb->destructor = sock_edemux;
1666 		sock_hold(sk);
1667 		return;
1668 	}
1669 #endif
1670 	skb->destructor = sock_wfree;
1671 	skb_set_hash_from_sk(skb, sk);
1672 	/*
1673 	 * We used to take a refcount on sk, but following operation
1674 	 * is enough to guarantee sk_free() wont free this sock until
1675 	 * all in-flight packets are completed
1676 	 */
1677 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1678 }
1679 EXPORT_SYMBOL(skb_set_owner_w);
1680 
1681 void skb_orphan_partial(struct sk_buff *skb)
1682 {
1683 	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1684 	 * so we do not completely orphan skb, but transfert all
1685 	 * accounted bytes but one, to avoid unexpected reorders.
1686 	 */
1687 	if (skb->destructor == sock_wfree
1688 #ifdef CONFIG_INET
1689 	    || skb->destructor == tcp_wfree
1690 #endif
1691 		) {
1692 		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1693 		skb->truesize = 1;
1694 	} else {
1695 		skb_orphan(skb);
1696 	}
1697 }
1698 EXPORT_SYMBOL(skb_orphan_partial);
1699 
1700 /*
1701  * Read buffer destructor automatically called from kfree_skb.
1702  */
1703 void sock_rfree(struct sk_buff *skb)
1704 {
1705 	struct sock *sk = skb->sk;
1706 	unsigned int len = skb->truesize;
1707 
1708 	atomic_sub(len, &sk->sk_rmem_alloc);
1709 	sk_mem_uncharge(sk, len);
1710 }
1711 EXPORT_SYMBOL(sock_rfree);
1712 
1713 /*
1714  * Buffer destructor for skbs that are not used directly in read or write
1715  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1716  */
1717 void sock_efree(struct sk_buff *skb)
1718 {
1719 	sock_put(skb->sk);
1720 }
1721 EXPORT_SYMBOL(sock_efree);
1722 
1723 kuid_t sock_i_uid(struct sock *sk)
1724 {
1725 	kuid_t uid;
1726 
1727 	read_lock_bh(&sk->sk_callback_lock);
1728 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1729 	read_unlock_bh(&sk->sk_callback_lock);
1730 	return uid;
1731 }
1732 EXPORT_SYMBOL(sock_i_uid);
1733 
1734 unsigned long sock_i_ino(struct sock *sk)
1735 {
1736 	unsigned long ino;
1737 
1738 	read_lock_bh(&sk->sk_callback_lock);
1739 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1740 	read_unlock_bh(&sk->sk_callback_lock);
1741 	return ino;
1742 }
1743 EXPORT_SYMBOL(sock_i_ino);
1744 
1745 /*
1746  * Allocate a skb from the socket's send buffer.
1747  */
1748 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1749 			     gfp_t priority)
1750 {
1751 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1752 		struct sk_buff *skb = alloc_skb(size, priority);
1753 		if (skb) {
1754 			skb_set_owner_w(skb, sk);
1755 			return skb;
1756 		}
1757 	}
1758 	return NULL;
1759 }
1760 EXPORT_SYMBOL(sock_wmalloc);
1761 
1762 /*
1763  * Allocate a memory block from the socket's option memory buffer.
1764  */
1765 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1766 {
1767 	if ((unsigned int)size <= sysctl_optmem_max &&
1768 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1769 		void *mem;
1770 		/* First do the add, to avoid the race if kmalloc
1771 		 * might sleep.
1772 		 */
1773 		atomic_add(size, &sk->sk_omem_alloc);
1774 		mem = kmalloc(size, priority);
1775 		if (mem)
1776 			return mem;
1777 		atomic_sub(size, &sk->sk_omem_alloc);
1778 	}
1779 	return NULL;
1780 }
1781 EXPORT_SYMBOL(sock_kmalloc);
1782 
1783 /* Free an option memory block. Note, we actually want the inline
1784  * here as this allows gcc to detect the nullify and fold away the
1785  * condition entirely.
1786  */
1787 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1788 				  const bool nullify)
1789 {
1790 	if (WARN_ON_ONCE(!mem))
1791 		return;
1792 	if (nullify)
1793 		kzfree(mem);
1794 	else
1795 		kfree(mem);
1796 	atomic_sub(size, &sk->sk_omem_alloc);
1797 }
1798 
1799 void sock_kfree_s(struct sock *sk, void *mem, int size)
1800 {
1801 	__sock_kfree_s(sk, mem, size, false);
1802 }
1803 EXPORT_SYMBOL(sock_kfree_s);
1804 
1805 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1806 {
1807 	__sock_kfree_s(sk, mem, size, true);
1808 }
1809 EXPORT_SYMBOL(sock_kzfree_s);
1810 
1811 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1812    I think, these locks should be removed for datagram sockets.
