xref: /openbmc/linux/net/core/sock.c (revision a591525f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/sched/mm.h>
106 #include <linux/timer.h>
107 #include <linux/string.h>
108 #include <linux/sockios.h>
109 #include <linux/net.h>
110 #include <linux/mm.h>
111 #include <linux/slab.h>
112 #include <linux/interrupt.h>
113 #include <linux/poll.h>
114 #include <linux/tcp.h>
115 #include <linux/init.h>
116 #include <linux/highmem.h>
117 #include <linux/user_namespace.h>
118 #include <linux/static_key.h>
119 #include <linux/memcontrol.h>
120 #include <linux/prefetch.h>
121 
122 #include <linux/uaccess.h>
123 
124 #include <linux/netdevice.h>
125 #include <net/protocol.h>
126 #include <linux/skbuff.h>
127 #include <net/net_namespace.h>
128 #include <net/request_sock.h>
129 #include <net/sock.h>
130 #include <linux/net_tstamp.h>
131 #include <net/xfrm.h>
132 #include <linux/ipsec.h>
133 #include <net/cls_cgroup.h>
134 #include <net/netprio_cgroup.h>
135 #include <linux/sock_diag.h>
136 
137 #include <linux/filter.h>
138 #include <net/sock_reuseport.h>
139 
140 #include <trace/events/sock.h>
141 
142 #include <net/tcp.h>
143 #include <net/busy_poll.h>
144 
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
147 
148 static void sock_inuse_add(struct net *net, int val);
149 
150 /**
151  * sk_ns_capable - General socket capability test
152  * @sk: Socket to use a capability on or through
153  * @user_ns: The user namespace of the capability to use
154  * @cap: The capability to use
155  *
156  * Test to see if the opener of the socket had when the socket was
157  * created and the current process has the capability @cap in the user
158  * namespace @user_ns.
159  */
160 bool sk_ns_capable(const struct sock *sk,
161 		   struct user_namespace *user_ns, int cap)
162 {
163 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 		ns_capable(user_ns, cap);
165 }
166 EXPORT_SYMBOL(sk_ns_capable);
167 
168 /**
169  * sk_capable - Socket global capability test
170  * @sk: Socket to use a capability on or through
171  * @cap: The global capability to use
172  *
173  * Test to see if the opener of the socket had when the socket was
174  * created and the current process has the capability @cap in all user
175  * namespaces.
176  */
177 bool sk_capable(const struct sock *sk, int cap)
178 {
179 	return sk_ns_capable(sk, &init_user_ns, cap);
180 }
181 EXPORT_SYMBOL(sk_capable);
182 
183 /**
184  * sk_net_capable - Network namespace socket capability test
185  * @sk: Socket to use a capability on or through
186  * @cap: The capability to use
187  *
188  * Test to see if the opener of the socket had when the socket was created
189  * and the current process has the capability @cap over the network namespace
190  * the socket is a member of.
191  */
192 bool sk_net_capable(const struct sock *sk, int cap)
193 {
194 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 }
196 EXPORT_SYMBOL(sk_net_capable);
197 
198 /*
199  * Each address family might have different locking rules, so we have
200  * one slock key per address family and separate keys for internal and
201  * userspace sockets.
202  */
203 static struct lock_class_key af_family_keys[AF_MAX];
204 static struct lock_class_key af_family_kern_keys[AF_MAX];
205 static struct lock_class_key af_family_slock_keys[AF_MAX];
206 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
207 
208 /*
209  * Make lock validator output more readable. (we pre-construct these
210  * strings build-time, so that runtime initialization of socket
211  * locks is fast):
212  */
213 
214 #define _sock_locks(x)						  \
215   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
216   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
217   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
218   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
219   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
220   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
221   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
222   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
223   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
224   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
225   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
226   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
227   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
228   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
229   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
230   x "AF_MAX"
231 
232 static const char *const af_family_key_strings[AF_MAX+1] = {
233 	_sock_locks("sk_lock-")
234 };
235 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
236 	_sock_locks("slock-")
237 };
238 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
239 	_sock_locks("clock-")
240 };
241 
242 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
243 	_sock_locks("k-sk_lock-")
244 };
245 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
246 	_sock_locks("k-slock-")
247 };
248 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
249 	_sock_locks("k-clock-")
250 };
251 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
252   "rlock-AF_UNSPEC", "rlock-AF_UNIX"     , "rlock-AF_INET"     ,
253   "rlock-AF_AX25"  , "rlock-AF_IPX"      , "rlock-AF_APPLETALK",
254   "rlock-AF_NETROM", "rlock-AF_BRIDGE"   , "rlock-AF_ATMPVC"   ,
255   "rlock-AF_X25"   , "rlock-AF_INET6"    , "rlock-AF_ROSE"     ,
256   "rlock-AF_DECnet", "rlock-AF_NETBEUI"  , "rlock-AF_SECURITY" ,
257   "rlock-AF_KEY"   , "rlock-AF_NETLINK"  , "rlock-AF_PACKET"   ,
258   "rlock-AF_ASH"   , "rlock-AF_ECONET"   , "rlock-AF_ATMSVC"   ,
259   "rlock-AF_RDS"   , "rlock-AF_SNA"      , "rlock-AF_IRDA"     ,
260   "rlock-AF_PPPOX" , "rlock-AF_WANPIPE"  , "rlock-AF_LLC"      ,
261   "rlock-27"       , "rlock-28"          , "rlock-AF_CAN"      ,
262   "rlock-AF_TIPC"  , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV"     ,
263   "rlock-AF_RXRPC" , "rlock-AF_ISDN"     , "rlock-AF_PHONET"   ,
264   "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG"      ,
265   "rlock-AF_NFC"   , "rlock-AF_VSOCK"    , "rlock-AF_KCM"      ,
266   "rlock-AF_QIPCRTR", "rlock-AF_SMC"     , "rlock-AF_XDP"      ,
267   "rlock-AF_MAX"
268 };
269 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
270   "wlock-AF_UNSPEC", "wlock-AF_UNIX"     , "wlock-AF_INET"     ,
271   "wlock-AF_AX25"  , "wlock-AF_IPX"      , "wlock-AF_APPLETALK",
272   "wlock-AF_NETROM", "wlock-AF_BRIDGE"   , "wlock-AF_ATMPVC"   ,
273   "wlock-AF_X25"   , "wlock-AF_INET6"    , "wlock-AF_ROSE"     ,
274   "wlock-AF_DECnet", "wlock-AF_NETBEUI"  , "wlock-AF_SECURITY" ,
275   "wlock-AF_KEY"   , "wlock-AF_NETLINK"  , "wlock-AF_PACKET"   ,
276   "wlock-AF_ASH"   , "wlock-AF_ECONET"   , "wlock-AF_ATMSVC"   ,
277   "wlock-AF_RDS"   , "wlock-AF_SNA"      , "wlock-AF_IRDA"     ,
278   "wlock-AF_PPPOX" , "wlock-AF_WANPIPE"  , "wlock-AF_LLC"      ,
279   "wlock-27"       , "wlock-28"          , "wlock-AF_CAN"      ,
280   "wlock-AF_TIPC"  , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV"     ,
281   "wlock-AF_RXRPC" , "wlock-AF_ISDN"     , "wlock-AF_PHONET"   ,
282   "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG"      ,
283   "wlock-AF_NFC"   , "wlock-AF_VSOCK"    , "wlock-AF_KCM"      ,
284   "wlock-AF_QIPCRTR", "wlock-AF_SMC"     , "wlock-AF_XDP"      ,
285   "wlock-AF_MAX"
286 };
287 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
288   "elock-AF_UNSPEC", "elock-AF_UNIX"     , "elock-AF_INET"     ,
289   "elock-AF_AX25"  , "elock-AF_IPX"      , "elock-AF_APPLETALK",
290   "elock-AF_NETROM", "elock-AF_BRIDGE"   , "elock-AF_ATMPVC"   ,
291   "elock-AF_X25"   , "elock-AF_INET6"    , "elock-AF_ROSE"     ,
292   "elock-AF_DECnet", "elock-AF_NETBEUI"  , "elock-AF_SECURITY" ,
293   "elock-AF_KEY"   , "elock-AF_NETLINK"  , "elock-AF_PACKET"   ,
294   "elock-AF_ASH"   , "elock-AF_ECONET"   , "elock-AF_ATMSVC"   ,
295   "elock-AF_RDS"   , "elock-AF_SNA"      , "elock-AF_IRDA"     ,
296   "elock-AF_PPPOX" , "elock-AF_WANPIPE"  , "elock-AF_LLC"      ,
297   "elock-27"       , "elock-28"          , "elock-AF_CAN"      ,
298   "elock-AF_TIPC"  , "elock-AF_BLUETOOTH", "elock-AF_IUCV"     ,
299   "elock-AF_RXRPC" , "elock-AF_ISDN"     , "elock-AF_PHONET"   ,
300   "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG"      ,
301   "elock-AF_NFC"   , "elock-AF_VSOCK"    , "elock-AF_KCM"      ,
302   "elock-AF_QIPCRTR", "elock-AF_SMC"     , "elock-AF_XDP"      ,
303   "elock-AF_MAX"
304 };
305 
306 /*
307  * sk_callback_lock and sk queues locking rules are per-address-family,
308  * so split the lock classes by using a per-AF key:
309  */
310 static struct lock_class_key af_callback_keys[AF_MAX];
311 static struct lock_class_key af_rlock_keys[AF_MAX];
312 static struct lock_class_key af_wlock_keys[AF_MAX];
313 static struct lock_class_key af_elock_keys[AF_MAX];
314 static struct lock_class_key af_kern_callback_keys[AF_MAX];
315 
316 /* Run time adjustable parameters. */
317 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
318 EXPORT_SYMBOL(sysctl_wmem_max);
319 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
320 EXPORT_SYMBOL(sysctl_rmem_max);
321 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
322 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
323 
324 /* Maximal space eaten by iovec or ancillary data plus some space */
325 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
326 EXPORT_SYMBOL(sysctl_optmem_max);
327 
328 int sysctl_tstamp_allow_data __read_mostly = 1;
329 
330 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
331 EXPORT_SYMBOL_GPL(memalloc_socks_key);
332 
333 /**
334  * sk_set_memalloc - sets %SOCK_MEMALLOC
335  * @sk: socket to set it on
336  *
337  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
338  * It's the responsibility of the admin to adjust min_free_kbytes
339  * to meet the requirements
340  */
341 void sk_set_memalloc(struct sock *sk)
342 {
343 	sock_set_flag(sk, SOCK_MEMALLOC);
344 	sk->sk_allocation |= __GFP_MEMALLOC;
345 	static_branch_inc(&memalloc_socks_key);
346 }
347 EXPORT_SYMBOL_GPL(sk_set_memalloc);
348 
349 void sk_clear_memalloc(struct sock *sk)
350 {
351 	sock_reset_flag(sk, SOCK_MEMALLOC);
352 	sk->sk_allocation &= ~__GFP_MEMALLOC;
353 	static_branch_dec(&memalloc_socks_key);
354 
355 	/*
356 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
357 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
358 	 * it has rmem allocations due to the last swapfile being deactivated
359 	 * but there is a risk that the socket is unusable due to exceeding
360 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
361 	 */
362 	sk_mem_reclaim(sk);
363 }
364 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
365 
366 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
367 {
368 	int ret;
369 	unsigned int noreclaim_flag;
370 
371 	/* these should have been dropped before queueing */
372 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
373 
374 	noreclaim_flag = memalloc_noreclaim_save();
375 	ret = sk->sk_backlog_rcv(sk, skb);
376 	memalloc_noreclaim_restore(noreclaim_flag);
377 
378 	return ret;
379 }
380 EXPORT_SYMBOL(__sk_backlog_rcv);
381 
382 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
383 {
384 	struct timeval tv;
385 
386 	if (optlen < sizeof(tv))
387 		return -EINVAL;
388 	if (copy_from_user(&tv, optval, sizeof(tv)))
389 		return -EFAULT;
390 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
391 		return -EDOM;
392 
393 	if (tv.tv_sec < 0) {
394 		static int warned __read_mostly;
395 
396 		*timeo_p = 0;
397 		if (warned < 10 && net_ratelimit()) {
398 			warned++;
399 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
400 				__func__, current->comm, task_pid_nr(current));
401 		}
402 		return 0;
403 	}
404 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
405 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
406 		return 0;
407 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
408 		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
409 	return 0;
410 }
411 
412 static void sock_warn_obsolete_bsdism(const char *name)
413 {
414 	static int warned;
415 	static char warncomm[TASK_COMM_LEN];
416 	if (strcmp(warncomm, current->comm) && warned < 5) {
417 		strcpy(warncomm,  current->comm);
418 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
419 			warncomm, name);
420 		warned++;
421 	}
422 }
423 
424 static bool sock_needs_netstamp(const struct sock *sk)
425 {
426 	switch (sk->sk_family) {
427 	case AF_UNSPEC:
428 	case AF_UNIX:
429 		return false;
430 	default:
431 		return true;
432 	}
433 }
434 
435 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
436 {
437 	if (sk->sk_flags & flags) {
438 		sk->sk_flags &= ~flags;
439 		if (sock_needs_netstamp(sk) &&
440 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
441 			net_disable_timestamp();
442 	}
443 }
444 
445 
446 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
447 {
448 	unsigned long flags;
449 	struct sk_buff_head *list = &sk->sk_receive_queue;
450 
451 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
452 		atomic_inc(&sk->sk_drops);
453 		trace_sock_rcvqueue_full(sk, skb);
454 		return -ENOMEM;
455 	}
456 
457 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
458 		atomic_inc(&sk->sk_drops);
459 		return -ENOBUFS;
460 	}
461 
462 	skb->dev = NULL;
463 	skb_set_owner_r(skb, sk);
464 
465 	/* we escape from rcu protected region, make sure we dont leak
466 	 * a norefcounted dst
467 	 */
468 	skb_dst_force(skb);
469 
470 	spin_lock_irqsave(&list->lock, flags);
471 	sock_skb_set_dropcount(sk, skb);
472 	__skb_queue_tail(list, skb);
473 	spin_unlock_irqrestore(&list->lock, flags);
474 
475 	if (!sock_flag(sk, SOCK_DEAD))
476 		sk->sk_data_ready(sk);
477 	return 0;
478 }
479 EXPORT_SYMBOL(__sock_queue_rcv_skb);
480 
481 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
482 {
483 	int err;
484 
485 	err = sk_filter(sk, skb);
486 	if (err)
487 		return err;
488 
489 	return __sock_queue_rcv_skb(sk, skb);
490 }
491 EXPORT_SYMBOL(sock_queue_rcv_skb);
492 
493 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
494 		     const int nested, unsigned int trim_cap, bool refcounted)
495 {
496 	int rc = NET_RX_SUCCESS;
497 
498 	if (sk_filter_trim_cap(sk, skb, trim_cap))
499 		goto discard_and_relse;
500 
501 	skb->dev = NULL;
502 
503 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
504 		atomic_inc(&sk->sk_drops);
505 		goto discard_and_relse;
506 	}
507 	if (nested)
508 		bh_lock_sock_nested(sk);
509 	else
510 		bh_lock_sock(sk);
511 	if (!sock_owned_by_user(sk)) {
512 		/*
513 		 * trylock + unlock semantics:
514 		 */
515 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
516 
517 		rc = sk_backlog_rcv(sk, skb);
518 
519 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
520 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
521 		bh_unlock_sock(sk);
522 		atomic_inc(&sk->sk_drops);
523 		goto discard_and_relse;
524 	}
525 
526 	bh_unlock_sock(sk);
527 out:
528 	if (refcounted)
529 		sock_put(sk);
530 	return rc;
531 discard_and_relse:
532 	kfree_skb(skb);
533 	goto out;
534 }
535 EXPORT_SYMBOL(__sk_receive_skb);
536 
537 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
538 {
539 	struct dst_entry *dst = __sk_dst_get(sk);
540 
541 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
542 		sk_tx_queue_clear(sk);
543 		sk->sk_dst_pending_confirm = 0;
544 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
545 		dst_release(dst);
546 		return NULL;
547 	}
548 
549 	return dst;
550 }
551 EXPORT_SYMBOL(__sk_dst_check);
552 
553 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
554 {
555 	struct dst_entry *dst = sk_dst_get(sk);
556 
557 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
558 		sk_dst_reset(sk);
559 		dst_release(dst);
560 		return NULL;
561 	}
562 
563 	return dst;
564 }
565 EXPORT_SYMBOL(sk_dst_check);
566 
567 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
568 				int optlen)
569 {
570 	int ret = -ENOPROTOOPT;
571 #ifdef CONFIG_NETDEVICES
572 	struct net *net = sock_net(sk);
573 	char devname[IFNAMSIZ];
574 	int index;
575 
576 	/* Sorry... */
577 	ret = -EPERM;
578 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
579 		goto out;
580 
581 	ret = -EINVAL;
582 	if (optlen < 0)
583 		goto out;
584 
585 	/* Bind this socket to a particular device like "eth0",
586 	 * as specified in the passed interface name. If the
587 	 * name is "" or the option length is zero the socket
588 	 * is not bound.
589 	 */
590 	if (optlen > IFNAMSIZ - 1)
591 		optlen = IFNAMSIZ - 1;
592 	memset(devname, 0, sizeof(devname));
593 
594 	ret = -EFAULT;
595 	if (copy_from_user(devname, optval, optlen))
596 		goto out;
597 
598 	index = 0;
599 	if (devname[0] != '\0') {
600 		struct net_device *dev;
601 
602 		rcu_read_lock();
603 		dev = dev_get_by_name_rcu(net, devname);
604 		if (dev)
605 			index = dev->ifindex;
606 		rcu_read_unlock();
607 		ret = -ENODEV;
608 		if (!dev)
609 			goto out;
610 	}
611 
612 	lock_sock(sk);
613 	sk->sk_bound_dev_if = index;
614 	sk_dst_reset(sk);
615 	release_sock(sk);
616 
617 	ret = 0;
618 
619 out:
620 #endif
621 
622 	return ret;
623 }
624 
625 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
626 				int __user *optlen, int len)
627 {
628 	int ret = -ENOPROTOOPT;
629 #ifdef CONFIG_NETDEVICES
630 	struct net *net = sock_net(sk);
631 	char devname[IFNAMSIZ];
632 
633 	if (sk->sk_bound_dev_if == 0) {
634 		len = 0;
635 		goto zero;
636 	}
637 
638 	ret = -EINVAL;
639 	if (len < IFNAMSIZ)
640 		goto out;
641 
642 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
643 	if (ret)
644 		goto out;
645 
646 	len = strlen(devname) + 1;
647 
648 	ret = -EFAULT;
649 	if (copy_to_user(optval, devname, len))
650 		goto out;
651 
652 zero:
653 	ret = -EFAULT;
654 	if (put_user(len, optlen))
655 		goto out;
656 
657 	ret = 0;
658 
659 out:
660 #endif
661 
662 	return ret;
663 }
664 
665 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
666 {
667 	if (valbool)
668 		sock_set_flag(sk, bit);
669 	else
670 		sock_reset_flag(sk, bit);
671 }
672 
673 bool sk_mc_loop(struct sock *sk)
674 {
675 	if (dev_recursion_level())
676 		return false;
677 	if (!sk)
678 		return true;
679 	switch (sk->sk_family) {
680 	case AF_INET:
681 		return inet_sk(sk)->mc_loop;
682 #if IS_ENABLED(CONFIG_IPV6)
683 	case AF_INET6:
684 		return inet6_sk(sk)->mc_loop;
685 #endif
686 	}
687 	WARN_ON(1);
688 	return true;
689 }
690 EXPORT_SYMBOL(sk_mc_loop);
691 
692 /*
693  *	This is meant for all protocols to use and covers goings on
694  *	at the socket level. Everything here is generic.
695  */
696 
697 int sock_setsockopt(struct socket *sock, int level, int optname,
698 		    char __user *optval, unsigned int optlen)
699 {
700 	struct sock *sk = sock->sk;
701 	int val;
702 	int valbool;
703 	struct linger ling;
704 	int ret = 0;
705 
706 	/*
707 	 *	Options without arguments
708 	 */
709 
710 	if (optname == SO_BINDTODEVICE)
711 		return sock_setbindtodevice(sk, optval, optlen);
712 
713 	if (optlen < sizeof(int))
714 		return -EINVAL;
715 
716 	if (get_user(val, (int __user *)optval))
717 		return -EFAULT;
718 
719 	valbool = val ? 1 : 0;
720 
721 	lock_sock(sk);
722 
723 	switch (optname) {
724 	case SO_DEBUG:
725 		if (val && !capable(CAP_NET_ADMIN))
726 			ret = -EACCES;
727 		else
728 			sock_valbool_flag(sk, SOCK_DBG, valbool);
729 		break;
730 	case SO_REUSEADDR:
731 		val = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
732 		if ((sk->sk_family == PF_INET || sk->sk_family == PF_INET6) &&
733 		    inet_sk(sk)->inet_num &&
734 		    (sk->sk_reuse != val)) {
735 			ret = (sk->sk_state == TCP_ESTABLISHED) ? -EISCONN : -EUCLEAN;
736 			break;
737 		}
738 		sk->sk_reuse = val;
739 		break;
740 	case SO_REUSEPORT:
741 		if ((sk->sk_family == PF_INET || sk->sk_family == PF_INET6) &&
742 		    inet_sk(sk)->inet_num &&
743 		    (sk->sk_reuseport != valbool)) {
744 			ret = (sk->sk_state == TCP_ESTABLISHED) ? -EISCONN : -EUCLEAN;
745 			break;
746 		}
747 		sk->sk_reuseport = valbool;
748 		break;
749 	case SO_TYPE:
750 	case SO_PROTOCOL:
751 	case SO_DOMAIN:
752 	case SO_ERROR:
753 		ret = -ENOPROTOOPT;
754 		break;
755 	case SO_DONTROUTE:
756 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
757 		break;
758 	case SO_BROADCAST:
759 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
760 		break;
761 	case SO_SNDBUF:
762 		/* Don't error on this BSD doesn't and if you think
763 		 * about it this is right. Otherwise apps have to
764 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
765 		 * are treated in BSD as hints
766 		 */
767 		val = min_t(u32, val, sysctl_wmem_max);
768 set_sndbuf:
769 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
770 		sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
771 		/* Wake up sending tasks if we upped the value. */
772 		sk->sk_write_space(sk);
773 		break;
774 
775 	case SO_SNDBUFFORCE:
776 		if (!capable(CAP_NET_ADMIN)) {
777 			ret = -EPERM;
778 			break;
779 		}
780 		goto set_sndbuf;
781 
782 	case SO_RCVBUF:
783 		/* Don't error on this BSD doesn't and if you think
784 		 * about it this is right. Otherwise apps have to
785 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
786 		 * are treated in BSD as hints
787 		 */
788 		val = min_t(u32, val, sysctl_rmem_max);
789 set_rcvbuf:
790 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
791 		/*
792 		 * We double it on the way in to account for
793 		 * "struct sk_buff" etc. overhead.   Applications
794 		 * assume that the SO_RCVBUF setting they make will
795 		 * allow that much actual data to be received on that
796 		 * socket.
797 		 *
798 		 * Applications are unaware that "struct sk_buff" and
799 		 * other overheads allocate from the receive buffer
800 		 * during socket buffer allocation.
801 		 *
802 		 * And after considering the possible alternatives,
803 		 * returning the value we actually used in getsockopt
804 		 * is the most desirable behavior.