1813  */
1814 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1815 {
1816 	DEFINE_WAIT(wait);
1817 
1818 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1819 	for (;;) {
1820 		if (!timeo)
1821 			break;
1822 		if (signal_pending(current))
1823 			break;
1824 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1825 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1826 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1827 			break;
1828 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1829 			break;
1830 		if (sk->sk_err)
1831 			break;
1832 		timeo = schedule_timeout(timeo);
1833 	}
1834 	finish_wait(sk_sleep(sk), &wait);
1835 	return timeo;
1836 }
1837 
1838 
1839 /*
1840  *	Generic send/receive buffer handlers
1841  */
1842 
1843 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1844 				     unsigned long data_len, int noblock,
1845 				     int *errcode, int max_page_order)
1846 {
1847 	struct sk_buff *skb;
1848 	long timeo;
1849 	int err;
1850 
1851 	timeo = sock_sndtimeo(sk, noblock);
1852 	for (;;) {
1853 		err = sock_error(sk);
1854 		if (err != 0)
1855 			goto failure;
1856 
1857 		err = -EPIPE;
1858 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1859 			goto failure;
1860 
1861 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1862 			break;
1863 
1864 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1865 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1866 		err = -EAGAIN;
1867 		if (!timeo)
1868 			goto failure;
1869 		if (signal_pending(current))
1870 			goto interrupted;
1871 		timeo = sock_wait_for_wmem(sk, timeo);
1872 	}
1873 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1874 				   errcode, sk->sk_allocation);
1875 	if (skb)
1876 		skb_set_owner_w(skb, sk);
1877 	return skb;
1878 
1879 interrupted:
1880 	err = sock_intr_errno(timeo);
1881 failure:
1882 	*errcode = err;
1883 	return NULL;
1884 }
1885 EXPORT_SYMBOL(sock_alloc_send_pskb);
1886 
1887 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1888 				    int noblock, int *errcode)
1889 {
1890 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1891 }
1892 EXPORT_SYMBOL(sock_alloc_send_skb);
1893 
1894 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1895 		   struct sockcm_cookie *sockc)
1896 {
1897 	struct cmsghdr *cmsg;
1898 
1899 	for_each_cmsghdr(cmsg, msg) {
1900 		if (!CMSG_OK(msg, cmsg))
1901 			return -EINVAL;
1902 		if (cmsg->cmsg_level != SOL_SOCKET)
1903 			continue;
1904 		switch (cmsg->cmsg_type) {
1905 		case SO_MARK:
1906 			if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1907 				return -EPERM;
1908 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1909 				return -EINVAL;
1910 			sockc->mark = *(u32 *)CMSG_DATA(cmsg);
1911 			break;
1912 		default:
1913 			return -EINVAL;
1914 		}
1915 	}
1916 	return 0;
1917 }
1918 EXPORT_SYMBOL(sock_cmsg_send);
1919 
1920 /* On 32bit arches, an skb frag is limited to 2^15 */
1921 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1922 
1923 /**
1924  * skb_page_frag_refill - check that a page_frag contains enough room
1925  * @sz: minimum size of the fragment we want to get
1926  * @pfrag: pointer to page_frag
1927  * @gfp: priority for memory allocation
1928  *
1929  * Note: While this allocator tries to use high order pages, there is
1930  * no guarantee that allocations succeed. Therefore, @sz MUST be
1931  * less or equal than PAGE_SIZE.
1932  */
1933 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1934 {
1935 	if (pfrag->page) {
1936 		if (atomic_read(&pfrag->page->_count) == 1) {
1937 			pfrag->offset = 0;
1938 			return true;
1939 		}
1940 		if (pfrag->offset + sz <= pfrag->size)
1941 			return true;
1942 		put_page(pfrag->page);
1943 	}
1944 
1945 	pfrag->offset = 0;
1946 	if (SKB_FRAG_PAGE_ORDER) {
1947 		/* Avoid direct reclaim but allow kswapd to wake */
1948 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
1949 					  __GFP_COMP | __GFP_NOWARN |
1950 					  __GFP_NORETRY,
1951 					  SKB_FRAG_PAGE_ORDER);
1952 		if (likely(pfrag->page)) {
1953 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1954 			return true;
1955 		}
1956 	}
1957 	pfrag->page = alloc_page(gfp);
1958 	if (likely(pfrag->page)) {
1959 		pfrag->size = PAGE_SIZE;
1960 		return true;
1961 	}
1962 	return false;
1963 }
1964 EXPORT_SYMBOL(skb_page_frag_refill);
1965 
1966 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1967 {
1968 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1969 		return true;
1970 
1971 	sk_enter_memory_pressure(sk);
1972 	sk_stream_moderate_sndbuf(sk);
1973 	return false;
1974 }
1975 EXPORT_SYMBOL(sk_page_frag_refill);
1976 
1977 static void __lock_sock(struct sock *sk)
1978 	__releases(&sk->sk_lock.slock)
1979 	__acquires(&sk->sk_lock.slock)
1980 {
1981 	DEFINE_WAIT(wait);
1982 
1983 	for (;;) {
1984 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1985 					TASK_UNINTERRUPTIBLE);
1986 		spin_unlock_bh(&sk->sk_lock.slock);
1987 		schedule();
1988 		spin_lock_bh(&sk->sk_lock.slock);
1989 		if (!sock_owned_by_user(sk))
1990 			break;
1991 	}
1992 	finish_wait(&sk->sk_lock.wq, &wait);
1993 }
1994 
1995 static void __release_sock(struct sock *sk)
1996 	__releases(&sk->sk_lock.slock)
1997 	__acquires(&sk->sk_lock.slock)
1998 {
1999 	struct sk_buff *skb = sk->sk_backlog.head;
2000 
2001 	do {
2002 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2003 		bh_unlock_sock(sk);
2004 
2005 		do {
2006 			struct sk_buff *next = skb->next;
2007 
2008 			prefetch(next);
2009 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2010 			skb->next = NULL;
2011 			sk_backlog_rcv(sk, skb);
2012 
2013 			/*
2014 			 * We are in process context here with softirqs
2015 			 * disabled, use cond_resched_softirq() to preempt.