805 		 */
806 		sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
807 		break;
808 
809 	case SO_RCVBUFFORCE:
810 		if (!capable(CAP_NET_ADMIN)) {
811 			ret = -EPERM;
812 			break;
813 		}
814 		goto set_rcvbuf;
815 
816 	case SO_KEEPALIVE:
817 		if (sk->sk_prot->keepalive)
818 			sk->sk_prot->keepalive(sk, valbool);
819 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
820 		break;
821 
822 	case SO_OOBINLINE:
823 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
824 		break;
825 
826 	case SO_NO_CHECK:
827 		sk->sk_no_check_tx = valbool;
828 		break;
829 
830 	case SO_PRIORITY:
831 		if ((val >= 0 && val <= 6) ||
832 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
833 			sk->sk_priority = val;
834 		else
835 			ret = -EPERM;
836 		break;
837 
838 	case SO_LINGER:
839 		if (optlen < sizeof(ling)) {
840 			ret = -EINVAL;	/* 1003.1g */
841 			break;
842 		}
843 		if (copy_from_user(&ling, optval, sizeof(ling))) {
844 			ret = -EFAULT;
845 			break;
846 		}
847 		if (!ling.l_onoff)
848 			sock_reset_flag(sk, SOCK_LINGER);
849 		else {
850 #if (BITS_PER_LONG == 32)
851 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
852 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
853 			else
854 #endif
855 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
856 			sock_set_flag(sk, SOCK_LINGER);
857 		}
858 		break;
859 
860 	case SO_BSDCOMPAT:
861 		sock_warn_obsolete_bsdism("setsockopt");
862 		break;
863 
864 	case SO_PASSCRED:
865 		if (valbool)
866 			set_bit(SOCK_PASSCRED, &sock->flags);
867 		else
868 			clear_bit(SOCK_PASSCRED, &sock->flags);
869 		break;
870 
871 	case SO_TIMESTAMP:
872 	case SO_TIMESTAMPNS:
873 		if (valbool)  {
874 			if (optname == SO_TIMESTAMP)
875 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
876 			else
877 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
878 			sock_set_flag(sk, SOCK_RCVTSTAMP);
879 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
880 		} else {
881 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
882 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
883 		}
884 		break;
885 
886 	case SO_TIMESTAMPING:
887 		if (val & ~SOF_TIMESTAMPING_MASK) {
888 			ret = -EINVAL;
889 			break;
890 		}
891 
892 		if (val & SOF_TIMESTAMPING_OPT_ID &&
893 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
894 			if (sk->sk_protocol == IPPROTO_TCP &&
895 			    sk->sk_type == SOCK_STREAM) {
896 				if ((1 << sk->sk_state) &
897 				    (TCPF_CLOSE | TCPF_LISTEN)) {
898 					ret = -EINVAL;
899 					break;
900 				}
901 				sk->sk_tskey = tcp_sk(sk)->snd_una;
902 			} else {
903 				sk->sk_tskey = 0;
904 			}
905 		}
906 
907 		if (val & SOF_TIMESTAMPING_OPT_STATS &&
908 		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
909 			ret = -EINVAL;
910 			break;
911 		}
912 
913 		sk->sk_tsflags = val;
914 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
915 			sock_enable_timestamp(sk,
916 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
917 		else
918 			sock_disable_timestamp(sk,
919 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
920 		break;
921 
922 	case SO_RCVLOWAT:
923 		if (val < 0)
924 			val = INT_MAX;
925 		if (sock->ops->set_rcvlowat)
926 			ret = sock->ops->set_rcvlowat(sk, val);
927 		else
928 			sk->sk_rcvlowat = val ? : 1;
929 		break;
930 
931 	case SO_RCVTIMEO:
932 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
933 		break;
934 
935 	case SO_SNDTIMEO:
936 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
937 		break;
938 
939 	case SO_ATTACH_FILTER:
940 		ret = -EINVAL;
941 		if (optlen == sizeof(struct sock_fprog)) {
942 			struct sock_fprog fprog;
943 
944 			ret = -EFAULT;
945 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
946 				break;
947 
948 			ret = sk_attach_filter(&fprog, sk);
949 		}
950 		break;
951 
952 	case SO_ATTACH_BPF:
953 		ret = -EINVAL;
954 		if (optlen == sizeof(u32)) {
955 			u32 ufd;
956 
957 			ret = -EFAULT;
958 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
959 				break;
960 
961 			ret = sk_attach_bpf(ufd, sk);
962 		}
963 		break;
964 
965 	case SO_ATTACH_REUSEPORT_CBPF:
966 		ret = -EINVAL;
967 		if (optlen == sizeof(struct sock_fprog)) {
968 			struct sock_fprog fprog;
969 
970 			ret = -EFAULT;
971 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
972 				break;
973 
974 			ret = sk_reuseport_attach_filter(&fprog, sk);
975 		}
976 		break;
977 
978 	case SO_ATTACH_REUSEPORT_EBPF:
979 		ret = -EINVAL;
980 		if (optlen == sizeof(u32)) {
981 			u32 ufd;
982 
983 			ret = -EFAULT;
984 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
985 				break;
986 
987 			ret = sk_reuseport_attach_bpf(ufd, sk);
988 		}
989 		break;
990 
991 	case SO_DETACH_FILTER:
992 		ret = sk_detach_filter(sk);
993 		break;
994 
995 	case SO_LOCK_FILTER:
996 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
997 			ret = -EPERM;
998 		else
999 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1000 		break;
1001 
1002 	case SO_PASSSEC:
1003 		if (valbool)
1004 			set_bit(SOCK_PASSSEC, &sock->flags);
1005 		else
1006 			clear_bit(SOCK_PASSSEC, &sock->flags);
1007 		break;
1008 	case SO_MARK:
1009 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1010 			ret = -EPERM;
1011 		else
1012 			sk->sk_mark = val;
1013 		break;
1014 
1015 	case SO_RXQ_OVFL:
1016 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1017 		break;
1018 
1019 	case SO_WIFI_STATUS:
1020 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1021 		break;
1022 
1023 	case SO_PEEK_OFF:
1024 		if (sock->ops->set_peek_off)
1025 			ret = sock->ops->set_peek_off(sk, val);
1026 		else
1027 			ret = -EOPNOTSUPP;
1028 		break;
1029 
1030 	case SO_NOFCS:
1031 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1032 		break;
1033 
1034 	case SO_SELECT_ERR_QUEUE:
1035 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1036 		break;
1037 
1038 #ifdef CONFIG_NET_RX_BUSY_POLL
1039 	case SO_BUSY_POLL:
1040 		/* allow unprivileged users to decrease the value */
1041 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1042 			ret = -EPERM;
1043 		else {
1044 			if (val < 0)
1045 				ret = -EINVAL;
1046 			else
1047 				sk->sk_ll_usec = val;
1048 		}
1049 		break;
1050 #endif
1051 
1052 	case SO_MAX_PACING_RATE:
1053 		if (val != ~0U)
1054 			cmpxchg(&sk->sk_pacing_status,
1055 				SK_PACING_NONE,
1056 				SK_PACING_NEEDED);
1057 		sk->sk_max_pacing_rate = val;
1058 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1059 					 sk->sk_max_pacing_rate);
1060 		break;
1061 
1062 	case SO_INCOMING_CPU:
1063 		sk->sk_incoming_cpu = val;
1064 		break;
1065 
1066 	case SO_CNX_ADVICE:
1067 		if (val == 1)
1068 			dst_negative_advice(sk);
1069 		break;
1070 
1071 	case SO_ZEROCOPY:
1072 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1073 			if (sk->sk_protocol != IPPROTO_TCP)
1074 				ret = -ENOTSUPP;
1075 		} else if (sk->sk_family != PF_RDS) {
1076 			ret = -ENOTSUPP;
1077 		}
1078 		if (!ret) {
1079 			if (val < 0 || val > 1)
1080 				ret = -EINVAL;
1081 			else
1082 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1083 		}
1084 		break;
1085 
1086 	default:
1087 		ret = -ENOPROTOOPT;
1088 		break;
1089 	}
1090 	release_sock(sk);
1091 	return ret;
1092 }
1093 EXPORT_SYMBOL(sock_setsockopt);
1094 
1095 
1096 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1097 			  struct ucred *ucred)
1098 {
1099 	ucred->pid = pid_vnr(pid);
1100 	ucred->uid = ucred->gid = -1;
1101 	if (cred) {
1102 		struct user_namespace *current_ns = current_user_ns();
1103 
1104 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1105 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1106 	}
1107 }
1108 
1109 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1110 {
1111 	struct user_namespace *user_ns = current_user_ns();
1112 	int i;
1113 
1114 	for (i = 0; i < src->ngroups; i++)
1115 		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1116 			return -EFAULT;
1117 
1118 	return 0;
1119 }
1120 
1121 int sock_getsockopt(struct socket *sock, int level, int optname,
1122 		    char __user *optval, int __user *optlen)
1123 {
1124 	struct sock *sk = sock->sk;
1125 
1126 	union {
1127 		int val;
1128 		u64 val64;
1129 		struct linger ling;
1130 		struct timeval tm;
1131 	} v;
1132 
1133 	int lv = sizeof(int);
1134 	int len;
1135 
1136 	if (get_user(len, optlen))
1137 		return -EFAULT;
1138 	if (len < 0)
1139 		return -EINVAL;
1140 
1141 	memset(&v, 0, sizeof(v));
1142 
1143 	switch (optname) {
1144 	case SO_DEBUG:
1145 		v.val = sock_flag(sk, SOCK_DBG);
1146 		break;
1147 
1148 	case SO_DONTROUTE:
1149 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1150 		break;
1151 
1152 	case SO_BROADCAST:
1153 		v.val = sock_flag(sk, SOCK_BROADCAST);
1154 		break;
1155 
1156 	case SO_SNDBUF:
1157 		v.val = sk->sk_sndbuf;
1158 		break;
1159 
1160 	case SO_RCVBUF:
1161 		v.val = sk->sk_rcvbuf;
1162 		break;
1163 
1164 	case SO_REUSEADDR:
1165 		v.val = sk->sk_reuse;
1166 		break;
1167 
1168 	case SO_REUSEPORT:
1169 		v.val = sk->sk_reuseport;
1170 		break;
1171 
1172 	case SO_KEEPALIVE:
1173 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1174 		break;
1175 
1176 	case SO_TYPE:
1177 		v.val = sk->sk_type;
1178 		break;
1179 
1180 	case SO_PROTOCOL:
1181 		v.val = sk->sk_protocol;
1182 		break;
1183 
1184 	case SO_DOMAIN:
1185 		v.val = sk->sk_family;
1186 		break;
1187 
1188 	case SO_ERROR:
1189 		v.val = -sock_error(sk);
1190 		if (v.val == 0)
1191 			v.val = xchg(&sk->sk_err_soft, 0);
1192 		break;
1193 
1194 	case SO_OOBINLINE:
1195 		v.val = sock_flag(sk, SOCK_URGINLINE);
1196 		break;
1197 
1198 	case SO_NO_CHECK:
1199 		v.val = sk->sk_no_check_tx;
1200 		break;
1201 
1202 	case SO_PRIORITY:
1203 		v.val = sk->sk_priority;
1204 		break;
1205 
1206 	case SO_LINGER:
1207 		lv		= sizeof(v.ling);
1208 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1209 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1210 		break;
1211 
1212 	case SO_BSDCOMPAT:
1213 		sock_warn_obsolete_bsdism("getsockopt");
1214 		break;
1215 
1216 	case SO_TIMESTAMP:
1217 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1218 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1219 		break;
1220 
1221 	case SO_TIMESTAMPNS:
1222 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1223 		break;
1224 
1225 	case SO_TIMESTAMPING:
1226 		v.val = sk->sk_tsflags;
1227 		break;
1228 
1229 	case SO_RCVTIMEO:
1230 		lv = sizeof(struct timeval);
1231 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1232 			v.tm.tv_sec = 0;
1233 			v.tm.tv_usec = 0;
1234 		} else {
1235 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1236 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1237 		}
1238 		break;
1239 
1240 	case SO_SNDTIMEO:
1241 		lv = sizeof(struct timeval);
1242 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1243 			v.tm.tv_sec = 0;
1244 			v.tm.tv_usec = 0;
1245 		} else {
1246 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1247 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1248 		}
1249 		break;
1250 
1251 	case SO_RCVLOWAT:
1252 		v.val = sk->sk_rcvlowat;
1253 		break;
1254 
1255 	case SO_SNDLOWAT:
1256 		v.val = 1;
1257 		break;
1258 
1259 	case SO_PASSCRED:
1260 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1261 		break;
1262 
1263 	case SO_PEERCRED:
1264 	{
1265 		struct ucred peercred;
1266 		if (len > sizeof(peercred))
1267 			len = sizeof(peercred);
1268 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1269 		if (copy_to_user(optval, &peercred, len))
1270 			return -EFAULT;
1271 		goto lenout;
1272 	}
1273 
1274 	case SO_PEERGROUPS:
1275 	{
1276 		int ret, n;
1277 
1278 		if (!sk->sk_peer_cred)
1279 			return -ENODATA;
1280 
1281 		n = sk->sk_peer_cred->group_info->ngroups;
1282 		if (len < n * sizeof(gid_t)) {
1283 			len = n * sizeof(gid_t);
1284 			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1285 		}
1286 		len = n * sizeof(gid_t);
1287 
1288 		ret = groups_to_user((gid_t __user *)optval,
1289 				     sk->sk_peer_cred->group_info);
1290 		if (ret)
1291 			return ret;
1292 		goto lenout;
1293 	}
1294 
1295 	case SO_PEERNAME:
1296 	{
1297 		char address[128];
1298 
1299 		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1300 		if (lv < 0)
1301 			return -ENOTCONN;
1302 		if (lv < len)
1303 			return -EINVAL;
1304 		if (copy_to_user(optval, address, len))
1305 			return -EFAULT;
1306 		goto lenout;
1307 	}
1308 
1309 	/* Dubious BSD thing... Probably nobody even uses it, but
1310 	 * the UNIX standard wants it for whatever reason... -DaveM
1311 	 */
1312 	case SO_ACCEPTCONN:
1313 		v.val = sk->sk_state == TCP_LISTEN;
1314 		break;
1315 
1316 	case SO_PASSSEC:
1317 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1318 		break;
1319 
1320 	case SO_PEERSEC:
1321 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1322 
1323 	case SO_MARK:
1324 		v.val = sk->sk_mark;
1325 		break;
1326 
1327 	case SO_RXQ_OVFL:
1328 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1329 		break;
1330 
1331 	case SO_WIFI_STATUS:
1332 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1333 		break;
1334 
1335 	case SO_PEEK_OFF:
1336 		if (!sock->ops->set_peek_off)
1337 			return -EOPNOTSUPP;
1338 
1339 		v.val = sk->sk_peek_off;
1340 		break;
1341 	case SO_NOFCS:
1342 		v.val = sock_flag(sk, SOCK_NOFCS);
1343 		break;
1344 
1345 	case SO_BINDTODEVICE:
1346 		return sock_getbindtodevice(sk, optval, optlen, len);
1347 
1348 	case SO_GET_FILTER:
1349 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1350 		if (len < 0)
1351 			return len;
1352 
1353 		goto lenout;
1354 
1355 	case SO_LOCK_FILTER:
1356 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1357 		break;
1358 
1359 	case SO_BPF_EXTENSIONS:
1360 		v.val = bpf_tell_extensions();
1361 		break;
1362 
1363 	case SO_SELECT_ERR_QUEUE:
1364 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1365 		break;
1366 
1367 #ifdef CONFIG_NET_RX_BUSY_POLL
1368 	case SO_BUSY_POLL:
1369 		v.val = sk->sk_ll_usec;
1370 		break;
1371 #endif
1372 
1373 	case SO_MAX_PACING_RATE:
1374 		v.val = sk->sk_max_pacing_rate;
1375 		break;
1376 
1377 	case SO_INCOMING_CPU:
1378 		v.val = sk->sk_incoming_cpu;
1379 		break;
1380 
1381 	case SO_MEMINFO:
1382 	{
1383 		u32 meminfo[SK_MEMINFO_VARS];
1384 
1385 		if (get_user(len, optlen))
1386 			return -EFAULT;
1387 
1388 		sk_get_meminfo(sk, meminfo);
1389 
1390 		len = min_t(unsigned int, len, sizeof(meminfo));
1391 		if (copy_to_user(optval, &meminfo, len))
1392 			return -EFAULT;
1393 
1394 		goto lenout;
1395 	}
1396 
1397 #ifdef CONFIG_NET_RX_BUSY_POLL
1398 	case SO_INCOMING_NAPI_ID:
1399 		v.val = READ_ONCE(sk->sk_napi_id);
1400 
1401 		/* aggregate non-NAPI IDs down to 0 */
1402 		if (v.val < MIN_NAPI_ID)
1403 			v.val = 0;
1404 
1405 		break;
1406 #endif
1407 
1408 	case SO_COOKIE:
1409 		lv = sizeof(u64);
1410 		if (len < lv)
1411 			return -EINVAL;
1412 		v.val64 = sock_gen_cookie(sk);
1413 		break;
1414 
1415 	case SO_ZEROCOPY:
1416 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1417 		break;
1418 
1419 	default:
1420 		/* We implement the SO_SNDLOWAT etc to not be settable
1421 		 * (1003.1g 7).