2016 			 * This is safe to do because we've taken the backlog
2017 			 * queue private:
2018 			 */
2019 			cond_resched_softirq();
2020 
2021 			skb = next;
2022 		} while (skb != NULL);
2023 
2024 		bh_lock_sock(sk);
2025 	} while ((skb = sk->sk_backlog.head) != NULL);
2026 
2027 	/*
2028 	 * Doing the zeroing here guarantee we can not loop forever
2029 	 * while a wild producer attempts to flood us.
2030 	 */
2031 	sk->sk_backlog.len = 0;
2032 }
2033 
2034 /**
2035  * sk_wait_data - wait for data to arrive at sk_receive_queue
2036  * @sk:    sock to wait on
2037  * @timeo: for how long
2038  * @skb:   last skb seen on sk_receive_queue
2039  *
2040  * Now socket state including sk->sk_err is changed only under lock,
2041  * hence we may omit checks after joining wait queue.
2042  * We check receive queue before schedule() only as optimization;
2043  * it is very likely that release_sock() added new data.
2044  */
2045 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2046 {
2047 	int rc;
2048 	DEFINE_WAIT(wait);
2049 
2050 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2051 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
2052 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb);
2053 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
2054 	finish_wait(sk_sleep(sk), &wait);
2055 	return rc;
2056 }
2057 EXPORT_SYMBOL(sk_wait_data);
2058 
2059 /**
2060  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2061  *	@sk: socket
2062  *	@size: memory size to allocate
2063  *	@kind: allocation type
2064  *
2065  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2066  *	rmem allocation. This function assumes that protocols which have
2067  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2068  */
2069 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2070 {
2071 	struct proto *prot = sk->sk_prot;
2072 	int amt = sk_mem_pages(size);
2073 	long allocated;
2074 	int parent_status = UNDER_LIMIT;
2075 
2076 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2077 
2078 	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
2079 
2080 	/* Under limit. */
2081 	if (parent_status == UNDER_LIMIT &&
2082 			allocated <= sk_prot_mem_limits(sk, 0)) {
2083 		sk_leave_memory_pressure(sk);
2084 		return 1;
2085 	}
2086 
2087 	/* Under pressure. (we or our parents) */
2088 	if ((parent_status > SOFT_LIMIT) ||
2089 			allocated > sk_prot_mem_limits(sk, 1))
2090 		sk_enter_memory_pressure(sk);
2091 
2092 	/* Over hard limit (we or our parents) */
2093 	if ((parent_status == OVER_LIMIT) ||
2094 			(allocated > sk_prot_mem_limits(sk, 2)))
2095 		goto suppress_allocation;
2096 
2097 	/* guarantee minimum buffer size under pressure */
2098 	if (kind == SK_MEM_RECV) {
2099 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2100 			return 1;
2101 
2102 	} else { /* SK_MEM_SEND */
2103 		if (sk->sk_type == SOCK_STREAM) {
2104 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2105 				return 1;
2106 		} else if (atomic_read(&sk->sk_wmem_alloc) <
2107 			   prot->sysctl_wmem[0])
2108 				return 1;
2109 	}
2110 
2111 	if (sk_has_memory_pressure(sk)) {
2112 		int alloc;
2113 
2114 		if (!sk_under_memory_pressure(sk))
2115 			return 1;
2116 		alloc = sk_sockets_allocated_read_positive(sk);
2117 		if (sk_prot_mem_limits(sk, 2) > alloc *
2118 		    sk_mem_pages(sk->sk_wmem_queued +
2119 				 atomic_read(&sk->sk_rmem_alloc) +
2120 				 sk->sk_forward_alloc))
2121 			return 1;
2122 	}
2123 
2124 suppress_allocation:
2125 
2126 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2127 		sk_stream_moderate_sndbuf(sk);
2128 
2129 		/* Fail only if socket is _under_ its sndbuf.
2130 		 * In this case we cannot block, so that we have to fail.
2131 		 */
2132 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2133 			return 1;
2134 	}
2135 
2136 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2137 
2138 	/* Alas. Undo changes. */
2139 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2140 
2141 	sk_memory_allocated_sub(sk, amt);
2142 
2143 	return 0;
2144 }
2145 EXPORT_SYMBOL(__sk_mem_schedule);
2146 
2147 /**
2148  *	__sk_mem_reclaim - reclaim memory_allocated
2149  *	@sk: socket
2150  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2151  */
2152 void __sk_mem_reclaim(struct sock *sk, int amount)
2153 {
2154 	amount >>= SK_MEM_QUANTUM_SHIFT;
2155 	sk_memory_allocated_sub(sk, amount);
2156 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2157 
2158 	if (sk_under_memory_pressure(sk) &&
2159 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2160 		sk_leave_memory_pressure(sk);
2161 }
2162 EXPORT_SYMBOL(__sk_mem_reclaim);
2163 
2164 
2165 /*
2166  * Set of default routines for initialising struct proto_ops when
2167  * the protocol does not support a particular function. In certain
2168  * cases where it makes no sense for a protocol to have a "do nothing"
2169  * function, some default processing is provided.