1422 		 */
1423 		return -ENOPROTOOPT;
1424 	}
1425 
1426 	if (len > lv)
1427 		len = lv;
1428 	if (copy_to_user(optval, &v, len))
1429 		return -EFAULT;
1430 lenout:
1431 	if (put_user(len, optlen))
1432 		return -EFAULT;
1433 	return 0;
1434 }
1435 
1436 /*
1437  * Initialize an sk_lock.
1438  *
1439  * (We also register the sk_lock with the lock validator.)
1440  */
1441 static inline void sock_lock_init(struct sock *sk)
1442 {
1443 	if (sk->sk_kern_sock)
1444 		sock_lock_init_class_and_name(
1445 			sk,
1446 			af_family_kern_slock_key_strings[sk->sk_family],
1447 			af_family_kern_slock_keys + sk->sk_family,
1448 			af_family_kern_key_strings[sk->sk_family],
1449 			af_family_kern_keys + sk->sk_family);
1450 	else
1451 		sock_lock_init_class_and_name(
1452 			sk,
1453 			af_family_slock_key_strings[sk->sk_family],
1454 			af_family_slock_keys + sk->sk_family,
1455 			af_family_key_strings[sk->sk_family],
1456 			af_family_keys + sk->sk_family);
1457 }
1458 
1459 /*
1460  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1461  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1462  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1463  */
1464 static void sock_copy(struct sock *nsk, const struct sock *osk)
1465 {
1466 #ifdef CONFIG_SECURITY_NETWORK
1467 	void *sptr = nsk->sk_security;
1468 #endif
1469 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1470 
1471 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1472 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1473 
1474 #ifdef CONFIG_SECURITY_NETWORK
1475 	nsk->sk_security = sptr;
1476 	security_sk_clone(osk, nsk);
1477 #endif
1478 }
1479 
1480 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1481 		int family)
1482 {
1483 	struct sock *sk;
1484 	struct kmem_cache *slab;
1485 
1486 	slab = prot->slab;
1487 	if (slab != NULL) {
1488 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1489 		if (!sk)
1490 			return sk;
1491 		if (priority & __GFP_ZERO)
1492 			sk_prot_clear_nulls(sk, prot->obj_size);
1493 	} else
1494 		sk = kmalloc(prot->obj_size, priority);
1495 
1496 	if (sk != NULL) {
1497 		if (security_sk_alloc(sk, family, priority))
1498 			goto out_free;
1499 
1500 		if (!try_module_get(prot->owner))
1501 			goto out_free_sec;
1502 		sk_tx_queue_clear(sk);
1503 	}
1504 
1505 	return sk;
1506 
1507 out_free_sec:
1508 	security_sk_free(sk);
1509 out_free:
1510 	if (slab != NULL)
1511 		kmem_cache_free(slab, sk);
1512 	else
1513 		kfree(sk);
1514 	return NULL;
1515 }
1516 
1517 static void sk_prot_free(struct proto *prot, struct sock *sk)
1518 {
1519 	struct kmem_cache *slab;
1520 	struct module *owner;
1521 
1522 	owner = prot->owner;
1523 	slab = prot->slab;
1524 
1525 	cgroup_sk_free(&sk->sk_cgrp_data);
1526 	mem_cgroup_sk_free(sk);
1527 	security_sk_free(sk);
1528 	if (slab != NULL)
1529 		kmem_cache_free(slab, sk);
1530 	else
1531 		kfree(sk);
1532 	module_put(owner);
1533 }
1534 
1535 /**
1536  *	sk_alloc - All socket objects are allocated here
1537  *	@net: the applicable net namespace
1538  *	@family: protocol family
1539  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1540  *	@prot: struct proto associated with this new sock instance
1541  *	@kern: is this to be a kernel socket?
1542  */
1543 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1544 		      struct proto *prot, int kern)
1545 {
1546 	struct sock *sk;
1547 
1548 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1549 	if (sk) {
1550 		sk->sk_family = family;
1551 		/*
1552 		 * See comment in struct sock definition to understand
1553 		 * why we need sk_prot_creator -acme
1554 		 */
1555 		sk->sk_prot = sk->sk_prot_creator = prot;
1556 		sk->sk_kern_sock = kern;
1557 		sock_lock_init(sk);
1558 		sk->sk_net_refcnt = kern ? 0 : 1;
1559 		if (likely(sk->sk_net_refcnt)) {
1560 			get_net(net);
1561 			sock_inuse_add(net, 1);
1562 		}
1563 
1564 		sock_net_set(sk, net);
1565 		refcount_set(&sk->sk_wmem_alloc, 1);
1566 
1567 		mem_cgroup_sk_alloc(sk);
1568 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1569 		sock_update_classid(&sk->sk_cgrp_data);
1570 		sock_update_netprioidx(&sk->sk_cgrp_data);
1571 	}
1572 
1573 	return sk;
1574 }
1575 EXPORT_SYMBOL(sk_alloc);
1576 
1577 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1578  * grace period. This is the case for UDP sockets and TCP listeners.
1579  */
1580 static void __sk_destruct(struct rcu_head *head)
1581 {
1582 	struct sock *sk = container_of(head, struct sock, sk_rcu);
1583 	struct sk_filter *filter;
1584 
1585 	if (sk->sk_destruct)
1586 		sk->sk_destruct(sk);
1587 
1588 	filter = rcu_dereference_check(sk->sk_filter,
1589 				       refcount_read(&sk->sk_wmem_alloc) == 0);
1590 	if (filter) {
1591 		sk_filter_uncharge(sk, filter);
1592 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1593 	}
1594 	if (rcu_access_pointer(sk->sk_reuseport_cb))
1595 		reuseport_detach_sock(sk);
1596 
1597 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1598 
1599 	if (atomic_read(&sk->sk_omem_alloc))
1600 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1601 			 __func__, atomic_read(&sk->sk_omem_alloc));
1602 
1603 	if (sk->sk_frag.page) {
1604 		put_page(sk->sk_frag.page);
1605 		sk->sk_frag.page = NULL;
1606 	}
1607 
1608 	if (sk->sk_peer_cred)
1609 		put_cred(sk->sk_peer_cred);
1610 	put_pid(sk->sk_peer_pid);
1611 	if (likely(sk->sk_net_refcnt))
1612 		put_net(sock_net(sk));
1613 	sk_prot_free(sk->sk_prot_creator, sk);
1614 }
1615 
1616 void sk_destruct(struct sock *sk)
1617 {
1618 	if (sock_flag(sk, SOCK_RCU_FREE))
1619 		call_rcu(&sk->sk_rcu, __sk_destruct);
1620 	else
1621 		__sk_destruct(&sk->sk_rcu);
1622 }
1623 
1624 static void __sk_free(struct sock *sk)
1625 {
1626 	if (likely(sk->sk_net_refcnt))
1627 		sock_inuse_add(sock_net(sk), -1);
1628 
1629 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1630 		sock_diag_broadcast_destroy(sk);
1631 	else
1632 		sk_destruct(sk);
1633 }
1634 
1635 void sk_free(struct sock *sk)
1636 {
1637 	/*
1638 	 * We subtract one from sk_wmem_alloc and can know if
1639 	 * some packets are still in some tx queue.
1640 	 * If not null, sock_wfree() will call __sk_free(sk) later
1641 	 */
1642 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1643 		__sk_free(sk);
1644 }
1645 EXPORT_SYMBOL(sk_free);
1646 
1647 static void sk_init_common(struct sock *sk)
1648 {
1649 	skb_queue_head_init(&sk->sk_receive_queue);
1650 	skb_queue_head_init(&sk->sk_write_queue);
1651 	skb_queue_head_init(&sk->sk_error_queue);
1652 
1653 	rwlock_init(&sk->sk_callback_lock);
1654 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1655 			af_rlock_keys + sk->sk_family,
1656 			af_family_rlock_key_strings[sk->sk_family]);
1657 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1658 			af_wlock_keys + sk->sk_family,
1659 			af_family_wlock_key_strings[sk->sk_family]);
1660 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1661 			af_elock_keys + sk->sk_family,
1662 			af_family_elock_key_strings[sk->sk_family]);
1663 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1664 			af_callback_keys + sk->sk_family,
1665 			af_family_clock_key_strings[sk->sk_family]);
1666 }
1667 
1668 /**
1669  *	sk_clone_lock - clone a socket, and lock its clone
1670  *	@sk: the socket to clone
1671  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1672  *
1673  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1674  */
1675 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1676 {
1677 	struct sock *newsk;
1678 	bool is_charged = true;
1679 
1680 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1681 	if (newsk != NULL) {
1682 		struct sk_filter *filter;
1683 
1684 		sock_copy(newsk, sk);
1685 
1686 		newsk->sk_prot_creator = sk->sk_prot;
1687 
1688 		/* SANITY */
1689 		if (likely(newsk->sk_net_refcnt))
1690 			get_net(sock_net(newsk));
1691 		sk_node_init(&newsk->sk_node);
1692 		sock_lock_init(newsk);
1693 		bh_lock_sock(newsk);
1694 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1695 		newsk->sk_backlog.len = 0;
1696 
1697 		atomic_set(&newsk->sk_rmem_alloc, 0);
1698 		/*
1699 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1700 		 */
1701 		refcount_set(&newsk->sk_wmem_alloc, 1);
1702 		atomic_set(&newsk->sk_omem_alloc, 0);
1703 		sk_init_common(newsk);
1704 
1705 		newsk->sk_dst_cache	= NULL;
1706 		newsk->sk_dst_pending_confirm = 0;
1707 		newsk->sk_wmem_queued	= 0;
1708 		newsk->sk_forward_alloc = 0;
1709 		atomic_set(&newsk->sk_drops, 0);
1710 		newsk->sk_send_head	= NULL;
1711 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1712 		atomic_set(&newsk->sk_zckey, 0);
1713 
1714 		sock_reset_flag(newsk, SOCK_DONE);
1715 		mem_cgroup_sk_alloc(newsk);
1716 		cgroup_sk_alloc(&newsk->sk_cgrp_data);
1717 
1718 		rcu_read_lock();
1719 		filter = rcu_dereference(sk->sk_filter);
1720 		if (filter != NULL)
1721 			/* though it's an empty new sock, the charging may fail
1722 			 * if sysctl_optmem_max was changed between creation of
1723 			 * original socket and cloning
1724 			 */
1725 			is_charged = sk_filter_charge(newsk, filter);
1726 		RCU_INIT_POINTER(newsk->sk_filter, filter);
1727 		rcu_read_unlock();
1728 
1729 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1730 			/* We need to make sure that we don't uncharge the new
1731 			 * socket if we couldn't charge it in the first place
1732 			 * as otherwise we uncharge the parent's filter.
1733 			 */
1734 			if (!is_charged)
1735 				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1736 			sk_free_unlock_clone(newsk);
1737 			newsk = NULL;
1738 			goto out;
1739 		}
1740 		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1741 
1742 		newsk->sk_err	   = 0;
1743 		newsk->sk_err_soft = 0;
1744 		newsk->sk_priority = 0;
1745 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1746 		atomic64_set(&newsk->sk_cookie, 0);
1747 		if (likely(newsk->sk_net_refcnt))
1748 			sock_inuse_add(sock_net(newsk), 1);
1749 
1750 		/*
1751 		 * Before updating sk_refcnt, we must commit prior changes to memory
1752 		 * (Documentation/RCU/rculist_nulls.txt for details)
1753 		 */
1754 		smp_wmb();
1755 		refcount_set(&newsk->sk_refcnt, 2);
1756 
1757 		/*
1758 		 * Increment the counter in the same struct proto as the master
1759 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1760 		 * is the same as sk->sk_prot->socks, as this field was copied
1761 		 * with memcpy).
1762 		 *
1763 		 * This _changes_ the previous behaviour, where
1764 		 * tcp_create_openreq_child always was incrementing the
1765 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1766 		 * to be taken into account in all callers. -acme
1767 		 */
1768 		sk_refcnt_debug_inc(newsk);
1769 		sk_set_socket(newsk, NULL);
1770 		newsk->sk_wq = NULL;
1771 
1772 		if (newsk->sk_prot->sockets_allocated)
1773 			sk_sockets_allocated_inc(newsk);
1774 
1775 		if (sock_needs_netstamp(sk) &&
1776 		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1777 			net_enable_timestamp();
1778 	}
1779 out:
1780 	return newsk;
1781 }
1782 EXPORT_SYMBOL_GPL(sk_clone_lock);
1783 
1784 void sk_free_unlock_clone(struct sock *sk)
1785 {
1786 	/* It is still raw copy of parent, so invalidate
1787 	 * destructor and make plain sk_free() */
1788 	sk->sk_destruct = NULL;
1789 	bh_unlock_sock(sk);
1790 	sk_free(sk);
1791 }
1792 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1793 
1794 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1795 {
1796 	u32 max_segs = 1;
1797 
1798 	sk_dst_set(sk, dst);
1799 	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1800 	if (sk->sk_route_caps & NETIF_F_GSO)
1801 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1802 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1803 	if (sk_can_gso(sk)) {
1804 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1805 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1806 		} else {
1807 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1808 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1809 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1810 		}
1811 	}
1812 	sk->sk_gso_max_segs = max_segs;
1813 }
1814 EXPORT_SYMBOL_GPL(sk_setup_caps);
1815 
1816 /*
1817  *	Simple resource managers for sockets.
1818  */
1819 
1820 
1821 /*
1822  * Write buffer destructor automatically called from kfree_skb.
1823  */
1824 void sock_wfree(struct sk_buff *skb)
1825 {
1826 	struct sock *sk = skb->sk;
1827 	unsigned int len = skb->truesize;
1828 
1829 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1830 		/*
1831 		 * Keep a reference on sk_wmem_alloc, this will be released
1832 		 * after sk_write_space() call
1833 		 */
1834 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1835 		sk->sk_write_space(sk);
1836 		len = 1;
1837 	}
1838 	/*
1839 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1840 	 * could not do because of in-flight packets
1841 	 */
1842 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1843 		__sk_free(sk);
1844 }
1845 EXPORT_SYMBOL(sock_wfree);
1846 
1847 /* This variant of sock_wfree() is used by TCP,
1848  * since it sets SOCK_USE_WRITE_QUEUE.
1849  */
1850 void __sock_wfree(struct sk_buff *skb)
1851 {
1852 	struct sock *sk = skb->sk;
1853 
1854 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1855 		__sk_free(sk);
1856 }
1857 
1858 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1859 {
1860 	skb_orphan(skb);
1861 	skb->sk = sk;
1862 #ifdef CONFIG_INET
1863 	if (unlikely(!sk_fullsock(sk))) {
1864 		skb->destructor = sock_edemux;
1865 		sock_hold(sk);
1866 		return;
1867 	}
1868 #endif
1869 	skb->destructor = sock_wfree;
1870 	skb_set_hash_from_sk(skb, sk);
1871 	/*
1872 	 * We used to take a refcount on sk, but following operation
1873 	 * is enough to guarantee sk_free() wont free this sock until
1874 	 * all in-flight packets are completed
1875 	 */
1876 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1877 }
1878 EXPORT_SYMBOL(skb_set_owner_w);
1879 
1880 /* This helper is used by netem, as it can hold packets in its
1881  * delay queue. We want to allow the owner socket to send more
1882  * packets, as if they were already TX completed by a typical driver.
1883  * But we also want to keep skb->sk set because some packet schedulers
1884  * rely on it (sch_fq for example).
1885  */
1886 void skb_orphan_partial(struct sk_buff *skb)
1887 {
1888 	if (skb_is_tcp_pure_ack(skb))
1889 		return;
1890 
1891 	if (skb->destructor == sock_wfree
1892 #ifdef CONFIG_INET
1893 	    || skb->destructor == tcp_wfree
1894 #endif
1895 		) {
1896 		struct sock *sk = skb->sk;
1897 
1898 		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1899 			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
1900 			skb->destructor = sock_efree;
1901 		}
1902 	} else {
1903 		skb_orphan(skb);
1904 	}
1905 }
1906 EXPORT_SYMBOL(skb_orphan_partial);
1907 
1908 /*
1909  * Read buffer destructor automatically called from kfree_skb.
1910  */
1911 void sock_rfree(struct sk_buff *skb)
1912 {
1913 	struct sock *sk = skb->sk;
1914 	unsigned int len = skb->truesize;
1915 
1916 	atomic_sub(len, &sk->sk_rmem_alloc);
1917 	sk_mem_uncharge(sk, len);
1918 }
1919 EXPORT_SYMBOL(sock_rfree);
1920 
1921 /*
1922  * Buffer destructor for skbs that are not used directly in read or write
1923  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1924  */
1925 void sock_efree(struct sk_buff *skb)
1926 {
1927 	sock_put(skb->sk);
1928 }
1929 EXPORT_SYMBOL(sock_efree);
1930 
1931 kuid_t sock_i_uid(struct sock *sk)
1932 {
1933 	kuid_t uid;
1934 
1935 	read_lock_bh(&sk->sk_callback_lock);
1936 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1937 	read_unlock_bh(&sk->sk_callback_lock);
1938 	return uid;
1939 }
1940 EXPORT_SYMBOL(sock_i_uid);
1941 
1942 unsigned long sock_i_ino(struct sock *sk)
1943 {
1944 	unsigned long ino;
1945 
1946 	read_lock_bh(&sk->sk_callback_lock);
1947 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1948 	read_unlock_bh(&sk->sk_callback_lock);
1949 	return ino;
1950 }
1951 EXPORT_SYMBOL(sock_i_ino);
1952 
1953 /*
1954  * Allocate a skb from the socket's send buffer.
1955  */
1956 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1957 			     gfp_t priority)
1958 {
1959 	if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1960 		struct sk_buff *skb = alloc_skb(size, priority);
1961 		if (skb) {
1962 			skb_set_owner_w(skb, sk);
1963 			return skb;
1964 		}
1965 	}
1966 	return NULL;
1967 }
1968 EXPORT_SYMBOL(sock_wmalloc);
1969 
1970 static void sock_ofree(struct sk_buff *skb)
1971 {
1972 	struct sock *sk = skb->sk;
1973 
1974 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
1975 }
1976 
1977 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1978 			     gfp_t priority)
1979 {
1980 	struct sk_buff *skb;
1981 
1982 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1983 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
1984 	    sysctl_optmem_max)
1985 		return NULL;
1986 
1987 	skb = alloc_skb(size, priority);
1988 	if (!skb)
1989 		return NULL;
1990 
1991 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
1992 	skb->sk = sk;
1993 	skb->destructor = sock_ofree;
1994 	return skb;
1995 }
1996 
1997 /*
1998  * Allocate a memory block from the socket's option memory buffer.
1999  */
2000 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2001 {
2002 	if ((unsigned int)size <= sysctl_optmem_max &&
2003 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2004 		void *mem;
2005 		/* First do the add, to avoid the race if kmalloc
2006 		 * might sleep.
2007 		 */
2008 		atomic_add(size, &sk->sk_omem_alloc);
2009 		mem = kmalloc(size, priority);
2010 		if (mem)
2011 			return mem;
2012 		atomic_sub(size, &sk->sk_omem_alloc);
2013 	}
2014 	return NULL;
2015 }
2016 EXPORT_SYMBOL(sock_kmalloc);
2017 
2018 /* Free an option memory block. Note, we actually want the inline
2019  * here as this allows gcc to detect the nullify and fold away the
2020  * condition entirely.
2021  */
2022 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2023 				  const bool nullify)
2024 {
2025 	if (WARN_ON_ONCE(!mem))
2026 		return;
2027 	if (nullify)
2028 		kzfree(mem);
2029 	else
2030 		kfree(mem);
2031 	atomic_sub(size, &sk->sk_omem_alloc);
2032 }
2033 
2034 void sock_kfree_s(struct sock *sk, void *mem, int size)
2035 {
2036 	__sock_kfree_s(sk, mem, size, false);
2037 }
2038 EXPORT_SYMBOL(sock_kfree_s);
2039 
2040 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2041 {
2042 	__sock_kfree_s(sk, mem, size, true);
2043 }
2044 EXPORT_SYMBOL(sock_kzfree_s);
2045 
2046 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2047    I think, these locks should be removed for datagram sockets.
2048  */
2049 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2050 {
2051 	DEFINE_WAIT(wait);
2052 
2053 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2054 	for (;;) {
2055 		if (!timeo)
2056 			break;
2057 		if (signal_pending(current))
2058 			break;
2059 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2060 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2061 		if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2062 			break;
2063 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2064 			break;
2065 		if (sk->sk_err)
2066 			break;
2067 		timeo = schedule_timeout(timeo);
2068 	}
2069 	finish_wait(sk_sleep(sk), &wait);
2070 	return timeo;
2071 }
2072 
2073 
2074 /*
2075  *	Generic send/receive buffer handlers
2076  */
2077 
2078 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2079 				     unsigned long data_len, int noblock,
2080 				     int *errcode, int max_page_order)
2081 {
2082 	struct sk_buff *skb;
2083 	long timeo;
2084 	int err;
2085 
2086 	timeo = sock_sndtimeo(sk, noblock);
2087 	for (;;) {
2088 		err = sock_error(sk);
2089 		if (err != 0)
2090 			goto failure;
2091 
2092 		err = -EPIPE;
2093 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2094 			goto failure;
2095 
2096 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2097 			break;
2098 
2099 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2100 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2101 		err = -EAGAIN;
2102 		if (!timeo)
2103 			goto failure;
2104 		if (signal_pending(current))
2105 			goto interrupted;
2106 		timeo = sock_wait_for_wmem(sk, timeo);
2107 	}
2108 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2109 				   errcode, sk->sk_allocation);
2110 	if (skb)
2111 		skb_set_owner_w(skb, sk);
2112 	return skb;
2113 
2114 interrupted:
2115 	err = sock_intr_errno(timeo);
2116 failure:
2117 	*errcode = err;
2118 	return NULL;
2119 }
2120 EXPORT_SYMBOL(sock_alloc_send_pskb);
2121 
2122 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2123 				    int noblock, int *errcode)
2124 {
2125 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2126 }
2127 EXPORT_SYMBOL(sock_alloc_send_skb);
2128 
2129 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2130 		     struct sockcm_cookie *sockc)
2131 {
2132 	u32 tsflags;
2133 
2134 	switch (cmsg->cmsg_type) {
2135 	case SO_MARK:
2136 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2137 			return -EPERM;
2138 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2139 			return -EINVAL;
2140 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2141 		break;
2142 	case SO_TIMESTAMPING:
2143 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2144 			return -EINVAL;
2145 
2146 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2147 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2148 			return -EINVAL;
2149 
2150 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2151 		sockc->tsflags |= tsflags;
2152 		break;
2153 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2154 	case SCM_RIGHTS:
2155 	case SCM_CREDENTIALS:
2156 		break;
2157 	default:
2158 		return -EINVAL;
2159 	}
2160 	return 0;
2161 }
2162 EXPORT_SYMBOL(__sock_cmsg_send);
2163 
2164 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2165 		   struct sockcm_cookie *sockc)
2166 {
2167 	struct cmsghdr *cmsg;
2168 	int ret;
2169 
2170 	for_each_cmsghdr(cmsg, msg) {
2171 		if (!CMSG_OK(msg, cmsg))
2172 			return -EINVAL;
2173 		if (cmsg->cmsg_level != SOL_SOCKET)
2174 			continue;
2175 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2176 		if (ret)
2177 			return ret;
2178 	}
2179 	return 0;
2180 }
2181 EXPORT_SYMBOL(sock_cmsg_send);
2182 
2183 static void sk_enter_memory_pressure(struct sock *sk)
2184 {
2185 	if (!sk->sk_prot->enter_memory_pressure)
2186 		return;
2187 
2188 	sk->sk_prot->enter_memory_pressure(sk);
2189 }
2190 
2191 static void sk_leave_memory_pressure(struct sock *sk)
2192 {
2193 	if (sk->sk_prot->leave_memory_pressure) {
2194 		sk->sk_prot->leave_memory_pressure(sk);
2195 	} else {
2196 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2197 
2198 		if (memory_pressure && *memory_pressure)
2199 			*memory_pressure = 0;
2200 	}
2201 }
2202 
2203 /* On 32bit arches, an skb frag is limited to 2^15 */
2204 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2205 
2206 /**
2207  * skb_page_frag_refill - check that a page_frag contains enough room
2208  * @sz: minimum size of the fragment we want to get
2209  * @pfrag: pointer to page_frag
2210  * @gfp: priority for memory allocation
2211  *
2212  * Note: While this allocator tries to use high order pages, there is
2213  * no guarantee that allocations succeed. Therefore, @sz MUST be
2214  * less or equal than PAGE_SIZE.