2170  */
2171 
2172 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2173 {
2174 	return -EOPNOTSUPP;
2175 }
2176 EXPORT_SYMBOL(sock_no_bind);
2177 
2178 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2179 		    int len, int flags)
2180 {
2181 	return -EOPNOTSUPP;
2182 }
2183 EXPORT_SYMBOL(sock_no_connect);
2184 
2185 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2186 {
2187 	return -EOPNOTSUPP;
2188 }
2189 EXPORT_SYMBOL(sock_no_socketpair);
2190 
2191 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2192 {
2193 	return -EOPNOTSUPP;
2194 }
2195 EXPORT_SYMBOL(sock_no_accept);
2196 
2197 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2198 		    int *len, int peer)
2199 {
2200 	return -EOPNOTSUPP;
2201 }
2202 EXPORT_SYMBOL(sock_no_getname);
2203 
2204 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2205 {
2206 	return 0;
2207 }
2208 EXPORT_SYMBOL(sock_no_poll);
2209 
2210 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2211 {
2212 	return -EOPNOTSUPP;
2213 }
2214 EXPORT_SYMBOL(sock_no_ioctl);
2215 
2216 int sock_no_listen(struct socket *sock, int backlog)
2217 {
2218 	return -EOPNOTSUPP;
2219 }
2220 EXPORT_SYMBOL(sock_no_listen);
2221 
2222 int sock_no_shutdown(struct socket *sock, int how)
2223 {
2224 	return -EOPNOTSUPP;
2225 }
2226 EXPORT_SYMBOL(sock_no_shutdown);
2227 
2228 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2229 		    char __user *optval, unsigned int optlen)
2230 {
2231 	return -EOPNOTSUPP;
2232 }
2233 EXPORT_SYMBOL(sock_no_setsockopt);
2234 
2235 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2236 		    char __user *optval, int __user *optlen)
2237 {
2238 	return -EOPNOTSUPP;
2239 }
2240 EXPORT_SYMBOL(sock_no_getsockopt);
2241 
2242 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2243 {
2244 	return -EOPNOTSUPP;
2245 }
2246 EXPORT_SYMBOL(sock_no_sendmsg);
2247 
2248 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2249 		    int flags)
2250 {
2251 	return -EOPNOTSUPP;
2252 }
2253 EXPORT_SYMBOL(sock_no_recvmsg);
2254 
2255 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2256 {
2257 	/* Mirror missing mmap method error code */
2258 	return -ENODEV;
2259 }
2260 EXPORT_SYMBOL(sock_no_mmap);
2261 
2262 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2263 {
2264 	ssize_t res;
2265 	struct msghdr msg = {.msg_flags = flags};
2266 	struct kvec iov;
2267 	char *kaddr = kmap(page);
2268 	iov.iov_base = kaddr + offset;
2269 	iov.iov_len = size;
2270 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2271 	kunmap(page);
2272 	return res;
2273 }
2274 EXPORT_SYMBOL(sock_no_sendpage);
2275 
2276 /*
2277  *	Default Socket Callbacks
2278  */
2279 
2280 static void sock_def_wakeup(struct sock *sk)
2281 {
2282 	struct socket_wq *wq;
2283 
2284 	rcu_read_lock();
2285 	wq = rcu_dereference(sk->sk_wq);
2286 	if (wq_has_sleeper(wq))
2287 		wake_up_interruptible_all(&wq->wait);
2288 	rcu_read_unlock();
2289 }
2290 
2291 static void sock_def_error_report(struct sock *sk)
2292 {
2293 	struct socket_wq *wq;
2294 
2295 	rcu_read_lock();
2296 	wq = rcu_dereference(sk->sk_wq);
2297 	if (wq_has_sleeper(wq))
2298 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2299 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2300 	rcu_read_unlock();
2301 }
2302 
2303 static void sock_def_readable(struct sock *sk)
2304 {
2305 	struct socket_wq *wq;
2306 
2307 	rcu_read_lock();
2308 	wq = rcu_dereference(sk->sk_wq);
2309 	if (wq_has_sleeper(wq))
2310 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2311 						POLLRDNORM | POLLRDBAND);
2312 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2313 	rcu_read_unlock();
2314 }
2315 
2316 static void sock_def_write_space(struct sock *sk)
2317 {
2318 	struct socket_wq *wq;
2319 
2320 	rcu_read_lock();
2321 
2322 	/* Do not wake up a writer until he can make "significant"
2323 	 * progress.  --DaveM
2324 	 */
2325 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2326 		wq = rcu_dereference(sk->sk_wq);