2215  */
2216 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2217 {
2218 	if (pfrag->page) {
2219 		if (page_ref_count(pfrag->page) == 1) {
2220 			pfrag->offset = 0;
2221 			return true;
2222 		}
2223 		if (pfrag->offset + sz <= pfrag->size)
2224 			return true;
2225 		put_page(pfrag->page);
2226 	}
2227 
2228 	pfrag->offset = 0;
2229 	if (SKB_FRAG_PAGE_ORDER) {
2230 		/* Avoid direct reclaim but allow kswapd to wake */
2231 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2232 					  __GFP_COMP | __GFP_NOWARN |
2233 					  __GFP_NORETRY,
2234 					  SKB_FRAG_PAGE_ORDER);
2235 		if (likely(pfrag->page)) {
2236 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2237 			return true;
2238 		}
2239 	}
2240 	pfrag->page = alloc_page(gfp);
2241 	if (likely(pfrag->page)) {
2242 		pfrag->size = PAGE_SIZE;
2243 		return true;
2244 	}
2245 	return false;
2246 }
2247 EXPORT_SYMBOL(skb_page_frag_refill);
2248 
2249 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2250 {
2251 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2252 		return true;
2253 
2254 	sk_enter_memory_pressure(sk);
2255 	sk_stream_moderate_sndbuf(sk);
2256 	return false;
2257 }
2258 EXPORT_SYMBOL(sk_page_frag_refill);
2259 
2260 int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg,
2261 		int sg_start, int *sg_curr_index, unsigned int *sg_curr_size,
2262 		int first_coalesce)
2263 {
2264 	int sg_curr = *sg_curr_index, use = 0, rc = 0;
2265 	unsigned int size = *sg_curr_size;
2266 	struct page_frag *pfrag;
2267 	struct scatterlist *sge;
2268 
2269 	len -= size;
2270 	pfrag = sk_page_frag(sk);
2271 
2272 	while (len > 0) {
2273 		unsigned int orig_offset;
2274 
2275 		if (!sk_page_frag_refill(sk, pfrag)) {
2276 			rc = -ENOMEM;
2277 			goto out;
2278 		}
2279 
2280 		use = min_t(int, len, pfrag->size - pfrag->offset);
2281 
2282 		if (!sk_wmem_schedule(sk, use)) {
2283 			rc = -ENOMEM;
2284 			goto out;
2285 		}
2286 
2287 		sk_mem_charge(sk, use);
2288 		size += use;
2289 		orig_offset = pfrag->offset;
2290 		pfrag->offset += use;
2291 
2292 		sge = sg + sg_curr - 1;
2293 		if (sg_curr > first_coalesce && sg_page(sg) == pfrag->page &&
2294 		    sg->offset + sg->length == orig_offset) {
2295 			sg->length += use;
2296 		} else {
2297 			sge = sg + sg_curr;
2298 			sg_unmark_end(sge);
2299 			sg_set_page(sge, pfrag->page, use, orig_offset);
2300 			get_page(pfrag->page);
2301 			sg_curr++;
2302 
2303 			if (sg_curr == MAX_SKB_FRAGS)
2304 				sg_curr = 0;
2305 
2306 			if (sg_curr == sg_start) {
2307 				rc = -ENOSPC;
2308 				break;
2309 			}
2310 		}
2311 
2312 		len -= use;
2313 	}
2314 out:
2315 	*sg_curr_size = size;
2316 	*sg_curr_index = sg_curr;
2317 	return rc;
2318 }
2319 EXPORT_SYMBOL(sk_alloc_sg);
2320 
2321 static void __lock_sock(struct sock *sk)
2322 	__releases(&sk->sk_lock.slock)
2323 	__acquires(&sk->sk_lock.slock)
2324 {
2325 	DEFINE_WAIT(wait);
2326 
2327 	for (;;) {
2328 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2329 					TASK_UNINTERRUPTIBLE);
2330 		spin_unlock_bh(&sk->sk_lock.slock);
2331 		schedule();
2332 		spin_lock_bh(&sk->sk_lock.slock);
2333 		if (!sock_owned_by_user(sk))
2334 			break;
2335 	}
2336 	finish_wait(&sk->sk_lock.wq, &wait);
2337 }
2338 
2339 static void __release_sock(struct sock *sk)
2340 	__releases(&sk->sk_lock.slock)
2341 	__acquires(&sk->sk_lock.slock)
2342 {
2343 	struct sk_buff *skb, *next;
2344 
2345 	while ((skb = sk->sk_backlog.head) != NULL) {
2346 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2347 
2348 		spin_unlock_bh(&sk->sk_lock.slock);
2349 
2350 		do {
2351 			next = skb->next;
2352 			prefetch(next);
2353 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2354 			skb->next = NULL;
2355 			sk_backlog_rcv(sk, skb);
2356 
2357 			cond_resched();
2358 
2359 			skb = next;
2360 		} while (skb != NULL);
2361 
2362 		spin_lock_bh(&sk->sk_lock.slock);
2363 	}
2364 
2365 	/*
2366 	 * Doing the zeroing here guarantee we can not loop forever
2367 	 * while a wild producer attempts to flood us.
2368 	 */
2369 	sk->sk_backlog.len = 0;
2370 }
2371 
2372 void __sk_flush_backlog(struct sock *sk)
2373 {
2374 	spin_lock_bh(&sk->sk_lock.slock);
2375 	__release_sock(sk);
2376 	spin_unlock_bh(&sk->sk_lock.slock);
2377 }
2378 
2379 /**
2380  * sk_wait_data - wait for data to arrive at sk_receive_queue
2381  * @sk:    sock to wait on
2382  * @timeo: for how long
2383  * @skb:   last skb seen on sk_receive_queue
2384  *
2385  * Now socket state including sk->sk_err is changed only under lock,
2386  * hence we may omit checks after joining wait queue.
2387  * We check receive queue before schedule() only as optimization;
2388  * it is very likely that release_sock() added new data.
2389  */
2390 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2391 {
2392 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2393 	int rc;
2394 
2395 	add_wait_queue(sk_sleep(sk), &wait);
2396 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2397 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2398 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2399 	remove_wait_queue(sk_sleep(sk), &wait);
2400 	return rc;
2401 }
2402 EXPORT_SYMBOL(sk_wait_data);
2403 
2404 /**
2405  *	__sk_mem_raise_allocated - increase memory_allocated
2406  *	@sk: socket
2407  *	@size: memory size to allocate
2408  *	@amt: pages to allocate
2409  *	@kind: allocation type
2410  *
2411  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2412  */
2413 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2414 {
2415 	struct proto *prot = sk->sk_prot;
2416 	long allocated = sk_memory_allocated_add(sk, amt);
2417 
2418 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2419 	    !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2420 		goto suppress_allocation;
2421 
2422 	/* Under limit. */
2423 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2424 		sk_leave_memory_pressure(sk);
2425 		return 1;
2426 	}
2427 
2428 	/* Under pressure. */
2429 	if (allocated > sk_prot_mem_limits(sk, 1))
2430 		sk_enter_memory_pressure(sk);
2431 
2432 	/* Over hard limit. */
2433 	if (allocated > sk_prot_mem_limits(sk, 2))
2434 		goto suppress_allocation;
2435 
2436 	/* guarantee minimum buffer size under pressure */
2437 	if (kind == SK_MEM_RECV) {
2438 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2439 			return 1;
2440 
2441 	} else { /* SK_MEM_SEND */
2442 		int wmem0 = sk_get_wmem0(sk, prot);
2443 
2444 		if (sk->sk_type == SOCK_STREAM) {
2445 			if (sk->sk_wmem_queued < wmem0)
2446 				return 1;
2447 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2448 				return 1;
2449 		}
2450 	}
2451 
2452 	if (sk_has_memory_pressure(sk)) {
2453 		int alloc;
2454 
2455 		if (!sk_under_memory_pressure(sk))
2456 			return 1;
2457 		alloc = sk_sockets_allocated_read_positive(sk);
2458 		if (sk_prot_mem_limits(sk, 2) > alloc *
2459 		    sk_mem_pages(sk->sk_wmem_queued +
2460 				 atomic_read(&sk->sk_rmem_alloc) +
2461 				 sk->sk_forward_alloc))
2462 			return 1;
2463 	}
2464 
2465 suppress_allocation:
2466 
2467 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2468 		sk_stream_moderate_sndbuf(sk);
2469 
2470 		/* Fail only if socket is _under_ its sndbuf.
2471 		 * In this case we cannot block, so that we have to fail.
2472 		 */
2473 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2474 			return 1;
2475 	}
2476 
2477 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2478 
2479 	sk_memory_allocated_sub(sk, amt);
2480 
2481 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2482 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2483 
2484 	return 0;
2485 }
2486 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2487 
2488 /**
2489  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2490  *	@sk: socket
2491  *	@size: memory size to allocate
2492  *	@kind: allocation type
2493  *
2494  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2495  *	rmem allocation. This function assumes that protocols which have
2496  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2497  */
2498 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2499 {
2500 	int ret, amt = sk_mem_pages(size);
2501 
2502 	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2503 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2504 	if (!ret)
2505 		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2506 	return ret;
2507 }
2508 EXPORT_SYMBOL(__sk_mem_schedule);
2509 
2510 /**
2511  *	__sk_mem_reduce_allocated - reclaim memory_allocated
2512  *	@sk: socket
2513  *	@amount: number of quanta
2514  *
2515  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2516  */
2517 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2518 {
2519 	sk_memory_allocated_sub(sk, amount);
2520 
2521 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2522 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2523 
2524 	if (sk_under_memory_pressure(sk) &&
2525 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2526 		sk_leave_memory_pressure(sk);
2527 }
2528 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2529 
2530 /**
2531  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2532  *	@sk: socket
2533  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2534  */
2535 void __sk_mem_reclaim(struct sock *sk, int amount)
2536 {
2537 	amount >>= SK_MEM_QUANTUM_SHIFT;
2538 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2539 	__sk_mem_reduce_allocated(sk, amount);
2540 }
2541 EXPORT_SYMBOL(__sk_mem_reclaim);
2542 
2543 int sk_set_peek_off(struct sock *sk, int val)
2544 {
2545 	sk->sk_peek_off = val;
2546 	return 0;
2547 }
2548 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2549 
2550 /*
2551  * Set of default routines for initialising struct proto_ops when
2552  * the protocol does not support a particular function. In certain
2553  * cases where it makes no sense for a protocol to have a "do nothing"
2554  * function, some default processing is provided.