2327 		if (wq_has_sleeper(wq))
2328 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2329 						POLLWRNORM | POLLWRBAND);
2330 
2331 		/* Should agree with poll, otherwise some programs break */
2332 		if (sock_writeable(sk))
2333 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2334 	}
2335 
2336 	rcu_read_unlock();
2337 }
2338 
2339 static void sock_def_destruct(struct sock *sk)
2340 {
2341 }
2342 
2343 void sk_send_sigurg(struct sock *sk)
2344 {
2345 	if (sk->sk_socket && sk->sk_socket->file)
2346 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2347 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2348 }
2349 EXPORT_SYMBOL(sk_send_sigurg);
2350 
2351 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2352 		    unsigned long expires)
2353 {
2354 	if (!mod_timer(timer, expires))
2355 		sock_hold(sk);
2356 }
2357 EXPORT_SYMBOL(sk_reset_timer);
2358 
2359 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2360 {
2361 	if (del_timer(timer))
2362 		__sock_put(sk);
2363 }
2364 EXPORT_SYMBOL(sk_stop_timer);
2365 
2366 void sock_init_data(struct socket *sock, struct sock *sk)
2367 {
2368 	skb_queue_head_init(&sk->sk_receive_queue);
2369 	skb_queue_head_init(&sk->sk_write_queue);
2370 	skb_queue_head_init(&sk->sk_error_queue);
2371 
2372 	sk->sk_send_head	=	NULL;
2373 
2374 	init_timer(&sk->sk_timer);
2375 
2376 	sk->sk_allocation	=	GFP_KERNEL;
2377 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2378 	sk->sk_sndbuf		=	sysctl_wmem_default;
2379 	sk->sk_state		=	TCP_CLOSE;
2380 	sk_set_socket(sk, sock);
2381 
2382 	sock_set_flag(sk, SOCK_ZAPPED);
2383 
2384 	if (sock) {
2385 		sk->sk_type	=	sock->type;
2386 		sk->sk_wq	=	sock->wq;
2387 		sock->sk	=	sk;
2388 	} else
2389 		sk->sk_wq	=	NULL;
2390 
2391 	spin_lock_init(&sk->sk_dst_lock);
2392 	rwlock_init(&sk->sk_callback_lock);
2393 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2394 			af_callback_keys + sk->sk_family,
2395 			af_family_clock_key_strings[sk->sk_family]);
2396 
2397 	sk->sk_state_change	=	sock_def_wakeup;
2398 	sk->sk_data_ready	=	sock_def_readable;
2399 	sk->sk_write_space	=	sock_def_write_space;
2400 	sk->sk_error_report	=	sock_def_error_report;
2401 	sk->sk_destruct		=	sock_def_destruct;
2402 
2403 	sk->sk_frag.page	=	NULL;
2404 	sk->sk_frag.offset	=	0;
2405 	sk->sk_peek_off		=	-1;
2406 
2407 	sk->sk_peer_pid 	=	NULL;
2408 	sk->sk_peer_cred	=	NULL;
2409 	sk->sk_write_pending	=	0;
2410 	sk->sk_rcvlowat		=	1;
2411 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2412 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2413 
2414 	sk->sk_stamp = ktime_set(-1L, 0);
2415 
2416 #ifdef CONFIG_NET_RX_BUSY_POLL
2417 	sk->sk_napi_id		=	0;
2418 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2419 #endif
2420 
2421 	sk->sk_max_pacing_rate = ~0U;
2422 	sk->sk_pacing_rate = ~0U;
2423 	sk->sk_incoming_cpu = -1;
2424 	/*
2425 	 * Before updating sk_refcnt, we must commit prior changes to memory
2426 	 * (Documentation/RCU/rculist_nulls.txt for details)
2427 	 */
2428 	smp_wmb();
2429 	atomic_set(&sk->sk_refcnt, 1);
2430 	atomic_set(&sk->sk_drops, 0);
2431 }
2432 EXPORT_SYMBOL(sock_init_data);
2433 
2434 void lock_sock_nested(struct sock *sk, int subclass)
2435 {
2436 	might_sleep();
2437 	spin_lock_bh(&sk->sk_lock.slock);
2438 	if (sk->sk_lock.owned)
2439 		__lock_sock(sk);
2440 	sk->sk_lock.owned = 1;
2441 	spin_unlock(&sk->sk_lock.slock);
2442 	/*
2443 	 * The sk_lock has mutex_lock() semantics here:
2444 	 */
2445 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2446 	local_bh_enable();
2447 }
2448 EXPORT_SYMBOL(lock_sock_nested);
2449 
2450 void release_sock(struct sock *sk)
2451 {
2452 	/*
2453 	 * The sk_lock has mutex_unlock() semantics:
2454 	 */
2455 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2456 
2457 	spin_lock_bh(&sk->sk_lock.slock);
2458 	if (sk->sk_backlog.tail)
2459 		__release_sock(sk);
2460 
2461 	/* Warning : release_cb() might need to release sk ownership,
2462 	 * ie call sock_release_ownership(sk) before us.
2463 	 */
2464 	if (sk->sk_prot->release_cb)
2465 		sk->sk_prot->release_cb(sk);
2466 
2467 	sock_release_ownership(sk);
2468 	if (waitqueue_active(&sk->sk_lock.wq))
2469 		wake_up(&sk->sk_lock.wq);
2470 	spin_unlock_bh(&sk->sk_lock.slock);
2471 }
2472 EXPORT_SYMBOL(release_sock);
2473 
2474 /**
2475  * lock_sock_fast - fast version of lock_sock
2476  * @sk: socket
2477  *
2478  * This version should be used for very small section, where process wont block
2479  * return false if fast path is taken
2480  *   sk_lock.slock locked, owned = 0, BH disabled
2481  * return true if slow path is taken
2482  *   sk_lock.slock unlocked, owned = 1, BH enabled
2483  */
2484 bool lock_sock_fast(struct sock *sk)
2485 {
2486 	might_sleep();
2487 	spin_lock_bh(&sk->sk_lock.slock);
2488 
2489 	if (!sk->sk_lock.owned)
2490 		/*
2491 		 * Note : We must disable BH
2492 		 */
2493 		return false;
2494 
2495 	__lock_sock(sk);
2496 	sk->sk_lock.owned = 1;
2497 	spin_unlock(&sk->sk_lock.slock);
2498 	/*
2499 	 * The sk_lock has mutex_lock() semantics here:
2500 	 */
2501 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2502 	local_bh_enable();
2503 	return true;
2504 }
2505 EXPORT_SYMBOL(lock_sock_fast);
2506 
2507 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2508 {
2509 	struct timeval tv;
2510 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2511 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2512 	tv = ktime_to_timeval(sk->sk_stamp);
2513 	if (tv.tv_sec == -1)
2514 		return -ENOENT;
2515 	if (tv.tv_sec == 0) {
2516 		sk->sk_stamp = ktime_get_real();
2517 		tv = ktime_to_timeval(sk->sk_stamp);
2518 	}
2519 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2520 }
2521 EXPORT_SYMBOL(sock_get_timestamp);
2522 
2523 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2524 {
2525 	struct timespec ts;
2526 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2527 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2528 	ts = ktime_to_timespec(sk->sk_stamp);
2529 	if (ts.tv_sec == -1)
2530 		return -ENOENT;
2531 	if (ts.tv_sec == 0) {
2532 		sk->sk_stamp = ktime_get_real();
2533 		ts = ktime_to_timespec(sk->sk_stamp);
2534 	}
2535 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2536 }
2537 EXPORT_SYMBOL(sock_get_timestampns);
2538 
2539 void sock_enable_timestamp(struct sock *sk, int flag)
2540 {
2541 	if (!sock_flag(sk, flag)) {
2542 		unsigned long previous_flags = sk->sk_flags;
2543 
2544 		sock_set_flag(sk, flag);
2545 		/*
2546 		 * we just set one of the two flags which require net
2547 		 * time stamping, but time stamping might have been on
2548 		 * already because of the other one
2549 		 */
2550 		if (sock_needs_netstamp(sk) &&
2551 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
2552 			net_enable_timestamp();
2553 	}
2554 }
2555 
2556 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2557 		       int level, int type)
2558 {
2559 	struct sock_exterr_skb *serr;
2560 	struct sk_buff *skb;
2561 	int copied, err;
2562 
2563 	err = -EAGAIN;
2564 	skb = sock_dequeue_err_skb(sk);
2565 	if (skb == NULL)
2566 		goto out;
2567 
2568 	copied = skb->len;
2569 	if (copied > len) {
2570 		msg->msg_flags |= MSG_TRUNC;
2571 		copied = len;
2572 	}
2573 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2574 	if (err)
2575 		goto out_free_skb;
2576 
2577 	sock_recv_timestamp(msg, sk, skb);
2578 
2579 	serr = SKB_EXT_ERR(skb);
2580 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2581 
2582 	msg->msg_flags |= MSG_ERRQUEUE;
2583 	err = copied;
2584 
2585 out_free_skb:
2586 	kfree_skb(skb);
2587 out:
2588 	return err;
2589 }
2590 EXPORT_SYMBOL(sock_recv_errqueue);
2591 
2592 /*
2593  *	Get a socket option on an socket.
2594  *
2595  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2596  *	asynchronous errors should be reported by getsockopt. We assume
2597  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2598  */
2599 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2600 			   char __user *optval, int __user *optlen)
2601 {
2602 	struct sock *sk = sock->sk;
2603 
2604 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2605 }
2606 EXPORT_SYMBOL(sock_common_getsockopt);
2607 
2608 #ifdef CONFIG_COMPAT
2609 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2610 				  char __user *optval, int __user *optlen)
2611 {
2612 	struct sock *sk = sock->sk;
2613 
2614 	if (sk->sk_prot->compat_getsockopt != NULL)
2615 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2616 						      optval, optlen);
2617 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2618 }
2619 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2620 #endif
2621 
2622 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2623 			int flags)
2624 {
2625 	struct sock *sk = sock->sk;
2626 	int addr_len = 0;
2627 	int err;
2628 
2629 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2630 				   flags & ~MSG_DONTWAIT, &addr_len);
2631 	if (err >= 0)
2632 		msg->msg_namelen = addr_len;
2633 	return err;
2634 }
2635 EXPORT_SYMBOL(sock_common_recvmsg);
2636 
2637 /*
2638  *	Set socket options on an inet socket.
2639  */
2640 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2641 			   char __user *optval, unsigned int optlen)
2642 {
2643 	struct sock *sk = sock->sk;
2644 
2645 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2646 }
2647 EXPORT_SYMBOL(sock_common_setsockopt);
2648 
2649 #ifdef CONFIG_COMPAT
2650 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2651 				  char __user *optval, unsigned int optlen)
2652 {
2653 	struct sock *sk = sock->sk;
2654 
2655 	if (sk->sk_prot->compat_setsockopt != NULL)
2656 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2657 						      optval, optlen);
2658 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2659 }
2660 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2661 #endif
2662 
2663 void sk_common_release(struct sock *sk)
2664 {
2665 	if (sk->sk_prot->destroy)
2666 		sk->sk_prot->destroy(sk);
2667 
2668 	/*
2669 	 * Observation: when sock_common_release is called, processes have
2670 	 * no access to socket. But net still has.
2671 	 * Step one, detach it from networking:
2672 	 *
2673 	 * A. Remove from hash tables.
2674 	 */
2675 
2676 	sk->sk_prot->unhash(sk);
2677 
2678 	/*
2679 	 * In this point socket cannot receive new packets, but it is possible
2680 	 * that some packets are in flight because some CPU runs receiver and
2681 	 * did hash table lookup before we unhashed socket. They will achieve
2682 	 * receive queue and will be purged by socket destructor.
2683 	 *
2684 	 * Also we still have packets pending on receive queue and probably,
2685 	 * our own packets waiting in device queues. sock_destroy will drain
2686 	 * receive queue, but transmitted packets will delay socket destruction
2687 	 * until the last reference will be released.