2555  */
2556 
2557 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2558 {
2559 	return -EOPNOTSUPP;
2560 }
2561 EXPORT_SYMBOL(sock_no_bind);
2562 
2563 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2564 		    int len, int flags)
2565 {
2566 	return -EOPNOTSUPP;
2567 }
2568 EXPORT_SYMBOL(sock_no_connect);
2569 
2570 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2571 {
2572 	return -EOPNOTSUPP;
2573 }
2574 EXPORT_SYMBOL(sock_no_socketpair);
2575 
2576 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2577 		   bool kern)
2578 {
2579 	return -EOPNOTSUPP;
2580 }
2581 EXPORT_SYMBOL(sock_no_accept);
2582 
2583 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2584 		    int peer)
2585 {
2586 	return -EOPNOTSUPP;
2587 }
2588 EXPORT_SYMBOL(sock_no_getname);
2589 
2590 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2591 {
2592 	return -EOPNOTSUPP;
2593 }
2594 EXPORT_SYMBOL(sock_no_ioctl);
2595 
2596 int sock_no_listen(struct socket *sock, int backlog)
2597 {
2598 	return -EOPNOTSUPP;
2599 }
2600 EXPORT_SYMBOL(sock_no_listen);
2601 
2602 int sock_no_shutdown(struct socket *sock, int how)
2603 {
2604 	return -EOPNOTSUPP;
2605 }
2606 EXPORT_SYMBOL(sock_no_shutdown);
2607 
2608 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2609 		    char __user *optval, unsigned int optlen)
2610 {
2611 	return -EOPNOTSUPP;
2612 }
2613 EXPORT_SYMBOL(sock_no_setsockopt);
2614 
2615 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2616 		    char __user *optval, int __user *optlen)
2617 {
2618 	return -EOPNOTSUPP;
2619 }
2620 EXPORT_SYMBOL(sock_no_getsockopt);
2621 
2622 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2623 {
2624 	return -EOPNOTSUPP;
2625 }
2626 EXPORT_SYMBOL(sock_no_sendmsg);
2627 
2628 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2629 {
2630 	return -EOPNOTSUPP;
2631 }
2632 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2633 
2634 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2635 		    int flags)
2636 {
2637 	return -EOPNOTSUPP;
2638 }
2639 EXPORT_SYMBOL(sock_no_recvmsg);
2640 
2641 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2642 {
2643 	/* Mirror missing mmap method error code */
2644 	return -ENODEV;
2645 }
2646 EXPORT_SYMBOL(sock_no_mmap);
2647 
2648 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2649 {
2650 	ssize_t res;
2651 	struct msghdr msg = {.msg_flags = flags};
2652 	struct kvec iov;
2653 	char *kaddr = kmap(page);
2654 	iov.iov_base = kaddr + offset;
2655 	iov.iov_len = size;
2656 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2657 	kunmap(page);
2658 	return res;
2659 }
2660 EXPORT_SYMBOL(sock_no_sendpage);
2661 
2662 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2663 				int offset, size_t size, int flags)
2664 {
2665 	ssize_t res;
2666 	struct msghdr msg = {.msg_flags = flags};
2667 	struct kvec iov;
2668 	char *kaddr = kmap(page);
2669 
2670 	iov.iov_base = kaddr + offset;
2671 	iov.iov_len = size;
2672 	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2673 	kunmap(page);
2674 	return res;
2675 }
2676 EXPORT_SYMBOL(sock_no_sendpage_locked);
2677 
2678 /*
2679  *	Default Socket Callbacks
2680  */
2681 
2682 static void sock_def_wakeup(struct sock *sk)
2683 {
2684 	struct socket_wq *wq;
2685 
2686 	rcu_read_lock();
2687 	wq = rcu_dereference(sk->sk_wq);
2688 	if (skwq_has_sleeper(wq))
2689 		wake_up_interruptible_all(&wq->wait);
2690 	rcu_read_unlock();
2691 }
2692 
2693 static void sock_def_error_report(struct sock *sk)
2694 {
2695 	struct socket_wq *wq;
2696 
2697 	rcu_read_lock();
2698 	wq = rcu_dereference(sk->sk_wq);
2699 	if (skwq_has_sleeper(wq))
2700 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2701 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2702 	rcu_read_unlock();
2703 }
2704 
2705 static void sock_def_readable(struct sock *sk)
2706 {
2707 	struct socket_wq *wq;
2708 
2709 	rcu_read_lock();
2710 	wq = rcu_dereference(sk->sk_wq);
2711 	if (skwq_has_sleeper(wq))
2712 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2713 						EPOLLRDNORM | EPOLLRDBAND);
2714 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2715 	rcu_read_unlock();
2716 }
2717 
2718 static void sock_def_write_space(struct sock *sk)
2719 {
2720 	struct socket_wq *wq;
2721 
2722 	rcu_read_lock();
2723 
2724 	/* Do not wake up a writer until he can make "significant"
2725 	 * progress.  --DaveM
2726 	 */
2727 	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2728 		wq = rcu_dereference(sk->sk_wq);
2729 		if (skwq_has_sleeper(wq))
2730 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2731 						EPOLLWRNORM | EPOLLWRBAND);
2732 
2733 		/* Should agree with poll, otherwise some programs break */
2734 		if (sock_writeable(sk))
2735 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2736 	}
2737 
2738 	rcu_read_unlock();
2739 }
2740 
2741 static void sock_def_destruct(struct sock *sk)
2742 {
2743 }
2744 
2745 void sk_send_sigurg(struct sock *sk)
2746 {
2747 	if (sk->sk_socket && sk->sk_socket->file)
2748 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2749 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2750 }
2751 EXPORT_SYMBOL(sk_send_sigurg);
2752 
2753 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2754 		    unsigned long expires)
2755 {
2756 	if (!mod_timer(timer, expires))
2757 		sock_hold(sk);
2758 }
2759 EXPORT_SYMBOL(sk_reset_timer);
2760 
2761 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2762 {
2763 	if (del_timer(timer))
2764 		__sock_put(sk);
2765 }
2766 EXPORT_SYMBOL(sk_stop_timer);
2767 
2768 void sock_init_data(struct socket *sock, struct sock *sk)
2769 {
2770 	sk_init_common(sk);
2771 	sk->sk_send_head	=	NULL;
2772 
2773 	timer_setup(&sk->sk_timer, NULL, 0);
2774 
2775 	sk->sk_allocation	=	GFP_KERNEL;
2776 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2777 	sk->sk_sndbuf		=	sysctl_wmem_default;
2778 	sk->sk_state		=	TCP_CLOSE;
2779 	sk_set_socket(sk, sock);
2780 
2781 	sock_set_flag(sk, SOCK_ZAPPED);
2782 
2783 	if (sock) {
2784 		sk->sk_type	=	sock->type;
2785 		sk->sk_wq	=	sock->wq;
2786 		sock->sk	=	sk;
2787 		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2788 	} else {
2789 		sk->sk_wq	=	NULL;
2790 		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2791 	}
2792 
2793 	rwlock_init(&sk->sk_callback_lock);
2794 	if (sk->sk_kern_sock)
2795 		lockdep_set_class_and_name(
2796 			&sk->sk_callback_lock,
2797 			af_kern_callback_keys + sk->sk_family,
2798 			af_family_kern_clock_key_strings[sk->sk_family]);
2799 	else
2800 		lockdep_set_class_and_name(
2801 			&sk->sk_callback_lock,
2802 			af_callback_keys + sk->sk_family,
2803 			af_family_clock_key_strings[sk->sk_family]);
2804 
2805 	sk->sk_state_change	=	sock_def_wakeup;
2806 	sk->sk_data_ready	=	sock_def_readable;
2807 	sk->sk_write_space	=	sock_def_write_space;
2808 	sk->sk_error_report	=	sock_def_error_report;
2809 	sk->sk_destruct		=	sock_def_destruct;
2810 
2811 	sk->sk_frag.page	=	NULL;
2812 	sk->sk_frag.offset	=	0;
2813 	sk->sk_peek_off		=	-1;
2814 
2815 	sk->sk_peer_pid 	=	NULL;
2816 	sk->sk_peer_cred	=	NULL;
2817 	sk->sk_write_pending	=	0;
2818 	sk->sk_rcvlowat		=	1;
2819 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2820 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2821 
2822 	sk->sk_stamp = SK_DEFAULT_STAMP;
2823 	atomic_set(&sk->sk_zckey, 0);
2824 
2825 #ifdef CONFIG_NET_RX_BUSY_POLL
2826 	sk->sk_napi_id		=	0;
2827 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2828 #endif
2829 
2830 	sk->sk_max_pacing_rate = ~0U;
2831 	sk->sk_pacing_rate = ~0U;
2832 	sk->sk_pacing_shift = 10;
2833 	sk->sk_incoming_cpu = -1;
2834 	/*
2835 	 * Before updating sk_refcnt, we must commit prior changes to memory
2836 	 * (Documentation/RCU/rculist_nulls.txt for details)
2837 	 */
2838 	smp_wmb();
2839 	refcount_set(&sk->sk_refcnt, 1);
2840 	atomic_set(&sk->sk_drops, 0);
2841 }
2842 EXPORT_SYMBOL(sock_init_data);
2843 
2844 void lock_sock_nested(struct sock *sk, int subclass)
2845 {
2846 	might_sleep();
2847 	spin_lock_bh(&sk->sk_lock.slock);
2848 	if (sk->sk_lock.owned)
2849 		__lock_sock(sk);
2850 	sk->sk_lock.owned = 1;
2851 	spin_unlock(&sk->sk_lock.slock);
2852 	/*
2853 	 * The sk_lock has mutex_lock() semantics here:
2854 	 */
2855 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2856 	local_bh_enable();
2857 }
2858 EXPORT_SYMBOL(lock_sock_nested);
2859 
2860 void release_sock(struct sock *sk)
2861 {
2862 	spin_lock_bh(&sk->sk_lock.slock);
2863 	if (sk->sk_backlog.tail)
2864 		__release_sock(sk);
2865 
2866 	/* Warning : release_cb() might need to release sk ownership,
2867 	 * ie call sock_release_ownership(sk) before us.
2868 	 */
2869 	if (sk->sk_prot->release_cb)
2870 		sk->sk_prot->release_cb(sk);
2871 
2872 	sock_release_ownership(sk);
2873 	if (waitqueue_active(&sk->sk_lock.wq))
2874 		wake_up(&sk->sk_lock.wq);
2875 	spin_unlock_bh(&sk->sk_lock.slock);
2876 }
2877 EXPORT_SYMBOL(release_sock);
2878 
2879 /**
2880  * lock_sock_fast - fast version of lock_sock
2881  * @sk: socket
2882  *
2883  * This version should be used for very small section, where process wont block
2884  * return false if fast path is taken:
2885  *
2886  *   sk_lock.slock locked, owned = 0, BH disabled
2887  *
2888  * return true if slow path is taken:
2889  *
2890  *   sk_lock.slock unlocked, owned = 1, BH enabled
2891  */
2892 bool lock_sock_fast(struct sock *sk)
2893 {
2894 	might_sleep();
2895 	spin_lock_bh(&sk->sk_lock.slock);
2896 
2897 	if (!sk->sk_lock.owned)
2898 		/*
2899 		 * Note : We must disable BH
2900 		 */
2901 		return false;
2902 
2903 	__lock_sock(sk);
2904 	sk->sk_lock.owned = 1;
2905 	spin_unlock(&sk->sk_lock.slock);
2906 	/*
2907 	 * The sk_lock has mutex_lock() semantics here:
2908 	 */
2909 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2910 	local_bh_enable();
2911 	return true;
2912 }
2913 EXPORT_SYMBOL(lock_sock_fast);
2914 
2915 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2916 {
2917 	struct timeval tv;
2918 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2919 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2920 	tv = ktime_to_timeval(sk->sk_stamp);
2921 	if (tv.tv_sec == -1)
2922 		return -ENOENT;
2923 	if (tv.tv_sec == 0) {
2924 		sk->sk_stamp = ktime_get_real();
2925 		tv = ktime_to_timeval(sk->sk_stamp);
2926 	}
2927 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2928 }
2929 EXPORT_SYMBOL(sock_get_timestamp);
2930 
2931 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2932 {
2933 	struct timespec ts;
2934 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2935 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2936 	ts = ktime_to_timespec(sk->sk_stamp);
2937 	if (ts.tv_sec == -1)
2938 		return -ENOENT;
2939 	if (ts.tv_sec == 0) {
2940 		sk->sk_stamp = ktime_get_real();
2941 		ts = ktime_to_timespec(sk->sk_stamp);
2942 	}
2943 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2944 }
2945 EXPORT_SYMBOL(sock_get_timestampns);
2946 
2947 void sock_enable_timestamp(struct sock *sk, int flag)
2948 {
2949 	if (!sock_flag(sk, flag)) {
2950 		unsigned long previous_flags = sk->sk_flags;
2951 
2952 		sock_set_flag(sk, flag);
2953 		/*
2954 		 * we just set one of the two flags which require net
2955 		 * time stamping, but time stamping might have been on
2956 		 * already because of the other one
2957 		 */
2958 		if (sock_needs_netstamp(sk) &&
2959 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
2960 			net_enable_timestamp();
2961 	}
2962 }
2963 
2964 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2965 		       int level, int type)
2966 {
2967 	struct sock_exterr_skb *serr;
2968 	struct sk_buff *skb;
2969 	int copied, err;
2970 
2971 	err = -EAGAIN;
2972 	skb = sock_dequeue_err_skb(sk);
2973 	if (skb == NULL)
2974 		goto out;
2975 
2976 	copied = skb->len;
2977 	if (copied > len) {
2978 		msg->msg_flags |= MSG_TRUNC;
2979 		copied = len;
2980 	}
2981 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2982 	if (err)
2983 		goto out_free_skb;
2984 
2985 	sock_recv_timestamp(msg, sk, skb);
2986 
2987 	serr = SKB_EXT_ERR(skb);
2988 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2989 
2990 	msg->msg_flags |= MSG_ERRQUEUE;
2991 	err = copied;
2992 
2993 out_free_skb:
2994 	kfree_skb(skb);
2995 out:
2996 	return err;
2997 }
2998 EXPORT_SYMBOL(sock_recv_errqueue);
2999 
3000 /*
3001  *	Get a socket option on an socket.
3002  *
3003  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3004  *	asynchronous errors should be reported by getsockopt. We assume
3005  *	this means if you specify SO_ERROR (otherwise whats the point of it).
3006  */
3007 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3008 			   char __user *optval, int __user *optlen)
3009 {
3010 	struct sock *sk = sock->sk;
3011 
3012 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3013 }
3014 EXPORT_SYMBOL(sock_common_getsockopt);
3015 
3016 #ifdef CONFIG_COMPAT
3017 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3018 				  char __user *optval, int __user *optlen)
3019 {
3020 	struct sock *sk = sock->sk;
3021 
3022 	if (sk->sk_prot->compat_getsockopt != NULL)
3023 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
3024 						      optval, optlen);
3025 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3026 }
3027 EXPORT_SYMBOL(compat_sock_common_getsockopt);
3028 #endif
3029 
3030 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3031 			int flags)
3032 {
3033 	struct sock *sk = sock->sk;
3034 	int addr_len = 0;
3035 	int err;
3036 
3037 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3038 				   flags & ~MSG_DONTWAIT, &addr_len);
3039 	if (err >= 0)
3040 		msg->msg_namelen = addr_len;
3041 	return err;
3042 }
3043 EXPORT_SYMBOL(sock_common_recvmsg);
3044 
3045 /*
3046  *	Set socket options on an inet socket.