2688 	 */
2689 
2690 	sock_orphan(sk);
2691 
2692 	xfrm_sk_free_policy(sk);
2693 
2694 	sk_refcnt_debug_release(sk);
2695 
2696 	if (sk->sk_frag.page) {
2697 		put_page(sk->sk_frag.page);
2698 		sk->sk_frag.page = NULL;
2699 	}
2700 
2701 	sock_put(sk);
2702 }
2703 EXPORT_SYMBOL(sk_common_release);
2704 
2705 #ifdef CONFIG_PROC_FS
2706 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2707 struct prot_inuse {
2708 	int val[PROTO_INUSE_NR];
2709 };
2710 
2711 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2712 
2713 #ifdef CONFIG_NET_NS
2714 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2715 {
2716 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2717 }
2718 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2719 
2720 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2721 {
2722 	int cpu, idx = prot->inuse_idx;
2723 	int res = 0;
2724 
2725 	for_each_possible_cpu(cpu)
2726 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2727 
2728 	return res >= 0 ? res : 0;
2729 }
2730 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2731 
2732 static int __net_init sock_inuse_init_net(struct net *net)
2733 {
2734 	net->core.inuse = alloc_percpu(struct prot_inuse);
2735 	return net->core.inuse ? 0 : -ENOMEM;
2736 }
2737 
2738 static void __net_exit sock_inuse_exit_net(struct net *net)
2739 {
2740 	free_percpu(net->core.inuse);
2741 }
2742 
2743 static struct pernet_operations net_inuse_ops = {
2744 	.init = sock_inuse_init_net,
2745 	.exit = sock_inuse_exit_net,
2746 };
2747 
2748 static __init int net_inuse_init(void)
2749 {
2750 	if (register_pernet_subsys(&net_inuse_ops))
2751 		panic("Cannot initialize net inuse counters");
2752 
2753 	return 0;
2754 }
2755 
2756 core_initcall(net_inuse_init);
2757 #else
2758 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2759 
2760 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2761 {
2762 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2763 }
2764 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2765 
2766 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2767 {
2768 	int cpu, idx = prot->inuse_idx;
2769 	int res = 0;
2770 
2771 	for_each_possible_cpu(cpu)
2772 		res += per_cpu(prot_inuse, cpu).val[idx];
2773 
2774 	return res >= 0 ? res : 0;
2775 }
2776 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2777 #endif
2778 
2779 static void assign_proto_idx(struct proto *prot)
2780 {
2781 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2782 
2783 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2784 		pr_err("PROTO_INUSE_NR exhausted\n");
2785 		return;
2786 	}
2787 
2788 	set_bit(prot->inuse_idx, proto_inuse_idx);
2789 }
2790 
2791 static void release_proto_idx(struct proto *prot)
2792 {
2793 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2794 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2795 }
2796 #else
2797 static inline void assign_proto_idx(struct proto *prot)
2798 {
2799 }
2800 
2801 static inline void release_proto_idx(struct proto *prot)
2802 {
2803 }
2804 #endif
2805 
2806 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2807 {
2808 	if (!rsk_prot)
2809 		return;
2810 	kfree(rsk_prot->slab_name);
2811 	rsk_prot->slab_name = NULL;
2812 	kmem_cache_destroy(rsk_prot->slab);
2813 	rsk_prot->slab = NULL;
2814 }
2815 
2816 static int req_prot_init(const struct proto *prot)
2817 {
2818 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
2819 
2820 	if (!rsk_prot)
2821 		return 0;
2822 
2823 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2824 					prot->name);
2825 	if (!rsk_prot->slab_name)
2826 		return -ENOMEM;
2827 
2828 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2829 					   rsk_prot->obj_size, 0,
2830 					   prot->slab_flags, NULL);
2831 
2832 	if (!rsk_prot->slab) {
2833 		pr_crit("%s: Can't create request sock SLAB cache!\n",
2834 			prot->name);
2835 		return -ENOMEM;
2836 	}
2837 	return 0;
2838 }
2839 
2840 int proto_register(struct proto *prot, int alloc_slab)
2841 {
2842 	if (alloc_slab) {
2843 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2844 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2845 					NULL);
2846 
2847 		if (prot->slab == NULL) {
2848 			pr_crit("%s: Can't create sock SLAB cache!\n",
2849 				prot->name);
2850 			goto out;
2851 		}
2852 
2853 		if (req_prot_init(prot))
2854 			goto out_free_request_sock_slab;
2855 
2856 		if (prot->twsk_prot != NULL) {
2857 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2858 
2859 			if (prot->twsk_prot->twsk_slab_name == NULL)
2860 				goto out_free_request_sock_slab;
2861 
2862 			prot->twsk_prot->twsk_slab =
2863 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2864 						  prot->twsk_prot->twsk_obj_size,
2865 						  0,
2866 						  prot->slab_flags,
2867 						  NULL);
2868 			if (prot->twsk_prot->twsk_slab == NULL)
2869 				goto out_free_timewait_sock_slab_name;
2870 		}
2871 	}
2872 
2873 	mutex_lock(&proto_list_mutex);
2874 	list_add(&prot->node, &proto_list);
2875 	assign_proto_idx(prot);
2876 	mutex_unlock(&proto_list_mutex);
2877 	return 0;
2878 
2879 out_free_timewait_sock_slab_name:
2880 	kfree(prot->twsk_prot->twsk_slab_name);
2881 out_free_request_sock_slab:
2882 	req_prot_cleanup(prot->rsk_prot);
2883 
2884 	kmem_cache_destroy(prot->slab);
2885 	prot->slab = NULL;
2886 out:
2887 	return -ENOBUFS;
2888 }
2889 EXPORT_SYMBOL(proto_register);
2890 
2891 void proto_unregister(struct proto *prot)
2892 {
2893 	mutex_lock(&proto_list_mutex);
2894 	release_proto_idx(prot);
2895 	list_del(&prot->node);
2896 	mutex_unlock(&proto_list_mutex);
2897 
2898 	kmem_cache_destroy(prot->slab);
2899 	prot->slab = NULL;
2900 
2901 	req_prot_cleanup(prot->rsk_prot);
2902 
2903 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2904 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2905 		kfree(prot->twsk_prot->twsk_slab_name);
2906 		prot->twsk_prot->twsk_slab = NULL;
2907 	}
2908 }
2909 EXPORT_SYMBOL(proto_unregister);
2910 
2911 #ifdef CONFIG_PROC_FS
2912 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2913 	__acquires(proto_list_mutex)
2914 {
2915 	mutex_lock(&proto_list_mutex);
2916 	return seq_list_start_head(&proto_list, *pos);
2917 }
2918 
2919 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2920 {
2921 	return seq_list_next(v, &proto_list, pos);
2922 }
2923 
2924 static void proto_seq_stop(struct seq_file *seq, void *v)
2925 	__releases(proto_list_mutex)
2926 {
2927 	mutex_unlock(&proto_list_mutex);
2928 }
2929 
2930 static char proto_method_implemented(const void *method)
2931 {
2932 	return method == NULL ? 'n' : 'y';
2933 }
2934 static long sock_prot_memory_allocated(struct proto *proto)
2935 {
2936 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2937 }
2938 
2939 static char *sock_prot_memory_pressure(struct proto *proto)
2940 {
2941 	return proto->memory_pressure != NULL ?
2942 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2943 }
2944 
2945 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2946 {
2947 
2948 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2949 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2950 		   proto->name,
2951 		   proto->obj_size,
2952 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2953 		   sock_prot_memory_allocated(proto),
2954 		   sock_prot_memory_pressure(proto),
2955 		   proto->max_header,
2956 		   proto->slab == NULL ? "no" : "yes",
2957 		   module_name(proto->owner),
2958 		   proto_method_implemented(proto->close),
2959 		   proto_method_implemented(proto->connect),
2960 		   proto_method_implemented(proto->disconnect),
2961 		   proto_method_implemented(proto->accept),
2962 		   proto_method_implemented(proto->ioctl),
2963 		   proto_method_implemented(proto->init),
2964 		   proto_method_implemented(proto->destroy),
2965 		   proto_method_implemented(proto->shutdown),
2966 		   proto_method_implemented(proto->setsockopt),
2967 		   proto_method_implemented(proto->getsockopt),
2968 		   proto_method_implemented(proto->sendmsg),
2969 		   proto_method_implemented(proto->recvmsg),
2970 		   proto_method_implemented(proto->sendpage),
2971 		   proto_method_implemented(proto->bind),
2972 		   proto_method_implemented(proto->backlog_rcv),
2973 		   proto_method_implemented(proto->hash),
2974 		   proto_method_implemented(proto->unhash),
2975 		   proto_method_implemented(proto->get_port),
2976 		   proto_method_implemented(proto->enter_memory_pressure));
2977 }
2978 
2979 static int proto_seq_show(struct seq_file *seq, void *v)
2980 {
2981 	if (v == &proto_list)
2982 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2983 			   "protocol",
2984 			   "size",
2985 			   "sockets",
2986 			   "memory",
2987 			   "press",
2988 			   "maxhdr",
2989 			   "slab",
2990 			   "module",
2991 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2992 	else
2993 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2994 	return 0;
2995 }
2996 
2997 static const struct seq_operations proto_seq_ops = {
2998 	.start  = proto_seq_start,
2999 	.next   = proto_seq_next,
3000 	.stop   = proto_seq_stop,
3001 	.show   = proto_seq_show,
3002 };
3003 
3004 static int proto_seq_open(struct inode *inode, struct file *file)
3005 {
3006 	return seq_open_net(inode, file, &proto_seq_ops,
3007 			    sizeof(struct seq_net_private));
3008 }
3009 
3010 static const struct file_operations proto_seq_fops = {
3011 	.owner		= THIS_MODULE,
3012 	.open		= proto_seq_open,
3013 	.read		= seq_read,
3014 	.llseek		= seq_lseek,
3015 	.release	= seq_release_net,
3016 };
3017 
3018 static __net_init int proto_init_net(struct net *net)
3019 {
3020 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3021 		return -ENOMEM;
3022 
3023 	return 0;
3024 }
3025 
3026 static __net_exit void proto_exit_net(struct net *net)
3027 {
3028 	remove_proc_entry("protocols", net->proc_net);
3029 }
3030 
3031 
3032 static __net_initdata struct pernet_operations proto_net_ops = {
3033 	.init = proto_init_net,
3034 	.exit = proto_exit_net,
3035 };
3036 
3037 static int __init proto_init(void)
3038 {
3039 	return register_pernet_subsys(&proto_net_ops);
3040 }
3041 
3042 subsys_initcall(proto_init);
3043 
3044 #endif /* PROC_FS */
3045