3047  */
3048 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3049 			   char __user *optval, unsigned int optlen)
3050 {
3051 	struct sock *sk = sock->sk;
3052 
3053 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3054 }
3055 EXPORT_SYMBOL(sock_common_setsockopt);
3056 
3057 #ifdef CONFIG_COMPAT
3058 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3059 				  char __user *optval, unsigned int optlen)
3060 {
3061 	struct sock *sk = sock->sk;
3062 
3063 	if (sk->sk_prot->compat_setsockopt != NULL)
3064 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
3065 						      optval, optlen);
3066 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3067 }
3068 EXPORT_SYMBOL(compat_sock_common_setsockopt);
3069 #endif
3070 
3071 void sk_common_release(struct sock *sk)
3072 {
3073 	if (sk->sk_prot->destroy)
3074 		sk->sk_prot->destroy(sk);
3075 
3076 	/*
3077 	 * Observation: when sock_common_release is called, processes have
3078 	 * no access to socket. But net still has.
3079 	 * Step one, detach it from networking:
3080 	 *
3081 	 * A. Remove from hash tables.
3082 	 */
3083 
3084 	sk->sk_prot->unhash(sk);
3085 
3086 	/*
3087 	 * In this point socket cannot receive new packets, but it is possible
3088 	 * that some packets are in flight because some CPU runs receiver and
3089 	 * did hash table lookup before we unhashed socket. They will achieve
3090 	 * receive queue and will be purged by socket destructor.
3091 	 *
3092 	 * Also we still have packets pending on receive queue and probably,
3093 	 * our own packets waiting in device queues. sock_destroy will drain
3094 	 * receive queue, but transmitted packets will delay socket destruction
3095 	 * until the last reference will be released.
3096 	 */
3097 
3098 	sock_orphan(sk);
3099 
3100 	xfrm_sk_free_policy(sk);
3101 
3102 	sk_refcnt_debug_release(sk);
3103 
3104 	sock_put(sk);
3105 }
3106 EXPORT_SYMBOL(sk_common_release);
3107 
3108 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3109 {
3110 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3111 
3112 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3113 	mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3114 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3115 	mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3116 	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3117 	mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3118 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3119 	mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3120 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3121 }
3122 
3123 #ifdef CONFIG_PROC_FS
3124 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
3125 struct prot_inuse {
3126 	int val[PROTO_INUSE_NR];
3127 };
3128 
3129 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3130 
3131 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3132 {
3133 	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3134 }
3135 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3136 
3137 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3138 {
3139 	int cpu, idx = prot->inuse_idx;
3140 	int res = 0;
3141 
3142 	for_each_possible_cpu(cpu)
3143 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3144 
3145 	return res >= 0 ? res : 0;
3146 }
3147 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3148 
3149 static void sock_inuse_add(struct net *net, int val)
3150 {
3151 	this_cpu_add(*net->core.sock_inuse, val);
3152 }
3153 
3154 int sock_inuse_get(struct net *net)
3155 {
3156 	int cpu, res = 0;
3157 
3158 	for_each_possible_cpu(cpu)
3159 		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3160 
3161 	return res;
3162 }
3163 
3164 EXPORT_SYMBOL_GPL(sock_inuse_get);
3165 
3166 static int __net_init sock_inuse_init_net(struct net *net)
3167 {
3168 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3169 	if (net->core.prot_inuse == NULL)
3170 		return -ENOMEM;
3171 
3172 	net->core.sock_inuse = alloc_percpu(int);
3173 	if (net->core.sock_inuse == NULL)
3174 		goto out;
3175 
3176 	return 0;
3177 
3178 out:
3179 	free_percpu(net->core.prot_inuse);
3180 	return -ENOMEM;
3181 }
3182 
3183 static void __net_exit sock_inuse_exit_net(struct net *net)
3184 {
3185 	free_percpu(net->core.prot_inuse);
3186 	free_percpu(net->core.sock_inuse);
3187 }
3188 
3189 static struct pernet_operations net_inuse_ops = {
3190 	.init = sock_inuse_init_net,
3191 	.exit = sock_inuse_exit_net,
3192 };
3193 
3194 static __init int net_inuse_init(void)
3195 {
3196 	if (register_pernet_subsys(&net_inuse_ops))
3197 		panic("Cannot initialize net inuse counters");
3198 
3199 	return 0;
3200 }
3201 
3202 core_initcall(net_inuse_init);
3203 
3204 static void assign_proto_idx(struct proto *prot)
3205 {
3206 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3207 
3208 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3209 		pr_err("PROTO_INUSE_NR exhausted\n");
3210 		return;
3211 	}
3212 
3213 	set_bit(prot->inuse_idx, proto_inuse_idx);
3214 }
3215 
3216 static void release_proto_idx(struct proto *prot)
3217 {
3218 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3219 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3220 }
3221 #else
3222 static inline void assign_proto_idx(struct proto *prot)
3223 {
3224 }
3225 
3226 static inline void release_proto_idx(struct proto *prot)
3227 {
3228 }
3229 
3230 static void sock_inuse_add(struct net *net, int val)
3231 {
3232 }
3233 #endif
3234 
3235 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3236 {
3237 	if (!rsk_prot)
3238 		return;
3239 	kfree(rsk_prot->slab_name);
3240 	rsk_prot->slab_name = NULL;
3241 	kmem_cache_destroy(rsk_prot->slab);
3242 	rsk_prot->slab = NULL;
3243 }
3244 
3245 static int req_prot_init(const struct proto *prot)
3246 {
3247 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3248 
3249 	if (!rsk_prot)
3250 		return 0;
3251 
3252 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3253 					prot->name);
3254 	if (!rsk_prot->slab_name)
3255 		return -ENOMEM;
3256 
3257 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3258 					   rsk_prot->obj_size, 0,
3259 					   prot->slab_flags, NULL);
3260 
3261 	if (!rsk_prot->slab) {
3262 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3263 			prot->name);
3264 		return -ENOMEM;
3265 	}
3266 	return 0;
3267 }
3268 
3269 int proto_register(struct proto *prot, int alloc_slab)
3270 {
3271 	if (alloc_slab) {
3272 		prot->slab = kmem_cache_create_usercopy(prot->name,
3273 					prot->obj_size, 0,
3274 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
3275 					prot->useroffset, prot->usersize,
3276 					NULL);
3277 
3278 		if (prot->slab == NULL) {
3279 			pr_crit("%s: Can't create sock SLAB cache!\n",
3280 				prot->name);
3281 			goto out;
3282 		}
3283 
3284 		if (req_prot_init(prot))
3285 			goto out_free_request_sock_slab;
3286 
3287 		if (prot->twsk_prot != NULL) {
3288 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3289 
3290 			if (prot->twsk_prot->twsk_slab_name == NULL)
3291 				goto out_free_request_sock_slab;
3292 
3293 			prot->twsk_prot->twsk_slab =
3294 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3295 						  prot->twsk_prot->twsk_obj_size,
3296 						  0,
3297 						  prot->slab_flags,
3298 						  NULL);
3299 			if (prot->twsk_prot->twsk_slab == NULL)
3300 				goto out_free_timewait_sock_slab_name;
3301 		}
3302 	}
3303 
3304 	mutex_lock(&proto_list_mutex);
3305 	list_add(&prot->node, &proto_list);
3306 	assign_proto_idx(prot);
3307 	mutex_unlock(&proto_list_mutex);
3308 	return 0;
3309 
3310 out_free_timewait_sock_slab_name:
3311 	kfree(prot->twsk_prot->twsk_slab_name);
3312 out_free_request_sock_slab:
3313 	req_prot_cleanup(prot->rsk_prot);
3314 
3315 	kmem_cache_destroy(prot->slab);
3316 	prot->slab = NULL;
3317 out:
3318 	return -ENOBUFS;
3319 }
3320 EXPORT_SYMBOL(proto_register);
3321 
3322 void proto_unregister(struct proto *prot)
3323 {
3324 	mutex_lock(&proto_list_mutex);
3325 	release_proto_idx(prot);
3326 	list_del(&prot->node);
3327 	mutex_unlock(&proto_list_mutex);
3328 
3329 	kmem_cache_destroy(prot->slab);
3330 	prot->slab = NULL;
3331 
3332 	req_prot_cleanup(prot->rsk_prot);
3333 
3334 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3335 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3336 		kfree(prot->twsk_prot->twsk_slab_name);
3337 		prot->twsk_prot->twsk_slab = NULL;
3338 	}
3339 }
3340 EXPORT_SYMBOL(proto_unregister);
3341 
3342 int sock_load_diag_module(int family, int protocol)
3343 {
3344 	if (!protocol) {
3345 		if (!sock_is_registered(family))
3346 			return -ENOENT;
3347 
3348 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3349 				      NETLINK_SOCK_DIAG, family);
3350 	}
3351 
3352 #ifdef CONFIG_INET
3353 	if (family == AF_INET &&
3354 	    !rcu_access_pointer(inet_protos[protocol]))
3355 		return -ENOENT;
3356 #endif
3357 
3358 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3359 			      NETLINK_SOCK_DIAG, family, protocol);
3360 }
3361 EXPORT_SYMBOL(sock_load_diag_module);
3362 
3363 #ifdef CONFIG_PROC_FS
3364 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3365 	__acquires(proto_list_mutex)
3366 {
3367 	mutex_lock(&proto_list_mutex);
3368 	return seq_list_start_head(&proto_list, *pos);
3369 }
3370 
3371 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3372 {
3373 	return seq_list_next(v, &proto_list, pos);
3374 }
3375 
3376 static void proto_seq_stop(struct seq_file *seq, void *v)
3377 	__releases(proto_list_mutex)
3378 {
3379 	mutex_unlock(&proto_list_mutex);
3380 }
3381 
3382 static char proto_method_implemented(const void *method)
3383 {
3384 	return method == NULL ? 'n' : 'y';
3385 }
3386 static long sock_prot_memory_allocated(struct proto *proto)
3387 {
3388 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3389 }
3390 
3391 static char *sock_prot_memory_pressure(struct proto *proto)
3392 {
3393 	return proto->memory_pressure != NULL ?
3394 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3395 }
3396 
3397 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3398 {
3399 
3400 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3401 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3402 		   proto->name,
3403 		   proto->obj_size,
3404 		   sock_prot_inuse_get(seq_file_net(seq), proto),
3405 		   sock_prot_memory_allocated(proto),
3406 		   sock_prot_memory_pressure(proto),
3407 		   proto->max_header,
3408 		   proto->slab == NULL ? "no" : "yes",
3409 		   module_name(proto->owner),
3410 		   proto_method_implemented(proto->close),
3411 		   proto_method_implemented(proto->connect),
3412 		   proto_method_implemented(proto->disconnect),
3413 		   proto_method_implemented(proto->accept),
3414 		   proto_method_implemented(proto->ioctl),
3415 		   proto_method_implemented(proto->init),
3416 		   proto_method_implemented(proto->destroy),
3417 		   proto_method_implemented(proto->shutdown),
3418 		   proto_method_implemented(proto->setsockopt),
3419 		   proto_method_implemented(proto->getsockopt),
3420 		   proto_method_implemented(proto->sendmsg),
3421 		   proto_method_implemented(proto->recvmsg),
3422 		   proto_method_implemented(proto->sendpage),
3423 		   proto_method_implemented(proto->bind),
3424 		   proto_method_implemented(proto->backlog_rcv),
3425 		   proto_method_implemented(proto->hash),
3426 		   proto_method_implemented(proto->unhash),
3427 		   proto_method_implemented(proto->get_port),
3428 		   proto_method_implemented(proto->enter_memory_pressure));
3429 }
3430 
3431 static int proto_seq_show(struct seq_file *seq, void *v)
3432 {
3433 	if (v == &proto_list)
3434 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3435 			   "protocol",
3436 			   "size",
3437 			   "sockets",
3438 			   "memory",
3439 			   "press",
3440 			   "maxhdr",
3441 			   "slab",
3442 			   "module",
3443 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3444 	else
3445 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3446 	return 0;
3447 }
3448 
3449 static const struct seq_operations proto_seq_ops = {
3450 	.start  = proto_seq_start,
3451 	.next   = proto_seq_next,
3452 	.stop   = proto_seq_stop,
3453 	.show   = proto_seq_show,
3454 };
3455 
3456 static __net_init int proto_init_net(struct net *net)
3457 {
3458 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3459 			sizeof(struct seq_net_private)))
3460 		return -ENOMEM;
3461 
3462 	return 0;
3463 }
3464 
3465 static __net_exit void proto_exit_net(struct net *net)
3466 {
3467 	remove_proc_entry("protocols", net->proc_net);
3468 }
3469 
3470 
3471 static __net_initdata struct pernet_operations proto_net_ops = {
3472 	.init = proto_init_net,
3473 	.exit = proto_exit_net,
3474 };
3475 
3476 static int __init proto_init(void)
3477 {
3478 	return register_pernet_subsys(&proto_net_ops);
3479 }
3480 
3481 subsys_initcall(proto_init);
3482 
3483 #endif /* PROC_FS */
3484 
3485 #ifdef CONFIG_NET_RX_BUSY_POLL
3486 bool sk_busy_loop_end(void *p, unsigned long start_time)
3487 {
3488 	struct sock *sk = p;
3489 
3490 	return !skb_queue_empty(&sk->sk_receive_queue) ||
3491 	       sk_busy_loop_timeout(sk, start_time);
3492 }
3493 EXPORT_SYMBOL(sk_busy_loop_end);
3494 #endif /* CONFIG_NET_RX_BUSY_POLL */
3495